1
|
Li W, Zhu J, Zhou T, Jin Z. Exploring the mechanisms of Yinchenhao decoction against ANIT-induced cholestatic liver injury by lipidomics, metabolomics and network pharmacology. J Pharm Biomed Anal 2025; 258:116736. [PMID: 39914330 DOI: 10.1016/j.jpba.2025.116736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/21/2025] [Accepted: 02/03/2025] [Indexed: 03/10/2025]
Abstract
Yinchenhao decoction (YCHD) has been used for the treatment of cholestasis for more than 1000 years with clear clinical efficacy. However, its active compounds and pharmacological mechanism against cholestasis are unclear. In this study, an integrated strategy of network pharmacology, lipidomics, metabolomics, and molecular docking were performed to elucidate the mechanism of YCHD's anti-cholestasis effect. Network pharmacology demonstrated YCHD mainly modulated lipid and atherosclerosis signaling pathways with the involvement of NF-κB, TNF, MAPK, and PI3K/AKT signaling pathways. In vivo experiments, male C57BL/6 J mice model of cholestasis was established by alpha-naphthyl isothiocyanate (ANIT), and were treated with different dosages (3 g/kg and 9 g/kg) of YCHD for one week. Ursodeoxycholic acid (UDCA) was used as a positive control. The in vivo experiments verified the ameliorative effect of YCHD on inflammation, hepatocellular injury and cholestasis. Furthermore, lipidomics and metabolomics research showed that YCHD could improve the metabolism disorder of glycerolipid, glycerophospholipid and amino acids. Subsequently, further WB and molecular docking validation experiments showed that the active compounds in YCHD have regulatory effects on the PPARγ/NF-κB/JNK pathway, the core pathway in lipid and atherosclerosis pathways, thereby inhibiting inflammatory response and improving lipid metabolism disorders. This study could provide evidence of the molecular mechanism and material basis of YCHD in treating cholestasis. This study also provided new research ideas for the discovery of active ingredients in traditional Chinese medicine formulas for the treatment of cholestasis.
Collapse
Affiliation(s)
- Weiwei Li
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jing Zhu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ting Zhou
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ziwen Jin
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
2
|
Yin Y, Zhuang J, Wei X, Chen W, Hao B, Deng Y, Liu Y, Wang M, Ren X. Study on the transformation law of anthraquinones in rhubarb combined with licorice based on biopharmaceutics. Fitoterapia 2025; 182:106429. [PMID: 39947438 DOI: 10.1016/j.fitote.2025.106429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/20/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
The core of Chinese medicine compound prescription is the synergistic effect between the components and the effect of the interaction between the components on the dissolution and absorption of the drug. As a classic Chinese herbal formula, the laxative effect of Dahuang-Gancao decoction (DGD) is mainly derived from the anthraquinones in rhubarb. However, these components may also trigger adverse reactions due to their potency. Licorice, as a moderating herb, can alleviate the harshness of rhubarb. In this study, ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS) technique was used to identify 28 constituents in DGD, mainly including anthraquinones, licorice flavonoids, licorice saponins and other constituents. Moreover, the effect of licorice on the in vivo bioavailability of rhubarb after compatibility was investigated based on biopharmaceutics approach. The results showed that licorice and its fractions (licorice polysaccharides, licorice total saponins and licorice total flavonoids) promoted the stability and solubility of the active ingredients in rhubarb (Aloe-emodin-8-O-β-D-glucoside, Sennoside B, Sennoside A, Aloe-emodin, Rhein, Emodin, Chrysophanol and Physcion) in varying degrees and thereby improved their bioavailability in vivo. In addition, although there was no change in the biopharmaceutics classification of anthraquinone components, their pairing mainly resulted in increased solubility and decreased permeability. These findings provide a theoretical basis for elucidating the compatibility mechanism of the two.
Collapse
Affiliation(s)
- Yu Yin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jue Zhuang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xuerou Wei
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wei Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Bingyu Hao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yanru Deng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yi Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Meng Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Xiaoliang Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
3
|
Yu L, Qin J, Zhang M, Gao Y, Zhao Y. Research Progress on the Anti-Liver Cancer Mechanism and Toxicity of Rhubarb Anthraquinone. Drug Des Devel Ther 2024; 18:6089-6113. [PMID: 39717199 PMCID: PMC11664478 DOI: 10.2147/dddt.s489377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/05/2024] [Indexed: 12/25/2024] Open
Abstract
Ethnopharmacological Relevance Rhubarb has the effect of breaking blood stasis and abnormal mass, and was often used to treat various tumor diseases including liver cancer in ancient China. Recipes containing rhubarb have anti-liver cancer properties and are still used today. However, the main components and mechanism of action of rhubarb against liver cancer are still unclear. Aim of the Review To conduct a review of the anti-liver cancer effects and toxicity of rhubarb anthraquinones (AQs). Materials and Methods This article reviewed the effects of rhubarb AQs in the treatment of liver cancer and the signaling pathways involved, and discussed the toxicity and pharmacokinetics of rhubarb AQs by searching the Web of Science, PubMed and CNKI databases. Results Rhubarb (Rhei Radix et Rhizoma) is a traditional Chinese medicine that has been existed for thousands of years and is used as an anti-cancer drug. Modern pharmacological research shows that rhubarb AQs, as the main component of rhubarb, contains emodin, rhein, chrysophanol, physcione and aloe-emodin, which has anti-liver cancer effects and can be considered as a potential therapeutic drug for liver cancer. However, many modern studies have shown that rhubarb AQs have certain toxicity, which hinders in-depth research on rhubarb AQs. Conclusion Rhubarb AQs can be used as a potential anti-liver cancer drug, but its research still has many limitations. Strengthening research on related experiments and finding a balance between toxicity and efficacy are all directions worth studying in the future.
Collapse
Affiliation(s)
- Linyuan Yu
- Department of Pharmacy, Chengdu Integrative TCM & Western Medicine Hospital, Chengdu, Sichuan, 610095, People’s Republic of China
- Department of Pharmacy, Sichuan Second Hospital of T.C.M, Chengdu, Sichuan, 610031, People’s Republic of China
| | - Jinxing Qin
- Department of Pharmacy, Sichuan Second Hospital of T.C.M, Chengdu, Sichuan, 610031, People’s Republic of China
| | - Mei Zhang
- Department of Neurosurgery, Guiqian International General Hospital, Guiyang, Guizhou, 550000, People’s Republic of China
| | - Yawen Gao
- Department of Anesthesia, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Yongli Zhao
- Department of Pharmacy, Chengdu Integrative TCM & Western Medicine Hospital, Chengdu, Sichuan, 610095, People’s Republic of China
| |
Collapse
|
4
|
Liu L, Sun S, Li X. Physcion inhibition of CYP2C9, 2D6 and 3A4 in human liver microsomes. PHARMACEUTICAL BIOLOGY 2024; 62:207-213. [PMID: 38353248 PMCID: PMC10868446 DOI: 10.1080/13880209.2024.2314089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 01/25/2024] [Indexed: 02/16/2024]
Abstract
CONTEXT The effect of the active ingredients in traditional Chinese medicines on the activity of cytochrome P450 enzymes (CYP450s) is a critical factor that should be considered in TCM prescriptions. Physcion, the major active ingredient of Rheum spp. (Polygonaceae), possesses wide pharmacological activities. OBJECTIVES The effect of physcion on CYP450 activity was investigated to provide a theoretical basis for use. MATERIALS AND METHODS The experiments were conducted in pooled human liver microsomes (HLMs). The activity of CYP450 isoforms was evaluated with corresponding substrates and probe reactions. Blank HLMs were set as negative controls, and typical inhibitors were employed as positive controls. The inhibition model was fitted with Lineweaver Burk plots. The concentration (0, 2.5, 5, 10, 25, 50 and 100 μM physcion) and time-dependent (0, 5, 10, 15 and 30 min) effects of physcion were also assessed. RESULTS Physcion suppressed CYP2C9, 2D6 and 3A4 in a concentration-dependent manner with IC50 values of 7.44, 17.84 and 13.50 μM, respectively. The inhibition of CYP2C9 and 2D6 was competitive with the Ki values of 3.69 and 8.66 μM, respectively. The inhibition of CYP3A4 was non-competitive with a Ki value of 6.70 μM. Additionally, only the inhibition of CYP3A4 was time-dependent with the KI and Kinact parameters of 3.10 μM-1 and 0.049 min-1, respectively. CONCLUSIONS The inhibition of CYP450s by physcion should be considered in its clinical prescription, and the study design can be employed to evaluate the interaction of CYP450s with other herbs.
Collapse
Affiliation(s)
- Lu Liu
- Department of Endocrine, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Sen Sun
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Shanghai, PR China
| | - Xiaohua Li
- Department of Endocrine, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| |
Collapse
|
5
|
Wang C, Zhao X, Jiang J, Jia M, Shi W, Wu Z, Feng S, Fan G, Lou Y. Integrated chemical analysis, metabolic profiling, network pharmacology, molecular docking and toxicity prediction to reveal the active ingredients and their safety of raw and prepared rhubarbs in the treatment of gastric ulcers. Front Pharmacol 2024; 15:1481091. [PMID: 39624840 PMCID: PMC11608977 DOI: 10.3389/fphar.2024.1481091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/31/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Rhubarb, containing raw rhubarb (RR) and two processed products (steamed rhubarb, SR; carbonized rhubarb, CR), is commonly used in high-doses for the treatment of peptic ulcer, especially gastric ulcer (GU). However, their active ingredients, therapeutic targets, and potential mechanism remain unclear. Meanwhile, the safety of these active ingredients is also worth studying. METHODS An offline two-dimensional low-pressure liquid chromatography/high-performance liquid chromatography coupled with high resolution mass spectrometry method was applied to identify the chemical constituents of RR, SR, and CR. Then, the plasma and urine samples of rats after oral administration of RR, SR, and CR were studied for metabolite profiling. Based on the analysis of ingredients in vivo, the key active constituents, core therapeutic targets and key signaling pathways of RR, SR, and CR against GU were screened via network pharmacology and molecular docking. Finally, the efficacy and safety of these key active ingredients were evaluated. RESULTS Totally, 183, 120 and 115 compounds were identified or tentatively characterized from RR, SR and CR, respectively. Meanwhile, 190, 182 and 180 components were identified after oral administration of RR, SR and CR. By network pharmacology and molecular docking, torachrysone, hydroxyemodin, 6-methylrhein, rhein and emodin anthrone might be the predominant effective constituents in RR, SR, and CR with AKT1 and EGFR being their key targets during the treatment of GU. Moreover, EGFR/PI3K/AKT signaling pathway might play a crucial role in the therapeutic mechanism of GU. In silio ADMET predictions categorized 5 compounds as drugs with good oral bioavailability, but these components may induce liver injury. CONCLUSION Overall, our results not only clarified the active substances and molecular mechanism for enhancing our understanding about the traditional efficacy, but also pay attention to the clinical safety issues of raw and prepared rhubarbs.
Collapse
Affiliation(s)
- Chenxi Wang
- Department of Pharmacy, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Xin Zhao
- Department of Pharmacy, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Jingjing Jiang
- Department of Pharmacy, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Mengqi Jia
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenqing Shi
- Department of Pharmacy, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Zhenghua Wu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shiyu Feng
- Shanghai University of Finance and Economics, Shanghai, China
| | - Guorong Fan
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuefen Lou
- Department of Pharmacy, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- School of Foreign Studies, Shanghai University of Finance and Economics, Shanghai, China
| |
Collapse
|
6
|
Ye J, Qian W, Chen N, Hu Z, Ye S, Li M, Zhang L, Wang H, Lu Y. The clinical efficacy of Zuqing Xu "Wuduling" powder for snake injury on the swelling of the affected limb bitten by Agkistrodon halys. Biotechnol Genet Eng Rev 2024; 40:943-960. [PMID: 36946536 DOI: 10.1080/02648725.2023.2191085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/08/2023] [Indexed: 03/23/2023]
Abstract
To determine the clinical efficacy of Zuqing Xu 'Wuduling' powder for snake injury on the swelling of the affected limb bitten by Agkistrodon halys. Sixty-five patients with Agkistrodon halys bite were assigned to a treatment group (n = 35) or control group (n = 30). The treatment group was additionally given 'Wuduling' powder dressing locally based on the therapy to the control group with conventional Western medicine. Clinical efficacy and improvement of traditional Chinese medicine symptoms and signs in the two groups were evaluated. The treatment group showed a notably higher cure rate than the control group. After 3 days of therapy, the swelling and pain of the affected limb in the treatment group were greatly alleviated. Additionally, after 7 days of therapy, the swelling and pain of the affected limb in the treatment group were more greatly alleviated, and those in the control group were also alleviated. The comparison of the two groups during the same period showed more obvious alleviation of swelling and pain in the treatment group than that in the other. Moreover, the treatment group experienced notably shorter disappearing time of swelling and pain than the control group. After treatment, the levels of CRP, TBIL, Cr, ALT, AST, BUN, CK, LDH and CK-MB in both groups declined notably, with notably lower levels of them in the treatment group than those in the other. Zuqing Xu 'Wuduling' powder for snake injury can substantially alleviate the swelling and local pain of affected limbs bitten by Agkistrodon halys.
Collapse
Affiliation(s)
| | | | - Ninggang Chen
- Dermatology medical cosmetology center, Ningbo Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhejiang, China
| | - Zhikai Hu
- Dermatology medical cosmetology center, Ningbo Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhejiang, China
| | - Shu Ye
- Dermatology medical cosmetology center, Ningbo Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhejiang, China
| | - Mei Li
- Dermatology medical cosmetology center, Ningbo Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhejiang, China
| | - Lian Zhang
- Dermatology medical cosmetology center, Ningbo Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhejiang, China
| | - Hui Wang
- Dermatology medical cosmetology center, Ningbo Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhejiang, China
| | - Yanwu Lu
- Dermatology medical cosmetology center, Ningbo Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhejiang, China
| |
Collapse
|
7
|
Zou J, Wu W, Wang F, Hou K. The foundation of the rhubarb industry economy: investigating metabolites disparities of rhubarb between varieties and growing environments on the Tibetan plate. Front Pharmacol 2024; 15:1461523. [PMID: 39399469 PMCID: PMC11467420 DOI: 10.3389/fphar.2024.1461523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/17/2024] [Indexed: 10/15/2024] Open
Abstract
Objective In Tibetan dietary and folk medicine practices, Rheum austral is commonly used as an alternative to Rheum tanguticum, and there is a prevailing belief that wild rhubarb should not be substituted by its cultivated counterpart. However, these traditions are not supported by scientific evidence, particularly concerning the differences in endogenous metabolites between cultivated and wild rhubarbs, as well as between officially recognized and non-official rhubarbs. These uncertainties have also been hindering the vertical integration development of the local rhubarb industry. Methods In this study, ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOFMS) and biostatistical analysis were employed to systematically and comprehensively investigate the chemical constituents of rhubarbs from various sources, focusing on the differences in metabolic components between cultivated and wild rhubarbs. Results The metabolic differences in rhubarb from various varieties and environments are pronounced. Among them, 39 differential metabolites were identified between cultivated R. tanguticum and wild R. tanguticum. cultivated R. tanguticum is rich in emodin, physcion, and rhapontigenin, whereas wild R. tanguticum exhibits a higher concentration of rhaponticin and is particularly abundant in anthraquinone compounds. Additionally, 33 differential metabolites distinguished wild R. tanguticum from wild R. austral, with R. austral being rich in stilbene derivatives and wild R. tanguticum predominantly containing coumarins. The correlations among these differential metabolites have also been further explored and presented. Conclusion The metabolic disparities between cultivated and wild rhubarb varieties are substantial, with wild rhuabarb containing higher levels of effective components than its cultivated counterparts. However, wild varieties face issues with component instability and resource depletion, while cultivated varieties exhibit more stable effective components. Given these significant differences in metabolic components, it is essential to differentiate rhubarbs from various species and growing conditions to suit specific medicinal and dietary purposes effectively. This paper can lay a theoretical foundation for the vertical integration development of the rhubarb industry in Tibetan areas.
Collapse
Affiliation(s)
- Jinpeng Zou
- College of Management, Sichuan Agricultural University, Chengdu, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wei Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Fang Wang
- College of Management, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Kai Hou
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Yang X, Dai L, Yan F, Ma Y, Guo X, Jenis J, Wang Y, Zhang J, Miao X, Shang X. The phytochemistry and pharmacology of three Rheum species: A comprehensive review with future perspectives. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 131:155772. [PMID: 38852474 DOI: 10.1016/j.phymed.2024.155772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Rheum palmatum, R. tanguticum, and R. officinale, integral species of the genus Rheum, are widely used across global temperate and subtropical regions. These species are incorporated in functional foods, medicines, and cosmetics, recognized for their substantial bioactive components. PURPOSE This review aims to synthesize developments from 2014 to 2023 concerning the botanical characteristics, ethnopharmacology, nutritional values, chemical compositions, pharmacological activities, mechanisms of action, and toxicity of these species. METHODS Data on the three Rheum species were gathered from a comprehensive review of peer-reviewed articles, patents, and clinical trials accessed through PubMed, Google Scholar, Web of Science, and CNKI. RESULTS The aerial parts are nutritionally rich, providing essential amino acids, fatty acids, and minerals, suitable for use as health foods or supplements. Studies have identified 143 chemical compounds, including anthraquinones, anthrones, flavonoids, and chromones, which contribute to their broad pharmacological properties such as laxative, anti-diarrheal, neuroprotective, hepatoprotective, cardiovascular, antidiabetic, antitumor, anti-inflammatory, antiviral, and antibacterial effects. Notably, the materials science approach has enhanced understanding of their medicinal capabilities through the evaluation of bioactive compounds in different therapeutic contexts. CONCLUSION As medicinal and economically significant herb species, Rheum species provide both edible aerial parts and medicinal underground components that offer substantial health benefits. These characteristics present new opportunities for developing nutritional ingredients and therapeutic products, bolstering the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Xiaorong Yang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Lixia Dai
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; College of Veterinary Medicine, Gansu Agricultural Univerisity, Lanzhou 730070, PR China
| | - Fengyuan Yan
- The First People`s Hospital of Lanzhou City, Lanzhou 730050, PR China
| | - Yudong Ma
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Xiao Guo
- College of Tibetan Medicine, Qinghai University, Xining 810016, PR China
| | - Janar Jenis
- The Research Center for Medicinal Plants, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Yu Wang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Jiyu Zhang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; College of Veterinary Medicine, Gansu Agricultural Univerisity, Lanzhou 730070, PR China.
| | - Xiaolou Miao
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China.
| | - Xiaofei Shang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; College of Veterinary Medicine, Gansu Agricultural Univerisity, Lanzhou 730070, PR China.
| |
Collapse
|
9
|
Ying X, Wan F, Wang T, Zang Z, Xu Y, Wu B, Yang X, Huang X. Segmented variable-frequency ultrasound synergistic hot-air drying of Rhubarb: Effect on drying characteristics and quality and thermal analysis. ULTRASONICS SONOCHEMISTRY 2024; 108:106986. [PMID: 39002226 DOI: 10.1016/j.ultsonch.2024.106986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
This study employed segmented variable-frequency ultrasound synergistic hot-air drying (SVFU-HAD) for Rhubarb slices, selected two sets of time nodes for frequency conversion (60 min, 120 min, and 90 min, 150 min), and two sequences of frequency conversion (high-frequency to low-frequency, and low-frequency to high-frequency). It aimed to investigate the effects of SVFU-HAD on the drying characteristics, quality, and heat transfer of Rhubarb slices. The findings indicated that segmented variable-frequency ultrasound has advantages in increasing drying rate and improving uniformity of cavitation effects compared to constant-frequency ultrasound. Analysis of physical properties revealed that the rehydration performance of dried products subjected to ultrasonic variable-frequency treatment (90 min, 150 min) according to the drying rate was better (RR > 3.3). The transition mode from high-frequency to low-frequency in variable-frequency ultrasonic treatment contributes to maintaining the overall color of Rhubarb. Analysis of chemical properties unveiled that Rhubarb treated with 40 kHz (0 min)-28 kHz (60 min)-25 kHz (120 min) segmented variable-frequency ultrasound contained overall higher levels of tannins, dianthrones and free anthraquinones content, which exceeded the average values by 3.24%, 26.65%, and 14.42%, respectively. In addition, thermal analysis results based on ANSYS Workbench software demonstrated that the drying uniformity of SVFU-HAD is superior to that of hot-air drying and constant-frequency ultrasound synergistic hot-air drying (CFU-HAD). Overall, the SVFU-HAD method employed in this study presents an innovative approach to ultrasound synergistic hot-air drying research with promising potential for enhancing the efficiency and quality characteristics of Rhubarb slices.
Collapse
Affiliation(s)
- Xinyu Ying
- College of Mechanical and Electronical Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Fangxin Wan
- College of Mechanical and Electronical Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Tongxun Wang
- College of Mechanical and Electronical Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Zepeng Zang
- College of Mechanical and Electronical Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yanrui Xu
- College of Mechanical and Electronical Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Bowen Wu
- College of Mechanical and Electronical Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaoping Yang
- College of Mechanical and Electronical Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaopeng Huang
- College of Mechanical and Electronical Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
10
|
Qiu Q, Fu F, Wu Y, Han C, Pu W, Wen L, Xia Q, Du D. Rhei Radix et Rhizoma and its anthraquinone derivatives: Potential candidates for pancreatitis treatment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155708. [PMID: 38733906 DOI: 10.1016/j.phymed.2024.155708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Pancreatitis is a common exocrine inflammatory disease of the pancreas and lacks specific medication currently. Rhei Radix et Rhizoma (RR) and its anthraquinone derivatives (AQs) have been successively reported for their pharmacological effects and molecular mechanisms in experimental and clinical pancreatitis. However, an overview of the anti-pancreatitis potential of RR and its AQs is limited. PURPOSE To summarize and analyze the pharmacological effects of RR and its AQs on pancreatitis and the underlying mechanisms, and discuss their drug-like properties and future perspectives. METHODS The articles related to RR and its AQs were collected from the Chinese National Knowledge Infrastructure, Wanfang data, PubMed, and the Web of Science using relevant keywords from the study's inception until April first, 2024. Studies involving RR or its AQs in cell or animal pancreatitis models as well as structure-activity relationship, pharmacokinetics, toxicology, and clinical trials were included. RESULTS Most experimental studies are based on severe acute pancreatitis rat models and a few on chronic pancreatitis. Several bioactive anthraquinone derivatives of Rhei Radix et Rhizoma (RRAQs) exert local protective effects on the pancreas by maintaining pancreatic acinar cell homeostasis, inhibiting inflammatory signaling, and anti-fibrosis, and they improve systemic organ function by alleviating intestinal and lung injury. Pharmacokinetic and toxicity studies have revealed the low bioavailability and wide distribution of RRAQs, as well as hepatotoxicity and nephrotoxicity. However, there is insufficient research on the clinical application of RRAQs in pancreatitis. Furthermore, we propose effective strategies for subsequent improvement in terms of balancing effectiveness and safety. CONCLUSION RRAQs can be developed as either candidate drugs or novel lead structures for pancreatitis treatment. The comprehensive review of RR and its AQs provides references for optimizing drugs, developing therapies, and conducting future studies on pancreatitis.
Collapse
Affiliation(s)
- Qi Qiu
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fei Fu
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China
| | - Yaling Wu
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China
| | - Chenxia Han
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weiling Pu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Li Wen
- State Key Laboratory of Complex, Severe, and Rare Diseases, Center for Biomarker Discovery and Validation, National Infrastructures for Translational Medicine (PUMCH), Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100073, China
| | - Qing Xia
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Dan Du
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China.
| |
Collapse
|
11
|
Liu T, Yu M, Dai Y, Xiao Y, Li L. Traditional method of rhubarb processing optimized by combining flavor analysis with anthraquinone content determination. Front Nutr 2024; 11:1406430. [PMID: 38933883 PMCID: PMC11199713 DOI: 10.3389/fnut.2024.1406430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction Rhubarb is a popular food that relieves constipation and aids with weight loss. The traditional method of preparation, includes steaming and sun-drying rhubarb nine times (SDR-9) to reduce its toxicity and increase efficacy. Methods Flavor analysis includes odor analysis by gas chromatography-ion mobility spectrometry and taste characterization using an electronic tongue. Results Odor analysis of the samples prepared through SDR-9 identified 61 volatile compounds, including aldehydes, esters, alcohols, ketones, acids, alkenes, and furans. Of these, 13 volatile components were the key substances associated with odor. This enabled the process to be divided into two stages: 1-5 times of steaming and sun-drying and 6-9 times. In the second stage, SDR-6 and SDR-9 were grouped together in terms of odor. Analysis using electronic tongue revealed that the most prominent taste was bitterness. A radar map indicated that the bitterness response was the highest for raw rhubarb, whereas that for processed (steamed and sun-dried) rhubarb decreased. Orthogonal partial least squares discriminant analysis (OPLS-DA) clustering results for SDR-6 and SDR-9 samples indicated that their tastes were similar. Anthraquinones were analyzed via high-performance liquid chromatography; moreover, analysis of the taste and components of the SDR samples revealed a significant correlation. Discussion These results indicate that there are similarities between SDR-6 and SDR-9 in terms of smell, taste, and composition, indicating that the steaming and sun-drying cycles can be conducted six times instead of nine.
Collapse
Affiliation(s)
| | | | | | | | - Li Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Jin SF, Pan Q, Zhou JP, Pan XP. Mechanisms of liver injuries caused by traditional Chinese medicines. Hepatobiliary Pancreat Dis Int 2024; 23:310-312. [PMID: 37217410 DOI: 10.1016/j.hbpd.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023]
Affiliation(s)
- Shui-Fang Jin
- Intensive Care Unit, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Qi Pan
- Institute of Liver Diseases, College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jin-Peng Zhou
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310056, China
| | - Xiao-Ping Pan
- Institute of Liver Diseases, College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
13
|
Feng MC, Luo F, Huang LJ, Li K, Chen ZM, Li H, Yao C, Qin BJ, Chen GZ. Rheum palmatum L. and Salvia miltiorrhiza Bge. Alleviates Acute Pancreatitis by Regulating Th17 Cell Differentiation: An Integrated Network Pharmacology Analysis, Molecular Dynamics Simulation and Experimental Validation. Chin J Integr Med 2024; 30:408-420. [PMID: 37861962 DOI: 10.1007/s11655-023-3559-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 10/21/2023]
Abstract
OBJECTIVE To identify the core targets of Rheum palmatum L. and Salvia miltiorrhiza Bge., (Dahuang-Danshen, DH-DS) and the mechanism underlying its therapeutic efficacy in acute pancreatitis (AP) using a network pharmacology approach and validate the findings in animal experiments. METHODS Network pharmacology analysis was used to elucidate the mechanisms underlying the therapeutic effects of DH-DS in AP. The reliability of the results was verified by molecular docking simulation and molecular dynamics simulation. Finally, the results of network pharmacology enrichment analysis were verified by immunohistochemistry, Western blot analysis and real-time quantitative PCR, respectively. RESULTS Sixty-seven common targets of DH-DS in AP were identified and mitogen-activated protein kinase 3 (MAPK3), Janus kinase 2 (JAK2), signal transducer and activator of transcription 3 (STAT3), protein c-Fos (FOS) were identified as core targets in the protein interaction (PPI) network analysis. Gene ontology analysis showed that cellular response to organic substance was the main functions of DH-DS in AP, and Kyoto Encyclopedia of Genes and Genomes analysis showed that the main pathway included Th17 cell differentiation. Molecular docking simulation confirmed that DH-DS binds with strong affinity to MAPK3, STAT3 and FOS. Molecular dynamics simulation revealed that FOS-isotanshinone II and STAT3-dan-shexinkum d had good binding capacity. Animal experiments indicated that compared with the AP model group, DH-DS treatment effectively alleviated AP by inhibiting the expression of interleukin-1β, interleukin-6 and tumor necrosis factor-α, and blocking the activation of Th17 cell differentiation (P<0.01). CONCLUSION DH-DS could inhibit the expression of inflammatory factors and protect pancreatic tissues, which would be functioned by regulating Th17 cell differentiation-related mRNA and protein expressions.
Collapse
Affiliation(s)
- Min-Chao Feng
- The First Clinical Medical College, Guangxi University of Traditional Chinese Medicine, Nanning, 530000, China
- Guangxi Key Laboratory of Molecular Biology of Traditional Chinese Medicine and Preventive Medicine, Nanning, 530000, China
| | - Fang Luo
- The First Clinical Medical College, Guangxi University of Traditional Chinese Medicine, Nanning, 530000, China
- Guangxi Key Laboratory of Molecular Biology of Traditional Chinese Medicine and Preventive Medicine, Nanning, 530000, China
| | - Liang-Jiang Huang
- The First Clinical Medical College, Guangxi University of Traditional Chinese Medicine, Nanning, 530000, China
- Guangxi Key Laboratory of Molecular Biology of Traditional Chinese Medicine and Preventive Medicine, Nanning, 530000, China
| | - Kai Li
- The First Clinical Medical College, Guangxi University of Traditional Chinese Medicine, Nanning, 530000, China
- Guangxi Key Laboratory of Molecular Biology of Traditional Chinese Medicine and Preventive Medicine, Nanning, 530000, China
| | - Zu-Min Chen
- The First Clinical Medical College, Guangxi University of Traditional Chinese Medicine, Nanning, 530000, China
- Guangxi Key Laboratory of Molecular Biology of Traditional Chinese Medicine and Preventive Medicine, Nanning, 530000, China
| | - Hui Li
- The First Clinical Medical College, Guangxi University of Traditional Chinese Medicine, Nanning, 530000, China
- Guangxi Key Laboratory of Molecular Biology of Traditional Chinese Medicine and Preventive Medicine, Nanning, 530000, China
| | - Chun Yao
- Graduate School, Guangxi University of Traditional Chinese Medicine, Nanning, 530000, China
| | - Bai-Jun Qin
- The First Clinical Medical College, Guangxi University of Traditional Chinese Medicine, Nanning, 530000, China
- Guangxi Key Laboratory of Molecular Biology of Traditional Chinese Medicine and Preventive Medicine, Nanning, 530000, China
| | - Guo-Zhong Chen
- Department of Gastroenterology, the First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, 530023, China.
| |
Collapse
|
14
|
Che MY, Yuan L, Min J, Xu DJ, Lu DD, Liu WJ, Wang KL, Wang YY, Nan Y. Potential application of Nardostachyos Radix et Rhizoma-Rhubarb for the treatment of diabetic kidney disease based on network pharmacology and cell culture experimental verification. World J Diabetes 2024; 15:530-551. [PMID: 38591077 PMCID: PMC10999050 DOI: 10.4239/wjd.v15.i3.530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/05/2023] [Accepted: 01/18/2024] [Indexed: 03/15/2024] Open
Abstract
BACKGROUND Diabetic kidney disease (DKD) is one of the serious complications of diabetes mellitus, and the existing treatments cannot meet the needs of today's patients. Traditional Chinese medicine has been validated for its efficacy in DKD after many years of clinical application. However, the specific mechanism by which it works is still unclear. Elucidating the molecular mechanism of the Nardostachyos Radix et Rhizoma-rhubarb drug pair (NRDP) for the treatment of DKD will provide a new way of thinking for the research and development of new drugs. AIM To investigate the mechanism of the NRDP in DKD by network pharmacology combined with molecular docking, and then verify the initial findings by in vitro experiments. METHODS The Traditional Chinese Medicine Systems Pharmacology (TCMSP) database was used to screen active ingredient targets of NRDP. Targets for DKD were obtained based on the Genecards, OMIM, and TTD databases. The VENNY 2.1 database was used to obtain DKD and NRDP intersection targets and their Venn diagram, and Cytoscape 3.9.0 was used to build a "drug-component-target-disease" network. The String database was used to construct protein interaction networks. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and Gene Ontology analysis were performed based on the DAVID database. After selecting the targets and the active ingredients, Autodock software was used to perform molecular docking. In experimental validation using renal tubular epithelial cells (TCMK-1), we used the Cell Counting Kit-8 assay to detect the effect of NRDP on cell viability, with glucose solution used to mimic a hyperglycemic environment. Flow cytometry was used to detect the cell cycle progression and apoptosis. Western blot was used to detect the protein expression of STAT3, p-STAT3, BAX, BCL-2, Caspase9, and Caspase3. RESULTS A total of 10 active ingredients and 85 targets with 111 disease-related signaling pathways were obtained for NRDP. Enrichment analysis of KEGG pathways was performed to determine advanced glycation end products (AGEs)-receptor for AGEs (RAGE) signaling as the core pathway. Molecular docking showed good binding between each active ingredient and its core targets. In vitro experiments showed that NRDP inhibited the viability of TCMK-1 cells, blocked cell cycle progression in the G0/G1 phase, and reduced apoptosis in a concentration-dependent manner. Based on the results of Western blot analysis, NRDP differentially downregulated p-STAT3, BAX, Caspase3, and Caspase9 protein levels (P < 0.01 or P < 0.05). In addition, BAX/BCL-2 and p-STAT3/STAT3 ratios were reduced, while BCL-2 and STAT3 protein expression was upregulated (P < 0.01). CONCLUSION NRDP may upregulate BCL-2 and STAT3 protein expression, and downregulate BAX, Caspase3, and Caspase9 protein expression, thus activating the AGE-RAGE signaling pathway, inhibiting the vitality of TCMK-1 cells, reducing their apoptosis. and arresting them in the G0/G1 phase to protect them from damage by high glucose.
Collapse
Affiliation(s)
- Meng-Ying Che
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Jiao Min
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Duo-Jie Xu
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Dou-Dou Lu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Wen-Jing Liu
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Kai-Li Wang
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yan-Yan Wang
- Department of Endocrinology, Yinchuan Hospital of Traditional Chinese Medicine, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yi Nan
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| |
Collapse
|
15
|
Tian Y, Shi Y, Zhu Y, Li H, Shen J, Gao X, Cai B, Li W, Qin K. The modern scientific mystery of traditional Chinese medicine processing--take some common traditional Chinese medicine as examples. Heliyon 2024; 10:e25091. [PMID: 38312540 PMCID: PMC10835376 DOI: 10.1016/j.heliyon.2024.e25091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 02/06/2024] Open
Abstract
The processing of traditional Chinese medicine (TCM) is a unique traditional pharmaceutical technology in China, which is the most important feature that distinguishes Chinese medicine from natural medicine and plant medicine. Since the record in Huangdi Neijing (Inner Canon of the Yellow Emperor), till now, the processing of TCM has experienced more than 2000 years of inheritance, innovation, and development, which is a combination of TCM theory and clinical practice, and plays an extremely important position in the field of TCM. In recent years, as a clinical prescription of TCM, Chinese herbal pieces have played a significant role in the prevention and control of the COVID-19 and exhibited their unique value, and therefore they have become the highlight of China's clinical treatment protocol and provided Chinese experience and wisdom for the international community in the prevention and control of the COVID-19 epidemic. This paper outlines the research progress in the processing of representative TCM in recent years, reviews the mechanism of the related effects of TCM materials after processing, such as changing the drug efficacy and reducing the toxicity, puts forward the integration and application of a variety of new technologies and methods, so as to reveal the modern scientific mystery of the processing technology of TCM.
Collapse
Affiliation(s)
- Yiwen Tian
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yun Shi
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yujie Zhu
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Huan Li
- School of Applied Science, Temasek Polytechnic, Singapore, 529757, Singapore
| | - Jinyang Shen
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xun Gao
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Baochang Cai
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weidong Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Kunming Qin
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| |
Collapse
|
16
|
Han L, Zang T, Tan L, Liang D, Long T, Liu X, Shen X, Ren H, Li Z, Lu Z, Tang S, Liao X, Liu Y, Zhang C, Sun J. Self-assembly of H 2S-responsive nanoprodrugs based on natural rhein and geraniol for targeted therapy against Salmonella Typhimurium. J Nanobiotechnology 2023; 21:483. [PMID: 38104180 PMCID: PMC10725032 DOI: 10.1186/s12951-023-02256-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023] Open
Abstract
Salmonellosis is a globally extensive food-borne disease, which threatens public health and results in huge economic losses in the world annually. The rising prevalence of antibiotic resistance in Salmonella poses a significant global concern, emphasizing an imperative to identify novel therapeutic agents or methodologies to effectively combat this predicament. In this study, self-assembly hydrogen sulfide (H2S)-responsive nanoprodrugs were fabricated with poly(α-lipoic acid)-polyethylene glycol grafted rhein and geraniol (PPRG), self-assembled into core-shell nanoparticles via electrostatic, hydrophilic and hydrophobic interactions, with hydrophilic exterior and hydrophobic interior. The rhein and geraniol are released from self-assembly nanoprodrugs PPRG in response to Salmonella infection, which is known to produce hydrogen sulfide (H2S). PPRG demonstrated stronger antibacterial activity against Salmonella compared with rhein or geraniol alone in vitro and in vivo. Additionally, PPRG was also able to suppress the inflammation and modulate gut microbiota homeostasis. In conclusion, the as-prepared self-assembly nanoprodrug sheds new light on the design of natural product active ingredients and provides new ideas for exploring targeted therapies for specific Enteropathogens. Graphical illustration for construction of self-assembly nanoprodrugs PPRG and its antibacterial and anti-inflammatory activities on experimental Salmonella infection in mice.
Collapse
Affiliation(s)
- Lu Han
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, People's Republic of China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Tao Zang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Lulu Tan
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Dunsheng Liang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Tengfei Long
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Xuwei Liu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Xiaofan Shen
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Hao Ren
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - ZhiPeng Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Zhaoxiang Lu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Shengqiu Tang
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, People's Republic of China
| | - Xiaoping Liao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Yahong Liu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Chaoqun Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| | - Jian Sun
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
17
|
Wu L, Wang X, Jiang J, Chen Y, Peng B, Jin W. Mechanism of rhubarb in the treatment of hyperlipidemia: A recent review. Open Med (Wars) 2023; 18:20230812. [PMID: 37808167 PMCID: PMC10552914 DOI: 10.1515/med-2023-0812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
Hyperlipidemia is a metabolic disorder, which is a major risk factor for atherosclerosis, stroke, and coronary heart disease. Although lipid-lowering treatments have been extensively studied, safer treatments with fewer adverse effects are needed. Rhubarb is a traditional Chinese medicine that has lipid-lowering, anti-inflammatory, and antioxidant properties. Disturbance in lipid metabolism is the basis of tissue damage caused by hyperlipidemia and plays a key role in the development of hyperlipidemia; however, the molecular mechanisms by which rhubarb regulates lipid metabolism to lower lipid levels are yet to be elucidated. We conducted this study to summarize the phytochemical constituents of Rheum officinale and provide a comprehensive review of the molecular mechanisms underlying the regulation of lipid metabolism during hyperlipidemia treatment. It was found that rhubarb extracts, including emodin, rhubarb acid, and rhubarb phenol, regulate total cholesterol, triglyceride, TNF-α, and IL-1β levels through signaling pathways such as C/EBP α, 3T3-L1, PPAR α, and AMPK, thereby improving the hyperlipidemic state. This suggests that rhubarb is a natural drug with lipid-lowering potential, and an in-depth exploration of its lipid-lowering mechanism can provide new ideas for the prevention and treatment of hyperlipidemia.
Collapse
Affiliation(s)
- Lijiao Wu
- Chengdu University of Traditional Chinese Medicine School of Clinical Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiangjin Wang
- College of Sports Medicine and Health, Chengdu Sports University, Chengdu, China
| | - Jihang Jiang
- Chengdu University of Traditional Chinese Medicine School of Clinical Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Chen
- Emergency Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bo Peng
- Respiratory Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Jin
- Emergency Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
18
|
Cheng C, Wang Q, Huang Y, Xue Q, Wang Y, Wu P, Liao F, Miao C. Gandouling inhibits hepatic fibrosis in Wilson's disease through Wnt-1/β-catenin signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116445. [PMID: 37015279 DOI: 10.1016/j.jep.2023.116445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
ETHNOPHARMACOLOGIC SIGNIFICANCE Wilson's disease (WD) hepatic fibrosis is the result of chronic liver injury induced by Cu2+ deposition in the liver. Gandouling (GDL) is a hospital preparation of the First Affiliated Hospital of Anhui University of Chinese Medicine. Previous studies have found that GDL can play an anti-inflammatory, anti-oxidation, and promote Cu2+ excretion, which has a clear anti-WD effect. AIM OF THE STUDY We found that Wnt-1 was significantly up-regulated in the liver tissue of toxic-milk (TX) mouse in the WD gene mutant model, and the monomer components of GDL could combine well with Wnt-1. Therefore, in this work, we used RT-qPCR, Western blot, immunofluorescence, network pharmacology, molecular docking, and related methods to study the effects of GDL on hepatic stellate cell (HSC) activation and Wnt-1/β-catenin pathway in TX mice to clarify the effect of GDL on WD hepatic fibrosis. RESULTS GDL could alleviate hepatic fibrosis, improve liver function, and inhibit the activation of HSC in TX mice. Network pharmacology predicted that the Wnt-1/β-catenin was the target of GDL, and molecular dynamics further revealed that GDL has a good binding ability with Wnt-1 and inhibits the Wnt/β-catenin signaling pathway through Wnt-1. Furthermore, we found that GDL blocked the Wnt-1/β-catenin signaling pathway in the liver of TX mice in vivo. In vitro, serum containing GDL blocked the Cu2+ ion-induced Wnt-1/β-catenin signaling pathway in LX-2 cells. Therefore, GDL blocked the Wnt-1/β-catenin signaling pathway, inhibited HSC activation, and improved WD hepatic fibrosis by binding to Wnt-1. CONCLUSION GDL improves hepatic fibrosis in WD model mice by blocking the Wnt-1/β-catenin signaling pathway, and Wnt-1 may be a new target for the diagnosis and treatment of WD. This reveals a new mechanism of GDL against WD, and promotes the clinical promotion of GDL.
Collapse
Affiliation(s)
- Chenglong Cheng
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.
| | - Qiang Wang
- Department of Pharmaceutical Preparation, School of Life and Health Sciences, Anhui University of Science and Technology, China.
| | - Yurong Huang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.
| | - Qiuyun Xue
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.
| | - Yuting Wang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.
| | - Peng Wu
- Department of Anatomy, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.
| | - Faxue Liao
- Department of Orthopaedics, The First Affiliated Hospital, Anhui Medical University, Hefei, China; Anhui Public Health Clinical Center, Hefei, China.
| | - Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
19
|
Ye L, Fan S, Zhao P, Wu C, Liu M, Hu S, Wang P, Wang H, Bi H. Potential herb‒drug interactions between anti-COVID-19 drugs and traditional Chinese medicine. Acta Pharm Sin B 2023; 13:S2211-3835(23)00203-4. [PMID: 37360014 PMCID: PMC10239737 DOI: 10.1016/j.apsb.2023.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/21/2023] [Accepted: 04/20/2023] [Indexed: 06/28/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread worldwide. Effective treatments against COVID-19 remain urgently in need although vaccination significantly reduces the incidence, hospitalization, and mortality. At present, antiviral drugs including Nirmatrelvir/Ritonavir (PaxlovidTM), Remdesivir, and Molnupiravir have been authorized to treat COVID-19 and become more globally available. On the other hand, traditional Chinese medicine (TCM) has been used for the treatment of epidemic diseases for a long history. Currently, various TCM formulae against COVID-19 such as Qingfei Paidu decoction, Xuanfei Baidu granule, Huashi Baidu granule, Jinhua Qinggan granule, Lianhua Qingwen capsule, and Xuebijing injection have been widely used in clinical practice in China, which may cause potential herb-drug interactions (HDIs) in patients under treatment with antiviral drugs and affect the efficacy and safety of medicines. However, information on potential HDIs between the above anti-COVID-19 drugs and TCM formulae is lacking, and thus this work seeks to summarize and highlight potential HDIs between antiviral drugs and TCM formulae against COVID-19, and especially pharmacokinetic HDIs mediated by metabolizing enzymes and/or transporters. These well-characterized HDIs could provide useful information on clinical concomitant medicine use to maximize clinical outcomes and minimize adverse and toxic effects.
Collapse
Affiliation(s)
- Ling Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shicheng Fan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Pengfei Zhao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chenghua Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Menghua Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuang Hu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Peng Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hongyu Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
20
|
Han GY, Wu XL, Li DM, Cai HR, Zhou JJ, He XB. Chinese Medicine Plaster as A New Treatment for Surgical Site Infection in Patients with Cesarean Delivery: A Randomized, Double-Blind, Controlled Trial. Chin J Integr Med 2023; 29:483-489. [DOI: 10.1007/s11655-023-3730-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2022] [Indexed: 03/29/2023]
|
21
|
Shao Y, Zhang Y, Wu R, Dou L, Cao F, Yan Y, Tang Y, Huang C, Zhao Y, Zhang J. Network pharmacology approach to investigate the multitarget mechanisms of Zhishi Rhubarb Soup on acute cerebral infarction. PHARMACEUTICAL BIOLOGY 2022; 60:1394-1406. [PMID: 35938510 PMCID: PMC9364736 DOI: 10.1080/13880209.2022.2103718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/20/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Zhishi Rhubarb Soup (ZRS) is a traditional Chinese medicine formula used in the clinic to treat acute cerebral infarction (ACI) for many years. However, the exact mechanism of the treatment remains unclear. OBJECTIVE This study elucidates the multitarget mechanisms underlying the effects of ZRS on ACI using network pharmacology analysis and verify its effect by performing animal experiments. MATERIALS AND METHODS Using the network pharmacology approach, the multiple components, critical targets and potential mechanisms of ZRS against ACI were investigated. Six herbal names of ZRS and 'acute cerebral infarction' were used as keywords to search the relevant databases. In addition, we established the MCAO model to verify the results of network pharmacology enrichment analysis. ZRS (10 g crude drug/kg) was gavaged once per day for 7 consecutive days beginning 3 h after model establishment. After ZRS treatment, TTC staining, Western blot analysis, IHC and ELISA were conducted to further explore the mechanism of ZRS intervention in ACI. RESULTS The network pharmacology approach identified 69 key targets, 10 core genes and 169 signalling pathways involved in the treatment of ACI with ZRS. In vivo experiment showed that ZRS treatment significantly reduced cerebral infarction volume (42.76%). It also reduced the expression level of AGE, RAGE and P65; and inhibited the expression of inflammatory MMP-9 and IFN-γ. CONCLUSIONS This study demonstrated that ZRS improved cerebral ischaemic injury by inhibiting neuroinflammation partly via the AGE-RAGE signalling pathway. It provides a theoretical basis for the clinical application of ZRS in the treatment of ACI.
Collapse
Affiliation(s)
- Yuejia Shao
- Nanjing University of Traditional Chinese Medicine, Nanjing, People’s Republic of China
- Nanjing Chinese Medicine Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing City, People’s Republic of China
| | - Yue Zhang
- Nanjing University of Traditional Chinese Medicine, Nanjing, People’s Republic of China
- Nanjing Chinese Medicine Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing City, People’s Republic of China
| | - Rongrong Wu
- Nanjing University of Traditional Chinese Medicine, Nanjing, People’s Republic of China
- Nanjing Chinese Medicine Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing City, People’s Republic of China
| | - Lurui Dou
- Nanjing University of Traditional Chinese Medicine, Nanjing, People’s Republic of China
- Nanjing Chinese Medicine Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing City, People’s Republic of China
| | - Fengjiao Cao
- Nanjing University of Traditional Chinese Medicine, Nanjing, People’s Republic of China
- Nanjing Chinese Medicine Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing City, People’s Republic of China
| | - Yuqing Yan
- Nanjing University of Traditional Chinese Medicine, Nanjing, People’s Republic of China
- Nanjing Chinese Medicine Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing City, People’s Republic of China
| | - Yuming Tang
- Yancheng Binhai Hospital of Traditional Chinese Medicine, Yancheng City, People’s Republic of China
| | - Chi Huang
- Nanjing Chinese Medicine Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing City, People’s Republic of China
| | - Yang Zhao
- Nanjing Chinese Medicine Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing City, People’s Republic of China
| | - Jinghua Zhang
- Nanjing Chinese Medicine Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing City, People’s Republic of China
| |
Collapse
|
22
|
Peng X, Tang F, Yang Y, Li T, Hu X, Li S, Wu W, He K. Bidirectional effects and mechanisms of traditional Chinese medicine. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115578. [PMID: 35917892 DOI: 10.1016/j.jep.2022.115578] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/24/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The bidirectional property of traditional Chinese medicines (TCMs) was recorded in the classic work Medicine Origin (Yi Xue Qi Yuan) as early as the Jin and Yuan dynasties of ancient China. Since then, this imperative theory has been applied to guide the clinical application of TCMs. Studies have been performed to investigate this phenomenon only over the last three decades. A limited number of reviews on the bidirectional role of TCMs have been published, and almost all current studies are published in the Chinese language. AIM OF THE REVIEW The aim of this review is to provide the first comprehensive evidence regarding the bidirectional effects and the underlying mechanisms of TCMs and their active compounds. MATERIALS AND METHODS Information relevant to opposing pharmacological activities or opposing properties exerted by TCM prescriptions, herbal medicines, and their active compound, as well as their mechanisms was summarized by searching Chinese and English databases, including the Chinese National Knowledge Infrastructure (CNKI), Wan Fang Data, Chinese Scientific Journal Database (VIP), Google Scholar, PubMed, Web of Science, Science Direct, and Wiley Online Library. RESULTS Although the bidirectional regulation of TCMs has been applied in the clinic since ancient times in China, only limited reviews have been published in Chinese. The existing data showed that bidirectional effects can be found in TCM prescriptions, herbal medicines, and pure active compounds. Additionally, the bidirectional role of TCMs was primarily reported in the modulation of immune function, blood circulation and hemostasis, gastrointestinal motility, the central nervous system and blood pressure. This may because the therapeutic outcomes of these disorders are more obvious than those of other complicated diseases. Intriguingly, some herbal medicines have multiple bidirectional activities; for instance, Panax ginseng C. A. Meyer showed bidirectional regulation of immune function and the central nervous system; Astragalus membranaceus can bidirectionally regulate blood pressure and immune function; and Rheum officinale Baill exerts bidirectional effects on blood circulation and hemostasis, gastrointestinal motility and immune function. The mechanisms underlying the bidirectional effects of TCMs are largely attributed to the complexity of herbal constituents, dosage differences, the processing of herbal medicine, and compatibility of medicines, the physiological conditions of patients and adaptogenic effects. CONCLUSION Uncovering the bidirectional effects and mechanisms of TCMs is of great importance for both scientific research and clinical applications. This review may help to facilitate the recognition of the bidirectional role of TCMs, to explain some seemingly-opposite phenomena in the pharmacological study of herbal medicines and to provide guidance for TCM practitioners.
Collapse
Affiliation(s)
- Xiaonian Peng
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, 418000, Hunan, China.
| | - Fang Tang
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, 418000, Hunan, China.
| | - Yong Yang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| | - Tiandan Li
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, 418000, Hunan, China.
| | - Xiaochao Hu
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, 418000, Hunan, China.
| | - Sha Li
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, 418000, Hunan, China.
| | - Weihua Wu
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, 418000, Hunan, China.
| | - Kai He
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, 418000, Hunan, China.
| |
Collapse
|
23
|
Wang Y, Yu F, Li A, He Z, Qu C, He C, Ma X, Zhan H. The progress and prospect of natural components in rhubarb (Rheum ribes L.) in the treatment of renal fibrosis. Front Pharmacol 2022; 13:919967. [PMID: 36105187 PMCID: PMC9465315 DOI: 10.3389/fphar.2022.919967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Renal fibrosis is a key pathological change that occurs in the progression of almost all chronic kidney diseases . CKD has the characteristics of high morbidity and mortality. Its prevalence is increasing each year on a global scale, which seriously affects people’s health and quality of life. Natural products have been used for new drug development and disease treatment for many years. The abundant natural products in R. ribes L. can intervene in the process of renal fibrosis in different ways and have considerable therapeutic prospects. Purpose: The etiology and pathology of renal fibrosis were analyzed, and the different ways in which the natural components of R. ribes L. can intervene and provide curative effects on the process of renal fibrosis were summarized. Methods: Electronic databases, such as PubMed, Life Science, MEDLINE, and Web of Science, were searched using the keywords ‘R. ribes L.’, ‘kidney fibrosis’, ‘emodin’ and ‘rhein’, and the various ways in which the natural ingredients protect against renal fibrosis were collected and sorted out. Results: We analyzed several factors that play a leading role in the pathogenesis of renal fibrosis, such as the mechanism of the TGF-β/Smad and Wnt/β-catenin signaling pathways. Additionally, we reviewed the progress of the treatment of renal fibrosis with natural components in R. ribes L. and the intervention mechanism of the crucial therapeutic targets. Conclusion: The natural components of R. ribes L. have a wide range of intervention effects on renal fibrosis targets, which provides new ideas for the development of new anti-kidney fibrosis drugs.
Collapse
Affiliation(s)
- Yangyang Wang
- Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fangwei Yu
- Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ao Li
- Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zijia He
- Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Caiyan Qu
- Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Caiying He
- Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiao Ma, ; Huakui Zhan,
| | - Huakui Zhan
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine-Sichuan Provincial Hospital of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiao Ma, ; Huakui Zhan,
| |
Collapse
|
24
|
Wang H, Tang P, Li L, Zhang M, Wei F, Hou S, Pang K, Tang H. Evaluation of toxicological safety and quality control of Luobufukebiri pill. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115209. [PMID: 35526730 DOI: 10.1016/j.jep.2022.115209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Luobufukebiri pill is one of the characteristic medicines of Uygur nationality in Xinjiang. It has the effect of warming and tonifying the brain and kidney, benefiting the heart and filling the essential functions, mainly used to treat impotence, depression, spermatorrhea, premature ejaculation, bodily weakness, emaciation, and neurasthenia. AIM OF THE STUDY This study evaluated the toxicology and developed a quality control protocol of Luobufukebiri pill to ensure its safety and effectiveness in clinical applications. MATERIALS AND METHODS Acute toxicity in mice was studied by the maximum-dose method, and the toxic reactions in mice were observed within two weeks. In the study of Sub-chronic toxicity, SD rats were randomized into four groups: three drug groups which were treated with 8.00, 2.67, and 0.80 g/kg of Luobufukebiri pill, respectively, and one control group which was treated with the same volume of distilled water. Subsequently, at 30 days of medication and 30 days of drug withdrawal, the hematologic indexes, biochemical indexes, organ coefficient, and pathological sections of main organs were detected, respectively. According to the prescription, the contents of 8 active components in the pill were quantified simultaneously. The chromatographic conditions were as follows: Stepwise gradient elution was carried out using 0.1% formic acid (solvent A) and acetonitrile (solvent B), 0-8 min, 80% → 60% B; 8-25 min, 60% → 25%B. The flow rate was 1.0 mL/min, the column was maintained at 25 °C, and the injected sample volume was 10 μL. RESULTS The acute toxicity experiment documented a large dose of Luobufukebiri pill had no significant effect on organ and body weight and did not cause apparent damage to parenchymal organs. At Sub-chronic toxicity, the behavior of rats was as normal as the control group. There were some differences in hematologic indexes, serum biochemical indexes, and organ coefficient tests between the drug and control groups, but they had no toxic significance. No obvious pathological changes were observed in the pathological sections of major organs. In conclusion, this study demonstrated that the clinical dose of Luobufukebiri pill was far less than its toxic dose, and it had reliable safety. The contents of eight index components of Luobufukebiri pill were measured. All calibration curves exhibited good linearity with correlation coefficients better than 0.9997. The relative standard deviations of precision, reproducibility, stability, and recovery were less than 2.0%, demonstrating the stability and reliability of the method. CONCLUSIONS This study further confirmed the safety of Luobufukebiri pill in clinical practice. A rapid, accurate, and convenient RP-HPLC-PDA detection method has been developed for the simultaneous detection of eight active compounds in the pharmaceutical samples of Luobufukebiri pill. This study provided a reference for the safety and enhancement of the quality standards of Luobufukebiri pill.
Collapse
Affiliation(s)
- Heng Wang
- Key Laboratory of the Ministry of Education of Xinjiang Phytomedicine Resources Utilization, Pharmacy School of Shihezi University, Xinjiang Shihezi, 832002, Xinjiang, PR China.
| | - Ping Tang
- Key Laboratory of the Ministry of Education of Xinjiang Phytomedicine Resources Utilization, Pharmacy School of Shihezi University, Xinjiang Shihezi, 832002, Xinjiang, PR China.
| | - Le Li
- Key Laboratory of the Ministry of Education of Xinjiang Phytomedicine Resources Utilization, Pharmacy School of Shihezi University, Xinjiang Shihezi, 832002, Xinjiang, PR China.
| | - Min Zhang
- Key Laboratory of the Ministry of Education of Xinjiang Phytomedicine Resources Utilization, Pharmacy School of Shihezi University, Xinjiang Shihezi, 832002, Xinjiang, PR China.
| | - Feng Wei
- Key Laboratory of the Ministry of Education of Xinjiang Phytomedicine Resources Utilization, Pharmacy School of Shihezi University, Xinjiang Shihezi, 832002, Xinjiang, PR China.
| | - Shimin Hou
- Key Laboratory of the Ministry of Education of Xinjiang Phytomedicine Resources Utilization, Pharmacy School of Shihezi University, Xinjiang Shihezi, 832002, Xinjiang, PR China.
| | - Kejian Pang
- Key Laboratory of the Ministry of Education of Xinjiang Phytomedicine Resources Utilization, Pharmacy School of Shihezi University, Xinjiang Shihezi, 832002, Xinjiang, PR China.
| | - Hui Tang
- Key Laboratory of the Ministry of Education of Xinjiang Phytomedicine Resources Utilization, Pharmacy School of Shihezi University, Xinjiang Shihezi, 832002, Xinjiang, PR China.
| |
Collapse
|
25
|
Investigating the Role of Dahuang in Hepatoma Treatment Using Network Pharmacology, Molecular Docking, and Survival Analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5975223. [PMID: 35872841 PMCID: PMC9307382 DOI: 10.1155/2022/5975223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/20/2022] [Accepted: 06/28/2022] [Indexed: 02/07/2023]
Abstract
Hepatoma is one of the most common malignant tumors. The incidence rate is high in developing countries, and China has the most significant number of cases. Dahuang is a classic traditional antitumor drug commonly used in China and has also been applied to treat hepatoma. However, the potential mechanism of Dahuang in treating hepatoma is not clear. Therefore, this study is aimed at elucidating the possible molecular mechanism and key targets of Dahuang using methods of network pharmacology, molecular docking, and survival analysis. Firstly, the active ingredients and key targets of Dahuang were analyzed through public databases, and then the drug-ingredient-target-disease network diagram of Dahuang against hepatoma was constructed. Five main active components and five core targets were determined according to the enrichment degree. Enrichment analysis demonstrated that Dahuang treated hepatoma through the multiple pathways in cancer. Additionally, molecular docking predicted that aloe-emodin and PIK3CG depicted the best binding energy. Survival analysis indicated that a high/ESR1 gene expression had a relatively good prognosis for patients with hepatoma (p < 0.05). In conclusion, the current study results demonstrated that Dahuang could treat hepatoma through a variety of active ingredients, targets, and multiantitumor pathways. Moreover, it effectively improved the prognosis of hepatoma patients. ESR1 is the potential key gene that is beneficial for the survival of hepatoma patients. Also, aloe-emodin and beta-sitosterol are the two main active crucial ingredients for hepatoma treatment. The study also provided some functional bases and references for the development of new drugs, target mining, and experimental animal research of hepatoma in the future.
Collapse
|
26
|
Effects of Anthraquinones on Immune Responses and Inflammatory Diseases. Molecules 2022; 27:molecules27123831. [PMID: 35744949 PMCID: PMC9230691 DOI: 10.3390/molecules27123831] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022] Open
Abstract
The anthraquinones (AQs) and derivatives are widely distributed in nature, including plants, fungi, and insects, with effects of anti-inflammation and anti-oxidation, antibacterial and antiviral, anti-osteoporosis, anti-tumor, etc. Inflammation, including acute and chronic, is a comprehensive response to foreign pathogens under a variety of physiological and pathological processes. AQs could attenuate symptoms and tissue damages through anti-inflammatory or immuno-modulatory effects. The review aims to provide a scientific summary of AQs on immune responses under different pathological conditions, such as digestive diseases, respiratory diseases, central nervous system diseases, etc. It is hoped that the present paper will provide ideas for future studies of the immuno-regulatory effect of AQs and the therapeutic potential for drug development and clinical use of AQs and derivatives.
Collapse
|
27
|
Zhang YR, Liu YR, Tang ZS, Song ZX, Zhang JW, Chang BJ, Zhao ML, Xu J. Rheum officinale Baill. Treats zebrafish embryo thrombosis by regulating NOS3 expression in the arginine biosynthesis pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:153967. [PMID: 35182903 DOI: 10.1016/j.phymed.2022.153967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Rheum officinale Baill. (ROB), as one of the traditional Chinese medicines for promoting blood circulation and removing blood stasis, has a wide range of pharmacological effects, such as cardiovascular protection, and has become a common drug in the clinical care of thrombosis. OBJECTIVE Although there are some pharmacological studies on ROB in the treatment of thrombotic diseases, the mechanism and material basis are still unclear. Based on the arginine biosynthesis signalling pathway, this research explored the target proteins and metabolites related to the intervention of ROB in thrombosis and expounded on the antithrombotic mechanism of ROB from the comprehensive perspectives of target prediction, intermediate metabolites and potential metabolic pathways. METHODS In this research, ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) technology was used to qualitatively detect the chemical compounds of ROB, and the antithrombotic activity of ROB was evaluated by establishing a zebrafish model. The target function was predicted by network pharmacology, and differential metabolites were screened by metabolomics and multivariate statistical analysis methods. Correlation analysis of network pharmacology and metabolomics screening results was conducted to identify the potential pathway of ROB intervention in thrombosis, and the prediction results were further verified. RESULTS ROB significantly reduced the reactive oxygen species (ROS) staining intensity in zebrafish induced by phenylhydrazine (PHZ) and improved the inhibition rate of thrombosis. By constructing the "herb-disease-component-target" network, it was concluded that the active ingredients of ROB in treating thrombosis involved emodin, aloe-emodin and physcion, and the key targets included nitric oxide synthase 2 (NOS2) and nitric oxide synthase 3 (NOS3). A total of 341 differential metabolites in zebrafish with thrombosis were screened by partial least squares discriminant analysis (PLS-DA). The results of reverse transcription-polymerase chain reaction (RT-PCR) experiments and targeted metabolomics verification showed that ROB was mainly involved in improving thrombosis by upregulating the expression of NOS3 mRNA and regulating the levels of arginine, glutamate and glutamine in the arginine biosynthesis pathway. CONCLUSIONS ROB improved thrombosis by regulating the expression of NOS3 mRNA and the contents of arginine, glutamate and glutamine in the arginine biosynthesis signalling pathway.
Collapse
Affiliation(s)
- Yu-Ru Zhang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang 712083, PR China
| | - Yan-Ru Liu
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang 712083, PR China.
| | - Zhi-Shu Tang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang 712083, PR China; Chinese Academy of Traditional Chinese Medicine, Beijing 100700, PR China.
| | - Zhong-Xing Song
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang 712083, PR China.
| | - Jun-Wei Zhang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang 712083, PR China
| | - Bai-Jin Chang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang 712083, PR China; Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Meng-Li Zhao
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang 712083, PR China
| | - Jin Xu
- Zhenba County Baihuagu Modern Agriculture and Animal Husbandry Development Co., Ltd., Hanzhong 723000, PR China
| |
Collapse
|
28
|
Wang R, Hu B, Ye C, Zhang Z, Yin M, Cao Q, Ba Y, Liu H. Stewed Rhubarb Decoction Ameliorates Adenine-Induced Chronic Renal Failure in Mice by Regulating Gut Microbiota Dysbiosis. Front Pharmacol 2022; 13:842720. [PMID: 35392552 PMCID: PMC8979777 DOI: 10.3389/fphar.2022.842720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
This study aimed to investigate the protective effect of Stewed Rhubarb (SR) decoction on chronic renal failure (CRF) through the regulation of gut microbiota. Using a CRF mouse model induced by a 0.2% adenine diet, we proved that SR decoction (2.0 g crude SR/kg) significantly reduced the levels of urea and creatinine in plasma of CRF mice, accompanied by the improvement of renal fibrosis and tubular atrophy, amelioration of inflammation, and inhibition of aquaporins damage. Also, SR decoction alleviated gut barrier damage, indicative of the elevated mRNA expression of intestinal mucins and tight junctions. By 16S rDNA sequencing, SR decoction reshaped the imbalanced gut microbiota in CRF mice by statistically reversing the abundance changes of a wide range of intestinal bacteria at family and genus levels, which further led to balance in the production of intestinal metabolites, including short-chain fatty acids (acetic acid, propionic acid, and valeric acid), indole, and bile acids (TUDCA and CDCA). Inversely, SR decoction failed to repress the occurrence of CRF in mice with gut microbiota depletion, confirming the essential role of gut microbiota in SR decoction-initiated protection against CRF. In summary, SR decoction can improve adenine-induced CRF in mice by remolding the structure of destructed gut microbiota community. Our findings shed light on the clinical application of SR decoction in nephropathy treatment.
Collapse
Affiliation(s)
- Rui Wang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China.,Nephrology Department, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Baifei Hu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Cheng Ye
- Technology Center of Wuhan Customs, Wuhan, China
| | - Zhigang Zhang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Mingzhu Yin
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Qiushi Cao
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Yuanming Ba
- Nephrology Department, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China.,Nephrology Department, Hubei Provincial Traditional Chinese Medicine Research Institute, Wuhan, China
| | - Hongtao Liu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
29
|
Yang QZ, Li HC, Guo ZB, Liao YZ, Liu RX, Liu YC, Liang H. The copper(II) complex of dantron showed therapeutic effect on bacterial gill-rot disease in tilapia infected by Flavobacterium columnar. J Inorg Biochem 2022; 232:111841. [DOI: 10.1016/j.jinorgbio.2022.111841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 10/18/2022]
|
30
|
Mousa AM, Soliman KEA, Alhumaydhi F, Almatroudi A, Al Rugaie O, Allemailem KS, Alrumaihi F, Khan A, Rezk MY, Aljasir M, Alwashmi ASS, Aba Alkhayl FF, Albutti AS, Seleem HS. Garlic Extract Alleviates Trastuzumab-Induced Hepatotoxicity in Rats Through Its Antioxidant, Anti-Inflammatory, and Antihyperlipidemic Effects. J Inflamm Res 2021; 14:6305-6316. [PMID: 34866928 PMCID: PMC8636847 DOI: 10.2147/jir.s339092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/20/2021] [Indexed: 12/15/2022] Open
Abstract
Background Trastuzumab is a new biological drug that has been used to treat breast and gastric cancer; however, its cardiotoxicity and hepatotoxicity limit its use. Garlic has antioxidant, anti-inflammatory, antihyperlipidemic, and anticancer effects. The present study aimed to evaluate the effects of garlic on trastuzumab-induced hepatotoxicity in a rat model. Methods Twenty rats were divided into four equal groups as vehicle control (G1), garlic (G2), trastuzumab (G3), and trastuzumab+garlic (G4). All rats were sacrificed after eight weeks of treatment, followed by blood collection and excision of liver tissues for further analyses. The liver specimens were processed for histopathological (HP), immunohistochemical (expression of TNF-α and PCNA), immunofluorescent expression of Chk2 and p53, biochemical, and flow cytometry investigations to evaluate the extent of hepatocyte injury. The biochemical analysis was conducted for the activity of tissue antioxidants (GPX1, CAT, and SOD2), serum lipid profile, and liver enzymes, whereas ROS was performed by flow cytometry. Results The results revealed remarkable structural changes in hepatocytes of G3 with significant increases in the numbers of inflammatory cells and positive PCNA cells, area % of collagen fibers, and immuno-expression of TNF-α, as well as a significant reduction in the nuclear expression of Chk2. In addition, significant reductions were noticed in the antioxidant enzymes (SOD2, CAT, and GPX1) activity of G3. In contrast, the levels of lipid profile tests (triglycerides, total cholesterol, LDLC, and HDLC), liver enzymes (ALT, AST, and ALP), and ROS revealed significant increases in rats of G3. Likewise, garlic administration in G4 restored all mentioned changes to their average levels deviated by trastuzumab. Conclusion Based on the current results, garlic demonstrates hepatoprotective effects against trastuzumab-induced toxicity in rats. The study suggested for the first time that the coadministration of garlic with trastuzumab for treating breast or gastric cancer can augment their efficacy with minimal toxicity.
Collapse
Affiliation(s)
- Ayman M Mousa
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia.,Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha, 13518, Egypt
| | - Khaled E A Soliman
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, Unaizah, 51452, Saudi Arabia.,Department of Forensic Medicine and Clinical Toxicology, Sohag Faculty of Medicine, Sohag University, Sohag, 82524, Egypt
| | - Fahad Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Osamah Al Rugaie
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, Unaizah, 51452, Saudi Arabia
| | - Khaled S Allemailem
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia.,Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Arif Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Mohamad Y Rezk
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, Unaizah, 51452, Saudi Arabia.,Department of Medical Physiology, College of Medicine, Zagazig University, Al-Sharquia, 44519, Egypt
| | - Mohammad Aljasir
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Ameen S S Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Faris F Aba Alkhayl
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Aqel S Albutti
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Hanan S Seleem
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, Unaizah, 51452, Saudi Arabia.,Department of Histology and Cell Biology, Faculty of Medicine, Menoufia University, Shebin Elkoum, Egypt
| |
Collapse
|
31
|
Huang H, Liu Z, Qi X, Gao N, Chang J, Yang M, Na S, Liu Y, Song R, Li L, Chen G, Zhou H. Rhubarb granule promotes diethylnitrosamine-induced liver tumorigenesis by activating the oxidative branch of pentose phosphate pathway via G6PD in rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114479. [PMID: 34343647 DOI: 10.1016/j.jep.2021.114479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/19/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rhubarb is a natural herbal medicine widely used clinically with numerous pharmacological activities including anti-cancer. Specifically, several studies reported that free anthraquinones from Rhubarb suppressed the proliferation of hepatoma cells. Nonetheless, recent studies revealed that Rhubarb caused hepatotoxicity in vivo, confirming its "two-way" effect on the liver. Therefore, the efficacy and safety of Rhubarb in the in vivo treatment of liver cancer should be further elucidated. AIM OF THE STUDY This study investigated the presence of hepatoprotection or hepatotoxicity of Rhubarb in diethylnitrosamine (DEN)-induced hepatocarcinogenesis. MATERIAL AND METHODS A total of 112 male Sprague-Dawley rats weighing 190-250 g were enrolled. The rats were induced hepatocarcinogenesis using diethylnitrosamine (0.002 g/rat) until 17 weeks. Starting at week 11, Rhubarb granules (4 g/kg and 8 g/kg) were intragastrically administered daily for 7 weeks. All rats were euthanized at week 20 and the livers were analyzed via non-targeted metabolomics analysis. We established hepatic glucose 6 phosphate (6PG) levels and glucose 6 phosphate dehydrogenase (G6PD) activities to assess the pentose phosphate pathway (PPP). And the liver injuries of rats were analyzed via histological changes, hepatic function, as well as hepatic protein levels of alpha-fetoprotein (AFP), pyruvate kinase isozyme type M2 (PKM2), and proliferating cell nuclear antigen (PCNA). Furthermore, polydatin (0.1 g/kg/d) as a specific inhibitor of G6PD was used to treat rats. Notably, their histological changes, hepatic function, hepatic 6PG levels, hepatic G6PD activities, PCNA levels, and PKM2 levels were recorded. RESULTS Non-targeted metabolomics revealed that Rhubarb regulated the PPP in the liver of Rhubarb-DEN-treated rats. Besides, Rhubarb activated the oxidative branch of the PPP by activating G6PD (a rate-limiting enzyme in the oxidative PPP) in the liver of Rhubarb-DEN-treated rats. Meanwhile, Rhubarb promoted DEN-induced hepatocarcinogenesis. Moreover, polydatin attenuated the promoting effect of Rhubarb on DEN-induced hepatocarcinogenesis. CONCLUSIONS Rhubarb promoted DEN-induced hepatocarcinogenesis by activating the PPP, indicating that the efficacy and safety of Rhubarb in the treatment of liver cancer deserve to be deliberated.
Collapse
Affiliation(s)
- Hongwu Huang
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Traditional Chinese Medicine, Hefei, Anhui Province, PR China
| | - Zhenzhen Liu
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Traditional Chinese Medicine, Hefei, Anhui Province, PR China
| | - Xiaoru Qi
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Traditional Chinese Medicine, Hefei, Anhui Province, PR China
| | - Nailong Gao
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, PR China
| | - Jianguo Chang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, PR China
| | - Miaomiao Yang
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui Province, PR China; Clinical Pathology Center, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, PR China
| | - Sha Na
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Traditional Chinese Medicine, Hefei, Anhui Province, PR China
| | - Yanyan Liu
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Traditional Chinese Medicine, Hefei, Anhui Province, PR China
| | - Rui Song
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Traditional Chinese Medicine, Hefei, Anhui Province, PR China
| | - Lu Li
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Traditional Chinese Medicine, Hefei, Anhui Province, PR China; Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui Province, PR China.
| | - Guangliang Chen
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui Province, PR China.
| | - Hui Zhou
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Traditional Chinese Medicine, Hefei, Anhui Province, PR China.
| |
Collapse
|
32
|
Ruan L, Jiang L, Zhao W, Meng H, Zheng Q, Wang J. Hepatotoxicity or hepatoprotection of emodin? Two sides of the same coin by 1H-NMR metabolomics profiling. Toxicol Appl Pharmacol 2021; 431:115734. [PMID: 34606778 DOI: 10.1016/j.taap.2021.115734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 10/20/2022]
Abstract
Emodin is the major anthraquinone component of many important traditional Chinese herbs, such as Rheum palmatum L. and Polygonum multiflorum Thunb. They have been popular health products but recently aroused concerns about their hepatotoxicity, which are believed to be arising from the contained anthraquinones, such as emodin. However, emodin exerts potent hepatoprotective ability, such as anti-fibrotic, anti-oxidative, and anti-inflammatory effects. In this study, 1H NMR based metabolomics approach, complemented with histopathological observation, biochemical measurements, western blotting analysis and real-time quantitative PCR (RT-qPCR), was applied to interpret the paradox of emodin (30 mg/kg, 10 mg/kg BW) using both healthy mice (male, ICR) and chronic CCl4-injured mice (0.1 mL/kg, 0.35% CCl4, 3 times a week for a month). Emodin exerted a weight loss property associated with its lipid-lowing effects, which helped alleviate CCl4-induced steatosis. Emodin effectively ameliorated CCl4-induced oxidative stress and energy metabolism dysfunction in mice liver via regulating glucose, lipid and amino acid metabolism, and inhibited excessive inflammatory response. In healthy mice, emodin only exhibited hepatoxicity on high-dosage by disturbing hepatic anti-oxidant homeostasis, especially GSH and xanthine metabolism. This integrated metabolomics approach identified the bidirectional potential of emodin, which are important for its rational use.
Collapse
Affiliation(s)
- Lingyu Ruan
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, PR China.
| | - Lei Jiang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, PR China.
| | - Wenlong Zhao
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, PR China.
| | - Huihui Meng
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, PR China.
| | - Qi Zheng
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, PR China.
| | - Junsong Wang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, PR China.
| |
Collapse
|
33
|
Woo SM, Davis WD, Aggarwal S, Clinton JW, Kiparizoska S, Lewis JH. Herbal and dietary supplement induced liver injury: Highlights from the recent literature. World J Hepatol 2021; 13:1019-1041. [PMID: 34630872 PMCID: PMC8473494 DOI: 10.4254/wjh.v13.i9.1019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/08/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023] Open
Abstract
Herbal-induced liver injury (HILI) is an important and increasingly concerning cause of liver toxicity, and this study presents recent updates to the literature. An extensive literature review was conducted encompassing September 2019 through March 2021. Studies with clinically significant findings were analyzed and included in this review. We emphasized those studies that provided a causality assessment methodology, such as Roussel Uclaf Causality Assessment Method scores. Our review includes reports of individual herbals, including Garcinia cambogia, green tea extract, kratom as well as classes such as performance enhancing supplements, Traditional Chinese medicine, Ayurvedic medicine and herbal contamination. Newly described herbals include ashwagandha, boldo, skyfruit, and 'Thermo gun'. Several studies discussing data from national registries, including the United States Drug-Induced Liver Injury (DILI) Network, Spanish DILI Registry, and Latin American DILI Network were incorporated. There has also been a continued interest in hepatoprotection, with promising use of herbals to counter hepatotoxicity from anti-tubercular medications. We also elucidated the current legal conversation surrounding use of herbals by presenting updates from the Federal Drug Administration. The highlights of the literature over the past year indicate interest in HILI that will continue as the supplement industry in the United States grows.
Collapse
Affiliation(s)
- Stephanie M Woo
- Department of Internal Medicine, MedStar Georgetown University Hospital, Washington, DC 20007, United States.
| | - William D Davis
- Department of Internal Medicine, MedStar Georgetown University Hospital, Washington, DC 20007, United States
| | - Soorya Aggarwal
- Department of Gastroenterology, MedStar Georgetown University Hospital, Washington, DC 20007, United States
| | - Joseph W Clinton
- Department of Internal Medicine, MedStar Georgetown University Hospital, Washington, DC 20007, United States
| | - Sara Kiparizoska
- Department of Internal Medicine, MedStar Georgetown University Hospital, Washington, DC 20007, United States
| | - James H Lewis
- Department of Gastroenterology, MedStar Georgetown University Hospital, Washington, DC 20007, United States
| |
Collapse
|
34
|
Qi T, Li J, Wang H, Han X, Li J, Du J. Global analysis of protein lysine 2-hydroxyisobutyrylation (K hib) profiles in Chinese herb rhubarb (Dahuang). BMC Genomics 2021; 22:542. [PMID: 34266380 PMCID: PMC8283887 DOI: 10.1186/s12864-021-07847-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/21/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lysine 2-hydroxyisobutyrylation (Khib) is a newly discovered protein posttranslational modification (PTM) and is involved in the broad-spectrum regulation of cellular processes that are found in both prokaryotic and eukaryotic cells, including in plants. The Chinese herb rhubarb (Dahuang) is one of the most widely used traditional Chinese medicines in clinical applications. To better understand the physiological activities and mechanism of treating diseases with the herb, it is necessary to conduct intensive research on rhubarb. However, Khib modification has not been reported thus far in rhubarb. RESULTS In this study, we performed the first global analysis of Khib-modified proteins in rhubarb by using sensitive affinity enrichment combined with high-accuracy HPLC-MS/MS tandem spectrometry. A total of 4333 overlapping Khib modification peptides matched on 1525 Khib-containing proteins were identified in three independent tests. Bioinformatics analysis showed that these Khib-containing proteins are involved in a wide range of cellular processes, particularly in protein biosynthesis and central carbon metabolism and are distributed mainly in chloroplasts, cytoplasm, nucleus and mitochondria. In addition, the amino acid sequence motif analysis showed that a negatively charged side chain residue (E), a positively charged residue (K), and an uncharged residue with the smallest side chain (G) were strongly preferred around the Khib site, and a total of 13 Khib modification motifs were identified. These identified motifs can be classified into three motif patterns, and some motif patterns are unique to rhubarb and have not been identified in other plants to date. CONCLUSIONS A total of 4333 Khib-modified peptides on 1525 proteins were identified. The Khib-modified proteins are mainly distributed in the chloroplast, cytoplasm, nucleus and mitochondria, and involved in a wide range of cellular processes. Moreover, three types of amino acid sequence motif patterns, including EKhib/KhibE, GKhib and k.kkk….Khib….kkkkk, were extracted from a total of 13 Khib-modified peptides. This study provides comprehensive Khib-proteome resource of rhubarb. The findings from the study contribute to a better understanding of the physiological roles of Khib modification, and the Khib proteome data will facilitate further investigations of the roles and mechanisms of Khib modification in rhubarb.
Collapse
Affiliation(s)
- Tong Qi
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy,, Qingdao Agricultural University, Shandong, 266109, Qingdao, China
| | - Jinping Li
- International Cooperation Department of Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Huifang Wang
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy,, Qingdao Agricultural University, Shandong, 266109, Qingdao, China
| | - Xiaofan Han
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy,, Qingdao Agricultural University, Shandong, 266109, Qingdao, China
| | - Junrong Li
- Bathurst Future Agri-Tech Institute of Qingdao Agricultural University, Qingdao, China
| | - Jinzhe Du
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy,, Qingdao Agricultural University, Shandong, 266109, Qingdao, China.
| |
Collapse
|
35
|
Network Pharmacology-Based Approach to Investigate the Molecular Targets of Rhubarb for Treating Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9945633. [PMID: 34211578 PMCID: PMC8208856 DOI: 10.1155/2021/9945633] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/13/2021] [Accepted: 05/28/2021] [Indexed: 12/29/2022]
Abstract
Background As a traditional Chinese medicine, rhubarb (also named Dahuang) is used to treat various diseases. Objective To explore the possible antitumor mechanism of rhubarb by using network pharmacology and molecular docking in this study. Methods Bioactive ingredients and related targets of rhubarb were obtained from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. And the gene names corresponding to the proteins were found in the UniProt database. Then, the tumor-related targets were screened out from GeneCards and OMIM databases. Key antitumor targets of rhubarb were acquired by overlapping the above targets via the Venn diagram. The antitumor targets network of rhubarb active components was constructed by using Cytoscape 3.6.0 software. The protein interactions network was constructed using the STRING database. The GO and KEGG pathways involved in the targets were analyzed by using the DAVID database. Autodock Vina software was used to verify the molecular docking of rhubarb components and key targets. Results Through screening and analysis, 10 active ingredients and 58 antitumor prediction targets were obtained and constructed a compound-target network. The targets such as CASP3, JUN, MYC, TNF, and PTGS2 may play a crucial role. These targets are involved in cancer pathway, calcium signaling pathway, cell apoptosis, small-cell lung cancer pathway, p53 signaling pathway, and TNF signaling pathway. The docking results indicated that the rhein binding with the CASP3 showed the highest binding energy. Conclusion Based on the network pharmacology, the characteristics of multicomponent, multitarget, and multipathway of rhubarb were discussed, which provided a scientific basis for explaining the mechanism in treating cancer and new ideas for further research.
Collapse
|
36
|
Jargalsaikhan G, Wu JY, Chen YC, Yang LL, Wu MS. Comparison of the Phytochemical Properties, Antioxidant Activity and Cytotoxic Effect on HepG2 Cells in Mongolian and Taiwanese Rhubarb Species. Molecules 2021; 26:1217. [PMID: 33668690 PMCID: PMC7956657 DOI: 10.3390/molecules26051217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 11/30/2022] Open
Abstract
The Mongolian rhubarb-Rheum undulatum L. (RU)-and Rumex crispus L. (RC)-a Taiwanese local rhubarb belonging to the family of Polygonaceae-are principal therapeutic materials in integrative medicine due to their rich quantities of bioactive compounds; however, their phytochemical and antioxidant properties, and anti-cancer activity is poorly investigated. Furthermore, the phytochemical characteristics of both species may be affected by their different geographical distribution and climatic variance. The current study aimed to compare RU with RC extracts in different polarity solvents (n-hexane, ethyl acetate, acetone, ethanol, and water) for their phytochemical contents including the total phenolic content (TPC), total anthraquinone content (TAC), total flavonoid content (TFC), antioxidant and free radical scavenging capacities, and anticancer ability on the HepG2 cell. Except for the n-hexane extract, all of the RU extracts had considerably higher TPCs than RC extracts, ranging from 8.39 to 11.16 mg gallic acid equivalent (GAE) per gram of dry weight, and the TPCs of each extract were also significantly correlated with their antioxidant capacities by ABTS, DPPH, and FRAP assays (p < 0.05). Moreover, there was no remarkable association between the antioxidant capacities and either TACs or TFCs in both the RU and RC extracts. Besides, high-performance liquid chromatography (HPLC) analysis revealed that both the RU and RC extracts contained chrysophanol, emodin, and physcion, and those bioactive compounds were relatively higher in the n-hexane solvent extracts. Additionally, we observed different levels of dose-dependent cytotoxic effects in all the extracts by cell viability assay. Notably, the ethanol extract of RU had a compelling cytotoxic effect with the lowest half-maximum inhibition concentration (IC50-171.94 ± 6.56 µg/mL at 48 h) among the RU extracts than the ethanol extract of RC. Interestingly, the ethanol extract of RU but not RC significantly induced apoptosis in the human liver cancer cell line, HepG2, with a distinct pattern in caspase-3 activation, resulting in increased PARP cleavage and DNA damage. In summary, Mongolian Rhubarb, RU, showed more phytochemical contents, as well as a higher antioxidant capacity and apoptotic effect to HepG2 than RC; thus, it can be exploited for the proper source of natural antioxidants and liver cancer treatment in further investigation.
Collapse
Affiliation(s)
- Ganbolor Jargalsaikhan
- International MS/PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (G.J.); (Y.-C.C.)
- Liver Center, Ulaanbaatar 14230, Mongolia
| | - Jin-Yi Wu
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi 60004, Taiwan;
| | - Yen-Chou Chen
- International MS/PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (G.J.); (Y.-C.C.)
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Research Center and Orthopedics Research Center, Taipei Medical University, Taipei 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Ling-Ling Yang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan;
- American College of Acupuncture and Oriental Medicine, Houston, TX 77063, USA
| | - Ming-Shun Wu
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Integrative Therapy Center for Gastroenterological Cancers, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
37
|
Yang N, Chen H, Gao Y, Zhang S, Lin Q, Ji X, Li N, Xu W, Liu Y, Jin S. Tanshinone IIA exerts therapeutic effects by acting on endogenous stem cells in rats with liver cirrhosis. Biomed Pharmacother 2020; 132:110815. [PMID: 33113421 DOI: 10.1016/j.biopha.2020.110815] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Liver cirrhosis (LC), the major pathway for the progression and development of chronic liver disease, is an advanced stage of liver disease. It is the third most common chronic noncommunicable disease after cardiovascular diseases and malignant tumors. Tanshinone IIA (Tan), an extract of Salvia miltiorrhiza (S. miltiorrhiza), has been proven to promote the proliferation and differentiation of stem cells. Moreover, its protective effect in liver injury has received widespread attention. The present study investigated whether Tan plays a therapeutic role in LC by promoting endogenous stem cell proliferation and differentiation. MATERIALS AND METHODS LC models were established by intraperitoneal injection of an olive oil solution containing 50 % carbon tetrachloride (CCL4) combined with 10 % alcohol in the drinking water. After successful model establishment, the animals were randomly divided into four groups and injected with physiological saline or low-, medium-, or high-dose (10, 20, or 40 mg/kg) Tan for seven consecutive days. The protective effect of Tan on LC was observed by western blotting, serological examination and histopathological staining. Furthermore, immunofluorescence double-labeling of 5-bromo-2-deoxyuridine (BrdU) and the liver cell markers albumin and CK-18 or the liver stem cell markers EPCAM and OV-6 was used to evaluate the proliferation and differentiation of endogenous liver stem cells. RESULTS We confirmed successful establishment of the LC model by observing transaminase levels and hematoxylin-eosin (HE) and Masson staining of liver sections in CCL4-treated and healthy rats. After Tan treatment, HE and Masson staining of paraffin sections of liver tissue showed that Tan treatment significantly improved histological injury to the liver. Serological tests showed that albumin-bilirubin (ALBI) scores and models for end-stage liver disease (MELD) were lower. Immunofluorescence and immunohistochemical staining showed that the newly proliferated cells were colocalized with ALB, OV-6, EPCAM, and CK-18, indicating that new expression of these markers occurred after Tan injection. All results were most significant in the medium-dose treatment group. CONCLUSION Tan can alleviate liver injury induced by CCL4 combined with alcohol in rats and plays a therapeutic role in LC by promoting the proliferation and differentiation of endogenous liver stem cells.
Collapse
Affiliation(s)
- Ningning Yang
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Nan Gang District, Harbin, Heilongjiang Province, 150081, China.
| | - Haoyuan Chen
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Nan Gang District, Harbin, Heilongjiang Province, 150081, China.
| | - Yang Gao
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Nan Gang District, Harbin, Heilongjiang Province, 150081, China.
| | - Sijia Zhang
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Nan Gang District, Harbin, Heilongjiang Province, 150081, China.
| | - Qiuchi Lin
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Nan Gang District, Harbin, Heilongjiang Province, 150081, China.
| | - Xuechun Ji
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Nan Gang District, Harbin, Heilongjiang Province, 150081, China.
| | - Ning Li
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Nan Gang District, Harbin, Heilongjiang Province, 150081, China.
| | - Wanying Xu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Nan Gang District, Harbin, Heilongjiang Province, 150081, China.
| | - Ying Liu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Nan Gang District, Harbin, Heilongjiang Province, 150081, China.
| | - Shizhu Jin
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Nan Gang District, Harbin, Heilongjiang Province, 150081, China.
| |
Collapse
|