1
|
Zhou M, Li X, Wang W, Wu J, Tan J. PSMD14/E2F1 Axis-Mediated CENPF Promotes the Metastasis of Triple-Negative Breast Cancer Through Inhibiting Ferroptosis. Cancer Sci 2025. [PMID: 40365861 DOI: 10.1111/cas.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 05/15/2025] Open
Abstract
The metastasis of triple-negative breast cancer (TNBC) usually contributes to the failure of treatment. Centromere Protein F (CENPF) can induce proliferation and metastasis in TNBC. Nevertheless, the upstream mechanism of CENPF in BC remains unclear. Western blot and RT-qPCR were employed for testing the levels of PSMD14, E2F1, and CENPF, and cell migration was assessed using the Transwell assay. Additionally, the CCK8 assay was applied to investigate cell viability, and C11-BODIPY 581/591 was applied to assess the lipid ROS level. ChIP and dual luciferase assays were used to examine the association between E2F1 and the CENPF promoter. The interaction between PSMD14 and E2F1 was verified using Co-IP. Knockdown of CENPF could significantly inhibit migration and invasion in TNBC cells. In addition, the silencing of CENPF aggravated arachidonic acid metabolism-induced ferroptosis in TNBC cells. Meanwhile, E2F1 knockdown greatly inhibited the expressions of CENPF and attenuated TNBC cell invasion and migration by decreasing its binding with the CENPF promoter. More importantly, PSMD14 could suppress arachidonic acid metabolism-induced ferroptosis in TNBC cells through the E2F1/CENPF axis. The PSMD14/E2F1 axis-mediated CENPF could promote the metastasis of TNBC by inhibiting arachidonic acid metabolism-induced ferroptosis. This research might bring novel insights into discovering methods for alleviating tumor metastasis in TNBC.
Collapse
Affiliation(s)
- Meifeng Zhou
- Department of Oncology, Affiliated Cancer Hospital of Hainan Medical University, Hainan Cancer Hospital, Haikou, Hainan, China
- Department of Medical Oncology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Xianglu Li
- Department of Medical Oncology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Weifeng Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital of Hainan Medical University, Hainan Cancer Hospital, Haikou, Hainan, China
| | - Jianyong Wu
- Department of Medical Oncology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Jindian Tan
- Department of Orthopaedic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| |
Collapse
|
2
|
Chen M, Tang X, Liang Y, Ding T, He M, Wang D, Wang R. CENPF as a Potential Biomarker Associated with the Immune Microenvironment of Renal Cancer. Technol Cancer Res Treat 2025; 24:15330338251330791. [PMID: 40165474 PMCID: PMC11960158 DOI: 10.1177/15330338251330791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 02/28/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
IntroductionRenal cancer, particularly Kidney Renal Clear Cell Carcinoma (KIRC), remains a major clinical challenge due to its aggressive nature and poor prognosis. Identifying reliable biomarkers for tumor progression and survival is critical for improving patient outcomes. This study aimed to investigate the role of Centromere Protein F (CENPF) as a potential prognostic biomarker for renal cancer.MethodData from the TCGA database, including Kidney Chromophobe (KICH), Kidney Renal Papillary Cell Carcinoma (KIRP), and KIRC, were analyzed to identify differentially expressed genes. Molecular Complex Detection (MCODE) was used to identify significant gene modules among upregulated genes, and univariate Cox regression analyses assessed the prognostic value of hub genes. Retrospective qPCR was conducted on tissue and plasma samples from KIRC patients to validate findings. Single-cell sequencing data from the GSE159115 dataset were analyzed, and the CIBERSORT algorithm was applied to evaluate the composition of tumor immune infiltrating cells (TIICs).ResultsCENPF was identified as a hub gene significantly upregulated in renal cancer subtypes, with overexpression linked to worse survival outcomes in KIRC patients. Retrospective qPCR confirmed high CENPF expression was associated with poorer prognosis. Single-cell sequencing revealed that CENPF is predominantly expressed in T-cell clusters. TIIC analysis showed a negative correlation between CENPF and resting mast cells, but positive correlations with follicular helper T-cells and memory-activated CD4T-cells. Prognostic analysis indicated that high follicular helper T-cell expression predicted poorer survival, while high plasma cell expression correlated with better outcomes.ConclusionCENPF plays a critical role in tumor progression and the modulation of the tumor immune microenvironment in KIRC. These findings suggest that CENPF could serve as a valuable prognostic biomarker and potential target for therapeutic intervention in renal cancer.
Collapse
MESH Headings
- Humans
- Biomarkers, Tumor/genetics
- Tumor Microenvironment/immunology
- Tumor Microenvironment/genetics
- Kidney Neoplasms/genetics
- Kidney Neoplasms/immunology
- Kidney Neoplasms/pathology
- Kidney Neoplasms/mortality
- Prognosis
- Gene Expression Regulation, Neoplastic
- Chromosomal Proteins, Non-Histone/genetics
- Female
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/immunology
- Carcinoma, Renal Cell/pathology
- Carcinoma, Renal Cell/mortality
- Gene Expression Profiling
- Male
- Computational Biology/methods
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Retrospective Studies
- Databases, Genetic
- Single-Cell Analysis
- Middle Aged
- Microfilament Proteins
Collapse
Affiliation(s)
- Meilin Chen
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiuxin Tang
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - YanPing Liang
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tangdang Ding
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Meifang He
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dong Wang
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ruizhi Wang
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Wang J, Xu B, Liang L, Chen Q. Long Non-coding RNA 02298 Promotes the Malignancy of HCC by Targeting the miR-28-5p/CCDC6 Pathway. Biochem Genet 2024; 62:4967-4986. [PMID: 38381357 DOI: 10.1007/s10528-023-10662-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/30/2023] [Indexed: 02/22/2024]
Abstract
Hepatocellular carcinoma (HCC) is a malignancy characterized by a high fatality rate. Increasing evidence indicating that long non-coding RNAs (lncRNAs) play a regulatory role in hepatocellular carcinoma (HCC). Among them, the correlation between LINC02298 and HCC remains unknown. The expression and subcellular localization of LINC02298 in HCC tissues and cell lines were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Furthermore, the correlation between the expression of LINC02298 and clinicopathological features of HCC patients was analyzed. The regulatory effects of LINC02298 in HCC were investigated using colony formation, cell count Kit-8(CCK8), Transwell, EDU, cell cycle and apoptosis analysis. In addition, the expression of EMT-related proteins were detected by western blotting. Dual-luciferase reporter, RT-qPCR and rescue assays were employed to validate the involvement of the LINC02298/miR-28-5p/CCDC6 axis in the progression of HCC. The up-regulation of LINC02298 was observed in hepatocellular carcinoma (HCC) tissues and cells, and it was found to be correlated with a negative prognosis in patients with HCC. Overexpression of LINC02298 enhanced the proliferation, migration, invasion, and induction of Epithelial-Mesenchymal Transition (EMT) while suppressing apoptosis in HCC cells. LINC02298 bind to miR-28-5p to regulate the expression of CCDC6. Inhibition of miR-28-5p saved the inhibitory effect of shLINC02298, and knockdown of CCDC6 also saved the inhibitory effect of miR-28-5p on HCC in vitro and in vivo. LINC02298 regulates the expression of CCDC6 by sponging of miR-28-5p, thereby facilitating the the malignancy and EMT of HCC.
Collapse
Affiliation(s)
- Jinyi Wang
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, 210019, Jiangsu, China
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Bin Xu
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, 210019, Jiangsu, China
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Litao Liang
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, 210019, Jiangsu, China
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Qi Chen
- Department of General Surgery, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211100, China.
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
4
|
Wei Y, Bai C, Xu S, Cui M, Wang R, Wu M. Diagnostic and Predictive Value of LncRNA MCM3AP-AS1 in Sepsis and Its Regulatory Role in Sepsis-Induced Myocardial Dysfunction. Cardiovasc Toxicol 2024; 24:1125-1138. [PMID: 39085530 DOI: 10.1007/s12012-024-09903-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
The present study focused on exploring the clinical value and molecular mechanism of LncRNA MCM3AP antisense RNA 1 (MCM3AP-AS1) in sepsis and sepsis-induced myocardial dysfunction (SIMD). 122 sepsis patients and 90 healthy were included. Sepsis patients were categorized into SIMD and non-MD. The expression levels of MCM3AP-AS1 and miRNA were examined using RT-qPCR. Diagnostic value of MCM3AP-AS1 in sepsis assessed by ROC curves. Logistic regression to explore risk factors influencing the occurrence of SIMD. Cardiomyocytes were induced by LPS to construct cell models in vitro. CCK-8, flow cytometry, and ELISA to analyze cell viability, apoptosis, and inflammation levels. Serum MCM3AP-AS1 was upregulated in patients with sepsis. The sensitivity and specificity of MCM3AP-AS1 were 75.41% and 93.33%, for recognizing sepsis from healthy controls. Additionally, elevated MCM3AP-AS1 is a risk factor for SIMD and can predict SIMD development. Compared with the LPS-induced cardiomyocytes, inhibition of MCM3AP-AS1 significantly attenuated LPS-induced apoptosis and inflammation; however, this attenuation was partially reversed by lowered miR-28-5p, but this reversal was partially eliminated by CASP2. MCM3AP-AS1 may be a novel diagnostic biomarker for sepsis and can predict the development of SIMD. MCM3AP-AS1 probably participated in SIMD progression by regulating cardiomyocyte inflammation and apoptosis through the target miR-28-5p/CASP2 axis.
Collapse
Affiliation(s)
- Yunwei Wei
- Department of Anesthesiology, Women's Health Center of Shanxi, Children's Hospital of Shanxi, Taiyuan, Shanxi, China
| | - Cui Bai
- Department of Critical Care Medicine, Chongqing Yubei District People's Hospital, Chongqing, 401120, China
| | - Shuying Xu
- Department of Emergency, Binzhou Medical University Hospital, 661 Huanghe 2nd Road, Bincheng District, Binzhou, 256600, Shandong, China
| | - Mingli Cui
- Department of Cardiovascular Medicine, Binzhou Medical University Hospital, Binzhou, 256600, Shandong, China
| | - Ruixia Wang
- Department of Emergency, Binzhou Medical University Hospital, 661 Huanghe 2nd Road, Bincheng District, Binzhou, 256600, Shandong, China.
| | - Meizhen Wu
- Department of Intensive Care Unit, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, 3 Xincun Road, Xinghualing District, Taiyuan, 030013, Shanxi, China.
| |
Collapse
|
5
|
Hsu CY, Faisal A, Jumaa SS, Gilmanova NS, Ubaid M, Athab AH, Mirzaei R, Karampoor S. Exploring the impact of circRNAs on cancer glycolysis: Insights into tumor progression and therapeutic strategies. Noncoding RNA Res 2024; 9:970-994. [PMID: 38770106 PMCID: PMC11103225 DOI: 10.1016/j.ncrna.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/18/2024] [Accepted: 05/04/2024] [Indexed: 05/22/2024] Open
Abstract
Cancer cells exhibit altered metabolic pathways, prominently featuring enhanced glycolytic activity to sustain their rapid growth and proliferation. Dysregulation of glycolysis is a well-established hallmark of cancer and contributes to tumor progression and resistance to therapy. Increased glycolysis supplies the energy necessary for increased proliferation and creates an acidic milieu, which in turn encourages tumor cells' infiltration, metastasis, and chemoresistance. Circular RNAs (circRNAs) have emerged as pivotal players in diverse biological processes, including cancer development and metabolic reprogramming. The interplay between circRNAs and glycolysis is explored, illuminating how circRNAs regulate key glycolysis-associated genes and enzymes, thereby influencing tumor metabolic profiles. In this overview, we highlight the mechanisms by which circRNAs regulate glycolytic enzymes and modulate glycolysis. In addition, we discuss the clinical implications of dysregulated circRNAs in cancer glycolysis, including their potential use as diagnostic and prognostic biomarkers. All in all, in this overview, we provide the most recent findings on how circRNAs operate at the molecular level to control glycolysis in various types of cancer, including hepatocellular carcinoma (HCC), prostate cancer (PCa), colorectal cancer (CRC), cervical cancer (CC), glioma, non-small cell lung cancer (NSCLC), breast cancer, and gastric cancer (GC). In conclusion, this review provides a comprehensive overview of the significance of circRNAs in cancer glycolysis, shedding light on their intricate roles in tumor development and presenting innovative therapeutic avenues.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City, 71710, Taiwan
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, Arizona, 85004, USA
| | - Ahmed Faisal
- Department of Pharmacy, Al-Noor University College, Nineveh, Iraq
| | - Sally Salih Jumaa
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Nataliya Sergeevna Gilmanova
- Department of Prosthetic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Russia, Moscow
| | - Mohammed Ubaid
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Aya H. Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Rasoul Mirzaei
- Venom & Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal & Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Chi C, Tang X, Liu W, Zhou Y, Jiang R, Chen Y, Li M. Exosomal lncRNA USP30-AS1 activates the Wnt/β-catenin signaling pathway to promote cervical cancer progression via stabilization of β-catenin by USP30. Biotechnol J 2024; 19:e2300653. [PMID: 39014929 DOI: 10.1002/biot.202300653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 07/18/2024]
Abstract
Cervical cancer (CC) remains a major cause of cancer-related mortality among women globally. Long noncoding RNAs (lncRNAs) play crucial regulatory roles in various cancers, including CC. This study investigates the function of a novel lncRNA, USP30 antisense RNA 1 (USP30-AS1), in CC tumorigenesis. We analyzed USP30-AS1 expression using RT-qPCR and conducted in vitro loss-of-function assays, as well as in vivo assays, to evaluate the effects of USP30-AS1 silencing on CC cell growth and migration. Additional mechanistic experiments, including RNA pull-down, RNA immunoprecipitation (RIP), and co-immunoprecipitation (Co-IP) assays, were performed to elucidate the regulatory mechanisms influenced by USP30-AS1. We discovered that USP30-AS1 is overexpressed in CC tissues and cells. Silencing USP30-AS1 significantly reduced cell proliferation, migration, invasion, and tumor growth. Moreover, USP30-AS1 was found to modulate the expression of ubiquitin-specific peptidase 30 (USP30) by sponging microRNA-2467-3p (miR-2467-3p) and recruiting the FUS RNA binding protein (FUS), thereby stabilizing β-catenin and activating the Wnt/β-catenin signaling pathway. These findings suggest that USP30-AS1 enhances CC cell growth and migration through the miR-2467-3p/FUS/USP30 axis, highlighting its potential as a biomarker for CC.
Collapse
Affiliation(s)
- Chi Chi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiuwu Tang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wei Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ying Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Rong Jiang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Youguo Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Min Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
7
|
Paphussaro W, Roytrakul S, Phaonakrop N, Buthasane W, Rungsipipat A, Tharasanit T, Suriyaphol G. Analysis of serum peptidome profiles of non-metastatic and metastatic feline mammary carcinoma using liquid chromatography-tandem mass spectrometry. BMC Vet Res 2024; 20:280. [PMID: 38951817 PMCID: PMC11218297 DOI: 10.1186/s12917-024-04148-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 06/18/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Feline mammary carcinoma (FMC) is a common aggressive and highly metastatic cancer affecting female cats. Early detection is essential for preventing local and distant metastasis, thereby improving overall survival rates. While acquiring molecular data before surgery offers significant potential benefits, the current protein biomarkers for monitoring disease progression in non-metastatic FMC (NmFMC) and metastatic FMC (mFMC) are limited. The objective of this study was to investigate the serum peptidome profiles of NmFMC and mFMC using liquid chromatography-tandem mass spectrometry. A cross-sectional study was conducted to compare serum peptidome profiles in 13 NmFMC, 23 mFMC and 18 healthy cats. The liquid chromatography-tandem mass spectrometry analysis was performed on non-trypsinized samples. RESULTS Out of a total of 8284 expressed proteins observed, several proteins were found to be associated with human breast cancer. In NmFMC, distinctive protein expressions encompassed double-stranded RNA-binding protein Staufen homolog 2 (STAU2), associated with cell proliferation, along with bromodomain adjacent to zinc finger domain 2A (BAZ2A) and gamma-aminobutyric acid type A receptor subunit epsilon (GABRE), identified as potential treatment targets. Paradoxically, positive prognostic markers emerged, such as complement C1q like 3 (C1QL3) and erythrocyte membrane protein band 4.1 (EPB41 or 4.1R). Within the mFMC group, overexpressed proteins associated with poor prognosis were exhibited, including B-cell lymphoma 6 transcription repressor (BCL6), thioredoxin reductase 3 (TXNRD3) and ceruloplasmin (CP). Meanwhile, the presence of POU class 5 homeobox (POU5F1 or OCT4) and laminin subunit alpha 1 (LAMA1), reported as metastatic biomarkers, was noted. CONCLUSION The presence of both pro- and anti-proliferative proteins was observed, potentially indicating a distinctive characteristic of NmFMC. Conversely, proteins associated with poor prognosis and metastasis were noted in the mFMC group.
Collapse
Affiliation(s)
- Weejarin Paphussaro
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Henri Dunant Road, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence for Companion Animal Cancer, Faculty of Veterinary Science, Chulalongkorn University, Henri Dunant Road, Pathumwan, Bangkok, 10330, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Narumon Phaonakrop
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Wannapol Buthasane
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Henri Dunant Road, Pathumwan, Bangkok, 10330, Thailand
| | - Anudep Rungsipipat
- Center of Excellence for Companion Animal Cancer, Faculty of Veterinary Science, Chulalongkorn University, Henri Dunant Road, Pathumwan, Bangkok, 10330, Thailand
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Henri Dunant Road, Pathumwan, Bangkok, 10330, Thailand
| | - Theerawat Tharasanit
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Henri Dunant Road, Pathumwan, Bangkok, 10330, Thailand
| | - Gunnaporn Suriyaphol
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Henri Dunant Road, Pathumwan, Bangkok, 10330, Thailand.
- Center of Excellence for Companion Animal Cancer, Faculty of Veterinary Science, Chulalongkorn University, Henri Dunant Road, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
8
|
Li J, Chen Q, Ni S, Dong X, Mi T, Xie Y, Yuan X, Luo X, Wang H. CENPF May Act as a Novel Marker and Highlight the Influence of Pericyte in Infantile Hemangioma. Angiology 2024:33197241262373. [PMID: 38898633 DOI: 10.1177/00033197241262373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Infantile hemangioma (IH), a benign microvascular tumor, is marked by early and extensive proliferation of immature hemangioma endothelial cells (Hem-ECs) that naturally regress through differentiation into fibroblasts or adipocytes. However, a challenge persists, as the unique biological behavior of IH remains elusive, despite its general sensitivity to propranolol treatment. Recent evidence suggests that abnormal volume proliferation in IH is primarily attributed to the accumulation of hemangioma pericytes (Hem-Pericytes), in addition to Hem-ECs. Centromere protein F (CENPF) is involved in regulating mitotic processes and has been associated with malignant tumor cell proliferation. It is a key player in maintaining genomic stability during cell division. Our findings revealed specific expression of CENPF in Hem-Pericytes, with a proliferation index (PI) approximately half that of Ki67 (3.28 vs 6.97%) during the proliferative phase of IH. This index decreased rapidly in the involuting phase (P < .05), suggesting that the contribution of pericytes to IH development was comparable to that of Hem-ECs. Tumor expansion and shrinkage may be due to the proliferation, reduction, and differentiation of Hem-Pericytes. In conclusion, we speculate CENPF as a novel marker for clinical pathological diagnosis and a potential therapeutic target, fostering advancements in drug development.
Collapse
Affiliation(s)
- Jiwei Li
- Department of Dermatology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Pathology, Kunming Children's Hospital, Kunming, China
| | - Qiang Chen
- Department of Dermatology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric Surgery, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Sili Ni
- Department of Dermatology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaobo Dong
- Department of Dermatology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Mi
- Department of Dermatology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yimin Xie
- Department of Pediatric Surgery, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Xingang Yuan
- Department of Dermatology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyan Luo
- Department of Dermatology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Wang
- Department of Dermatology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Tang XH, Zhao TN, Guo L, Liu XY, Zhang WN, Zhang P. Cell-Cycle-related Protein Centromere Protein F Deficiency Inhibits Cervical Cancer Cell Growth by Inducing Ferroptosis Via Nrf2 Inactivation. Cell Biochem Biophys 2024; 82:997-1006. [PMID: 38536579 PMCID: PMC11344725 DOI: 10.1007/s12013-024-01251-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/12/2024] [Indexed: 08/25/2024]
Abstract
Cervical cancer (CC) is one of the severe cancers that pose a threat to women's health and result in death. CENPF, the centromere protein F, plays a crucial role in mitosis by regulating numerous cellular processes, such as chromosome segregation during mitosis. According to bioinformatics research, CENPF serves as a master regulator that is upregulated and activated in cervical cancer. Nevertheless, the precise biological mechanism that CENPF operates in CC remains unclear. The aim of this study was to analyze the function of CENPF on cervical cancer and its mechanism. We conducted immunohistochemistry and western blot analysis to examine the expression levels of CENPF in both cervical cancer tissues and cells. To explore the hidden biological function of CENPF in cell lines derived from CC, we applied lentivirus transfection to reduce CENPF manifestation. CENPF's main role is to regulate ferroptosis which was assessed by analyzing Reactive Oxygen Species (ROS), malonaldehyde (MDA), etc. The vitro findings were further validated through a subcutaneous tumorigenic nude mouse model. Our research finding indicates that there is an apparent upregulation of CENPF in not merely tumor tissues but also cell lines in the carcinomas of the cervix. In vitro and vivo experimental investigations have demonstrated that the suppression of CENPF can impede cellular multiplication, migration, and invasion while inducing ferroptosis. The ferroptosis induced by CENPF inhibition in cervical cancer cell lines is likely mediated through the Nrf2/HO-1 pathway. The data herein come up with the opinion that CENPF may have a crucial role in influencing anti-cervical cancer effects by inducing ferroptosis via the triggering of the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Xin Hui Tang
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao, 266011, China
- Department of Obstetrics and Gynecology, Putuo People's Hospital, School of Medicine, Tongji University, Shanghai, 200060, China
| | - Tian Nan Zhao
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao, 266011, China
- Dalian Medical University, School of Graduate, Dalian, 116000, China
| | - Li Guo
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao, 266011, China
| | - Xin Yue Liu
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao, 266011, China
- Department of Gynecology, Changzhi People's Hospital, Changzhi, 046000, China
| | - Wei Na Zhang
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao, 266011, China.
| | - Ping Zhang
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao, 266011, China.
| |
Collapse
|
10
|
Shirani N, Mahdi‐Esferizi R, Eshraghi Samani R, Tahmasebian S, Yaghoobi H. In silico identification and in vitro evaluation of MRPS30-DT lncRNA and MRPS30 gene expression in breast cancer. Cancer Rep (Hoboken) 2024; 7:e2114. [PMID: 38886335 PMCID: PMC11182701 DOI: 10.1002/cnr2.2114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/20/2024] [Accepted: 05/07/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND It has been reported that long non-coding RNAs (lncRNAs) can play important roles in a variety of biological processes and cancer regulatory networks, including breast cancer. AIMS This study aimed to identify a novel upregulated lncRNA in breast cancer and its associated gene using bioinformatics analysis, and then evaluate their potential roles in breast cancer. METHODS AND RESULTS Extensive in silico studies were performed using various bioinformatics databases and tools to identify a potential upregulated breast cancer-associated lncRNA and its co-expressed gene, and to predict their potential roles, functions, and interactions. The expression level of MRPS30-DT lncRNA and MRPS30 was assessed in both BC tissues and cell lines using qRT-PCR technology. MRPS30-DT lncRNA and MRPS30 were selected as target genes using bioinformatics analysis. We found that MRPS30-DT and MRPS30 were significantly overexpressed in BC tissues compared with normal tissues. Also, MRPS30 showed upregulation in all three BC cell lines compared with HDF. On the other hand, MRPS30-DT significantly increased in MDA-MB-231 compared with HDF. While the expression of MRPS30-DT was significantly dropped in the resistance cell line MCF/MX compared to HDF and MCF7. Moreover, bioinformatics analysis suggested that MRPS30-DT and MRPS30 may play a potential role in BC through their involvement in some cancer signaling pathways and processes, as well as through their interaction with TFs, genes, miRNAs, and proteins related to carcinogenesis. CONCLUSIONS Overall, our findings showed the dysregulation of MRPS30-DT lncRNA and MRPS30 may provide clues for exploring new therapeutic targets or molecular biomarkers in BC.
Collapse
Affiliation(s)
- Nooshafarin Shirani
- Clinical Biochemistry Research Center, Basic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
| | - Roohallah Mahdi‐Esferizi
- Clinical Biochemistry Research Center, Basic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
- Department of Medical BiotechnologySchool of Advanced Technologies, Shahrekord University of Medical SciencesShahrekordIran
| | - Reza Eshraghi Samani
- Department of General SurgerySchool of Medicine, Isfahan University of Medical SciencesIsfahanIran
| | - Shahram Tahmasebian
- Department of Medical BiotechnologySchool of Advanced Technologies, Shahrekord University of Medical SciencesShahrekordIran
| | - Hajar Yaghoobi
- Clinical Biochemistry Research Center, Basic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
| |
Collapse
|
11
|
Liu X, Guo L, Suo Y, Tang X, Zhu T, Zhao T, Zhang W, Zhang P. Cell Cycle-Related Centromere Protein F Deficiency Suppresses Ovarian Cancer Cell Growth by Inducing Ferroptosis. Gynecol Obstet Invest 2024; 89:424-436. [PMID: 38723616 DOI: 10.1159/000539235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/27/2024] [Indexed: 06/14/2024]
Abstract
OBJECTIVES This study aimed to investigate the involvement of the cell cycle-related protein centromere protein F (CENPF) in the development of ovarian cancer (OC) and explored its relationship with ferroptosis. DESIGN The databases were analysed to identify differential expression of cell cycle-related proteins between individuals with OC and normal individuals. Immunohistochemistry and statistical analysis were conducted on ovarian tissues obtained from 40 patients with epithelial OC and 20 normal individuals. In vitro experiments were performed using SKOV3 and HEY epithelial OC cell lines. PARTICIPANTS/MATERIALS, SETTING, METHODS The mRNA microarray dataset, consisting of GSE14001, GSE54388, GSE40595, and GSE14407, was downloaded from the Gene Expression Omnibus (GEO) database to investigate the genes associated with cell cycle regulation in OC cells. CENPF was selected as the subject of study through differential analysis.Assessed the expression of CENPF in both OC patients and normal ovarian tissues using immunohistochemistry. Lentivirus infection was employed to downregulate CENPF expression, and subsequent experiments including Cell Counting Kit-8 assay, cell cycle analysis, transwell assay, and wound-healing assay were conducted to investigate the effects of CENPF on proliferation, invasion, migration, and cell cycle regulation in OC cells. The reactive oxygen species (ROS) and the malondialdehyde (MDA) assays were performed to assess the involvement of CENPF in cellular redox reactions. Western blot analysis was conducted to examine the expression levels of ferroptosis-related proteins (GPX4, SLC7A11, DMT1, and protein 53 [p53]). RESULTS By querying and integrating cell cycle-related genes from the GEO database, in silico analyses using The Cancer Genome Atlas database combined with immunohistochemical studies, we discovered that CENPF is upregulated in OC tissues and is related to survival. Downregulation of CENPF inhibited biological function of OC cells, increased intracellular ROS and MDA levels, and downregulated the GPX4 protein and the SLC7A11/xCT protein, but upregulated the DMT1 protein and the tumour p53 expression to induce ferroptosis. LIMITATIONS This study did not investigate ferroptosis-related studies following CENPF overexpression, and the findings have not been validated in animal studies. CONCLUSIONS Our findings demonstrated that the deficiency of CENPF played a crucial anti-oncogenic role in the progression of OC through the mechanism of ferroptosis.
Collapse
Affiliation(s)
- Xinyue Liu
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao, China,
- Department of Gynecology, Shanxi Provincial People' Hospital of Shanxi Medical University, Taiyuan, China,
- Department of Gynecology, Changzhi People's Hospital, Changzhi, China,
| | - Li Guo
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao, China
| | - Yuping Suo
- Department of Gynecology, Shanxi Provincial People' Hospital of Shanxi Medical University, Taiyuan, China
| | - XinHui Tang
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao, China
| | - Ting Zhu
- Department of Gynaecological Oncology, Qingdao Central Hospital, Qingdao, China
| | - Tiannan Zhao
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao, China
| | - Weina Zhang
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao, China
| | - Ping Zhang
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao, China
| |
Collapse
|
12
|
Sun X, Li W, Li G, Yang H, Jiang Z, Shen L, Shen Y, Liu Y, Wang G. A novel long non-coding RNA LINC00524 facilitates invasion and metastasis through interaction with TDP43 in breast cancer. J Cell Mol Med 2024; 28:e18275. [PMID: 38568058 PMCID: PMC10989564 DOI: 10.1111/jcmm.18275] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/20/2024] [Indexed: 04/05/2024] Open
Abstract
Breast cancer (BC) remains a significant health concern worldwide, with metastasis being a primary contributor to patient mortality. While advances in understanding the disease's progression continue, the underlying mechanisms, particularly the roles of long non-coding RNAs (lncRNAs), are not fully deciphered. In this study, we examined the influence of the lncRNA LINC00524 on BC invasion and metastasis. Through meticulous analyses of TCGA and GEO data sets, we observed a conspicuous elevation of LINC00524 expression in BC tissues. This increased expression correlated strongly with a poorer prognosis for BC patients. A detailed Gene Ontology analysis suggested that LINC00524 likely exerts its effects through RNA-binding proteins (RBPs) mechanisms. Experimentally, LINC00524 was demonstrated to amplify BC cell migration, invasion and proliferation in vitro. Additionally, in vivo tests showed its potent role in promoting BC cell growth and metastasis. A pivotal discovery was LINC00524's interaction with TDP43, which leads to the stabilization of TDP43 protein expression, an element associated with unfavourable BC outcomes. In essence, our comprehensive study illuminates how LINC00524 accelerates BC invasion and metastasis by binding to TDP43, presenting potential avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Xianglin Sun
- Department of Physiology and Hypoxic Biomedicine, Institute of Special Environmental MedicineNantong UniversityNantongChina
| | - Wenfeng Li
- Department of Physiology and Hypoxic Biomedicine, Institute of Special Environmental MedicineNantong UniversityNantongChina
| | - Gang Li
- Department of Physiology and Hypoxic Biomedicine, Institute of Special Environmental MedicineNantong UniversityNantongChina
| | - Huan Yang
- Department of Physiology and Hypoxic Biomedicine, Institute of Special Environmental MedicineNantong UniversityNantongChina
| | - Zhenglin Jiang
- Department of Physiology and Hypoxic Biomedicine, Institute of Special Environmental MedicineNantong UniversityNantongChina
| | - Lihua Shen
- Department of PathologyAffiliated Hospital of Nantong UniversityNantongChina
| | | | - Yifei Liu
- Department of PathologyAffiliated Hospital of Nantong UniversityNantongChina
| | - Guohua Wang
- Department of Physiology and Hypoxic Biomedicine, Institute of Special Environmental MedicineNantong UniversityNantongChina
| |
Collapse
|
13
|
Bryant CJ, McCool MA, Rosado González G, Abriola L, Surovtseva Y, Baserga S. Discovery of novel microRNA mimic repressors of ribosome biogenesis. Nucleic Acids Res 2024; 52:1988-2011. [PMID: 38197221 PMCID: PMC10899765 DOI: 10.1093/nar/gkad1235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 12/03/2023] [Accepted: 12/16/2023] [Indexed: 01/11/2024] Open
Abstract
While microRNAs and other non-coding RNAs are the next frontier of novel regulators of mammalian ribosome biogenesis (RB), a systematic exploration of microRNA-mediated RB regulation has not yet been undertaken. We carried out a high-content screen in MCF10A cells for changes in nucleolar number using a library of 2603 mature human microRNA mimics. Following a secondary screen for nucleolar rRNA biogenesis inhibition, we identified 72 novel microRNA negative regulators of RB after stringent hit calling. Hits included 27 well-conserved microRNAs present in MirGeneDB, and were enriched for mRNA targets encoding proteins with nucleolar localization or functions in cell cycle regulation. Rigorous selection and validation of a subset of 15 microRNA hits unexpectedly revealed that most of them caused dysregulated pre-rRNA processing, elucidating a novel role for microRNAs in RB regulation. Almost all hits impaired global protein synthesis and upregulated CDKN1A (p21) levels, while causing diverse effects on RNA Polymerase 1 (RNAP1) transcription and TP53 protein levels. We provide evidence that the MIR-28 siblings, hsa-miR-28-5p and hsa-miR-708-5p, potently target the ribosomal protein mRNA RPS28 via tandem primate-specific 3' UTR binding sites, causing a severe pre-18S pre-rRNA processing defect. Our work illuminates novel microRNA attenuators of RB, forging a promising new path for microRNA mimic chemotherapeutics.
Collapse
Affiliation(s)
- Carson J Bryant
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Mason A McCool
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, 06520, USA
| | | | - Laura Abriola
- Yale Center for Molecular Discovery, Yale University, West Haven, CT, 06516, USA
| | - Yulia V Surovtseva
- Yale Center for Molecular Discovery, Yale University, West Haven, CT, 06516, USA
| | - Susan J Baserga
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, 06520, USA
| |
Collapse
|
14
|
Navasatli SA, Vahdati SN, Arjmand TF, Mohammadi far M, Behboudi H. New insight into the role of the ADAM protease family in breast carcinoma progression. Heliyon 2024; 10:e24805. [PMID: 38317965 PMCID: PMC10839977 DOI: 10.1016/j.heliyon.2024.e24805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
Protease and adhesion molecules play a very emphasized role in the occurrence or progression of metastasis in many types of cancers. In this context, a molecule that contains both protease and adhesion functions play a crucial role in metastasis. ADAMs (a disintegrin and metalloprotease) are molecules with this special characteristic. Recently, a lot of attention has been attracted to various ADAM molecules and researchers have tried to elucidate the role of ADAMs in breast cancer occurrence and progression. Disrupting ADAMs protease and adhesion capabilities can lead to the discovery of worthy therapeutic targets in breast cancer treatment. In this review, we intend to discuss the mechanism of action of various ADAM molecules, their relation to pathogenic processes of breast cancer, and their potential as possible targets for breast cancer treatment.
Collapse
Affiliation(s)
- Sepideh Aliniaye Navasatli
- Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran
| | - Saeed Niazi Vahdati
- Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran
| | - Tahura Fayeghi Arjmand
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marjan Mohammadi far
- Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran
| | - Hossein Behboudi
- Department of Biology, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
15
|
Zhang C, Wu Y, Yue Q, Zhang X, Hao Y, Liu J. RETRACTED ARTICLE: MiR-28-5p Promotes Osteosarcoma Development by Suppressing URGCP Expression. Biochem Genet 2024; 62:574. [PMID: 36995530 DOI: 10.1007/s10528-023-10369-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023]
Affiliation(s)
- Chuanlin Zhang
- Department of Orthopedic, People's Hospital of Yuxi City, The 6th Affiliated Hospital of Kunming Medical University, Yuxi, 653100, Yunnan, China
| | - Yuhuai Wu
- Department of Orthopedic, People's Hospital of Yuxi City, The 6th Affiliated Hospital of Kunming Medical University, Yuxi, 653100, Yunnan, China
| | - Qiaoning Yue
- Department of Orthopedic, People's Hospital of Yuxi City, The 6th Affiliated Hospital of Kunming Medical University, Yuxi, 653100, Yunnan, China
| | - Xiguang Zhang
- Department of Orthopedic, People's Hospital of Yuxi City, The 6th Affiliated Hospital of Kunming Medical University, Yuxi, 653100, Yunnan, China
| | - Yinglu Hao
- Department of Cardiology, People's Hospital of Yuxi City, The 6th Affiliated Hospital of Kunming Medical University, Nieer Road, Yuxi, 653100, Yunnan, China.
| | - Jianping Liu
- Department of Epidemiology, People's Hospital of Yuxi City, The 6th Affiliated Hospital of Kunming Medical University, Nieer Road, Yuxi, 653100, Yunnan, China.
| |
Collapse
|
16
|
Bryant CJ, McCool MA, Rosado-González GT, Abriola L, Surovtseva YV, Baserga SJ. Discovery of novel microRNA mimic repressors of ribosome biogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.17.526327. [PMID: 36824951 PMCID: PMC9949135 DOI: 10.1101/2023.02.17.526327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
While microRNAs and other non-coding RNAs are the next frontier of novel regulators of mammalian ribosome biogenesis (RB), a systematic exploration of microRNA-mediated RB regulation has not yet been undertaken. We carried out a high-content screen in MCF10A cells for changes in nucleolar number using a library of 2,603 mature human microRNA mimics. Following a secondary screen for nucleolar rRNA biogenesis inhibition, we identified 72 novel microRNA negative regulators of RB after stringent hit calling. Hits included 27 well-conserved microRNAs present in MirGeneDB, and were enriched for mRNA targets encoding proteins with nucleolar localization or functions in cell cycle regulation. Rigorous selection and validation of a subset of 15 microRNA hits unexpectedly revealed that most of them caused dysregulated pre-rRNA processing, elucidating a novel role for microRNAs in RB regulation. Almost all hits impaired global protein synthesis and upregulated CDKN1A ( p21 ) levels, while causing diverse effects on RNA Polymerase 1 (RNAP1) transcription and TP53 protein levels. We discovered that the MIR-28 siblings, hsa-miR-28-5p and hsa-miR-708-5p, directly and potently target the ribosomal protein mRNA RPS28 via tandem primate-specific 3' UTR binding sites, causing a severe pre-18S pre-rRNA processing defect. Our work illuminates novel microRNA attenuators of RB, forging a promising new path for microRNA mimic chemotherapeutics.
Collapse
|
17
|
Qin Y, Tu X, Huang M, Ma C, Huang Q, Huang Q, Shu H, Ou C. Novel Long Noncoding RNAs, LINC01093 and MYLK-AS1, Serve as Potential Diagnostic and Prognostic Biomarkers or Hepatocellular Carcinoma. DNA Cell Biol 2023; 42:488-497. [PMID: 37527208 DOI: 10.1089/dna.2022.0566] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most fatal human malignancies worldwide. In this research, we aimed to identify long noncoding RNAs (lncRNAs) as biomarkers for HCC diagnosis and prognosis. lncRNA expression profiles were obtained from Gene Expression Omnibus and The Cancer Genome Atlas databases. The differentially expressed lncRNAs between HCC and adjacent tissues were analyzed with bioinformatic tools. Four lncRNAs with area under the curve of the receiver operating characteristic curve >0.9 were selected from both datasets. Univariate and Kaplan-Meier analyses were performed to obtain LINC01093, MYLK-AS1, and MCM3AP-AS1 as the optimal diagnostic and prognostic biomarkers. Finally, qPCR confirmed that LINC01093 and MYLK-AS1 were significantly differentially expressed in HCC and adjacent normal tissues. In general, we demonstrated that novel lncRNAs, LINC01093 and MYLK-AS1, could be used as potential diagnostic and prognostic biomarkers for HCC.
Collapse
Affiliation(s)
- Yanming Qin
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning City, People's Republic of China
| | - Xin Tu
- Department of Clinical Laboratory, Liuzhou Municipal Liutie Central Hospital, Liuzhou, People's Republic of China
| | - Meifang Huang
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning City, People's Republic of China
| | - Caifang Ma
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning City, People's Republic of China
| | - Qiongqing Huang
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning City, People's Republic of China
| | - Qiqi Huang
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning City, People's Republic of China
| | - Hong Shu
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning City, People's Republic of China
| | - Chao Ou
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning City, People's Republic of China
| |
Collapse
|
18
|
Mo Y, Liang Z, Lan L, Xiong X, Zhang C, Liu W, Huang H, Fan J, Yang L. Extracellular vesicles derived from cervical cancer cells carrying MCM3AP-AS1 promote angiogenesis and tumor growth in cervical cancer via the miR-93/p21 axis. Exp Cell Res 2023; 428:113621. [PMID: 37137462 DOI: 10.1016/j.yexcr.2023.113621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/05/2023]
Abstract
Tumor cells can promote angiogenesis by secreting extracellular vesicles (EVs). Meanwhile, tumor-derived EVs can carry long non-coding RNAs to activate pro-angiogenic signaling in endothelial cells. Here, we investigated the role of long non-coding RNA MCM3AP-AS1 carried by cervical cancer (CC) cell-derived EVs in the angiogenesis and the resultant tumor growth in CC, as well as the potential molecular mechanisms. LncRNAs significantly expressed in CC cell-derived EVs and CC were screened, followed by prediction of downstream target genes. EVs were isolated from HcerEpic and CaSki cell supernatants, followed by identification. The expression of MCM3AP-AS1 in CC was analyzed and its interaction with miR-93-p21 was confirmed. Following co-culture system, the role of MCM3AP-AS1 carried by EVs in HUVEC angiogenic ability, CC cell invasion and migration in vitro along with angiogenesis and tumorigenicity in vivo was assayed. MCM3AP-AS1 was overexpressed in CC cell-derived EVs as well as in CC tissues and cell lines. Cervical cancer cell-derived EVs could transfer MCM3AP-AS1 into HUVECs where MCM3AP-AS1 competitively bound to miR-93 and upregulate the expression of the miR-93 target p21 gene. Thus, MCM3AP-AS1 promoted angiogenesis of HUVECs. In the similar manner, MCM3AP-AS1 enhanced CC cell malignant properties. In nude mice, EVs-MCM3AP-AS1 induced angiogenesis and tumor growth. Overall, this study reveals that CC cell-derived EVs may transport MCM3AP-AS1 to promote angiogenesis and tumor growth in CC.
Collapse
Affiliation(s)
- Yuzhen Mo
- Department of Radiotherapy, Guangzhou Red Cross Hospital, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, China.
| | - Zhishan Liang
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530016, China
| | - Liu Lan
- Department of Radiotherapy, The Second Affiliated Hospital of Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Xifeng Xiong
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, China
| | - Cici Zhang
- Department of Radiology, Guangzhou Red Cross Hospital, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, China
| | - Wei Liu
- Department of Breast Surgery, Guangzhou Red Cross Hospital, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, China
| | - Haowei Huang
- Department of Radiotherapy, Guangzhou Red Cross Hospital, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, China
| | - Jiangxia Fan
- Department of Radiotherapy, Guangzhou Red Cross Hospital, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, China
| | - Li Yang
- Department of Radiotherapy, Guangzhou Red Cross Hospital, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, China
| |
Collapse
|
19
|
Hosseini SF, Javanshir-Giv S, Soleimani H, Mollaei H, Sadri F, Rezaei Z. The importance of hsa-miR-28 in human malignancies. Biomed Pharmacother 2023; 161:114453. [PMID: 36868012 DOI: 10.1016/j.biopha.2023.114453] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
MicroRNA production in tumorigenesis is dysregulated by a variety of processes, such as proliferation and removal of microRNA genes, aberrant transcriptional regulation of microRNAs, disrupted epigenetic alterations, and failures in the miRNA biogenesis machinery. Under some circumstances, miRNAs may act as tumorigenic and maybe anti-oncogenes. Tumor aspects such as maintaining proliferating signals, bypassing development suppressors, delaying apoptosis, stimulating metastasis and invasion, and promoting angiogenesis have been linked to dysfunctional and dysregulated miRNAs. MiRNAs have been found as possible biomarkers for human cancer in a great deal of research, which requires additional evaluation and confirmation. It is known that hsa-miR-28 can function as an oncogene or tumor suppressor in many malignancies, and it does this by modulating the expression of several genes and the downstream signaling network. MiR-28-5p and miR-28-3p, which originate from the same RNA hairpin precursor miR-28, have essential roles in a variety of cancers. This review outlines the function and mechanisms of miR-28-3p and miR-28-5p in human cancers and illustrates the miR-28 family's potential utility as a diagnostic biomarker for prognosis and early detection of cancers.
Collapse
Affiliation(s)
- Seyede Fatemeh Hosseini
- Faculty Member, Tabas School of Nursing, Birjand University of Medical Sciences, Birjand, Iran
| | - Setareh Javanshir-Giv
- Faculty of Medicine, Department of Biochemistry, Birjand University of Medical Sciences, Birjand, Iran; Department of Clinical Biochemistry, Afzalipour School of Medicine & Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Hanieh Soleimani
- Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran
| | - Homa Mollaei
- Department of Biology, Faculty of Sciences, University of Birjand, Birjand, Iran
| | - Farzad Sadri
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran.
| | - Zohreh Rezaei
- Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
20
|
Azizidoost S, Ghaedrahmati F, Sheykhi-Sabzehpoush M, Uddin S, Ghafourian M, Mousavi Salehi A, Keivan M, Cheraghzadeh M, Nazeri Z, Farzaneh M, Khoshnam SE. The role of LncRNA MCM3AP-AS1 in human cancer. Clin Transl Oncol 2023; 25:33-47. [PMID: 36002764 DOI: 10.1007/s12094-022-02904-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/18/2022] [Indexed: 01/07/2023]
Abstract
Long noncoding RNAs (lncRNA) play pivotal roles in every level of gene and genome regulation. MCM3AP-AS1 is a lncRNA that has an oncogenic role in several kinds of cancers. Aberrant expression of MCM3AP-AS1 has been reported to be involved in the progression of diverse malignancies, including colorectal, cervical, prostate, lymphoma, lung, ovary, liver, bone, and breast cancers. It is generally believed that MCM3AP-AS1 expression is associated with cancer cell growth, proliferation, angiogenesis, and metastasis. MCM3AP-AS1 by targeting various signaling pathways and microRNAs (miRNAs) presents an important role in cancer pathogenesis. MCM3AP-AS1 as a competitive endogenous RNA has the ability to sponge miRNA, inhibit their expressions, and bind to different target mRNAs related to cancer development. Therefore, MCM3AP-AS1 by targeting several signaling pathways, including the FOX family, Wnt, EGF, and VEGF can be a potent target for cancer prediction and diagnosis. In this review, we will summarize the role of MCM3AP-AS1 in various human cancers.
Collapse
Affiliation(s)
- Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Mehri Ghafourian
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abdolah Mousavi Salehi
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mona Keivan
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Cheraghzadeh
- Department of Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Nazeri
- Department of Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
21
|
Yang D, Wang J, Hu M, Li F, Yang F, Zhao Y, Xu Y, Zhang X, Tang L, Zhang X. Combined multiomics analysis reveals the mechanism of CENPF overexpression-mediated immune dysfunction in diffuse large B-cell lymphoma in vitro. Front Genet 2022; 13:1072689. [PMID: 36644760 PMCID: PMC9837108 DOI: 10.3389/fgene.2022.1072689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/28/2022] [Indexed: 12/31/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is one of the most common aggressive B-cell lymphomas with significant heterogeneity. More than half of patients are cured, but 40%-45% still face relapse or develop drug resistance, and the mechanism is not yet known. In this study, Centrimeric protein F (CENPF) overexpression was found in several DLBCL patients with relapsed or refractory disease compared to patients with complete remission. Thus, the human DLBCL cell line SU-DHL-4 was chosen for this study, and CENPF was upregulated in that cell line by using an adenovirus in vitro. Mass spectrometry-based quantitative proteome analysis was first performed, and the results showed that the expression levels of various proteins were increased when CENPF was upregulated, and these proteins are mainly involved in cellular processes, biological regulation, immune system processes and transcriptional regulator activity. Bioinformatics data analysis revealed that the main enriched proteins, including UBE2A, UBE2C, UBE2S, TRIP12, HERC2, PIRH2, and PIAS, were involved in various ubiquitin-related kinase activities and ubiquitination processes. Thus, ubiquitinome analysis was further performed, and the results demonstrated that proteins in many immune-related cellular pathways, such as natural killer cell-mediated cytotoxicity, the T-cell receptor signaling pathway and the B-cell receptor signaling pathway, were significantly deubiquitinated after CENPF was upregulated in DLBCL cells. Furthermore, TIMER2.0 was also used to reveal the association between CENPF and immune infiltration in DLBCL. The results showed that CENPF expression was positively correlated with CD8+ T cells, NK cells and B lymphocytes in DLBCL samples but negatively correlated with regulatory T cells. Aberrant activation of CENPF may induce immune dysregulation in DLBCL cells by mediating protein deubiquitination in various immune signaling pathways, which leads to tumor escape of DLBCL, but further experimental validation is still needed.
Collapse
Affiliation(s)
- Dan Yang
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jia Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mingqiu Hu
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng Li
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feifei Yang
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Youcai Zhao
- Department of Pathology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yanli Xu
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuezhong Zhang
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China,*Correspondence: Xuezhong Zhang, ; Lijun Tang, ; Xiuqun Zhang,
| | - Lijun Tang
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China,*Correspondence: Xuezhong Zhang, ; Lijun Tang, ; Xiuqun Zhang,
| | - Xiuqun Zhang
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China,*Correspondence: Xuezhong Zhang, ; Lijun Tang, ; Xiuqun Zhang,
| |
Collapse
|
22
|
Hu C, Zhang X, Fang K, Guo Z, Li L. LINC00536 Promotes Breast Cancer Progression by Regulating ROCK1 via Sponging of miR-214-5p. Biochem Genet 2022; 61:1163-1184. [PMID: 36513954 DOI: 10.1007/s10528-022-10304-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/10/2022] [Indexed: 12/14/2022]
Abstract
Accumulating evidence has shown that long noncoding RNAs (lncRNAs) play a significant role in regulating gene expression and participating in the progression of various malignancies. In our study, by analyzing data from The Cancer Genome Atlas (TCGA), LINC00536 was found to be highly expressed in breast cancer (BC) tissues, but its function and clinical significance in BC are still unknown. Therefore, we aimed to explore the role and molecular mechanism of LINC00536 in BC. We collected human BC tissue specimens and validated that LINC00536 was overexpressed in BC tissues. Increased LINC00536 expression was associated with advanced TNM stage, larger tumor diameter, lymph node metastasis and poor prognosis in patients with BC. Univariate and multivariate Cox regression analyses showed that high LINC00536 expression was an independent prognostic risk factor for overall survival in BC patients. Furthermore, quantitative reverse transcription PCR (qRT-PCR) showed that LINC00536 was upregulated in BC cell lines. Then, we confirmed that LINC00536 silencing-inhibited BC cell proliferation, migration, and invasion and led to cell cycle arrest in vitro. Animal experiments showed that knockdown of LINC00536 expression suppressed tumorigenesis in vivo. Mechanistically, LINC00536 serves as a ceRNA for miR-214-5p, increasing the expression of ROCK1, which acts as a tumor promoter in BC. Rescue assays revealed that miR-214-5p inhibition or ROCK1 overexpression could neutralize the suppressive effects of LINC00536 knockdown on cell proliferation, migration and invasion. Our data indicated that LINC00536 accelerates BC progression by regulating the miR-214-5p/ROCK1 pathway, which might provide a new perspective to investigate the development process of BC.
Collapse
Affiliation(s)
- Caixia Hu
- Oncology Institute, The Affiliated Hospital of Jiangnan University, 200# Huihe Road, Wuxi, 214062, Jiangsu, China
| | - Xiufen Zhang
- Oncology Institute, The Affiliated Hospital of Jiangnan University, 200# Huihe Road, Wuxi, 214062, Jiangsu, China
| | - Kai Fang
- Oncology Institute, The Affiliated Hospital of Jiangnan University, 200# Huihe Road, Wuxi, 214062, Jiangsu, China
| | - Zijian Guo
- Department of Oncological Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, 214062, China.
| | - Lihua Li
- Oncology Institute, The Affiliated Hospital of Jiangnan University, 200# Huihe Road, Wuxi, 214062, Jiangsu, China.
| |
Collapse
|
23
|
Wang B, Chen H, Yang R, Xing L, Chen C, Chen J. LncRNA RP11-551L14.4 suppresses breast cancer development by inhibiting the expression of miR-4472. PeerJ 2022; 10:e14482. [PMID: 36523479 PMCID: PMC9745927 DOI: 10.7717/peerj.14482] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Background Previous studies have been reported that long non-coding RNA (lncRNA) can regulate the expression of genes which are involved in many important cellular processes The potential role of lncRNA RP11-551L14.4 in the development of breast cancer and the possible regulatory mechanisms was investigated. Methods Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to analyze RP11-551L14.4 expression in 36 paired breast cancer tissues and adjacent tissues. The expression of RP11-551L14.4 in multiple breast cancer cell lines was detected by qRT-PCR. Meanwhile, overexpression of RP11-551L14.4 models was established using lentivirus in BT474 and T47D breast cancer cells. Cell counting kit-8 (CCK-8), cell colony formation and cell cycle assays were performed to detect the effects of RP11-551L14.4 on the biological function of breast cancer cells. Besides, bioinformatics techniques, dual luciferase reporter gene assay and rescue experiments were used to investigate the potential mechanisms. Results RP11-551L14.4 expression was negatively associated with the advanced tumor stage. Breast cancer patients with low RP11-551L14.4 expression manifested a poorer prognosis. The results of qRT-PCR showed that RP11-551L14.4 expression in breast cancer tissues was significantly lower than in adjacent tissues. Meanwhile, overexpression of RP11-551L14.4 significantly decreased the cell proliferation and cell cycle. Bioinformatics technology showed that RP11-551L14.4 could complementarily bind to miR-4472. qRT-PCR results indicated that the expression levels of miR-4472 and RP11-551L14.4 in breast cancer were negatively correlated. Luciferase reporter gene assay showed that miR-4472 remarkably decreased the relative luciferase activity of the wild-type RP11-551L14.4 vector. miR-4472 is a direct target gene of RP11-551L14.4. miR-4472 levels were reduced, and repulsive guidance molecule A (RGMA) mRNA or protein levels were increased after overexpression of RP11-551L14.4 in the breast cancer cells. miR-4472 reversed the effects caused by RP11-551L14.4 in breast cancer cells. Conclusion RP11-551L14.4 expression was remarkably decreased in breast cancer tissues and cells. RP11-551L14.4 may inhibit the malignant progression of breast cancer by regulating miR-4472 expression.
Collapse
Affiliation(s)
- Bin Wang
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, China,Department of Oncology, Daping Hospital, Army Medical University, Chongqing, China
| | - Hang Chen
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, China
| | - Rui Yang
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, China
| | - Lei Xing
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chuan Chen
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing, China
| | - Junxia Chen
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, China
| |
Collapse
|
24
|
Sadu L, Krishnan RH, Akshaya RL, Das UR, Satishkumar S, Selvamurugan N. Exosomes in bone remodeling and breast cancer bone metastasis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 175:120-130. [PMID: 36155749 DOI: 10.1016/j.pbiomolbio.2022.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Exosomes are endosome-derived microvesicles that carry cell-specific biological cargo, such as proteins, lipids, and noncoding RNAs (ncRNAs). They play a key role in bone remodeling by enabling the maintenance of a balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption. Recent evidence indicates that exosomes disrupt bone remodeling that occurs during breast cancer (BC) progression. The bone is a preferred site for BC metastasis owing to its abundant osseous reserves. In this review, we aimed to highlight the roles of exosomes derived from bone cells and breast tumor in bone remodeling and BC bone metastasis (BCBM). We also briefly outline the mechanisms of action of ncRNAs and proteins carried by exosomes secreted by bone and BCBM. Furthermore, this review highlights the potential of utilizing exosomes as biomarkers or delivery vehicles for the diagnosis and treatment of BCBM.
Collapse
Affiliation(s)
- Lakshana Sadu
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 103, Tamil Nadu, India
| | - R Hari Krishnan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 103, Tamil Nadu, India
| | - R L Akshaya
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 103, Tamil Nadu, India
| | - Udipt Ranjan Das
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 103, Tamil Nadu, India
| | - Sneha Satishkumar
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 103, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 103, Tamil Nadu, India.
| |
Collapse
|
25
|
Liu Y, Liu Y, Luo J, Zhao W, Hu C, Chen G. Hsa_circ_0002082 up-regulates Centromere Protein F via abolishing miR-508-3p to promote breast cancer progression. J Clin Lab Anal 2022; 36:e24697. [PMID: 36161346 DOI: 10.1002/jcla.24697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) dysregulation has been revealed to function in the pathological processes of cancers. Herein, the role and mechanisms of hsa_circ_0002082 in breast cancer (BC) progression were elucidated. METHODS In vivo and in vitro functional experiments were conducted, and the interaction between miR-508-3p and hsa_circ_0002082 or Centromere Protein F (CENPF) was elucidated. RESULTS Hsa_circ_0002082 expression was higher in BC tissues and cell lines. Functionally, knockdown of hsa_circ_0002082 induced apoptosis and suppressed proliferation and metastasis in BC cells in vitro. Mechanistically, hsa_circ_0002082 targeted miR-508-3p, which was confirmed to be decreased in BC. MiR-508-3p overexpression suppressed BC cell malignant phenotypes, moreover, inhibition of miR-508-3p attenuated the anticancer action of hsa_circ_0002082 silencing on BC cells. Besides that, miR-508-3p targeted CENPF, CENPF was highly expressed in BC, CENPF up-regulation reversed the suppressive impacts of miR-508-3p on BC cell growth and metastasis. Besides, hsa_circ_0002082 silencing impeded BC growth in nude mice. CONCLUSION Knockdown of hsa_circ_0002082 suppresses breast cancer growth and metastasis by miR-508-3p/CENPF axis, suggesting that hsa_circ_0002082 may be a promising target for breast cancer treatment.
Collapse
Affiliation(s)
- Yu Liu
- Ultrasound Imaging Department, Minda Hospital of Hubei Minzu University, Enshi, China
| | - Yun Liu
- Radiology Department, Minda Hospital of Hubei Minzu University, Enshi, China
| | - Jinyong Luo
- Ultrasound Imaging Department, Minda Hospital of Hubei Minzu University, Enshi, China
| | - Wen Zhao
- Ultrasound Imaging Department, Minda Hospital of Hubei Minzu University, Enshi, China
| | - Chunhui Hu
- Ultrasound Imaging Department, Minda Hospital of Hubei Minzu University, Enshi, China
| | - Gongquan Chen
- Ultrasound Imaging Department, Minda Hospital of Hubei Minzu University, Enshi, China
| |
Collapse
|
26
|
The AKT/mTOR Signaling Pathway Was Mediated through the LINC00514/miR-28-5p/TRIM44 Axis. DISEASE MARKERS 2022; 2022:1889467. [PMID: 36193506 PMCID: PMC9525750 DOI: 10.1155/2022/1889467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022]
Abstract
Objective. Increasing evidence has demonstrated the essential role of lncRNAs in tumorigenesis. LINC00514, a novel lncRNA, was reported to be a promoter of malignant behaviors in cancer, but in pituitary adenoma (PA), its biological functions remain unclear. Methods. Herein, we measured LINC00514 expression by RT-qPCR analysis which indicated a significant elevation of LINC00514 expression in human PA tissues. Moreover, the effect of LINC00514 silencing on PA cell proliferation and invasion was, respectively, examined by CCK-8 and transwell assays. Results. The results showed that LINC00514 deletion markedly inhibited PA cell proliferation and invasion. Besides, investigation on the molecular mechanisms showed that LINC00514 might function as an endogenous RNA (ceRNA) to sponge miR-28-5p and TRIM44 was mediated by LINC00514-derived miR-28-5p in PA cells. Furthermore, the AKT/mTOR signaling pathway was mediated through the LINC00514/miR-28-5p/TRIM44 axis. Conclusion. To sum up, we suggested LINC00514 as a novel therapeutic target for PA treatment.
Collapse
|
27
|
Prognostic Analysis of LncRNA MCM3AP-AS1 in Colorectal Cancer and the Mechanism of Its Effect on Tumor Cell Activity. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1616370. [PMID: 36172487 PMCID: PMC9512606 DOI: 10.1155/2022/1616370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022]
Abstract
To determine the clinical prognostic significance of lncRNA MCM3AP-AS1 in colorectal cancer (CRC) and its preliminary mechanism, 43 CRC patients and 48 healthy individuals were analyzed. Peripheral blood MCM3AP-AS1 was quantified via qRT–PCR in CRC patients at admission and 2 h after surgery and in healthy individuals. Human colon cancer cells (HCT116 and SW480) were transfected with shRNAs targeting upregulation of MCM3AP-AS1 expression (named as sh-MCM3AP-AS1 group) and corresponding negative RNAs (named as sh-MCM3AP-AS1 group). Additionally, the cells were then treated either with 50 mM of the VEGF-specific inhibitor PTK787 (Selleck, USA) (named as inhibition group) or normal saline as a control (named as control group). Before therapy, CRC patients presented a higher MCM3AP-AS1 level than healthy individuals (P < 0.05), and the sensitivity and specificity of MCM3AP-AS1 in predicting the occurrence of CRC were 65.12% and 83.33%, respectively (P < 0.001). After therapy, CRC patients presented a decrease in MCM3AP-AS1 levels, and recurrence was higher in patients who died (P < 0.05). Additionally, the high MCM3AP-AS1 expression group presented a higher mortality than the low MCM3AP-AS1 expression group (P < 0.05). In an in vitro assay, CRC cells showed a higher MCM3AP-AS1 level than CCD-18Co cells, and the sh-MCM3AP-AS1 group presented decreased cell proliferation and invasiveness, whereas the levels apoptosis-associated proteins were increased (P < 0.05). Moreover, the VEGF and VEGFR2 mRNA levels were increased in CRC cells, and VEGF/VEGFR2 pathway-associated proteins were inhibited in the sh-MCM3AP-AS1 group (P < 0.05). Moreover, treatment with PTK787 decreased cell proliferation and invasivness but increased the levels of apoptosis-associated proteins (P < 0.05).
Collapse
|
28
|
Zan X, Li W, Wang G, Yuan J, Ai Y, Huang J, Li Z. Circ-CSNK1G1 promotes cell proliferation, migration, invasion and glycolysis metabolism during triple-negative breast cancer progression by modulating the miR-28-5p/LDHA pathway. Reprod Biol Endocrinol 2022; 20:138. [PMID: 36109751 PMCID: PMC9476576 DOI: 10.1186/s12958-022-00998-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 08/10/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) play a vital role in cancer progression. However, there are still numerous circRNAs that have not been functionally explored. Our study aimed to disclose the role of circ-CSNK1G1 in triple-negative breast cancer (TNBC). METHODS The expression of circ-CSNK1G1, miR-28-5p and lactate dehydrogenase A (LDHA) mRNA was measured by quantitative real-time polymerase chain reaction (qPCR), and the expression of LDHA protein was measured by western blot. Cell proliferation was assessed using MTT assay and colony formation assay. Cell apoptosis was monitored using flow cytometry assay. Cell migration and cell invasion were investigated using transwell assay. Glycolysis progression was assessed according to glucose consumption, lactate production and ATP/ADP ratio. Tumor formation assay in nude mice was conducted to verify the role of circ-CSNK1G1 in vivo. The interplays between miR-28-5p and circ-CSNK1G1 or LDHA were confirmed by dual-luciferase reporter assay. RESULTS Circ-CSNK1G1 was upregulated in TNBC tissues and cells. Circ-CSNK1G1 knockdown suppressed cancer cell proliferation, migration, invasion and glycolysis energy metabolism, promoted cell apoptosis in vitro, and blocked tumor growth in vivo. Mechanism analysis showed that circ-CSNK1G1 positively regulated LDHA expression by suppressing miR-28-5p. Rescue experiments presented that circ-CSNK1G1 played functions by targeting miR-28-5p, and miR-28-5p participated in TNBC progression by degrading LDHA. CONCLUSION Circ-CSNK1G1 promotes cell proliferation, migration, invasion and glycolysis metabolism during TNBC development by regulating the miR-28-5p/LDHA pathway.
Collapse
Affiliation(s)
- Xiaochen Zan
- Department of General Surgery, Taihe Hospital, Huibei University of Medicine, No. 32th, South Renmin Road, 442000, Shiyan City, Hubei Province, PR China
| | - Wenfang Li
- Department of General Surgery, Taihe Hospital, Huibei University of Medicine, No. 32th, South Renmin Road, 442000, Shiyan City, Hubei Province, PR China.
| | - Geng Wang
- Department of General Surgery, Taihe Hospital, Huibei University of Medicine, No. 32th, South Renmin Road, 442000, Shiyan City, Hubei Province, PR China
| | - Jie Yuan
- Department of General Surgery, Taihe Hospital, Huibei University of Medicine, No. 32th, South Renmin Road, 442000, Shiyan City, Hubei Province, PR China
| | - Yongbiao Ai
- Department of General Surgery, Taihe Hospital, Huibei University of Medicine, No. 32th, South Renmin Road, 442000, Shiyan City, Hubei Province, PR China
| | - Jun Huang
- Department of General Surgery, Taihe Hospital, Huibei University of Medicine, No. 32th, South Renmin Road, 442000, Shiyan City, Hubei Province, PR China
| | - Zhi Li
- Department of General Surgery, Taihe Hospital, Huibei University of Medicine, No. 32th, South Renmin Road, 442000, Shiyan City, Hubei Province, PR China
| |
Collapse
|
29
|
Zhou MF, Wang W, Wang L, Tan JD. LINC00536 knockdown inhibits breast cancer cells proliferation, invasion, and migration through regulation of the miR-4282/centromere protein F axis. Kaohsiung J Med Sci 2022; 38:1037-1047. [PMID: 36053930 DOI: 10.1002/kjm2.12583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/22/2022] [Accepted: 07/05/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) poses a huge threat to women's health. Growing evidence has shown lncRNAs play critical roles in BC progression. However, the effect of LINC00536 in BC remains unknown. LINC00536, miR-4282, and centromere protein F (CENPF) expressions in BC cells were determined using qPCR assay. Colony formation assay was employed to evaluate the cell proliferation of BC cells. Besides, cell migration and invasion were evaluated using the transwell assay. FISH assay was employed to analyze LINC00536 and miR-4282 locations in BC cells. Additionally, dual luciferase reporter gene assay was performed to verify the binding relationships between LINC00536 and miR-4282, miR-4282 and CENPF. Here, our results displayed that LINC00536 and CENPF were overexpressed in BC cells, while miR-4282 was downregulated. LINC00536 could negatively regulate miR-4282 expression via directly binding to miR-4282. LINC00536 silence suppressed the proliferation, migration, and invasion of BC cells, which was abolished by miR-4282 inhibition. Additionally, miR-4282 could negatively regulate CENPF expression via directly binding to CENPF. MiR-4282 overexpression suppressed BC development, which was abolished by CENPF overexpression. Finally, we proved that LINC00536 silencing suppressed BC growth via regulating the miR-4282/CENPF axis in vivo. Our research displayed that LINC00536 acted as an oncogene in BC. LINC00536-enhanced BC cell proliferation, migration, and invasion. Moreover, LINC00536 functioned as a ceRNA to exert malignant characteristics in BC via the miR-4282-CENPF axis. Collectively, our results demonstrated that the LINC00536-miR-4282-CENPF axis was a critical player in BC development and was a promising target for BC therapy.
Collapse
Affiliation(s)
- Mei-Feng Zhou
- Department of Medical Oncology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan Province, People's Republic of China
| | - Wei Wang
- Department of General Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan Province, People's Republic of China
| | - Lin Wang
- Department of Medical Oncology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan Province, People's Republic of China
| | - Jin-Dian Tan
- Department of Orthopaedic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan Province, People's Republic of China
| |
Collapse
|
30
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M, Samadian M. A review on the role of MCM3AP-AS1 in the carcinogenesis and tumor progression. Cancer Cell Int 2022; 22:225. [PMID: 35790972 PMCID: PMC9258118 DOI: 10.1186/s12935-022-02644-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
Abstract
Minichromosome Maintenance Complex Component 3 Associated Protein Antisense 1 (MCM3AP-AS1) is an RNA gene located on 21q22.3. The sense transcript from this locus has dual roles in the pathogenesis of solid tumors and hematological malignancies. MCM3AP-AS1 has been shown to sequester miR-194-5p, miR-876-5p, miR-543-3p, miR-28-5p, miR-93, miR-545, miR-599, miR‐193a‐5p, miR-363-5p, miR-204-5p, miR-211-5p, miR-15a, miR-708-5p, miR-138, miR-138-5p, miR-34a, miR-211, miR‐340‐5p, miR-148a, miR-195-5p and miR-126. Some cancer-related signaling pathway, namely PTEN/AKT, PI3K/AKT and ERK1/2 are influenced by this lncRNA. Cell line studies, animal studies and clinical studies have consistently reported oncogenic role of MCM3AP-AS1 in different tissues except for cervical cancer in which this lncRNA has tumor suppressor role. In the current manuscript, we collected evidence from these three sources of evidence to review the impact of MCM3AP-AS1 in the carcinogenesis.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany. .,Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Samadian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
The Prognostic Value of lncRNA MCM3AP-AS1 on Clinical Outcomes in Various Cancers: A Meta- and Bioinformatics Analysis. DISEASE MARKERS 2022; 2022:4466776. [PMID: 35783010 PMCID: PMC9249515 DOI: 10.1155/2022/4466776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/25/2022] [Indexed: 11/18/2022]
Abstract
Background. MCM3AP antisense RNA 1 (MCM3AP-AS1) is a newly identified potential tumor biomarker. Nevertheless, the prognostic value of MCM3AP-AS1 in cancer has been inconsistent in the available studies. We performed this meta-analysis to identify the prognostic role of MCM3AP-AS1 in various cancers. Methods. We searched PubMed, Web of Science, EMBASE, and the Cochrane Library databases to screen relevant studies. Hazard ratios (HR) or odds ratios (OR) and corresponding 95% confidence intervals (CI) were used to evaluate the relationship between aberrant MCM3AP-AS1 expression and survival and clinicopathological features (CFS) of cancer patients. A meta-analysis was performed using STATA 12.0 software. Additionally, results were validated by an online database based on The Cancer Genome Atlas (TCGA). Subsequently, we analyzed the MCM3AP-AS1-related genes and molecular mechanisms based on the MEM database. Results. Our results showed that overexpression of MCM3AP-AS1 was related to poor overall survival (OS) (
, 95% CI, 1.52–2.64,
) and relapse-free survival (RFS) (
, 95% CI 1.56–6.88,
). In addition, MCM3AP-AS1 overexpression was associated with TNM stage, differentiation grade, and lymph node metastasis, but not significantly with age, gender, and tumor size. In addition, MCM3AP-AS1 overexpression was verified by the GEPIA online database to be associated with poorer survival. The further functional investigation suggested that MCM3AP-AS1 may be involved in several cancer-related pathways. Conclusions. The overexpression of MCM3AP-AS1 was related to poor survival and CFS. MCM3AP-AS1 may be considered a novel prognostic marker and therapeutic target in various cancers.
Collapse
|
32
|
Ma T, Wu FH, Wu HX, Fa Q, Chen Y. Long Non-Coding RNA MCM3AP-AS1: A Crucial Role in Human Malignancies. Pathol Oncol Res 2022; 28:1610194. [PMID: 35783356 PMCID: PMC9243217 DOI: 10.3389/pore.2022.1610194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/31/2022] [Indexed: 12/09/2022]
Abstract
The incidence of cancer continues to grow and is one of the leading causes of death in the world. Long noncoding RNAs (LncRNAs) is a group of RNA transcripts greater than 200 nucleotides in length, and although it cannot encode proteins, it can regulate different biological functions by controlling gene expression, transcription factors, etc. LncRNA micro-chromosome maintenance protein 3-associated protein antisense RNA 1 (MCM3AP-AS1) is involved in RNA processing and cell cycle-related functions, and MCM3AP-AS1 is dysregulated in expression in various types of cancers. This biomarker is involved in many processes related to carcinogens, such as cell proliferation, apoptosis, cell cycle, and migration. In this review, we summarize the roles of MCM3AP-AS1 in different human cancers and its biological functions with a view to providing ideas for future research.
Collapse
Affiliation(s)
- Tao Ma
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fa-Hong Wu
- Department of General Surgery Hepatic-Biliary-Pancreatic Institute, Lanzhou University Second Hospital, Lanzhou, China
| | - Hong-Xia Wu
- Department of Nuclear Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Qiong Fa
- Department of Nuclear Medicine, The 940th Hospital of the People’s Liberation Army Joint Service Support Force, Lanzhou, China
| | - Yan Chen
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Yan Chen,
| |
Collapse
|
33
|
Zhou S, Han H, Yang L, Lin H. MiR-1-3p targets CENPF to repress tumor-relevant functions of gastric cancer cells. BMC Gastroenterol 2022; 22:145. [PMID: 35346060 PMCID: PMC8961954 DOI: 10.1186/s12876-022-02203-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 02/17/2022] [Indexed: 11/23/2022] Open
Abstract
Here we noted significantly downregulated miR-1-3p in gastric cancer (GC) tissue compared with adjacent normal tissue through qRT-PCR. Lowly expressed miR-1-3p correlated GC progression. Overexpressing miR-1-3p could restrain tumor-relevant cell behaviors in GC, while miR-1-3p inhibitor treatment triggered the opposite results. Moreover, dual-luciferase reporter gene detection identified specific binding sites of miR-1-3p in CENPF 3’untranslated region. Upregulating miR-1-3p constrained cell progression of GC via CENPF downregulation. Western blot, qRT-PCR and dual-luciferase detections manifested that miR-1-3p negatively mediated CENPF expression in GC cells. Thus, we demonstrated that miR-1-3p negatively mediated CENPF to hamper GC progression. CENPF may be an underlying target for GC therapy.
Collapse
Affiliation(s)
- Shenkang Zhou
- Department of Gastrointestinal Surgery, Taizhou Hospital, Zhejiang University, Taizhou City, Zhejiang Province, People's Republic of China.,Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou City, People's Republic of China.,School of Medicine, Zhejiang University, Hangzhou City, Zhejiang Province, People's Republic of China
| | - Hui Han
- School of Medicine, Zhejiang University, Hangzhou City, Zhejiang Province, People's Republic of China.,Department of General Surgery, The Second Affiliated Hospital of Shantou Medical College, Shantou City, Guangdong Province, People's Republic of China
| | - Leilei Yang
- Department of Gastrointestinal Surgery, Taizhou Hospital, Zhejiang University, Taizhou City, Zhejiang Province, People's Republic of China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Hangzhou City, 310016, Zhejiang Province, People's Republic of China.
| |
Collapse
|
34
|
Wang B, Chen J, Lin C, Liu R, Wang L, Yuan C. MCM3AP-AS1: A LncRNA Participating in the Tumorigenesis of Cancer Through Multiple Pathways. Mini Rev Med Chem 2022; 22:2138-2145. [DOI: 10.2174/1389557522666220214100718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/17/2021] [Accepted: 12/13/2021] [Indexed: 11/22/2022]
Abstract
Background:
More and more shreds of evidence show that the occurrence and development of tumors are closely related to the abnormal expression of LncRNA. A large number of experiments have found that overexpression or under-expression of MCM3AP-AS1 can affect the occurrence and development of cancer cells in varying degrees, such as proliferation, invasion, and translocation. Besides, MCM3AP-AS1 may become a promising target for many tumor biotherapies. This article reviews the pathophysiological functions and molecular mechanisms of MCM3AP-AS1 in various tumors.
Methods:
This paper systematically summarizes the published literatures in PubMed. The molecular mechanism of MCM3AP-AS1 in a variety of tumors is reviewed.
Results:
The abnormal expression of MCM3AP-AS1 in different tumors is closely related to tumor proliferation, invasion, and migration. MCM3AP-AS1 mediates or participates in related signaling pathways to regulate the expression of targeted miRNAs and proteins. MCM3AP-AS1 plays a vital role in tumor diagnosis and treatment.
Conclusion:
LncRNA MCM3AP-AS1 is a feasible tumor marker and a potential therapeutic target for many kinds of tumors.
Collapse
Affiliation(s)
- Bei Wang
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Jinlan Chen
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Chen Lin
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Ru Liu
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Lu Wang
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Chengfu Yuan
- College of Medical Science, China Three Gorges University, Yichang 443002, China
- College of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| |
Collapse
|
35
|
Yu X, Zheng Q, Zhang Q, Zhang S, He Y, Guo W. MCM3AP-AS1: An Indispensable Cancer-Related LncRNA. Front Cell Dev Biol 2021; 9:752718. [PMID: 34692706 PMCID: PMC8529123 DOI: 10.3389/fcell.2021.752718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a class of RNA molecules with transcripts longer than 200 nucleotides that have no protein-coding ability. MCM3AP-AS1, a novel lncRNA, is aberrantly expressed in human cancers. It is significantly associated with many clinical characteristics, such as tumor size, tumor-node-metastasis (TNM) stage, and pathological grade. Additionally, it considerably promotes or suppresses tumor progression by controlling the biological functions of cells. MCM3AP-AS1 is a promising biomarker for cancer diagnosis, prognosis evaluation, and treatment. In this review, we briefly summarized the published studies on the expression, biological function, and regulatory mechanisms of MCM3AP-AS1. We also discussed the clinical applications of MCM3AP-AS1 as a biomarker.
Collapse
Affiliation(s)
- Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Qingyuan Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Qiyao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| |
Collapse
|
36
|
Qiang R, Zhao Z, Tang L, Wang Q, Wang Y, Huang Q. Identification of 5 Hub Genes Related to the Early Diagnosis, Tumour Stage, and Poor Outcomes of Hepatitis B Virus-Related Hepatocellular Carcinoma by Bioinformatics Analysis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:9991255. [PMID: 34603487 PMCID: PMC8483908 DOI: 10.1155/2021/9991255] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/25/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND The majority of primary liver cancers in adults worldwide are hepatocellular carcinomas (HCCs, or hepatomas). Thus, a deep understanding of the underlying mechanisms for the pathogenesis and carcinogenesis of HCC at the molecular level could facilitate the development of novel early diagnostic and therapeutic treatments to improve the approaches and prognosis for HCC patients. Our study elucidates the underlying molecular mechanisms of HBV-HCC development and progression and identifies important genes related to the early diagnosis, tumour stage, and poor outcomes of HCC. METHODS GSE55092 and GSE121248 gene expression profiling data were downloaded from the Gene Expression Omnibus (GEO) database. There were 119 HCC samples and 128 nontumour tissue samples. GEO2R was used to screen for differentially expressed genes (DEGs). Volcano plots and Venn diagrams were drawn by using the ggplot2 package in R. A heat map was generated by using Heatmapper. By using the clusterProfiler R package, KEGG and GO enrichment analyses of DEGs were conducted. Through PPI network construction using the STRING database, key hub genes were identified by cytoHubba. Finally, KM survival curves and ROC curves were generated to validate hub gene expression. RESULTS By GO enrichment analysis, 694 DEGs were enriched in the following GO terms: organic acid catabolic process, carboxylic acid catabolic process, carboxylic acid biosynthetic process, collagen-containing extracellular matrix, blood microparticle, condensed chromosome kinetochore, arachidonic acid epoxygenase activity, arachidonic acid monooxygenase activity, and monooxygenase activity. In the KEGG pathway enrichment analysis, DEGs were enriched in arachidonic acid epoxygenase activity, arachidonic acid monooxygenase activity, and monooxygenase activity. By PPI network construction and analysis of hub genes, we selected the top 10 genes, including CDK1, CCNB2, CDC20, BUB1, BUB1B, CCNB1, NDC80, CENPF, MAD2L1, and NUF2. By using TCGA and THPA databases, we found five genes, CDK1, CDC20, CCNB1, CENPF, and MAD2L1, that were related to the early diagnosis, tumour stage, and poor outcomes of HBV-HCC. CONCLUSIONS Five abnormally expressed hub genes of HBV-HCC are informative for early diagnosis, tumour stage determination, and poor outcome prediction.
Collapse
Affiliation(s)
- Rui Qiang
- Department of Infectious Diseases, Guang'anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing 100053, China
| | - Zitong Zhao
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Lu Tang
- Department of Traditional Chinese Medicine, Kunming Second People's Hospital, Kunming, 650000 Yunnan, China
| | - Qian Wang
- Department of Basic Medicine, Yunnan University of Business Management, Kunming, 650000 Yunnan, China
| | - Yanhong Wang
- Department of Second Internal Medicine, Chongming Branch of Yueyang Integrated Hospital of Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Chongming, 202150 Shanghai, China
| | - Qian Huang
- Department of Oncology, Shanghai Xinhua Hospital Chongming Branch Affiliated to Shanghai Jiaotong University School of Medicine, 25 Nanmen Road, Chengqiao Town, Chongming District, 200000 Shanghai, China
| |
Collapse
|
37
|
Zhang F, Yuan X, Sun H, Yin X, Gao Y, Zhang M, Jia Z, Yu M, Ying S, Xia H, Ju L, Xiao Y, Tao H, Lou J, Zhu L. A nontoxic dose of chrysotile can malignantly transform Met-5A cells, in which microRNA-28 has inhibitory effects. J Appl Toxicol 2021; 41:1879-1892. [PMID: 33890321 DOI: 10.1002/jat.4174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 11/11/2022]
Abstract
Chrysotile, which is classified as a class I carcinogen by the International Agency for Research on Cancer (IARC), has extensive application in the industry and can lead to lung or other cancers. However, whether chrysotile causes malignant mesothelioma and its molecular mechanism remain debatable. Thus, this study aimed to demonstrate the mesothelioma-inducing potential of chrysotile at the mesothelial cellular level and the function of microRNA-28 in malignantly transformed mesothelial MeT-5A cells. MeT-5A cells malignantly transformed by a nontoxic dose of chrysotile were named Asb-T, and miR-28 expression was downregulated in Asb-T cells. Restoration of miR-28 expression inhibited the proliferation, migration and invasion of Asb-T cells. We verified that IMPDH is a putative target of miR-28. The expression of IMPDH was significantly higher in Asb-T MeT-5A cells than in control cells, whereas the opposite trend was observed with miR-28 overexpression. Additionally, inhibition of IMPDH had similar effects as miR-28 overexpression. After miR-28 was elevated or IMPDH was inhibited, Ras activation was reduced, and its downstream pathways (the Erk and Akt signalling pathways) were inhibited. Surprisingly, the content of miR-28 in the blood of mesothelioma patients was higher than that in control subjects. Overall, nontoxic doses of chrysotile can cause malignant transformation of MeT-5A cells. Moreover, miR-28 inhibits the proliferation, migration and invasion of Asb-T MeT-5A cells, negatively regulates the expression of IMPDH through the Ras signalling pathway and may be an important therapeutic target.
Collapse
Affiliation(s)
- Fangfang Zhang
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Xiuyuan Yuan
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Hongjing Sun
- Department of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianhong Yin
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yanan Gao
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Min Zhang
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Zhenyu Jia
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Min Yu
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Shibo Ying
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Hailing Xia
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Li Ju
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Yun Xiao
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - He Tao
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Jianlin Lou
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Lijin Zhu
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
38
|
Ghafouri-Fard S, Tamizkar KH, Hussen BM, Taheri M. An update on the role of long non-coding RNAs in the pathogenesis of breast cancer. Pathol Res Pract 2021; 219:153373. [DOI: 10.1016/j.prp.2021.153373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 12/18/2022]
|
39
|
Novel insights for lncRNA MAGI2-AS3 in solid tumors. Biomed Pharmacother 2021; 137:111429. [PMID: 33761624 DOI: 10.1016/j.biopha.2021.111429] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 02/08/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) refer to elements of genomic transcription with more than 200 nucleotides that are not translated into proteins, but have crucial roles in cancer progression. MAGI2-AS3, a novel lncRNA, has been reported to be aberrantly expressed in many solid tumors. Increasingly, studies have demonstrated that MAGI2-AS3 expression is significantly correlated with patient clinical characteristics, and that MAGI2-AS3 can regulate multiple biological processes through target-gene regulation. Furthermore, MAGI2-AS3 may serve as both a diagnostic biomarker and as a promising therapeutic target against solid tumors. In this review, we summarize the current knowledge regarding the biological functions and related molecular mechanisms of MAGI2-AS3 in solid-tumor progression. We conclude that understanding MAGI2-AS3 properties may provide new insights into the diagnoses and treatments of solid tumors.
Collapse
|
40
|
Chen Y, Chen Z, Mo J, Pang M, Chen Z, Feng F, Xie P, Yang B. Identification of HCG18 and MCM3AP-AS1 That Associate With Bone Metastasis, Poor Prognosis and Increased Abundance of M2 Macrophage Infiltration in Prostate Cancer. Technol Cancer Res Treat 2021; 20:1533033821990064. [PMID: 33596783 PMCID: PMC7897818 DOI: 10.1177/1533033821990064] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background: Bone metastasis is a leading cause of the high mortality rate of prostate cancer (PCa), but curative strategies remain lacking. Recent studies suggest long non-coding RNAs (lncRNAs) may be potential targets to develop drugs. However, PCa bone metastasis-specifically-related lncRNAs were rarely reported. This study aimed to identify crucial lncRNAs and reveal their function mechanisms. Methods: GSE32269 and GSE26964 microarray datasets, downloaded from the Gene Expression Omnibus database, were used to analyze differentially expressed genes (DEGs)/lncRNAs (DELs) and miRNAs (DEMs), respectively. Weighted gene co-expression network analysis was performed to screen PCa bone metastasis-associated modules. The co-expression and competing endogenous RNAs (ceRNAs) networks were constructed to identify hub lncRNAs. Univariate Cox regression analysis was conducted to determine their prognostic values. The correlation of lncRNAs with immune infiltrating cells was analyzed by using Tumor IMmune Estimation Resource. Therapeutic drugs were predicted by querying the Connectivity Map (CMap) and the Comparative Toxicogenomics Database (CTD). Results: A total of 18 DELs, 2,614 DEGs and 86 DEMs were screened between bone metastatic and primary PCa samples. Four modules enriched by DEGs were shown to be bone metastasis-associated. LncRNA HCG18 and MCM3AP-AS1 were identified to be important because they existed in both of the co-expression and ceRNA networks (forming the relationship pairs: HCG18/MCM3AP-AS1-KNTC1, MCM3AP-AS1-hsa-miR-508-3p-DTL and HCG18/MCM3AP-AS1-hsa-miR-127-3p-CDKN3). All the genes in these interaction pairs were significantly associated with overall survival of PCa patients. Also, HCG18, MCM3AP-AS1 and their target mRNAs were positively correlated with various tumor-infiltrated immune cells, especially increased M2 macrophages. Valproic acid and trichostatin A may be effective to treat PCa bone metastasis by targeting HCG18 and MCM3AP-AS1. Conclusion: HCG18 and MCM3AP-AS1 that regulate M2 macrophage infiltration may be important targets to treat PCa bone metastasis and improve prognosis.
Collapse
Affiliation(s)
- Yanfang Chen
- Department of Emergency, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Zheng Chen
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jian Mo
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Mao Pang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Zihao Chen
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Feng Feng
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Peigen Xie
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Bu Yang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
41
|
Sun H, Wu P, Zhang B, Wu X, Chen W. MCM3AP-AS1 promotes cisplatin resistance in gastric cancer cells via the miR-138/FOXC1 axis. Oncol Lett 2021; 21:211. [PMID: 33510812 PMCID: PMC7836396 DOI: 10.3892/ol.2021.12472] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/14/2020] [Indexed: 12/24/2022] Open
Abstract
The dysregulation of long non-coding RNAs (lncRNAs) serves a pivotal role in the pathogenesis and development of multiple types of human cancer, including gastric cancer (GC). MCM3AP-antisense 1 (MCM3AP-AS1) has been reported to function as a tumor promoter in various types of cancer. However, the biological function of MCM3AP-AS1 in the resistance of GC cells to cisplatin (CDDP) remains to be elucidated. The present study aimed to elucidate the mechanisms of MCM3AP-AS1 in the resistance of GC cells to CDDP. The expression levels of MCM3AP-AS1, miR-138 and FOXC1 were measured via reverse transcription-quantitative PCR. In addition, cell viability, migration and invasion were assessed via the Cell Counting Kit-8, wound healing and transwell assays, respectively. The interaction between genes was confirmed via the dual-luciferase reporter and pull-down assays. Western blot analysis was performed to detect FOXC1 protein expression. In the present study, it was demonstrated that MCM3AP-AS1 expression was upregulated in CDDP-resistant GC cells and that MCM3AP-AS1-knockdown suppressed CDDP resistance in GC cells. Moreover, the examination of the molecular mechanism indicated that MCM3AP-AS1 upregulated FOXC1 expression by sponging microRNA (miR)-138. Additionally, it was identified that the overexpression of FOXC1 abolished MCM3AP-AS1-knockdown- or miR-138 mimic-mediated inhibitory effects on CDDP resistance in GC cells. In conclusion, the present findings suggested that MCM3AP-AS1 enhanced CDDP resistance by sponging miR-138 to upregulate FOXC1 expression, indicating that MCM3AP-AS1 may be a novel promising biomarker for the diagnosis and treatment of patients with GC.
Collapse
Affiliation(s)
- Han Sun
- Department of Digestive Internal Medicine, Xuzhou Central Hospital, Xuzhou, Jiangsu 221000, P.R. China
| | - Ping Wu
- Department of Digestive Internal Medicine, Xuzhou Central Hospital, Xuzhou, Jiangsu 221000, P.R. China
| | - Bao Zhang
- Department of Digestive Internal Medicine, Xuzhou Central Hospital, Xuzhou, Jiangsu 221000, P.R. China
| | - Xia Wu
- Department of Digestive Internal Medicine, Xuzhou Central Hospital, Xuzhou, Jiangsu 221000, P.R. China
| | - Weixu Chen
- Department of Digestive Internal Medicine, Xuzhou Central Hospital, Xuzhou, Jiangsu 221000, P.R. China
| |
Collapse
|
42
|
Li MX, Zhang MY, Dong HH, Li AJ, Teng HF, Liu AL, Xu N, Qu YQ. Overexpression of CENPF is associated with progression and poor prognosis of lung adenocarcinoma. Int J Med Sci 2021; 18:494-504. [PMID: 33390818 PMCID: PMC7757141 DOI: 10.7150/ijms.49041] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022] Open
Abstract
Background and aim: The molecular signatures of lung adenocarcinoma (LUAD) are not well understood. Centromere protein F (CENPF) has been shown to promote oncogenesis in many cancers; however, its role in LUAD has not been illustrated. We explored the role of CENPF in LUAD. Methods: CENPF expression level was investigated in public online database firstly, the prognosis of CENPF in LUAD were also assessed by Kaplan-Meier analysis. Then quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was performed using 13 matched pairs of clinical LUAD tissue samples. Subsequently, the impact of CENPF expression on cell proliferation, cell cycle, apoptosis, colony formation was investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), flow cytometric analysis and colony formation assay, respectively. Finally, experimental xenograft lung cancer model of nude mice armpit of right forelimb to determine the effect of CENPF on LUAD tumorigenesis. Results: CENPF mRNA expression was significantly elevated in LUAD tissues compared with adjacent non-tumor lung tissues in Gene Expression Profiling Interactive Analysis (GEPIA) (P < 0.001). Up-regulated CENPF was remarkably positively associated with pathological stage, relapse free survival (RFS) as well as overall survival (OS) of LUAD patients. Besides, CENPF knockdown greatly suppressed A549 cell proliferation, induced S phase arrest, promoted apoptosis and decreased colony numbers of LUAD cells. Furthermore, knockdown of CENPF significantly inhibited the tumor growth of the LUAD cells in an experimental xenograft lung cancer model of nude mice armpit of right forelimb. Conclusion: Taken together, these results demonstrated that CENPF may serve as a potential biomarker of prognostic relevance and a potential therapeutic target for LUAD.
Collapse
Affiliation(s)
- Mei-Xiang Li
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.,Department of Respiratory Medicine, Weihai Municipal Hospital, Weihai 264200, China
| | - Meng-Yu Zhang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Huan-Huan Dong
- Department of Pathology, Weihai Municipal Hospital, Weihai 264200, China
| | - Ai-Jun Li
- Department of Respiratory Medicine, Weihai Municipal Hospital, Weihai 264200, China
| | - Hai-Feng Teng
- Department of Respiratory Medicine, Weihai Municipal Hospital, Weihai 264200, China
| | - Ai-Ling Liu
- Department of Respiratory Medicine, Weihai Municipal Hospital, Weihai 264200, China
| | - Ning Xu
- Department of Respiratory Medicine, Weihai Municipal Hospital, Weihai 264200, China
| | - Yi-Qing Qu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan 250012, China
| |
Collapse
|
43
|
Liang R, Zhang J, Zhang RM, Qiu H. LINC01315 silencing inhibits the aggressive phenotypes of colorectal carcinoma by sponging miR-205-3p. Biochem Biophys Res Commun 2021; 534:1033-1039. [PMID: 33162032 DOI: 10.1016/j.bbrc.2020.10.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022]
Abstract
Long non-coding RNAs (lncRNAs) are important regulatory factors in the progression of cancers. In this study, we investigated the molecular mechanism of long intergenic non-coding 01315 (LINC01315) in inhibiting the aggressive characteristics of colorectal carcinoma (CRC) cells. We proved that LINC01315 was significantly upregulated in CRC. Knockdown of LINC01315 decreased CRC cell growth and invasion in vitro. Bioinformatics analysis and a luciferase reporter experiment showed direct binding between LINC01315 and miR-205-3p. Furthermore, LINC01315 positively modulated protein kinase AMP-activated catalytic subunit α 1 (PRKAA1) expression by serving as a "sponge" for miR-205-3p. Moreover, LINC01315 regulated the growth and invasive phenotypes of CRC cells by sponging miR-205-3p. Downregulation of LINC01315 remarkedly impaired the tumorigenicity of CRC cells in vivo in a transplanted tumour model. Altogether, our results demonstrated that downregulation of LINC01315 suppresses CRC progression by sponging miR-205-3p.
Collapse
Affiliation(s)
- Rong Liang
- Department of Anorectal Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China
| | - Jun Zhang
- Department of Gastroenterology Surgery, Jimo District People's Hospital, Qingdao, Shandong, China
| | - Ru Meng Zhang
- Department of Gastrointestinal Surgery, Qingdao Central Hospital, Qingdao, Shandong, China
| | - Hui Qiu
- Department of Anorectal Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China.
| |
Collapse
|
44
|
Fang S, Zhao Y, Hu X. LncRNA ADAMTS9-AS1 Restrains the Aggressive Traits of Breast Carcinoma Cells via Sponging miR-513a-5p. Cancer Manag Res 2020; 12:10693-10703. [PMID: 33149676 PMCID: PMC7604470 DOI: 10.2147/cmar.s266575] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022] Open
Abstract
Purpose Long noncoding RNAs (lncRNAs) exert important functions in the progression of cancers. Currently, we aim to investigate the potential roles of lncRNA ADAM Metallopeptidase with Thrombospondin Type 1 Motif 9 Antisense RNA 1 (ADAMTS9-AS1) in breast carcinoma. Materials and Methods The expressions of ADAMTS9-AS1 and miR-513a-5p in breast carcinoma tissues and cell lines were detected using qRT-PCR. Cell Counting Kit-8 (CCK-8) and transwell assays were used to assess the viability and invasive ability of breast cancer cells. The direct interaction between ADAMTS9-AS1 and miR-513a-5p was predicted using bioinformatics tools. The target of miR-513a-5p, ZFP36 Ring Finger Protein (ZFP36) was validated by luciferase assay. The expression of ZFP36 was measured using Western blot assay. Breast cancer MDA-MB-231 cells growth in vivo was evaluated using xenograft tumor assay. Results ADAMTS9-AS1 was downregulated in breast cancer tissues as well as cell lines. Upregulation of ADAMTS9-AS1 suppressed the growth and invasiveness of breast carcinoma cells in vitro as well as inhibiting cellgrowth in vivo. Furthermore, ZFP36 was manifested as the target gene of miR-513a-5p and negatively modulated by ADAMTS9-AS1. In addition, overexpression of ADAMTS9-AS1 neutralized the promoting impact of miR-513a-5p on the aggressiveness of breast cancer cells. Conclusion In conclusion, lncRNA ADAMTS9-AS1 inhibited the aggressive phenotypes of breast carcinoma cells via sponging miR-513a-5p and regulating ZFP36.
Collapse
Affiliation(s)
- Shiqiang Fang
- Department of General Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, People's Republic of China
| | - Yu Zhao
- Hemodialysis Room, Qingdao Traditional Chinese Medicine Hospital, Qingdao, Shandong, People's Republic of China
| | - Xiaozhen Hu
- Department of General Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, People's Republic of China
| |
Collapse
|
45
|
Riahi A, Hosseinpour-Feizi M, Rajabi A, Akbarzadeh M, Montazeri V, Safaralizadeh R. Overexpression of long non-coding RNA MCM3AP-AS1 in breast cancer tissues compared to adjacent non-tumour tissues. Br J Biomed Sci 2020; 78:53-57. [PMID: 32678686 DOI: 10.1080/09674845.2020.1798058] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Altered expression of several long non-coding RNAs (lncRNAs) has been described in numerous malignancies, including breast cancer, and some may have a role in carcinogenesis. We hypothesised differences in the expression of lncRNA MCM3AP-AS1 in breast cancer tissues compared to nearby healthy tissues and potential links with clinical features. METHODS We tested our hypothesis in 102 pairs of breast cancer tumours and adjacent non-tumour tissues from female patients. After RNA extraction, cDNA synthesis was performed for all specimens. The differential gene expression was assessed using Quantitative Real-Time PCR Technique. RESULTS There was a significant overexpression of the lncRNAs in tumour tissues as compared with their adjacent non-tumour tissues (P < 0.001). Expression was significantly linked with the tumour oestrogen receptor expression (P = 0.023) and tumour progesterone receptor expression (P < 0.001). ROC analysis showed an AUC of 0.67 (95% CI 0.60-0.75) (P < 0.001) with sensitivity and specificity of 58% and 76%, respectively. CONCLUSION The lncRNA MCM3AP-AS1 may be a novel breast cancer lncRNA with high expression levels in breast cancer patients' tissue. Further investigations are needed to confirm its uses as a potential molecular marker and therapeutic target.
Collapse
Affiliation(s)
- A Riahi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz , Tabriz, Iran
| | - M Hosseinpour-Feizi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz , Tabriz, Iran
| | - A Rajabi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz , Tabriz, Iran
| | - M Akbarzadeh
- Department of Biology, Faculty of Sciences, Azerbaijan Shahid Madani University , Tabriz, Iran
| | - V Montazeri
- Department of Thoracic Surgery, Faculty of Medicine, Tabriz University of Medical Sciences\Surgery Ward, Nour-Nejat Hospital , Tabriz, Iran
| | - R Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz , Tabriz, Iran
| |
Collapse
|
46
|
Wang Q, Chen S, Wu J, Liu D, Jiang N, Wang B, Zhai J, Liu Z. Identification of Potential Hub Genes and Signal Pathways Promoting the Distinct Biological Features of Cord Blood-Derived Endothelial Progenitor Cells Via Bioinformatics. Genet Test Mol Biomarkers 2020; 24:549-561. [PMID: 32744910 DOI: 10.1089/gtmb.2019.0272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: Numerous studies, ranging from the alleviation of tissue ischemia to the assessment of cancer prognosis, have demonstrated the fundamental biological differences between human umbilical cord blood-derived endothelial progenitor cells (CB-EPCs) and adult peripheral blood-derived endothelial progenitor cells (PB-EPCs). However, the underlying molecular mechanisms that produce these differences are not clear.The purpose of this study was to identify potential hub genes, key protein interactive networks, and correlated signal pathways unique to CB-EPC biology via bioinformatic methods. Materials and Methods: We selected the microarray dataset GSE39763 and identified the differentially expressed genes (DEGs) using the "limma" package in the RStudio software. These DEGs were annotated by gene ontology enrichment analyses and signal pathway analyses. A protein-protein interaction (PPI) analysis was then performed to construct PPI networks and identify a hub protein module. We further validated candidate DEGs from the selected module in the gene expression profiling interactive analysis (GEPIA) database because the DEGs were enriched in cancer pathways. Results: Setting an adjusted p-value <0.01 and |Log2 fold change (FC)| ≥ 2 as cutoff criteria, a total of 346 DEGs, including 314 upregulated genes and 32 downregulated genes in CB-EPCs, were identified. Expression of the genes encoding the AT-Hook Containing Transcription Factor 1 (AHCTF1), the Cancer Susceptibility Candidate 5 (CASC5), the Centromere Protein C (CENPC), the Centromere Protein E (CENPE), the Centromere Protein F (CENPF), the NUF2 Component of NDC80 Kinetochore Complex (NUF2), the RAN-Binding Protein 2 (RANBP2), the Shugoshin-like 2 (SGOL2), the Structural Maintenance of Chromosomes 3 (SMC3), and the Spindle Apparatus Coiled-Coil Protein 1 (SPDL1) proteins were specifically associated with CB-EPCs. Except for CENPC, the other nine genes' expression are all associated with a poorer overall survival rate in cancers. The expression levels of the CENPF and NUF2 genes in tumor patients were significantly higher than those in the controls. Conclusion: The CB-EPCs express genes with greater potential for proliferation and increased migration compared to PB-EPCs; in this regard they are similar to cancer cells.
Collapse
Affiliation(s)
- Qian Wang
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shu Chen
- Department of Thoracic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Jia Wu
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Dingkun Liu
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Nanxi Jiang
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Bizhou Wang
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Jianjia Zhai
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhihui Liu
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|