1
|
Sadovskaya A, Petinati N, Shipounova I, Drize N, Smirnov I, Pobeguts O, Arapidi G, Lagarkova M, Karaseva L, Pokrovskaya O, Kuzmina L, Vasilieva A, Aleshina O, Parovichnikova E. Damage of the Bone Marrow Stromal Precursors in Patients with Acute Leukemia at the Onset of the Disease and During Treatment. Int J Mol Sci 2024; 25:13285. [PMID: 39769050 PMCID: PMC11677965 DOI: 10.3390/ijms252413285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
In patients with acute leukemia (AL), malignant cells and therapy modify the properties of multipotent mesenchymal stromal cells (MSCs) and their descendants, reducing their ability to maintain normal hematopoiesis. The aim of this work was to elucidate the alterations in MSCs at the onset and after therapy in patients with AL. The study included MSCs obtained from the bone marrow of 78 AL patients (42 AML and 36 ALL) and healthy donors. MSC growth characteristics, gene expression pattern, proteome and secretome were studied using appropriate methods. The concentration of MSCs in the bone marrow, proliferative potential, the expression of several genes, proteomes and secretomes were altered in AL-MSCs. Stromal progenitors had been affected differently in ALL and AML patients. In remission, MSC functions remain impaired despite the absence of tumor cells and the maintenance of benign hematopoietic cells. AL causes crucial and, to a large extent, irreversible changes in bone marrow MSCs.
Collapse
Affiliation(s)
- Aleksandra Sadovskaya
- National Medical Research Center for Hematology, Moscow 125167, Russia (N.P.); (E.P.)
- Federal State Budget Educational Institution of Higher Education, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Nataliya Petinati
- National Medical Research Center for Hematology, Moscow 125167, Russia (N.P.); (E.P.)
| | - Irina Shipounova
- National Medical Research Center for Hematology, Moscow 125167, Russia (N.P.); (E.P.)
| | - Nina Drize
- National Medical Research Center for Hematology, Moscow 125167, Russia (N.P.); (E.P.)
| | - Igor Smirnov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - Olga Pobeguts
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - Georgiy Arapidi
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Maria Lagarkova
- Federal State Budget Educational Institution of Higher Education, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - Luiza Karaseva
- National Medical Research Center for Hematology, Moscow 125167, Russia (N.P.); (E.P.)
| | - Olga Pokrovskaya
- National Medical Research Center for Hematology, Moscow 125167, Russia (N.P.); (E.P.)
| | - Larisa Kuzmina
- National Medical Research Center for Hematology, Moscow 125167, Russia (N.P.); (E.P.)
| | - Anastasia Vasilieva
- National Medical Research Center for Hematology, Moscow 125167, Russia (N.P.); (E.P.)
| | - Olga Aleshina
- National Medical Research Center for Hematology, Moscow 125167, Russia (N.P.); (E.P.)
| | - Elena Parovichnikova
- National Medical Research Center for Hematology, Moscow 125167, Russia (N.P.); (E.P.)
| |
Collapse
|
2
|
Zhu M, Sun X, Fang J, Li X. Deconvolution of cell-type-associated markers predictive of response to neoadjuvant radiotherapy. Comput Biol Chem 2024; 113:108269. [PMID: 39520737 DOI: 10.1016/j.compbiolchem.2024.108269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/30/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024]
Abstract
Tumor microenvironent contains prognostic molecular markers and therapeutic targets from different cellular sources, which are still not fully revealed in the resistance and recurrence after radiotherapy for rectal cancer. By integrating the scRNA-seq data, we deconvoluted the bulk transcriptomics of rectal cancer collected before preoperative neoadjuvant radiotherapy (nRT) into fractions and gene expression of the six cell types. The inferred cell-type-associated DEGs, abbreviated as caDEGs, of myeloid and stromal cells were enriched for overlapping yet unique biological processes including immunity, angiogenesis, and metabolism, respectively. Ecotyper analysis indicates that the caDEGs reflects cell states and ecotypes in association with nRT response. By mapping the caDEGs onto the context-free and newly built ligand-receptor and collagen-integrin lists from scRNA-Seq data, respectively, we inferred 297 cell-type-specific trans- and/or cis-collagen-integrin and 219 heterotypic ligand-receptor interactions potentially associated with nRT response, including interactions between stromal-associated COL1A2/COL6A1/COL6A2 and stromal or CMS1-associated ITGA1/B1, between epithelial-associated JAG1 and stromal-associated NOTCHs, between CMS2 epithelial-associated CCL15 and proliferating myeloid-associated CCR1, between myeloid-associated CCL4/CD86 and lymphatic endothelial-associated ACKR2, and between myeloid-associated TNFS13B and B cell-associated TNFRSF13B/C, etc. Intriguingly, results suggest a greater number of down-regulated cell-type-related markers in resistant cancers to nRT. Favorable myeloid-associated CD14, epithelial-associated DYM, stromal-associated COL1A2 and COL3A1, and unfavorable epithelial-associated CELSR3 and KCNH8 markers were inferred at least from two independent nCRT datasets of GSE119409, GSE35452, and GSE45404. The results provide insights into roles of the stromal and immune cells beside epithelial cells in resistance to radiotherapy for rectal cancers. The proposed approach can be applicable to other diseases as well. Codes and additional data are available at https://github.com/Xueling21/rectalNRT_deconv.
Collapse
Affiliation(s)
- Min Zhu
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei 230031, China; School of Mathematics and Computer Science, Tongling University, Tongling 244061, China
| | - Xiao Sun
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei 230031, China; School of Electronic and Information Engineering, Anhui Jianzhu University, South Campus: No. 292 Ziyun Road, Shushan District, Hefei 230009, China
| | - Jinman Fang
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei 230031, China.
| | - Xueling Li
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei 230031, China; School of Mathematics and Computer Science, Tongling University, Tongling 244061, China.
| |
Collapse
|
3
|
Hazazi A, Khan FR, Albloui F, Arif S, Abdulaziz O, Alhomrani M, Sindi AAA, Abu-Alghayth MH, Abalkhail A, Nassar SA, Binshaya AS. Signaling pathways in HPV-induced cervical cancer: Exploring the therapeutic promise of RNA modulation. Pathol Res Pract 2024; 263:155612. [PMID: 39357186 DOI: 10.1016/j.prp.2024.155612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/05/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Cervical cancer, originating from the epithelial tissue of the uterine cervix, constitutes the most commonly diagnosed malignancy among women worldwide. The predominant etiological factor underpinning cervical carcinogenesis is persistent infection with high-risk human papillomavirus (HPV) genotypes, notably HPV-16 and HPV-18. Oncoproteins encoded by high-risk HPV interfere with multiple essential cellular signaling cascades. Specifically, E5, E6, and E7 proteins disrupt the signaling pathways like p53, retinoblastoma tumor suppressor protein (pRB), The phosphoinositide 3 kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), epidermal growth factor receptor (EGFR), mitogen-activated protein kinases (MAPK)/extracellular signal-regulated kinases (ERK), and Wnt/β-catenin, promoting HPV-mediated carcinogenesis. This dysregulation disrupts cell cycle control, apoptosis, and metastasis through modulation of microRNAs (miRNA) and key cellular processes. The novel therapeutic interventions for HPV prevention and detection are fundamental to patient management. RNA-based treatment modalities offer the potential for manipulating critical pathways involved in cervical carcinogenesis. RNA therapeutics offer novel approaches to drug development by targeting intracellular genetic elements inaccessible to conventional modalities. Additional advantages include rapid design, synthesis, and a reduced genotoxic profile compared to DNA-based therapies. Despite beneficial attributes, system stability and efficient delivery remain critical parameters. This study assessed the intricate relationship between HPV, cervical cancer, and various signaling pathways. The study explores miRNAs' diagnostic and therapeutic potential, mall interfering RNAs (siRNAs), and long non-coding RNAs (lncRNAs)in cervical cancer management. The review highlights the prospect of RNA-targeted therapies to modulate specific cancer signaling pathways. This approach offers a novel strategy for cervical cancer treatment through precise regulation of cancer signaling. Future research should concentrate on developing RNA-targeted interventions to improve cervical cancer treatment outcomes through increased therapeutic efficacy and specificity.
Collapse
Affiliation(s)
- Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Farhan R Khan
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Al Quwayiyah, Shaqra University, Riyadh, Saudi Arabia; Department of Pharmaceutical Chemistry, Azad Institute of Pharmacy and Research, Lucknow, UP, India
| | - Fawaz Albloui
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia
| | - Sultan Arif
- Department of Plastic Surgery and Burn Unit, Security Force Hospital, Riyadh, Saudi Arabia
| | - Osama Abdulaziz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O.Box 11099, Taif 21944, Saudi Arabia
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O.Box 11099, Taif 21944, Saudi Arabia; Research Centre for Health Sciences, Taif University, Taif, Saudi Arabia
| | - Abdulmajeed A A Sindi
- Department of Basic Medical Sciences, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Mohammed H Abu-Alghayth
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, P.O. Box 255, Bisha 67714, Saudi Arabia
| | - Adil Abalkhail
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, P.O.Box 66666, Saudi Arabia
| | - Somia A Nassar
- Department of Medical Laboratory Science, College of Applied Medical Sciences Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Professor, Department of Parasitology & Animal Diseases, National Research Centre, 33 Bohouth St., Dokki, Giza 12622, Egypt
| | - Abdulkarim S Binshaya
- Department of Medical Laboratory Science, College of Applied Medical Sciences Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| |
Collapse
|
4
|
Miracle CE, McCallister CL, Denning KL, Russell R, Allen J, Lawrence L, Legenza M, Krutzler-Berry D, Salisbury TB. High BMI Is Associated with Changes in Peritumor Breast Adipose Tissue That Increase the Invasive Activity of Triple-Negative Breast Cancer Cells. Int J Mol Sci 2024; 25:10592. [PMID: 39408921 PMCID: PMC11476838 DOI: 10.3390/ijms251910592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Breast cancer is the most common cancer in women with multiple risk factors including smoking, genetics, environmental factors, and obesity. Smoking and obesity are the top two risk factors for the development of breast cancer. The effect of obesity on adipose tissue mediates the pathogenesis of breast cancer in the context of obesity. Triple-negative breast cancer (TNBC) is a breast cancer subtype within which the cells lack estrogen, progesterone, and HER2 receptors. TNBC is the deadliest breast cancer subtype. The 5-year survival rates for patients with TNBC are 8-16% lower than the 5-year survival rates for patients with estrogen-receptor-positive breast tumors. In addition, TNBC patients have early relapse rates (3-5 years after diagnosis). Obesity is associated with an increased risk for TNBC, larger TNBC tumors, and increased breast cancer metastasis compared with lean women. Thus, novel therapeutic approaches are warranted to treat TNBC in the context of obesity. In this paper, we show that peritumor breast adipose-derived secretome (ADS) from patients with a high (>30) BMI is a stronger inducer of TNBC cell invasiveness and JAG1 expression than peritumor breast ADS from patients with low (<30) BMI. These findings indicate that patient BMI-associated changes in peritumor AT induce changes in peritumor ADS, which in turn acts on TNBC cells to stimulate JAG1 expression and cancer cell invasiveness.
Collapse
Affiliation(s)
- Cora E. Miracle
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (C.E.M.); (C.L.M.)
| | - Chelsea L. McCallister
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (C.E.M.); (C.L.M.)
| | - Krista L. Denning
- Cabell Huntington Hospital Laboratory, Department of Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (K.L.D.); (R.R.); (J.A.); (L.L.)
| | - Rebecca Russell
- Cabell Huntington Hospital Laboratory, Department of Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (K.L.D.); (R.R.); (J.A.); (L.L.)
| | - Jennifer Allen
- Cabell Huntington Hospital Laboratory, Department of Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (K.L.D.); (R.R.); (J.A.); (L.L.)
| | - Logan Lawrence
- Cabell Huntington Hospital Laboratory, Department of Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (K.L.D.); (R.R.); (J.A.); (L.L.)
| | - Mary Legenza
- Edwards Comprehensive Cancer Center, Department of Oncology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (M.L.); (D.K.-B.)
| | - Diane Krutzler-Berry
- Edwards Comprehensive Cancer Center, Department of Oncology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (M.L.); (D.K.-B.)
| | - Travis B. Salisbury
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (C.E.M.); (C.L.M.)
| |
Collapse
|
5
|
Wang Y, Ge H, Zhang Y, Wang P, Zhao H, Wang L, Fan Z. Antitumor effect of polyphyllin I (PPI) on colorectal cancer: Evidence from patient-derived organoids and Notch signaling suppression. Heliyon 2024; 10:e37226. [PMID: 39315206 PMCID: PMC11417558 DOI: 10.1016/j.heliyon.2024.e37226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Colorectal cancer (CRC) is a malignant tumor with a high incidence, ranking first among gastrointestinal malignancies. We investigated the impact of polyphyllin I (PPI), a natural compound found in Paris polyphylla, on CRC. PPI has been documented to exhibit anticancer activity against various tumors. This study aimed to assess the effects of PPI on colorectal cancer and explore its potential mechanisms. Our research demonstrated that PPI inhibited proliferation, promoted apoptosis, and induced G2 cell-cycle arrest in a dose-dependent manner. Additionally, our results indicated that PPI suppressed Notch signaling by downregulating the Notch1 receptor, its ligand Jagged1, and the downstream target Hes1 expression. Furthermore, we confirmed the antitumor effect of PPI on patient-derived organoids. In conclusion, our study indicates that PPI impedes the growth of colon cancer by suppressing the Notch signaling pathway.
Collapse
Affiliation(s)
- Yu Wang
- Department of Anorectal Medicine, Liyang Hospital of Chinese Medicine, Changzhou, 213300, China
| | - Hao Ge
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210038, China
| | - Yi Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Pei Wang
- Jiangsu Clinical Innovation Center for Anorectal Diseases of T.C.M., Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, China
| | - Haoran Zhao
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210038, China
| | - Lu Wang
- Jiangsu Clinical Innovation Center for Anorectal Diseases of T.C.M., Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, China
| | - Zhimin Fan
- Department of Anorectal Medicine, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210022, China
| |
Collapse
|
6
|
Wang G, Wu Y, Su Y, Qu N, Chen B, Zhou D, Yuan L, Yin M, Liu M, Zhou W. TCF12-regulated GRB7 facilitates the HER2+ breast cancer progression by activating Notch1 signaling pathway. J Transl Med 2024; 22:745. [PMID: 39113057 PMCID: PMC11304905 DOI: 10.1186/s12967-024-05536-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 07/24/2024] [Indexed: 08/11/2024] Open
Abstract
BACKGROUND Human epidermal growth factor receptor 2-positive (HER2+) breast cancer (BC), which accounts for approximately one-fifth of all BCs, are highly invasive with a high rate of recurrence and a poor prognosis. Several studies have shown that growth factor receptor-bound protein 7 (GRB7) might be a potential therapeutic target for tumor diagnosis and prognosis. Nevertheless, the role of GRB7 in HER2+ BC and its underlying mechanisms have not been fully elucidated. The aim of this study was to investigate the biological function and regulatory mechanism of GRB7 in HER2+ BC. METHODS Bioinformatics analysis was performed using the TCGA, GEO and CancerSEA databases to evaluate the clinical significance of GRB7. RT quantitative PCR, western blot and immunofluorescence were conducted to assess the expression of GRB7 in BC cell lines and tissues. MTT, EdU, colony formation, wound healing, transwell, and xenograft assays were adopted to explore the biological function of GRB7 in HER2+ BC. RNA sequencing was performed to analyze the signaling pathways associated with GRB7 in SK-BR-3 cells after the cells were transfected with GRB7 siRNA. Chromatin immunoprecipitation analysis (ChIP) and luciferase reporter assay were employed to elucidate the potential molecular regulatory mechanisms of GRB7 in HER2+ BC. RESULTS GRB7 was markedly upregulated and associated with poor prognosis in BC, especially in HER2+ BC. Overexpression of GRB7 increased the proliferation, migration, invasion, and colony formation of HER2+ BC cells, while depletion of GRB7 had the opposite effects in HER2+ BC cells and inhibited xenograft growth. ChIP-PCR and luciferase reporter assay revealed that TCF12 directly bound to the promoter of the GRB7 gene to promote its transcription. GRB7 facilitated HER2+ BC epithelial-mesenchymal transition (EMT) progression by interacting with Notch1 to activate Wnt/β-catenin pathways and other signaling (i.e., AKT, ERK). Moreover, forced GRB7 overexpression activated Wnt/β-catenin to promote EMT progression, and partially rescued the inhibition of HER2+ BC proliferation, migration and invasion induced by TCF12 silencing. CONCLUSIONS Our work elucidates the oncogenic role of GRB7 in HER2+ BC, which could serve as a prognostic indicator and promising therapeutic target.
Collapse
Affiliation(s)
- Gang Wang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, China
| | - Yuanli Wu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, China
| | - Yue Su
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, China
| | - Na Qu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, China
| | - Bo Chen
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, China
| | - Duanfang Zhou
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, China
| | - Lie Yuan
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, China
| | - Manjialan Yin
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, China
| | - Mingpu Liu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, China
| | - Weiying Zhou
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, 400016, China.
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
7
|
Czerwonka A, Kałafut J, Wang S, Anameric A, Przybyszewska-Podstawka A, Toriseva M, Nees M. The Notch inhibitor, FLI-06, increases the chemosensitivity of head and neck Squamous cell carcinoma cells to taxanes-based treatment. Biomed Pharmacother 2024; 177:116822. [PMID: 38906029 DOI: 10.1016/j.biopha.2024.116822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/23/2024] Open
Abstract
Aberration of Notch signaling is one of the key events involved in the development and progression of head and neck squamous cell carcinoma (HNSCC). The Notch pathway controls the tissue-specific differentiation of normal squamous epithelial cells and is frequently altered in squamous carcinomas, thus affecting their proliferation, growth, survival, and chemosensitivity or resistance against anti-cancer agents. In this study, we show that the use of novel, small-molecule inhibitors of Notch signaling, such as FLI-06, can have a beneficial effect on increasing the chemosensitivity of HNSCC to taxane-based chemotherapy. Inhibition of Notch signaling by FLI-06 alone virtually blocks the proliferation and growth of HNSCC cells in both 2D and 3D cultures and the zebrafish model, which is accompanied by down-regulation of key Notch target genes and proteins. Mechanistically, FLI-06 treatment causes cell cycle arrest in the G1-phase and induction of apoptosis in HNSCC, which is accompanied by increased c-JunS63 phosphorylation. Combining FLI-06 with Docetaxel shows a synergistic effect and partially blocks the cell growth of aggressive HNSCC cells via enhanced apoptosis and modification of c-JunS243 phosphorylation via GSK-3β inhibition. In conclusion, inhibition of Notch signaling in HNSCC cells that retain active Notch signaling significantly supports taxane-based anticancer activities via modulation of both the GSK-3β and the c-Jun.
Collapse
Affiliation(s)
- Arkadiusz Czerwonka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin 20-093, Poland.
| | - Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin 20-093, Poland
| | - Shaoxia Wang
- Institute of Biomedicine, Cancer Research Unit and FICAN West Cancer Centre Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Alinda Anameric
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin 20-093, Poland
| | | | - Mervi Toriseva
- Institute of Biomedicine, Cancer Research Unit and FICAN West Cancer Centre Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Matthias Nees
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin 20-093, Poland
| |
Collapse
|
8
|
Wang C, Zhang J, Wang H, Chen R, Lu M. Family with sequence similarity 83, member A (FAM83A) inhibits ferroptosis via the Wnt/β-catenin pathway in lung squamous cell cancer. Cell Death Discov 2024; 10:332. [PMID: 39033191 PMCID: PMC11271298 DOI: 10.1038/s41420-024-02101-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
The function of Family With Sequence Similarity 83, Member A (FAM83A) in lung squamous cell carcinoma (LUSC) is largely unknown. Here, we detected its prognostic and regulation roles in LUSC. Bioinformatics methods were applied initially to predict the expression level and prognostic value of FAM83A mRNA in LUSC. In vitro experiments, such as western blot, colony formation and cell viability assay, lipid Reactive oxygen species (ROS), malondialdehyde (MDA), reduced glutathione (GSH)/oxidized glutathione disulfide (GSSG), and 4-hydroxy-2-nonenal (4-HNE) assay, were used to investigate its mechanism. In vivo experiments were further conducted to validate the mechanism. Results from TCGA and Oncomine databases revealed significantly higher FAM83A mRNA expression levels in LUSC than in normal lung tissue. TCGA and GEO databases and our database revealed that FAM83A expression level was an independent prognostic factor for both overall survival and progression-free survival. Besides, FAM83A was significantly associated with a higher ability of growth and clonogenicity. Mechanistically, in vitro and in vivo experiments revealed that FAM83A could promote LUSC cell growth by inhibiting ferroptosis via activating the Wnt/β-catenin signaling pathway. The rescue experiment demonstrated that inhibition of the Wnt/β-catenin pathway counteracted the function of FAM83A. FAM83A is overexpressed in LUSC and could serve as a prognosis prediction biomarker for LUSC. FAM83A promotes LUSC cell growth by inhibiting ferroptosis via activating the Wnt/β-catenin signaling pathway, which provides a new potential therapeutic target for LUSC treatment.
Collapse
Affiliation(s)
- Cong Wang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences; Department of Radiation Oncology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jing Zhang
- Department of Drug Inspection, Tai'an Institute For Food And Drug Control (Tai'an Fiber Inspection Institute), Tai'an, China
| | - Hongjiao Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ruixue Chen
- Department of Encephalopathy (II), Xintai Hospital of Traditional Chinese Medicine, Tai'an, China
| | - Ming Lu
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
9
|
Zhang X, Yuan Y, Wang X, Wang H, Zhang L, He J. CircWHSC1 (CircNSD2): A Novel Circular RNA in Multiple Cancers. Clin Med Insights Oncol 2024; 18:11795549241254781. [PMID: 38855031 PMCID: PMC11159554 DOI: 10.1177/11795549241254781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/25/2024] [Indexed: 06/11/2024] Open
Abstract
Circular RNAs (circRNAs) are a type of non-coding RNA (ncRNA) that possesses a unique single-stranded circular structure. They are primarily formed through alternative splicing of pre-mRNA (messenger RNA). The primary biological function of circRNAs is to regulate gene expression at both the transcriptional and post-transcriptional levels. Recent studies have increasingly demonstrated a close association between the dysregulation of circRNAs and the progression of diverse cancers, where they can function as either tumor suppressors or oncogenes. circWHSC1 (circNSD2) is a circular ncRNA that originates from the first 2 exons of the Wolf-Hirschhorn syndrome candidate gene (WHSC1). As Chen 2019 discovery that circWHSC1 (circNSD2) functions as a sponge for miRNAs and promotes cancer, this circRNA has garnered significant interest among researchers. circWHSC1 (circNSD2) has been found to be up-regulated in various malignant tumors, including nasopharyngeal carcinoma, lung cancer, breast cancer, liver cancer, colorectal cancer, ovarian cancer, cervical cancer, and endometrial cancer. It exerts its effects on cancer by either inhibiting or promoting the expression of related genes through direct or indirect pathways, ultimately affecting cancer proliferation, invasion, and prognosis. This article provides a comprehensive review and discussion of the biological roles of circWHSC1 (circNSD2) and its target genes in various cancers, as well as the latest research progress on related molecular biological regulatory mechanisms. Furthermore, the potential significance of circWHSC1 (circNSD2) in future clinical applications and transformations is thoroughly analyzed and discussed.
Collapse
Affiliation(s)
- Xiaomin Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yiran Yuan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Xiaoxiao Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Heyue Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Lei Zhang
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Hepatic Surgery Center, Institute of Hepato-Pancreato-Biliary Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiefeng He
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
10
|
Peng Q, Wang L, Zuo L, Gao S, Jiang X, Han Y, Lin J, Peng M, Wu N, Tang Y, Tian H, Zhou Y, Liao Q. HPV E6/E7: insights into their regulatory role and mechanism in signaling pathways in HPV-associated tumor. Cancer Gene Ther 2024; 31:9-17. [PMID: 38102462 DOI: 10.1038/s41417-023-00682-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/09/2023] [Accepted: 10/24/2023] [Indexed: 12/17/2023]
Abstract
Human papillomavirus (HPV) is a class of envelope-free double-stranded DNA virus. HPV infection has been strongly associated with the development of many malignancies, such as cervical, anal and oral cancers. The viral oncoproteins E6 and E7 perform central roles on HPV-induced carcinogenic processes. During tumor development, it usually goes along with the activation of abnormal signaling pathways. E6 and E7 induces changes in cell cycle, proliferation, invasion, metastasis and other biological behaviors by affecting downstream tumor-related signaling pathways, thus promoting malignant transformation of cells and ultimately leading to tumorigenesis and progression. Here, we summarized that E6 and E7 proteins promote HPV-associated tumorigenesis and development by regulating the activation of various tumor-related signaling pathways, for example, the Wnt/β-catenin, PI3K/Akt, and NF-kB signaling pathway. We also discussed the importance of HPV-encoded E6 and E7 and their regulated tumor-related signaling pathways for the diagnosis and effective treatment of HPV-associated tumors.
Collapse
Affiliation(s)
- Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
| | - Lujuan Wang
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Liang Zuo
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Shuichao Gao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yaqian Han
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Mingjing Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Hao Tian
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- University of South China, Hengyang, 421001, Hunan, China.
- Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- University of South China, Hengyang, 421001, Hunan, China.
- Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
11
|
Liu G, Zhang T, Gui D, Liu Q. Clinical significance and immune landscape of angiogenesis-related genes in bladder cancer. Aging (Albany NY) 2023; 15:13118-13133. [PMID: 37988196 DOI: 10.18632/aging.205222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/17/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Angiogenesis is a major promotor of tumor progression and metastasis. Nevertheless, it is undetermined how angiogenesis-related genes (ARGs) influence bladder cancer. METHODS The profiles of bladder cancer gene expression were collected from the TCGA-BLCA cohort. The LASSO regression analysis was used to build an angiogenesis-related signature (ARG_score) with the prognostic ARGs. Verification analyses were conducted across the GSE48075 dataset to demonstrate the robustness of the signature. Differences between the two risk groups based on clinical outcomes, immune landscape, mutation status, chemotherapeutic effectiveness for anticancer drugs, and immunotherapy efficacy were analyzed. A nomogram was developed to improve the clinical efficacy of this predictive tool. The expression levels of model genes in normal bladder epithelial cell lines (SV-HUC-1) and bladder cancer cell lines (T24 and 5637) were detected by qRT-PCR assay. RESULTS Four angiogenesis-associated gene signature was constructed based on the LASSO regression algorithm. The signature showed independent risk factors of overall survival for bladder cancer, validated using two external survival datasets. Additionally, we built a prognostic nomogram to improve the practicality of the ARG_score. High-risk individuals showed stronger immunocyte infiltration, immune-related functions, elevated expression of immune checkpoints, reduced TIDE score, and higher combined IPS-PD-1 and IPS-CTLA4 scores, suggesting a heightened responsiveness to immune checkpoint inhibitors. Furthermore, patients with low and high risk showed distinct responsiveness to anticancer drugs. The expression levels of 5 model genes (COL5A2, JAG1, MSX1, OLR1, and STC) were significantly increased in bladder cancer cell lines (T24 and 5637) compared with the normal bladder epithelial cell line SV-HUC-1. CONCLUSIONS The model constructed based on ARGs may have wide application in predicting outcomes and therapeutic responses.
Collapse
Affiliation(s)
- Gang Liu
- Department of Urology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, People’s Republic of China
| | - Tingting Zhang
- Department of Clinical Laboratory, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, People’s Republic of China
| | - Dingwen Gui
- Department of Urology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, People’s Republic of China
| | - Qin Liu
- Department of Breast Surgery, Thyroid Surgery, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, People’s Republic of China
| |
Collapse
|
12
|
Zhou W, Hu Y, Wang B, Yuan L, Ma J, Meng X. Aberrant expression of PELI1 caused by Jagged1 accelerates the malignant phenotype of pancreatic cancer. Cell Signal 2023; 111:110877. [PMID: 37657587 DOI: 10.1016/j.cellsig.2023.110877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/13/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Pancreatic cancer is one of the most aggressive cancers. PELI1 has been reported to promote cell survival and proliferation in multiple cancers. As of now, the role of PELI1 in pancreatic cancer is largely unknown. Here, we found that the PELI1 mRNA was higher expressed in pancreatic tumor tissues than in adjacent normal tissues, and the high PELI1 level in pancreatic cancer patients had a short survival time compared with the low level. Moreover, the results showed that PELI1 promoted cell proliferation, migration, and invasion, and inhibited apoptosis in vitro. Xenograft tumor experiments were used to determine the biological function of PELI1, and the results showed that PELI1 promoted tumor growth in vivo. Additionally, we found that Jagged1 activated PELI1 transcription in pancreatic cancer cells. To sum up, our results show that PELI1 affects the malignant phenotype of pancreatic cancer.
Collapse
Affiliation(s)
- Wenyang Zhou
- Department of Pathology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Yuying Hu
- Department of Pathology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Baosheng Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Lina Yuan
- Department of Pathology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Jia Ma
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Xiangpeng Meng
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
13
|
He D, Tang H, Yang X, Liu X, Zhang Y, Shi J. Elaboration and validation of a prognostic signature associated with disulfidoptosis in lung adenocarcinoma, consolidated with integration of single-cell RNA sequencing and bulk RNA sequencing techniques. Front Immunol 2023; 14:1278496. [PMID: 37965333 PMCID: PMC10641741 DOI: 10.3389/fimmu.2023.1278496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023] Open
Abstract
Background Lung adenocarcinoma (LUAD), the predominant subtype of non-small cell lung cancer (NSCLC), remains a pervasive global public health concern. Disulfidoptosis, a nascent form of regulated cell death (RCD), presents an emerging field of inquiry. Currently, investigations into disulfidoptosis are in their initial stages. Our undertaking sought to integrate single-cell RNA sequencing (scRNA-seq) in conjunction with traditional bulk RNA sequencing (bulk RNA-seq) methodologies, with the objective of delineating genes associated with disulfidoptosis and subsequently prognosticating the clinical outcomes of LUAD patients. Methods Initially, we conducted an in-depth examination of the cellular composition disparities existing between LUAD and normal samples using scRNA-seq data sourced from GSE149655. Simultaneously, we scrutinized the expression patterns of disulfidoptosis-associated gene sets across diverse cell types. Subsequently, leveraging the bulk RNA-seq data, we formulated disulfidoptosis-related prognostic risk signatures (DRPS) employing LASSO-Cox regression. This was accomplished by focusing on genes implicated in disulfidoptosis that exhibited differential expression within endothelial cells (ECs). Sequentially, the robustness and precision of the DRPS model were rigorously verified through both internal and external validation datasets. In parallel, we executed single-cell trajectory analysis to delve into the differentiation dynamics of ECs. Concluding our study, we undertook a comprehensive investigation encompassing various facets. These included comparative assessments of enrichment pathways, clinicopathological parameters, immune cell abundance, immune response-associated genes, impacts of immunotherapy, and drug predictions among distinct risk cohorts. Results The scrutiny of scRNA-seq data underscored discernible disparities in cellular composition between LUAD and normal samples. Furthermore, disulfidoptosis-associated genes exhibited marked discrepancies within endothelial cells (ECs). Consequently, we formulated the Disulfidoptosis-Related Prognostic Signature (DRPS) to facilitate prognostic prediction. The prognostic nomogram based on the risk score effectively demonstrated DRPS's robust capacity to prognosticate survival outcomes. This assertion was corroborated by rigorous assessments utilizing both internal and external validation sets, thus affirming the commendable predictive accuracy and enduring stability of DRPS. Functional enrichment analysis shed light on the significant correlation of DRPS with pathways intrinsic to the cell cycle. Subsequent analysis unveiled correlations between DRPS and gene mutations characteristic of LUAD, as well as indications of an immunosuppressive status. Through drug prediction, we explored potential therapeutic agents for low-risk patients. Concluding our investigation, qRT-PCR experiments confirmed the heightened expression levels of EPHX1, LDHA, SHC1, MYO6, and TLE1 in lung cancer cell lines.
Collapse
Affiliation(s)
- Dabao He
- Department of Laboratory Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Hengfeng Tang
- Department of Laboratory Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Xiaoling Yang
- Department of Laboratory Medicine, Shenzhen Baoan District Songgang People’s Hospital, Shenzhen, China
| | - Xiaohong Liu
- Department of Oncology, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Yipeng Zhang
- Department of Laboratory Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Junzhu Shi
- Department of Laboratory Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| |
Collapse
|
14
|
Sen P, Ghosh SS. γ-Secretase Inhibitor Potentiates the Activity of Suberoylanilide Hydroxamic Acid by Inhibiting Its Ability to Induce Epithelial to Mesenchymal Transition and Stemness via Notch Pathway Activation in Triple-Negative Breast Cancer Cells. ACS Pharmacol Transl Sci 2023; 6:1396-1415. [PMID: 37854616 PMCID: PMC10580388 DOI: 10.1021/acsptsci.3c00099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Indexed: 10/20/2023]
Abstract
Histone deacetylase inhibitors, such as suberoylanilide hydroxamic acid (SAHA), possess great therapeutic value for triple-negative breast cancer patients. However, their inherent ability to induce epithelial to mesenchymal transition in various malignancies has been of greater concern. Herein, we hypothesize that SAHA facilitates epithelial to mesenchymal transition (EMT) via activation of the Notch pathway. From the literature survey, it is evident that histone deacetylase mediates the formation of the co-repressor complex upon interacting with the DNA binding domain, thereby inhibiting the transcription of the Notch downstream genes. Hence, we hypothesize that the use of SAHA facilitates the transcriptional activation of the Notch target genes, by disrupting the co-repressor complex and recruiting the coactivator complex, thereby facilitating EMT. In this study, we have observed that SAHA upregulates the expression profile of the Notch downstream proteins (such as Notch intracellular domain, Hes-1, c-Myc, etc.) and the Notch ligands (such as Jagged-1 and Jagged-2), thereby aberrantly activating the signaling pathway. Therefore, we have focused on combination therapy using a γ-secretase inhibitor LY411575 that would enhance the efficacy of SAHA by blocking the canonical Notch pathway mediated via its intracellular domain. It was observed that co-treatment significantly mediates apoptosis, generates cellular reactive oxygen species, depolarizes mitochondria, and diminishes the stemness properties. Besides, it also mediates autophagy-independent cell death and diminishes the expression of inflammatory cytokines, along with the downregulation in the expression of the Notch downstream genes and mesenchymal markers. Altogether, our study provides a mechanistic basis for combating EMT potentiated by SAHA, which could be utilized as a rational strategy for the treatment of solid tumors, especially triple-negative breast cancer.
Collapse
Affiliation(s)
- Plaboni Sen
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Siddhartha Sankar Ghosh
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Centre
for Nanotechnology, Indian Institute of
Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
15
|
Jin L, Long Y, Zhang Q, Long J. MiRNAs regulate cell communication in osteogenesis-angiogenesis coupling during bone regeneration. Mol Biol Rep 2023; 50:8715-8728. [PMID: 37642761 DOI: 10.1007/s11033-023-08709-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/25/2023] [Indexed: 08/31/2023]
Abstract
Bone regeneration is a complex process that requires not only the participation of multiple cell types, but also signal communication between cells. The two basic processes of osteogenesis and angiogenesis are closely related to bone regeneration and bone homeostasis. H-type vessels are a subtype of bone vessels characterized by high expression of CD31 and EMCN. These vessels play a key role in the regulation of bone regeneration and are important mediators of coupling between osteogenesis and angiogenesis. Molecular regulation between different cell types is important for coordination of osteogenesis and angiogenesis that promotes bone regeneration. MiRNAs are small non-coding RNAs that predominantly regulate gene expression at the post-transcriptional level and are closely related to cell communication. Specifically, miRNAs transduce external stimuli through various cell signaling pathways and cause a series of physiological and pathological effects. They are also deeply involved in the bone repair process. This review focuses on three signaling pathways related to osteogenesis-angiogenesis coupling, as well as the miRNAs involved in these pathways. Elucidation of the molecular mechanisms governing osteogenesis and angiogenesis is of great significance for bone regeneration.
Collapse
Affiliation(s)
- Liangyu Jin
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, PR China
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, 610041, PR China
- National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, PR China
| | - Yifei Long
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, PR China
- National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, PR China
| | - Qiuling Zhang
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, PR China
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, 610041, PR China
- National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, PR China
| | - Jie Long
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, PR China.
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, 610041, PR China.
- National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
16
|
Kaimari S, Kamalakar A, Goudy SL. Biomedical engineering approaches for the delivery of JAGGED1 as a potential tissue regenerative therapy. Front Bioeng Biotechnol 2023; 11:1217211. [PMID: 37781534 PMCID: PMC10534981 DOI: 10.3389/fbioe.2023.1217211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
JAG1 is a ligand that activates the NOTCH signaling pathway which plays a crucial role in determining cell fate behavior through cell-to-cell signaling. JAG1-NOTCH signaling is required for mesenchymal stem cell (MSC) differentiation into cardiomyocytes and cranial neural crest (CNC) cells differentiation into osteoblasts, making it a regenerative candidate for clinical therapy to treat craniofacial bone loss and myocardial infarction. However, delivery of soluble JAG1 has been found to inhibit NOTCH signaling due to the requirement of JAG1 presentation in a bound form. For JAG1-NOTCH signaling to occur, JAG1 must be immobilized within a scaffold and the correct orientation between the NOTCH receptor and JAG1 must be achieved. The lack of clinically translatable JAG1 delivery methods has driven the exploration of alternative immobilization approaches. This review discusses the role of JAG1 in disease, the clinical role of JAG1 as a treatment, and summarizes current approaches for JAG1 delivery. An in-depth review was conducted on literature that used both in vivo and in vitro delivery models and observed the canonical versus non-canonical NOTCH pathway activated by JAG1. Studies were then compared and evaluated based on delivery success, functional outcomes, and translatability. Delivering JAG1 to harness its ability to control cell fate has the potential to serve as a therapeutic for many diseases.
Collapse
Affiliation(s)
- Sundus Kaimari
- Department of Pediatric Otolaryngology, Emory University, Atlanta, GA, United States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Archana Kamalakar
- Department of Pediatric Otolaryngology, Emory University, Atlanta, GA, United States
| | - Steven L. Goudy
- Department of Pediatric Otolaryngology, Emory University, Atlanta, GA, United States
- Department of Pediatric Otolaryngology, Children’s Healthcare of Atlanta, Atlanta, GA, United States
| |
Collapse
|
17
|
Yang Q, Wang S, He Y, Zhang Y. The research progress on the molecular mechanism of corneal cross-linking in keratoconus treatment. Cont Lens Anterior Eye 2023; 46:101795. [PMID: 36549953 DOI: 10.1016/j.clae.2022.101795] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
Keratoconus (KC) is a corneal anomaly that is manifested in a limited cone-like bulge with corneal thinning. Many molecules in the cornea change during the development of KC, including various components of the extracellular matrix, cytokines, cell connection, and cell adhesion-related proteins. Several treatment options are available, with corneal cross-linking (CXL) being the treatment of choice for early KC. However, postoperative complications have been reported in some CXL patients, mainly caused by corneal epithelial resection. Despite the fact that some novel approaches have helped to reduce some of the initial post-operative issues, their effectiveness seems to be inferior to that of the original CXL. To keep effectiveness while avoiding these negative effects, it is necessary to study the mechanism of CXL in KC treatment at the molecular level. This article provides a review of the molecular mechanism of CXL in the treatment of KC from four aspects: enzyme activity, signal transduction pathway, corneal-related proteins, and other KC-related molecules, further confirming the feasibility of CXL treatment of KC, providing new ideas for improving CXL.
Collapse
Affiliation(s)
- Qingyu Yang
- Department of Ophthalmology, 2nd Hospital of Jilin University, Changchun 130041, China.
| | - Shurong Wang
- Department of Ophthalmology, 2nd Hospital of Jilin University, Changchun 130041, China.
| | - Yuxi He
- Department of Ophthalmology, 2nd Hospital of Jilin University, Changchun 130041, China
| | - Yan Zhang
- Department of Ophthalmology, 2nd Hospital of Jilin University, Changchun 130041, China.
| |
Collapse
|
18
|
Novel scFv against Notch Ligand JAG1 Suitable for Development of Cell Therapies toward JAG1-Positive Tumors. Biomolecules 2023; 13:biom13030459. [PMID: 36979394 PMCID: PMC10046313 DOI: 10.3390/biom13030459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
The Notch signaling ligand JAG1 is overexpressed in various aggressive tumors and is associated with poor clinical prognosis. Hence, therapies targeting oncogenic JAG1 hold great potential for the treatment of certain tumors. Here, we report the identification of specific anti-JAG1 single-chain variable fragments (scFvs), one of them endowing chimeric antigen receptor (CAR) T cells with cytotoxicity against JAG1-positive cells. Anti-JAG1 scFvs were identified from human phage display libraries, reformatted into full-length monoclonal antibodies (Abs), and produced in mammalian cells. The characterization of these Abs identified two specific anti-JAG1 Abs (J1.B5 and J1.F1) with nanomolar affinities. Cloning the respective scFv sequences in our second- and third-generation CAR backbones resulted in six anti-JAG1 CAR constructs, which were screened for JAG1-mediated T-cell activation in Jurkat T cells in coculture assays with JAG1-positive cell lines. Studies in primary T cells demonstrated that one CAR harboring the J1.B5 scFv significantly induced effective T-cell activation in the presence of JAG1-positive, but not in JAG1-knockout, cancer cells, and enabled specific killing of JAG1-positive cells. Thus, this new anti-JAG1 scFv represents a promising candidate for the development of cell therapies against JAG1-positive tumors.
Collapse
|
19
|
Yuan B, Kikuchi H, Li J, Kawabata A, Yao K, Takagi N, Okazaki M. Cytotoxic Effects of Darinaparsin, a Novel Organic Arsenical, against Human Leukemia Cells. Int J Mol Sci 2023; 24:2282. [PMID: 36768603 PMCID: PMC9916914 DOI: 10.3390/ijms24032282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
To explore the molecular mechanisms of action underlying the antileukemia activities of darinaparsin, an organic arsenical approved for the treatment of peripheral T-cell lymphoma in Japan, cytotoxicity of darinaparsin was evaluated in leukemia cell lines NB4, U-937, MOLT-4 and HL-60. Darinaparsin was a more potent cytotoxic than sodium arsenite, and induced apoptosis/necrosis in NB4 and HL-60 cells. In NB4 cells exhibiting the highest susceptibility to darinaparsin, apoptosis induction was accompanied by the activation of caspase-8/-9/-3, a substantial decrease in Bid expression, and was suppressed by Boc-D-FMK, a pancaspase inhibitor, suggesting that darinaparsin triggered a convergence of the extrinsic and intrinsic pathways of apoptosis via Bid truncation. A dramatic increase in the expression level of γH2AX, a DNA damage marker, occurred in parallel with G2/M arrest. Activation of p53 and the inhibition of cdc25C/cyclin B1/cdc2 were concomitantly observed in treated cells. Downregulation of c-Myc, along with inactivation of E2F1 associated with the activation of Rb, was observed, suggesting the critical roles of p53 and c-Myc in darinaparsin-mediated G2/M arrest. Trolox, an antioxidative reagent, suppressed the apoptosis induction but failed to correct G2/M arrest, suggesting that oxidative stress primarily contributed to apoptosis induction. Suppression of Notch1 signaling was also confirmed. Our findings provide novel insights into molecular mechanisms underlying the cytotoxicity of darinaparsin and strong rationale for its new clinical application for patients with different types of cancer.
Collapse
Affiliation(s)
- Bo Yuan
- Laboratory of Pharmacology, Graduate School of Pharmaceutical Sciences, Josai University, Sakado 350-0295, Japan
| | - Hidetomo Kikuchi
- Laboratory of Pharmacotherapy, Graduate School of Pharmaceutical Sciences, Josai University, Sakado 350-0295, Japan
| | - Jingmei Li
- Laboratory of Pharmacology, Graduate School of Pharmaceutical Sciences, Josai University, Sakado 350-0295, Japan
| | - Atsushi Kawabata
- Laboratory of Pharmacology, Graduate School of Pharmaceutical Sciences, Josai University, Sakado 350-0295, Japan
| | - Kozo Yao
- Product Development Division, Solasia Pharma K.K., Tokyo 105-0011, Japan
| | - Norio Takagi
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, Hachioji 192-0392, Japan
| | - Mari Okazaki
- Laboratory of Pharmacology, Graduate School of Pharmaceutical Sciences, Josai University, Sakado 350-0295, Japan
| |
Collapse
|
20
|
You WK, Schuetz TJ, Lee SH. Targeting the DLL/Notch Signaling Pathway in Cancer: Challenges and Advances in Clinical Development. Mol Cancer Ther 2023; 22:3-11. [PMID: 36223541 PMCID: PMC9808372 DOI: 10.1158/1535-7163.mct-22-0243] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/28/2022] [Accepted: 10/07/2022] [Indexed: 02/03/2023]
Abstract
The DLL/Notch signaling pathway plays an important role in cancer as a key driver in maintaining cancer stemness and inducing tumor angiogenesis. Many different types of DLL/Notch inhibitors have been developed and explored in clinical trials for cancer treatment, including small-molecule compounds to inhibit gamma-secretase and antibodies targeting Notch ligands or receptors. Despite promising efficacy of these inhibitors in preclinical studies, the overall clinical outcomes have been insufficient to advance to the next stage of clinical development primarily due to safety concerns or modest efficacy. To overcome the narrow therapeutic window of DLL/Notch inhibitors, diverse strategies for improving the balance between the safety and efficacy are currently being explored. Here, we review the clinical perspective and potential of DLL/Notch inhibitors as anticancer agents based on recent results from multiple clinical studies. An antibody specifically targeting Notch ligands or receptors may offer a better approach to reduce concerns about toxicity derived from broad-spectrum DLL/Notch blockers. In addition, combination therapy with an angiogenesis inhibitor targeting VEGF could be a better option for increasing anticancer efficacy. Taken together, the results of clinical trials suggest a bispecific antibody blocking the DLL/Notch and VEGF/VEGFR signaling pathways as a promising approach for effective anticancer treatment.
Collapse
Affiliation(s)
- Weon-Kyoo You
- R&D Center, ABL Bio, Inc., Seongnam-si, Republic of Korea.,Corresponding Author: Weon-Kyoo You, R&D, R&D center, ABL Bio, Inc., 2F, 16 Daewangpangyo-ro, 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea. Phone: 8231-8018-9803; Fax: 8231-8018-9836; E-mail:
| | | | - Sang Hoon Lee
- R&D Center, ABL Bio, Inc., Seongnam-si, Republic of Korea
| |
Collapse
|
21
|
Taheri F, Ebrahimi SO, Heidari R, Pour SN, Reiisi S. Mechanism and function of miR-140 in human cancers: A review and in silico study. Pathol Res Pract 2023; 241:154265. [PMID: 36509008 DOI: 10.1016/j.prp.2022.154265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/27/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
MicroRNA-140 (miR-140) acts as a tumor suppressor and plays a vital role in cell biological functions such as cell proliferation, apoptosis, and DNA repair. The expression of this miRNA has been shown to be considerably decreased in cancer tissues and cell lines compared with normal adjacent tissues. Consequently, aberrant expression of some miR-140 target genes can lead to the initiation and progression of various human cancers, such as breast cancer, gastrointestinal cancers, lung cancer, and prostate cancer. The dysregulation of the miR-140 network also affects cell proliferation, invasion, metastasis, and apoptosis of cancer cells by affecting various signaling pathways. Besides, up-regulation of miR-140 could enhance the efficacy of chemotherapeutic agents in different cancer. We aimed to cover most aspects of miR-140 function in cancer development and address its importance in different stages of cancer progression.
Collapse
Affiliation(s)
- Forough Taheri
- Department of Genetics, Sharekord Branch, Islamic Azad University, Sharekord, Iran
| | - Seyed Omar Ebrahimi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Razieh Heidari
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Somaye Nezamabadi Pour
- Department of Obstetrics and Gynecology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Somayeh Reiisi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran.
| |
Collapse
|
22
|
Evolutionary Conserved Short Linear Motifs Provide Insights into the Cellular Response to Stress. Antioxidants (Basel) 2022; 12:antiox12010096. [PMID: 36670957 PMCID: PMC9854524 DOI: 10.3390/antiox12010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/22/2022] [Accepted: 12/22/2022] [Indexed: 01/03/2023] Open
Abstract
Short linear motifs (SLiMs) are evolutionarily conserved functional modules of proteins composed of 3 to 10 residues and involved in multiple cellular functions. Here, we performed a search for SLiMs that exert sequence similarity to two segments of alpha-fetoprotein (AFP), a major mammalian embryonic and cancer-associated protein. Biological activities of the peptides, LDSYQCT (AFP14-20) and EMTPVNPGV (GIP-9), have been previously confirmed under in vitro and in vivo conditions. In our study, we retrieved a vast array of proteins that contain SLiMs of interest from both prokaryotic and eukaryotic species, including viruses, bacteria, archaea, invertebrates, and vertebrates. Comprehensive Gene Ontology enrichment analysis showed that proteins from multiple functional classes, including enzymes, transcription factors, as well as those involved in signaling, cell cycle, and quality control, and ribosomal proteins were implicated in cellular adaptation to environmental stress conditions. These include response to oxidative and metabolic stress, hypoxia, DNA and RNA damage, protein degradation, as well as antimicrobial, antiviral, and immune response. Thus, our data enabled insights into the common functions of SLiMs evolutionary conserved across all taxonomic categories. These SLiMs can serve as important players in cellular adaptation to stress, which is crucial for cell functioning.
Collapse
|
23
|
JAG1 is associated with the prognosis and metastasis in breast cancer. Sci Rep 2022; 12:21986. [PMID: 36539520 PMCID: PMC9768120 DOI: 10.1038/s41598-022-26241-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Jagged canonical Notch ligand 1 (JAG1) regulates the progression of many cancers by the Notch signaling pathway, but its role in breast cancer (BC) remains unclear. In this research, JAG1 protein expression in BC tissues was detected by immunohistochemistry. The association between JAG1 and clinical significance was analyzed. The effect of JAG1 on malignant behaviors of BC cells was demonstrated by in vitro experiments. JAG1 expression in BC tissues was higher than that in para-carcinoma tissues. High JAG1 expression was significantly linked to advanced lymph node metastasis, distant metastasis, and the TNM stage. JAG1 was an independent prognostic factor for BC patients. JAG1 knockdown inhibited the proliferation, motility, migration, and invasion of BC cells, and weakened adhesion and penetration abilities to the blood-brain barrier, whereas JAG1 overexpression had the opposite effects. JAG1 has the potential to be a prognostic marker and therapeutic target for BC patients.
Collapse
|
24
|
Ye M, Du J, Wang X, Xiu L, Liu X, Gu Y, Pei B, Sun D, Yue X. Xiaotansanjiefang inhibits the viability of colorectal cancer cells via Jagged 1/Notch 3/Snail signaling pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:2957-2964. [PMID: 36039874 PMCID: PMC9804677 DOI: 10.1002/tox.23651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
The purpose of this study is to explore the anti-colorectal cancer of Xiaotansanjiefang, a famous traditional Chinese medicine, and its potential anti-cancer mechanism. In this study, the HCT116 cell spheres were prepared as in vitro study model. We found the Xiaotansanjiefang medication was able to inhibit the proliferation of HCT116 cell spheres in a dose-dependent manner, especially in 3 and 6 mg/ml Xiaotansanjiefang medication treated groups. We also found the high concentration of Xiaotansanjiefang medication could suppress the migration and promote the apoptosis of HCT116 cell spheres. Moreover, we found the expression of Jagged 1, Notch 3, Snail, and Hes 1 were decreased in HCT116 cell spheres treated with Xiaotansanjiefang medication. Furthermore, the proliferation and apoptosis behaviors of HCT116 cell spheres treated with Xiaotansanjiefang medication were reversed with the addition of Jagged 1 Fc chimera protein. The expression of Jagged 1, Notch 3, Snail, and Hes 1 were also increased again in HCT116 cells treated with Xiaotansanjiefang medication plus with Jagged 1 Fc chimera protein. The presented study may provide a promising strategy to treat and prevent colorectal cancer.
Collapse
Affiliation(s)
- Min Ye
- Department of Traditional Chinese Medicine, Changzheng HospitalSecond Military Medical UniversityShanghaiChina
| | - Jiaqi Du
- Department of Bai's Proctology, Shuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xiaowei Wang
- Department of Traditional Chinese Medicine, Changzheng HospitalSecond Military Medical UniversityShanghaiChina
| | - Lijuan Xiu
- Department of Traditional Chinese Medicine, Changzheng HospitalSecond Military Medical UniversityShanghaiChina
| | - Xuan Liu
- Department of Traditional Chinese Medicine, Changzheng HospitalSecond Military Medical UniversityShanghaiChina
| | - Yufang Gu
- Department of Traditional Chinese Medicine, Changzheng HospitalSecond Military Medical UniversityShanghaiChina
| | - Bei Pei
- Department of Traditional Chinese Medicine, Changzheng HospitalSecond Military Medical UniversityShanghaiChina
| | - Dazhi Sun
- Department of Traditional Chinese Medicine, Changzheng HospitalSecond Military Medical UniversityShanghaiChina
| | - Xiaoqiang Yue
- Department of Traditional Chinese Medicine, Changzheng HospitalSecond Military Medical UniversityShanghaiChina
| |
Collapse
|
25
|
Li C, Chen Z, Gao J, Tang T, Zhou L, Zhang G, Zhang D, Shen C, Guo L, Fu T. MIR4435-2HG in exosomes promotes gastric carcinogenesis by inducing M2 polarization in macrophages. Front Oncol 2022; 12:1017745. [PMID: 36483041 PMCID: PMC9723220 DOI: 10.3389/fonc.2022.1017745] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/19/2022] [Indexed: 01/25/2023] Open
Abstract
Gastric cancer (GC) is a cancer with a high mortality rate. lncRNAs play a role in regulating GC tumorigenesis. In this paper, we analyzed differentially expressed lncRNAs between GC and adjacent normal tissues using multiple bioinformatics tools to identify new potential targets in GC. Cell viability and migration ability were detected using the Cell Counting Kit-8 (CCK-8) and transwell assays, MIR4435-2HG was negatively correlated with the survival rate of GC patients, and by inhibiting the activity of MIR4435-2HG, the viability and migration ability of GC cells could be reduced. In addition, RT- qPCR and western blot to detect gene and protein level expression, transmission electron microscopy and nanoparticle tracking analysis (NTA) to study the efficiency of exosome isolation, and flow cytometry to observe cell differentiation were employed, delivery of MIR4435-2HG shRNA via MKN45 cell-derived exosomes significantly reversed the MKN45 exosome-induced M2 polarization in macrophages. Furthermore, the low expression of MIR4435-2HG in MKN45 cell-derived exosomes inhibited the Jagged1/Notch and JAK1/STAT3 pathways in macrophages; MIR4435-2HG downregulated exosomes were found to significantly inhibit GC tumor growth in vivo by establishing a mouse model. In short, MKN45 cell-derived exosomes deliver lncRNA MIR4435-2HG, which promotes gastric carcinogenesis by inducing macrophage M2 polarization.
Collapse
Affiliation(s)
- Chaofeng Li
- Gastrointestinal Surgery Department, China-Japan Friendship Hospital, Beijing, China
| | - Zhengju Chen
- Nanchang Institute of Technology, College of Medicine, China. Pooling Medical Research Institutes, Hangzhou, China,Pooling Medical Research Institutes, Hangzhou, Beijing, China
| | - Jinli Gao
- Department of Pathology, East Hospital, Tongji University, Shanghai, China
| | - Tao Tang
- Gastrointestinal Surgery Department, China-Japan Friendship Hospital, Beijing, China
| | - Lei Zhou
- Gastrointestinal Surgery Department, China-Japan Friendship Hospital, Beijing, China
| | - Guochao Zhang
- Gastrointestinal Surgery Department, China-Japan Friendship Hospital, Beijing, China
| | - Dongdong Zhang
- Gastrointestinal Surgery, Peking University International Hospital, Beijing, China
| | - Chao Shen
- Gastrointestinal Surgery, Peking University International Hospital, Beijing, China
| | - Lei Guo
- Pooling Medical Research Institutes, Hangzhou, Beijing, China,*Correspondence: Tao Fu, ; Lei Guo,
| | - Tao Fu
- Gastrointestinal Surgery Department, China-Japan Friendship Hospital, Beijing, China,Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China,*Correspondence: Tao Fu, ; Lei Guo,
| |
Collapse
|
26
|
Li R, Wang TY, Shelp-Peck E, Wu SP, DeMayo FJ. The single-cell atlas of cultured human endometrial stromal cells. F&S SCIENCE 2022; 3:349-366. [PMID: 36089208 PMCID: PMC9669198 DOI: 10.1016/j.xfss.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To systematically analyze the cell composition and transcriptome of primary human endometrial stromal cells (HESCs) and transformed human endometrial stromal cells (THESCs). DESIGN The primary HESCs from 3 different donors and 1 immortalized THESC were collected from the human endometrium at the midsecretory phase and cultured in vitro. SETTING Academic research laboratory. PATIENT(S) None. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Single-cell ribonucleic acid sequencing analysis. RESULT(S) We found the individual differences among the primary HESCs and bigger changes between the primary HESCs and THESCs. Cell clustering with or without integration identified cell clusters belonging to mature, proliferative, and active fibroblasts that were conserved across all samples at different stages of the cell cycles with intensive cell communication signals. All primary HESCs and THESCs can be correlated with some subpopulations of fibroblasts in the human endometrium. CONCLUSION(S) Our study indicated that the primary HESCs and THESCs displayed conserved cell characters and distinct cell clusters. Mature, proliferative, and active fibroblasts at different stages or cell cycles were detected across all samples and presented with a complex cell communication network. The cultured HESCs and THESCs retained the features of some subpopulations within the human endometrium.
Collapse
Affiliation(s)
- Rong Li
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, North Carolina
| | - Tian-Yuan Wang
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, North Carolina
| | - Elinor Shelp-Peck
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, North Carolina; The Biological Sciences Department, The Department of Chemistry, Physics, and Geosciences, Meredith College, Raleigh, North Carolina
| | - San-Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, North Carolina
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, North Carolina.
| |
Collapse
|
27
|
D’Amico M, De Amicis F. Aberrant Notch signaling in gliomas: a potential landscape of actionable converging targets for combination approach in therapies resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:939-953. [PMID: 36627893 PMCID: PMC9771760 DOI: 10.20517/cdr.2022.46] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/06/2022] [Accepted: 09/02/2022] [Indexed: 11/06/2022]
Abstract
The current therapeutic protocols and prognosis of gliomas still depend on clinicopathologic and radiographic characteristics. For high-grade gliomas, the standard of care is resection followed by radiotherapy plus temozolomide chemotherapy. However, treatment resistance develops due to different mechanisms, among which is the dynamic interplay between the tumor and its microenvironment. Different signaling pathways cause the proliferation of so-called glioma stem cells, a minor cancer cell population with stem cell-like characteristics and aggressive phenotype. In the last decades, numerous studies have indicated that Notch is a crucial pathway that maintains the characteristics of resistant glioma stem cells. Data obtained from preclinical models indicate that downregulation of the Notch pathway could induce multifaceted drug sensitivity, acting on the expression of drug-transporter proteins, inducing epithelial-mesenchymal transition, and shaping the tumor microenvironment. This review provides a brief overview of the published data supporting the roles of Notch in drug resistance and demonstrates how potential novel strategies targeting Notch could become an efficacious action to improve the therapy of high-grade glioma to overcome drug resistance.
Collapse
Affiliation(s)
- Maria D’Amico
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Rende 87036, Italy
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Rende 87036, Italy.,Health Center, University of Calabria, Via P. Bucci, Rende 87036, Italy.,Correspondence to: Prof. Francesca De Amicis, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Rende 87036, Italy. E-mail:
| |
Collapse
|
28
|
Yuan B, Li J, Miyashita SI, Kikuchi H, Xuan M, Matsuzaki H, Iwata N, Kamiuchi S, Sunaga K, Sakamoto T, Hibino Y, Okazaki M. Enhanced Cytotoxic Effects of Arenite in Combination with Active Bufadienolide Compounds against Human Glioblastoma Cell Line U-87. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196577. [PMID: 36235115 PMCID: PMC9571627 DOI: 10.3390/molecules27196577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022]
Abstract
The cytotoxicity of a trivalent arsenic derivative (arsenite, AsIII) combined with arenobufagin or gamabufotalin was evaluated in human U-87 glioblastoma cells. Synergistic cytotoxicity with upregulated intracellular arsenic levels was observed, when treated with AsIII combined with arenobufagin instead of gamabufotalin. Apoptosis and the activation of caspase-9/-8/-3 were induced by AsIII and further strengthened by arenobufagin. The magnitude of increase in the activities of caspase-9/-3 was much greater than that of caspase-8, suggesting that the intrinsic pathway played a much more important role in the apoptosis. An increase in the number of necrotic cells, enhanced LDH leakage, and intensified G2/M phase arrest were observed. A remarkable increase in the expression level of γH2AX, a DNA damage marker, was induced by AsIII+arenobufagin. Concomitantly, the activation of autophagy was observed, suggesting that autophagic cell death associated with DNA damage was partially attributed to the cytotoxicity of AsIII+arenobufagin. Suppression of Notch signaling was confirmed in the combined regimen-treated cells, suggesting that inactivation of Jagged1/Notch signaling would probably contribute to the synergistic cytotoxic effect of AsIII+arenobufagin. Given that both AsIII and arenobufagin are capable of penetrating into the blood-brain barrier, our findings may provide fundamental insight into the clinical application of the combined regimen for glioblastoma.
Collapse
Affiliation(s)
- Bo Yuan
- Laboratory of Pharmacology, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
- Correspondence: ; Tel./Fax: +81-49-271-8026
| | - Jingmei Li
- Laboratory of Immunobiochemistry, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Shin-Ich Miyashita
- National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 3, 1-1-1 Umezono, Tsukuba 305-8563, Ibaraki, Japan
| | - Hidetomo Kikuchi
- Laboratory of Pharmacotherapy, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Meiyan Xuan
- Laboratory of Organic and Medicinal Chemistry; Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Hirokazu Matsuzaki
- Laboratory of Pharmacology, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Naohiro Iwata
- Laboratory of Immunobiochemistry, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Shinya Kamiuchi
- Laboratory of Immunobiochemistry, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Katsuyoshi Sunaga
- Laboratory of Pharmacotherapy, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Takeshi Sakamoto
- Laboratory of Organic and Medicinal Chemistry; Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Yasuhide Hibino
- Laboratory of Immunobiochemistry, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Mari Okazaki
- Laboratory of Pharmacology, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| |
Collapse
|
29
|
Rahman MM, Sarker MT, Alam Tumpa MA, Yamin M, Islam T, Park MN, Islam MR, Rauf A, Sharma R, Cavalu S, Kim B. Exploring the recent trends in perturbing the cellular signaling pathways in cancer by natural products. Front Pharmacol 2022; 13:950109. [PMID: 36160435 PMCID: PMC9498834 DOI: 10.3389/fphar.2022.950109] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/15/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is commonly thought to be the product of irregular cell division. According to the World Health Organization (WHO), cancer is the major cause of death globally. Nature offers an abundant supply of bioactive compounds with high therapeutic efficacy. Anticancer effects have been studied in a variety of phytochemicals found in nature. When Food and Drug Administration (FDA)-approved anticancer drugs are combined with natural compounds, the effectiveness improves. Several agents have already progressed to clinical trials based on these promising results of natural compounds against various cancer forms. Natural compounds prevent cancer cell proliferation, development, and metastasis by inducing cell cycle arrest, activating intrinsic and extrinsic apoptosis pathways, generating reactive oxygen species (ROS), and down-regulating activated signaling pathways. These natural chemicals are known to affect numerous important cellular signaling pathways, such as NF-B, MAPK, Wnt, Notch, Akt, p53, AR, ER, and many others, to cause cell death signals and induce apoptosis in pre-cancerous or cancer cells without harming normal cells. As a result, non-toxic "natural drugs" taken from nature's bounty could be effective for the prevention of tumor progression and/or therapy of human malignancies, either alone or in combination with conventional treatments. Natural compounds have also been shown in preclinical studies to improve the sensitivity of resistant cancers to currently available chemotherapy agents. To summarize, preclinical and clinical findings against cancer indicate that natural-sourced compounds have promising anticancer efficacy. The vital purpose of these studies is to target cellular signaling pathways in cancer by natural compounds.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. Taslim Sarker
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Mst. Afroza Alam Tumpa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. Yamin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Tamanna Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, Pakistan
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
30
|
Ma W, Wan Y, Zhang J, Yao J, Wang Y, Lu J, Liu H, Huang X, Zhang X, Zhou H, He Y, Wu D, Wang J, Zhao Y. Growth arrest‐specific protein 2 (
GAS2
) interacts with
CXCR4
to promote T‐cell leukemogenesis partially via
c‐MYC. Mol Oncol 2022; 16:3720-3734. [PMID: 36054080 PMCID: PMC9580887 DOI: 10.1002/1878-0261.13306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 08/08/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022] Open
Abstract
Although growth arrest‐specific protein 2 (GAS2) promotes the growth of T‐cell acute lymphoblastic leukemia (T‐ALL) cells in culture, the effect of GAS2 on T‐cell leukemogenesis has not been studied, and the mechanism remains unclear. In the present study, xenograft studies showed that GAS2 silencing impaired T‐cell leukemogenesis and decreased leukemic cell infiltration. Mechanistically, GAS2 regulated the protein expression of C‐X‐C chemokine receptor type 4 (CXCR4) rather than its transcript expression. Immunoprecipitation revealed that GAS2 interacted with CXCR4, and confocal analysis showed that GAS2 was partially co‐expressed with CXCR4, which provided a strong molecular basis for GAS2 to regulate CXCR4 expression. Importantly, CXCR4 overexpression alleviated the inhibitory effect of GAS2 silencing on the growth and migration of T‐ALL cells. Moreover, GAS2 or CXCR4 silencing inhibited the expression of NOTCH1 and c‐MYC. Forced expression of c‐MYC rescued the growth suppression induced by GAS2 or CXCR4 silencing. Meanwhile, GAS2 deficiency, specifically in blood cells, had a mild effect on normal hematopoiesis, including T‐cell development, and GAS2 silencing did not affect the growth of normal human CD3+ or CD34+ cells. Overall, our data indicate that GAS2 promotes T‐cell leukemogenesis through its interaction with CXCR4 to activate NOTCH1/c‐MYC, whereas impaired GAS2 expression has a mild effect on normal hematopoiesis. Therefore, our study suggests that targeting the GAS2/CXCR4 axis is a potential therapeutic strategy for T‐ALL.
Collapse
Affiliation(s)
- Wenjuan Ma
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology Soochow University Suzhou 215123 China
| | - Yan Wan
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology Soochow University Suzhou 215123 China
| | - Jianxiang Zhang
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology Soochow University Suzhou 215123 China
| | - Jianan Yao
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology Soochow University Suzhou 215123 China
| | - Yifei Wang
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology Soochow University Suzhou 215123 China
| | - Jinchang Lu
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology Soochow University Suzhou 215123 China
| | - Hong Liu
- The First Affiliated Hospital of Soochow University Key Laboratory of Thrombosis and Hemostasis, Ministry of Health Suzhou 215006 China
- National Clinical Research Center for Hematologic Diseases Suzhou 215006 China
| | - Xiaorui Huang
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology Soochow University Suzhou 215123 China
| | - Xiuyan Zhang
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology Soochow University Suzhou 215123 China
| | - Haixia Zhou
- The First Affiliated Hospital of Soochow University Key Laboratory of Thrombosis and Hemostasis, Ministry of Health Suzhou 215006 China
- National Clinical Research Center for Hematologic Diseases Suzhou 215006 China
| | - Yulong He
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology Soochow University Suzhou 215123 China
- National Clinical Research Center for Hematologic Diseases Suzhou 215006 China
- Cam‐Su Genomic Resources Center Soochow University Suzhou 215123 China
- State Key Laboratory of Radiation Medicine and Radioprotection Soochow University Suzhou 215123 China
- MOE Engineering Center of Hematological Disease Soochow University Suzhou 215123 China
| | - Depei Wu
- The First Affiliated Hospital of Soochow University Key Laboratory of Thrombosis and Hemostasis, Ministry of Health Suzhou 215006 China
- National Clinical Research Center for Hematologic Diseases Suzhou 215006 China
- MOE Engineering Center of Hematological Disease Soochow University Suzhou 215123 China
| | - Jianrong Wang
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology Soochow University Suzhou 215123 China
- National Clinical Research Center for Hematologic Diseases Suzhou 215006 China
- State Key Laboratory of Radiation Medicine and Radioprotection Soochow University Suzhou 215123 China
- MOE Engineering Center of Hematological Disease Soochow University Suzhou 215123 China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology Suzhou 215123 China
| | - Yun Zhao
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology Soochow University Suzhou 215123 China
- National Clinical Research Center for Hematologic Diseases Suzhou 215006 China
- MOE Engineering Center of Hematological Disease Soochow University Suzhou 215123 China
| |
Collapse
|
31
|
Park S, Avera AD, Kim Y. BIOMANUFACTURING OF GLIOBLASTOMA ORGANOIDS EXHIBITING HIERARCHICAL AND SPATIALLY ORGANIZED TUMOR MICROENVIRONMENT VIA TRANSDIFFERENTIATION. Biotechnol Bioeng 2022; 119:3252-3274. [DOI: 10.1002/bit.28191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Seungjo Park
- Department of Chemical and Biological EngineeringThe University of AlabamaTuscaloosaAlabama
| | - Alexandra D. Avera
- Department of Chemical and Biological EngineeringThe University of AlabamaTuscaloosaAlabama
| | - Yonghyun Kim
- Department of Chemical and Biological EngineeringThe University of AlabamaTuscaloosaAlabama
| |
Collapse
|
32
|
Rios-Colon L, Chijioke J, Niture S, Afzal Z, Qi Q, Srivastava A, Ramalinga M, Kedir H, Cagle P, Arthur E, Sharma M, Moore J, Deep G, Suy S, Collins SP, Kumar D. Leptin modulated microRNA-628-5p targets Jagged-1 and inhibits prostate cancer hallmarks. Sci Rep 2022; 12:10073. [PMID: 35710817 PMCID: PMC9203512 DOI: 10.1038/s41598-022-13279-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/23/2022] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are single-stranded non-coding RNA molecules that play a regulatory role in gene expression and cancer cell signaling. We previously identified miR-628-5p (miR-628) as a potential biomarker in serum samples from men with prostate cancer (PCa) (Srivastava et al. in Tumour Biol 35:4867–4873, 10.1007/s13277-014-1638-1, 2014). This study examined the detailed cellular phenotypes and pathways regulated by miR-628 in PCa cells. Since obesity is a significant risk factor for PCa, and there is a correlation between levels of the obesity-associated hormone leptin and PCa development, here we investigated the functional relationship between leptin and miR-628 regulation in PCa. We demonstrated that exposure to leptin downregulated the expression of miR-628 and increased cell proliferation/migration in PCa cells. We next studied the effects on cancer-related phenotypes in PCa cells after altering miR-628 expression levels. Enforced expression of miR-628 in PCa cells inhibited cell proliferation, reduced PCa cell survival/migration/invasion/spheroid formation, and decreased markers of cell stemness. Mechanistically, miR-628 binds with the JAG1-3′UTR and inhibits the expression of Jagged-1 (JAG1). JAG1 inhibition by miR-628 downregulated Notch signaling, decreased the expression of Snail/Slug, and modulated epithelial-mesenchymal transition and invasiveness in PC3 cells. Furthermore, expression of miR-628 in PCa cells increased sensitivity towards the drugs enzalutamide and docetaxel by induction of cell apoptosis. Collectively our data suggest that miR-628 is a key regulator of PCa carcinogenesis and is modulated by leptin, offering a novel therapeutic opportunity to inhibit the growth of advanced PCa.
Collapse
Affiliation(s)
- Leslimar Rios-Colon
- Julius L. Chambers Biomedical/Biotechnology Research Institute (BBRI), North Carolina Central University, 1801 Fayetteville St., Durham, NC, 27707, USA.,Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, 27157, USA
| | - Juliet Chijioke
- Julius L. Chambers Biomedical/Biotechnology Research Institute (BBRI), North Carolina Central University, 1801 Fayetteville St., Durham, NC, 27707, USA
| | - Suryakant Niture
- Julius L. Chambers Biomedical/Biotechnology Research Institute (BBRI), North Carolina Central University, 1801 Fayetteville St., Durham, NC, 27707, USA
| | - Zainab Afzal
- Julius L. Chambers Biomedical/Biotechnology Research Institute (BBRI), North Carolina Central University, 1801 Fayetteville St., Durham, NC, 27707, USA
| | - Qi Qi
- Julius L. Chambers Biomedical/Biotechnology Research Institute (BBRI), North Carolina Central University, 1801 Fayetteville St., Durham, NC, 27707, USA
| | - Anvesha Srivastava
- Julius L. Chambers Biomedical/Biotechnology Research Institute (BBRI), North Carolina Central University, 1801 Fayetteville St., Durham, NC, 27707, USA
| | - Malathi Ramalinga
- Julius L. Chambers Biomedical/Biotechnology Research Institute (BBRI), North Carolina Central University, 1801 Fayetteville St., Durham, NC, 27707, USA
| | - Habib Kedir
- Julius L. Chambers Biomedical/Biotechnology Research Institute (BBRI), North Carolina Central University, 1801 Fayetteville St., Durham, NC, 27707, USA
| | - Patrice Cagle
- Julius L. Chambers Biomedical/Biotechnology Research Institute (BBRI), North Carolina Central University, 1801 Fayetteville St., Durham, NC, 27707, USA
| | - Elena Arthur
- Julius L. Chambers Biomedical/Biotechnology Research Institute (BBRI), North Carolina Central University, 1801 Fayetteville St., Durham, NC, 27707, USA
| | - Mitu Sharma
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, 27157, USA
| | - John Moore
- Julius L. Chambers Biomedical/Biotechnology Research Institute (BBRI), North Carolina Central University, 1801 Fayetteville St., Durham, NC, 27707, USA
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, 27157, USA.,Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston-Salem, NC, 27157, USA
| | - Simeng Suy
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, 20057, USA
| | - Sean P Collins
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, 20057, USA
| | - Deepak Kumar
- Julius L. Chambers Biomedical/Biotechnology Research Institute (BBRI), North Carolina Central University, 1801 Fayetteville St., Durham, NC, 27707, USA.
| |
Collapse
|
33
|
Notch signaling in malignant gliomas: supporting tumor growth and the vascular environment. Cancer Metastasis Rev 2022; 41:737-747. [PMID: 35624227 DOI: 10.1007/s10555-022-10041-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/18/2022] [Indexed: 11/02/2022]
Abstract
Glioblastoma is the most malignant form of glioma, which is the most commonly occurring tumor of the central nervous system. Notch signaling in glioblastoma is considered to be a marker of an undifferentiated tumor cell state, associated with tumor stem cells. Notch is also known for facilitating tumor dormancy escape, recurrence and progression after treatment. Studies in vitro suggest that reducing, removing or blocking the expression of this gene triggers tumor cell differentiation, which shifts the phenotype away from stemness status and consequently facilitates treatment. In contrast, in the vasculature, Notch appears to also function as an important receptor that defines mature non-leaking vessels, and increasing its expression promotes tumor normalization in models of cancer in vivo. Failures in clinical trials with Notch inhibitors are potentially related to their opposing effects on the tumor versus the tumor vasculature, which points to the need for a greater understanding of this signaling pathway.
Collapse
|
34
|
Novel Effects of Statins on Cancer via Autophagy. Pharmaceuticals (Basel) 2022; 15:ph15060648. [PMID: 35745567 PMCID: PMC9228383 DOI: 10.3390/ph15060648] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/05/2023] Open
Abstract
Cancer is one of the main causes of death globally. Most of the molecular mechanisms underlying cancer are marked by complex aberrations that activate the critical cell-signaling pathways that play a pivotal role in cell metabolism, tumor development, cytoskeletal reorganization, and metastasis. The phosphatidylinositol 3-kinase/protein kinase-B/mammalian target of the rapamycin (PI3K/AKT/mTOR) pathway is one of the main signaling pathways involved in carcinogenesis and metastasis. Autophagy, a cellular pathway that delivers cytoplasmic components to lysosomes for degradation, plays a dual role in cancer, as either a tumor promoter or a tumor suppressor, depending on the stage of the carcinogenesis. Statins are the group of drugs of choice to lower the level of low-density lipoprotein (LDL) cholesterol in the blood. Experimental and clinical data suggest the potential of statins in the treatment of cancer. In vitro and in vivo studies have demonstrated the molecular mechanisms through which statins inhibit the proliferation and metastasis of cancer cells in different types of cancer. The anticancer properties of statins have been shown to result in the suppression of tumor growth, the induction of apoptosis, and autophagy. This literature review shows the dual role of the autophagic process in cancer and the latest scientific evidence related to the inducing effect exerted by statins on autophagy, which could explain their anticancer potential.
Collapse
|
35
|
Wang X, Ma L, Pei X, Wang H, Tang X, Pei JF, Ding YN, Qu S, Wei ZY, Wang HY, Wang X, Wei GH, Liu DP, Chen HZ. Comprehensive assessment of cellular senescence in the tumor microenvironment. Brief Bioinform 2022; 23:bbac118. [PMID: 35419596 PMCID: PMC9116224 DOI: 10.1093/bib/bbac118] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence (CS), a state of permanent growth arrest, is intertwined with tumorigenesis. Due to the absence of specific markers, characterizing senescence levels and senescence-related phenotypes across cancer types remain unexplored. Here, we defined computational metrics of senescence levels as CS scores to delineate CS landscape across 33 cancer types and 29 normal tissues and explored CS-associated phenotypes by integrating multiplatform data from ~20 000 patients and ~212 000 single-cell profiles. CS scores showed cancer type-specific associations with genomic and immune characteristics and significantly predicted immunotherapy responses and patient prognosis in multiple cancers. Single-cell CS quantification revealed intra-tumor heterogeneity and activated immune microenvironment in senescent prostate cancer. Using machine learning algorithms, we identified three CS genes as potential prognostic predictors in prostate cancer and verified them by immunohistochemical assays in 72 patients. Our study provides a comprehensive framework for evaluating senescence levels and clinical relevance, gaining insights into CS roles in cancer- and senescence-related biomarker discovery.
Collapse
Affiliation(s)
- Xiaoman Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lifei Ma
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoya Pei
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Heping Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jian-Fei Pei
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang-Nan Ding
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Siyao Qu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zi-Yu Wei
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui-Yu Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyue Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gong-Hong Wei
- Fudan University Shanghai Cancer Center, Department of Biochemistry and Molecular Biology & Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - De-Pei Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hou-Zao Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
36
|
Anti-Jagged-1 immunotherapy in cancer. Adv Med Sci 2022; 67:196-202. [PMID: 35421813 DOI: 10.1016/j.advms.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/25/2022] [Accepted: 04/02/2022] [Indexed: 02/06/2023]
Abstract
Notch signaling is a highly conserved pathway and it plays an essential role in regulating cellular proliferation, differentiation, and apoptosis. The human Notch family includes four receptors, Notch 1-4, and five ligands, delta-like ligand 1 (DLL1), delta-like ligand 3 (DLL3), delta-like ligand 4 (DLL4), Jagged-1 (JAG1), and Jagged-2 (JAG2). It is widely known, that Notch signaling components are often mutated and have deregulated expression in many types of cancer and other diseases. Thus, various therapeutic approaches targeting receptors and ligands of the Notch pathway are being investigated. Human JAG1 is closely related to tumor biology among the Notch ligands, and recent studies have shown potential for monoclonal antibodies targeting JAG1 in cancer therapy. Therefore, this review focuses on current reports on the significance of JAG1 directed cancer treatment, emphasizing immunotherapy.
Collapse
|
37
|
Xiao Y, Ma J, Guo C, Liu D, Pan J, Huang X. Cyclin B2 overexpression promotes tumour growth by regulating jagged 1 in hepatocellular carcinoma. Aging (Albany NY) 2022; 14:2855-2867. [PMID: 35349480 PMCID: PMC9004552 DOI: 10.18632/aging.203979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/27/2022] [Indexed: 12/24/2022]
Abstract
Background: Our previous study showed that Cyclin B2 (CCNB2) is closely related to the occurrence and progression of hepatocellular carcinoma (HCC). Aim of the study: This study aimed to clarify the effect of CCNB2 gene silencing on tumorigenesis in nude mice and to detect the potential mechanism. Methods: The effect of CCNB2 on HCC was tested in vivo. The downstream target genes of CCNB2 were predicted by proteomics and confirmed by western blot assay. The regulatory functions of CCNB2 in the proliferation and migration of HCC cells were determined through functional recovery experiments. The expression of the downstream target genes of CCNB2 was detected by immunohistochemistry. Results: Knockdown of CCNB2 decreased tumour formation rate and tumour volume and weight and inhibited tumour proliferation. A total of 130 differentially expressed proteins were detected by proteomics, and Jagged 1 (JAG1) was predicted as the potential downstream target of CCNB2. Western blot assay revealed that CCNB2 and JAG1 expression was significantly correlated in HCC cells. The results of functional recovery experiments suggested that CCNB2 knockdown weakened the proliferation and migration ability of HCC cells, while JAG1 overexpression restored this ability of HCC cells that was weakened by CCNB2 knockdown. Immunohistochemistry showed that JAG1 expression was higher in HCC tissues than in paracancerous tissues and was related to tumour size and number and tumour thrombus formation. Conclusions: The proliferation of HCC cells in vivo was inhibited by CCNB2 knockdown. CCNB2 may accelerate the proliferation and metastasis of HCC cells by increasing JAG1 expression.
Collapse
Affiliation(s)
- Yening Xiao
- Department of Gastroenterology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou 570028, China
| | - Jiamei Ma
- Department of Gastroenterology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou 570028, China
| | - Chunliu Guo
- Department of Gastroenterology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou 570028, China
| | - Danni Liu
- Department of Gastroenterology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou 570028, China
| | - Jing Pan
- Department of Gastroenterology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou 570028, China
| | - Xiaoxi Huang
- Department of Gastroenterology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou 570028, China
| |
Collapse
|
38
|
Nam Y, Choi CM, Park YS, Jung H, Hwang HS, Lee JC, Lee JW, Lee JE, Kang JH, Jung BH, Ji W. CDCP1 Expression Is a Potential Biomarker of Poor Prognosis in Resected Stage I Non-Small-Cell Lung Cancer. J Clin Med 2022; 11:jcm11020341. [PMID: 35054034 PMCID: PMC8779436 DOI: 10.3390/jcm11020341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 12/25/2022] Open
Abstract
Background: Although early-stage lung cancer has increased owing to the introduction of screening programs, high recurrence rate remains a critical concern. We aimed to explore biomarkers related to the prognosis of surgically resected non-small-cell lung cancer (NSCLC). Methods: In this retrospective study, we collected medical records of patients with NSCLC and matched tissue microarray blocks from surgical specimens. Semiquantitative immunohistochemistry was performed for measuring the expression level of fibroblast activation protein-alpha (FAP-α), Jagged-1 (JAG1), and CUB-domain-containing protein 1 (CDCP1). Results: A total of 453 patients who underwent complete resection between January 2011 and February 2012 were enrolled; 55.2% patients had stage I NSCLC, and 31.1% presented squamous cell carcinoma. Disease stage was a significant risk factor for recurrence and death, and age ≥ 65 years and male sex were associated with poor overall survival. FAP-a and JaG1 were not related to survivals, while CDCP1-expressing patients exhibited poor disease-free and overall survival. Moreover, CDCP1 expression in stage I NSCLC was significantly associated with recurrence. Conclusions: Old age, male sex, and high pathological stage were poor prognostic factors in patients with NSCLC who underwent surgical resection. Furthermore, CDCP1 expression could serve as a biomarker for poor prognosis in stage I NSCLC.
Collapse
Affiliation(s)
- Yunha Nam
- Asan Medical Center, Department of Pulmonary and Critical Care Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea; (Y.N.); (C.-M.C.)
| | - Chang-Min Choi
- Asan Medical Center, Department of Pulmonary and Critical Care Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea; (Y.N.); (C.-M.C.)
- Asan Medical Center, Department of Oncology, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Young Soo Park
- Asan Medical Center, Department of Pathology, University of Ulsan College of Medicine, Seoul 05505, Korea; (Y.S.P.); (H.S.H.)
| | - HyunA Jung
- Asan Medical Center, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Hee Sang Hwang
- Asan Medical Center, Department of Pathology, University of Ulsan College of Medicine, Seoul 05505, Korea; (Y.S.P.); (H.S.H.)
| | - Jae Cheol Lee
- Asan Medical Center, Department of Oncology, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Jung Wook Lee
- Therapeutic Antibody R&D Center, Theranotics Co., Ltd., Seoul 05842, Korea; (J.W.L.); (J.E.L.); (J.H.K.); (B.H.J.)
| | - Jung Eun Lee
- Therapeutic Antibody R&D Center, Theranotics Co., Ltd., Seoul 05842, Korea; (J.W.L.); (J.E.L.); (J.H.K.); (B.H.J.)
| | - Jung Hee Kang
- Therapeutic Antibody R&D Center, Theranotics Co., Ltd., Seoul 05842, Korea; (J.W.L.); (J.E.L.); (J.H.K.); (B.H.J.)
| | - Byung Hun Jung
- Therapeutic Antibody R&D Center, Theranotics Co., Ltd., Seoul 05842, Korea; (J.W.L.); (J.E.L.); (J.H.K.); (B.H.J.)
| | - Wonjun Ji
- Asan Medical Center, Department of Pulmonary and Critical Care Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea; (Y.N.); (C.-M.C.)
- Correspondence: ; Tel.: +82-2-3010-1699; Fax: +82-2-3010-6968
| |
Collapse
|
39
|
Guo K, Li L. Prediction of Key Candidate Genes for Platinum Resistance in Ovarian Cancer. Int J Gen Med 2021; 14:8237-8248. [PMID: 34815697 PMCID: PMC8605930 DOI: 10.2147/ijgm.s338044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose Ovarian cancer is one of the common malignant tumors of female reproductive organs, which seriously threatens the life and health of women. Resistance to chemotherapeutic drugs for ovarian cancer is the root cause of recurrence in most patients. The purpose of this study is to determine the differentially expressed genes of platinum resistance in ovarian cancer, and to screen out molecular targets and diagnostic markers that could be used to treat ovarian cancer platinum resistance. Methods We downloaded 5 gene microarray datasets GSE58470, GSE45553, GSE41499, GSE33482, and GSE15372 from the Gene Expression Omnibus database, all of which are associated with ovarian cancer platinum resistance. Subsequently, the intersection of the statistically significant differentially expressed genes in 5 gene chips was taken, and relevant bioinformatics and clinical parameters were performed on the screened differential genes. qRT-PCR was utilized to examine the mRNA expression levels in ovarian cancer sensitive and cisplatin-resistant cells. Results Three differential genes, IFI27, JAG1, DNM3, may be closely related to platinum resistance of ovarian cancer, were screened by microarray datasets. According to the combined verification of bioinformatics, clinical case analyses and experiments, it was inferred that the increased expression of DNM3 was beneficial to patients with platinum resistance, but the high expression of IFI27 and JAG1 may lead to the risk of platinum resistance. Conclusion IFI27, JAG1 and DNM3 screened by relevant gene chips may serve as new biomarkers of platinum resistance in ovarian cancer.
Collapse
Affiliation(s)
- Kaidi Guo
- Department of Gynecology and Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People's Republic of China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, Guangxi, People's Republic of China
| | - Li Li
- Department of Gynecology and Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People's Republic of China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, Guangxi, People's Republic of China
| |
Collapse
|
40
|
Zhang Q, Cheng S, Wang Y, Wang M, Lu Y, Wen Z, Ge Y, Ma Q, Chen Y, Zhang Y, Cao R, Li M, Liu W, Wang B, Wu Q, Jia W, Wang X. Interrogation of the microenvironmental landscape in spinal ependymomas reveals dual functions of tumor-associated macrophages. Nat Commun 2021; 12:6867. [PMID: 34824203 PMCID: PMC8617028 DOI: 10.1038/s41467-021-27018-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 11/01/2021] [Indexed: 02/01/2023] Open
Abstract
Spinal ependymomas are the most common spinal cord tumors in adults, but their intratumoral cellular heterogeneity has been less studied, and how spinal microglia are involved in tumor progression is still unknown. Here, our single-cell RNA-sequencing analyses of three spinal ependymoma subtypes dissect the microenvironmental landscape of spinal ependymomas and reveal tumor-associated macrophage (TAM) subsets with distinct functional phenotypes. CCL2+ TAMs are related to the immune response and exhibit a high capacity for apoptosis, while CD44+ TAMs are associated with tumor angiogenesis. By combining these results with those of single-cell ATAC-sequencing data analysis, we reveal that TEAD1 and EGR3 play roles in regulating the functional diversity of TAMs. We further identify diverse characteristics of both malignant cells and TAMs that might underlie the different malignant degrees of each subtype. Finally, assessment of cell-cell interactions reveal that stromal cells act as extracellular factors that mediate TAM diversity. Overall, our results reveal dual functions of TAMs in tumor progression, providing valuable insights for TAM-targeting immunotherapy.
Collapse
Affiliation(s)
- Qianqian Zhang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Sijin Cheng
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yongzhi Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 100070, Beijing, China
- China National Clinical Research Center for Neurological Diseases, 100070, Beijing, China
| | - Mengdi Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yufeng Lu
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zengqi Wen
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yuxin Ge
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, Beijing, China
| | - Qiang Ma
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Youqiao Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, Beijing, China
| | - Yaowu Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 100070, Beijing, China
- China National Clinical Research Center for Neurological Diseases, 100070, Beijing, China
| | - Ren Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 100070, Beijing, China
- China National Clinical Research Center for Neurological Diseases, 100070, Beijing, China
| | - Min Li
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Weihao Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 100070, Beijing, China
- China National Clinical Research Center for Neurological Diseases, 100070, Beijing, China
| | - Bo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 100070, Beijing, China
- China National Clinical Research Center for Neurological Diseases, 100070, Beijing, China
| | - Qian Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, Beijing, China.
- Chinese Institute for Brain Research, 102206, Beijing, China.
| | - Wenqing Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 100070, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, 100070, Beijing, China.
| | - Xiaoqun Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- Chinese Institute for Brain Research, 102206, Beijing, China.
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, 100069, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, Beijing Institute for Brain Disorders, Capital Medical University, 100069, Beijing, China.
| |
Collapse
|
41
|
Zhdanovskaya N, Firrincieli M, Lazzari S, Pace E, Scribani Rossi P, Felli MP, Talora C, Screpanti I, Palermo R. Targeting Notch to Maximize Chemotherapeutic Benefits: Rationale, Advanced Strategies, and Future Perspectives. Cancers (Basel) 2021; 13:cancers13205106. [PMID: 34680255 PMCID: PMC8533696 DOI: 10.3390/cancers13205106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The Notch signaling pathway regulates cell proliferation, apoptosis, stem cell self-renewal, and differentiation in a context-dependent fashion both during embryonic development and in adult tissue homeostasis. Consistent with its pleiotropic physiological role, unproper activation of the signaling promotes or counteracts tumor pathogenesis and therapy response in distinct tissues. In the last twenty years, a wide number of studies have highlighted the anti-cancer potential of Notch-modulating agents as single treatment and in combination with the existent therapies. However, most of these strategies have failed in the clinical exploration due to dose-limiting toxicity and low efficacy, encouraging the development of novel agents and the design of more appropriate combinations between Notch signaling inhibitors and chemotherapeutic drugs with improved safety and effectiveness for distinct types of cancer. Abstract Notch signaling guides cell fate decisions by affecting proliferation, apoptosis, stem cell self-renewal, and differentiation depending on cell and tissue context. Given its multifaceted function during tissue development, both overactivation and loss of Notch signaling have been linked to tumorigenesis in ways that are either oncogenic or oncosuppressive, but always context-dependent. Notch signaling is critical for several mechanisms of chemoresistance including cancer stem cell maintenance, epithelial-mesenchymal transition, tumor-stroma interaction, and malignant neovascularization that makes its targeting an appealing strategy against tumor growth and recurrence. During the last decades, numerous Notch-interfering agents have been developed, and the abundant preclinical evidence has been transformed in orphan drug approval for few rare diseases. However, the majority of Notch-dependent malignancies remain untargeted, even if the application of Notch inhibitors alone or in combination with common chemotherapeutic drugs is being evaluated in clinical trials. The modest clinical success of current Notch-targeting strategies is mostly due to their limited efficacy and severe on-target toxicity in Notch-controlled healthy tissues. Here, we review the available preclinical and clinical evidence on combinatorial treatment between different Notch signaling inhibitors and existent chemotherapeutic drugs, providing a comprehensive picture of molecular mechanisms explaining the potential or lacking success of these combinations.
Collapse
Affiliation(s)
- Nadezda Zhdanovskaya
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Mariarosaria Firrincieli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Sara Lazzari
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Eleonora Pace
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Pietro Scribani Rossi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Claudio Talora
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Correspondence: (I.S.); (R.P.)
| | - Rocco Palermo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
- Correspondence: (I.S.); (R.P.)
| |
Collapse
|
42
|
Xiu M, Zeng X, Shan R, Wen W, Li J, Wan R. Targeting Notch4 in Cancer: Molecular Mechanisms and Therapeutic Perspectives. Cancer Manag Res 2021; 13:7033-7045. [PMID: 34526819 PMCID: PMC8436177 DOI: 10.2147/cmar.s315511] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/03/2021] [Indexed: 12/28/2022] Open
Abstract
The dysregulation of Notch signaling is found in many cancers and is closely related to cancer progression. As an important Notch receptor, abnormal Notch4 expression affects several tumor-cell behaviors, including stemness, the epithelial-mesenchymal transition, radio/chemoresistance and angiogenesis. In order to inhibit the oncogenic effects of Notch4 activation, several methods for targeting Notch4 signaling have been proposed. In this review, we summarize the known molecular mechanisms through which Notch4 affects cancer progression. Finally, we discuss potential Notch4-targeting therapeutic strategies as a reference for future research.
Collapse
Affiliation(s)
- Mengxi Xiu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, People's Republic of China.,Second Clinical Medical College, Nanchang University, Nanchang, People's Republic of China
| | - Xiaohong Zeng
- Imaging Department, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, People's Republic of China
| | - Renfeng Shan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, People's Republic of China
| | - Wu Wen
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, People's Republic of China
| | - Jianfeng Li
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, People's Republic of China
| | - Renhua Wan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
43
|
Sanchez P, Farkhondeh A, Pavlinov I, Baumgaertel K, Rodems S, Zheng W. Therapeutics Development for Alagille Syndrome. Front Pharmacol 2021; 12:704586. [PMID: 34497511 PMCID: PMC8419306 DOI: 10.3389/fphar.2021.704586] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/09/2021] [Indexed: 12/25/2022] Open
Abstract
Advancements in treatment for the rare genetic disorder known as Alagille Syndrome (ALGS) have been regrettably slow. The large variety of mutations to the JAG1 and NOTCH2 genes which lead to ALGS pose a unique challenge for developing targeted treatments. Due to the central role of the Notch signaling pathway in several cancers, traditional treatment modalities which compensate for the loss in activity caused by mutation are rightly excluded. Unfortunately, current treatment plans for ALGS focus on relieving symptoms of the disorder and do not address the underlying causes of disease. Here we review several of the current and potential key technologies and strategies which may yield a significant leap in developing targeted therapies for this disorder.
Collapse
Affiliation(s)
- Phillip Sanchez
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States
| | - Atena Farkhondeh
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States
| | - Ivan Pavlinov
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States
| | | | | | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
44
|
Regulation of olfactomedin 4 by Porphyromonas gingivalis in a community context. THE ISME JOURNAL 2021; 15:2627-2642. [PMID: 33731837 PMCID: PMC8397782 DOI: 10.1038/s41396-021-00956-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 02/05/2023]
Abstract
At mucosal barriers, the virulence of microbial communities reflects the outcome of both dysbiotic and eubiotic interactions with the host, with commensal species mitigating or potentiating the action of pathogens. We examined epithelial responses to the oral pathogen Porphyromonas gingivalis as a monoinfection and in association with a community partner, Streptococcus gordonii. RNA-Seq of oral epithelial cells showed that the Notch signaling pathway, including the downstream effector olfactomedin 4 (OLFM4), was differentially regulated by P. gingivalis alone; however, regulation was overridden by S. gordonii. OLFM4 was required for epithelial cell migratory, proliferative and inflammatory responses to P. gingivalis. Activation of Notch signaling was induced through increased expression of the Notch1 receptor and the Jagged1 (Jag1) agonist. In addition, Jag1 was released in response to P. gingivalis, leading to paracrine activation. Following Jag1-Notch1 engagement, the Notch1 extracellular domain was cleaved by P. gingivalis gingipain proteases. Antagonism by S. gordonii involved inhibition of gingipain activity by secreted hydrogen peroxide. The results establish a novel mechanism by which P. gingivalis modulates epithelial cell function which is dependent on community context. These interrelationships have relevance for innate inflammatory responses and epithelial cell fate decisions in oral health and disease.
Collapse
|
45
|
Chong ZX, Yeap SK, Ho WY. Unraveling the roles of miRNAs in regulating epithelial-to-mesenchymal transition (EMT) in osteosarcoma. Pharmacol Res 2021; 172:105818. [PMID: 34400316 DOI: 10.1016/j.phrs.2021.105818] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/01/2021] [Accepted: 08/12/2021] [Indexed: 12/16/2022]
Abstract
Osteosarcoma is one of the most prevalent primary bone tumors with a high metastatic and recurrence rate with poor prognosis. MiRNAs are short and non-coding RNAs that could regulate various cellular activities and one of them is the epithelial-to-mesenchymal transition (EMT). Osteosarcoma cells that have undergone EMT would lose their cellular polarity and acquire invasive and metastatic characteristics. Our literature search showed that many pre-clinical and clinical studies have reported the roles of miRNAs in modulating the EMT process in osteosarcoma and compared to other cancers like breast cancer, there is a lack of review article which effectively summarizes the various roles of EMT-regulating miRNAs in osteosarcoma. This review, therefore, was aimed to discuss and summarize the EMT-promoting and EMT-suppressing roles of different miRNAs in osteosarcoma. The review would begin with the discussion on the concepts and principles of EMT, followed by the exploration of the diverse roles of EMT-regulating miRNAs in osteosarcoma. Subsequently, the potential use of miRNAs as prognostic biomarkers in osteosarcoma to predict the likelihood of metastases and as therapeutic agents would be discussed.
Collapse
Affiliation(s)
- Zhi Xiong Chong
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900 Sepang, Selangor, Malaysia.
| | - Wan Yong Ho
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| |
Collapse
|
46
|
Zhytnik L, Peters M, Tilk K, Simm K, Tõnisson N, Reimand T, Maasalu K, Acharya G, Krjutškov K, Salumets A. From late fatherhood to prenatal screening of monogenic disorders: evidence and ethical concerns. Hum Reprod Update 2021; 27:1056-1085. [PMID: 34329448 DOI: 10.1093/humupd/dmab023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/27/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND With the help of ART, an advanced parental age is not considered to be a serious obstacle for reproduction anymore. However, significant health risks for future offspring hide behind the success of reproductive medicine for the treatment of reduced fertility associated with late parenthood. Although an advanced maternal age is a well-known risk factor for poor reproductive outcomes, understanding the impact of an advanced paternal age on offspring is yet to be elucidated. De novo monogenic disorders (MDs) are highly associated with late fatherhood. MDs are one of the major sources of paediatric morbidity and mortality, causing significant socioeconomic and psychological burdens to society. Although individually rare, the combined prevalence of these disorders is as high as that of chromosomal aneuploidies, indicating the increasing need for prenatal screening. With the help of advanced reproductive technologies, families with late paternity have the option of non-invasive prenatal testing (NIPT) for multiple MDs (MD-NIPT), which has a sensitivity and specificity of almost 100%. OBJECTIVE AND RATIONALE The main aims of the current review were to examine the effect of late paternity on the origin and nature of MDs, to highlight the role of NIPT for the detection of a variety of paternal age-associated MDs, to describe clinical experiences and to reflect on the ethical concerns surrounding the topic of late paternity and MD-NIPT. SEARCH METHODS An extensive search of peer-reviewed publications (1980-2021) in English from the PubMed and Google Scholar databases was based on key words in different combinations: late paternity, paternal age, spermatogenesis, selfish spermatogonial selection, paternal age effect, de novo mutations (DNMs), MDs, NIPT, ethics of late fatherhood, prenatal testing and paternal rights. OUTCOMES An advanced paternal age provokes the accumulation of DNMs, which arise in continuously dividing germline cells. A subset of DNMs, owing to their effect on the rat sarcoma virus protein-mitogen-activated protein kinase signalling pathway, becomes beneficial for spermatogonia, causing selfish spermatogonial selection and outgrowth, and in some rare cases may lead to spermatocytic seminoma later in life. In the offspring, these selfish DNMs cause paternal age effect (PAE) disorders with a severe and even life-threatening phenotype. The increasing tendency for late paternity and the subsequent high risk of PAE disorders indicate an increased need for a safe and reliable detection procedure, such as MD-NIPT. The MD-NIPT approach has the capacity to provide safe screening for pregnancies at risk of PAE disorders and MDs, which constitute up to 20% of all pregnancies. The primary risks include pregnancies with a paternal age over 40 years, a previous history of an affected pregnancy/child, and/or congenital anomalies detected by routine ultrasonography. The implementation of NIPT-based screening would support the early diagnosis and management needed in cases of affected pregnancy. However, the benefits of MD-NIPT need to be balanced with the ethical challenges associated with the introduction of such an approach into routine clinical practice, namely concerns regarding reproductive autonomy, informed consent, potential disability discrimination, paternal rights and PAE-associated issues, equity and justice in accessing services, and counselling. WIDER IMPLICATIONS Considering the increasing parental age and risks of MDs, combined NIPT for chromosomal aneuploidies and microdeletion syndromes as well as tests for MDs might become a part of routine pregnancy management in the near future. Moreover, the ethical challenges associated with the introduction of MD-NIPT into routine clinical practice need to be carefully evaluated. Furthermore, more focus and attention should be directed towards the ethics of late paternity, paternal rights and paternal genetic guilt associated with pregnancies affected with PAE MDs.
Collapse
Affiliation(s)
- Lidiia Zhytnik
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Maire Peters
- Competence Centre on Health Technologies, Tartu, Estonia.,Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Kadi Tilk
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Kadri Simm
- Institute of Philosophy and Semiotics, Faculty of Arts and Humanities, University of Tartu, Tartu, Estonia.,Centre of Ethics, University of Tartu, Tartu, Estonia
| | - Neeme Tõnisson
- Institute of Genomics, University of Tartu, Tartu, Estonia.,Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia.,Department of Reproductive Medicine, West Tallinn Central Hospital, Tallinn, Estonia
| | - Tiia Reimand
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia.,Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Katre Maasalu
- Clinic of Traumatology and Orthopaedics, Tartu University Hospital, Tartu, Estonia.,Department of Traumatology and Orthopaedics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Ganesh Acharya
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Kaarel Krjutškov
- Competence Centre on Health Technologies, Tartu, Estonia.,Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Andres Salumets
- Competence Centre on Health Technologies, Tartu, Estonia.,Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Institute of Genomics, University of Tartu, Tartu, Estonia.,Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
47
|
Li Q, Wang J, Ma X, Wang M, Zhou L. POFUT1 acts as a tumor promoter in glioblastoma by enhancing the activation of Notch signaling. J Bioenerg Biomembr 2021; 53:621-632. [PMID: 34251584 DOI: 10.1007/s10863-021-09912-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/05/2021] [Indexed: 01/13/2023]
Abstract
Dysregulation of protein O-fucosyl transferase 1 (POFUT1) contributes to the occurrence and progression of multiple cancers. However, whether POFUT1 has a relationship with the pathogenesis of glioblastoma (GBM) is unknown. This work was aimed at evaluating the detailed relevance of POFUT1 in GBM. Here, we demonstrated high levels of POFUT1 in GBM tissue and elucidated that GBM patients with high levels of POFUT1 had a shorter survival rate than those with low levels of POFUT1. POFUT1 knockdown in GBM cells markedly downregulated the ability to proliferate and invade, while overexpression of POFUT1 potentiated the proliferative and invasive ability of GBM cells. Further mechanistic studies indicated that silencing POFUT1 prohibited the activation of Notch signaling, leading to a reduction in the expression of HES1 and HEY1. On the contrary, overexpression of POFUT1 enhanced the activation of Notch signaling. Notably, inhibition of Notch signaling markedly reversed POFUT1-overexpression-induced tumor promotion effects in GBM cells. In addition, POFUT1 silencing markedly repressed the potential of GBM cells to form tumors in vivo. In conclusion, the data of this work indicates that POFUT1 serves a tumor promotion role in GBM by enhancing the activation of Notch signaling. This study underlines the potential role of the POFUT1/Notch axis in GBM progression and proposes POFUT1 as a promising anticancer target for GBM.
Collapse
Affiliation(s)
- Qi Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Jia Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Xudong Ma
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Maode Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Lei Zhou
- Department of Ultrasonography, Xi'an People's Hospital (Xi'an Fourth Hospital), No. 21 Jiefang Road, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
48
|
Noe O, Filipiak L, Royfman R, Campbell A, Lin L, Hamouda D, Stanbery L, Nemunaitis J. Adenomatous polyposis coli in cancer and therapeutic implications. Oncol Rev 2021; 15:534. [PMID: 34267890 PMCID: PMC8256374 DOI: 10.4081/oncol.2021.534] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
Inactivating mutations of the adenomatous polyposis coli (APC) gene and consequential upregulation of the Wnt signaling pathway are critical initiators in the development of colorectal cancer (CRC), the third most common cancer in the United States for both men and women. Emerging evidence suggests APCmutations are also found in gastric, breast and other cancers. The APC gene, located on chromosome 5q, is responsible for negatively regulating the b-catenin/Wnt pathway by creating a destruction complex with Axin/Axin2, GSK-3b, and CK1. In the event of an APC mutation, b-catenin accumulates, translocates to the cell nucleus and increases the transcription of Wnt target genes that have carcinogenic consequences in gastrointestinal epithelial stem cells. A literature review was conducted to highlight carcinogenesis related to APC mutations, as well as preclinical and clinical studies for potential therapies that target steps in inflammatory pathways, including IL-6 transduction, and Wnt pathway signaling regulation. Although a range of molecular targets have been explored in murine models, relatively few pharmacological agents have led to substantial increases in survival for patients with colorectal cancer clinically. This article reviews a range of molecular targets that may be efficacious targets for tumors with APC mutations.
Collapse
Affiliation(s)
- Olivia Noe
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Louis Filipiak
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Rachel Royfman
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Austin Campbell
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Leslie Lin
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Danae Hamouda
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Laura Stanbery
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | | |
Collapse
|
49
|
Xiu M, Wang Y, Li B, Wang X, Xiao F, Chen S, Zhang L, Zhou B, Hua F. The Role of Notch3 Signaling in Cancer Stemness and Chemoresistance: Molecular Mechanisms and Targeting Strategies. Front Mol Biosci 2021; 8:694141. [PMID: 34195229 PMCID: PMC8237348 DOI: 10.3389/fmolb.2021.694141] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022] Open
Abstract
Aberrant Notch signaling profoundly affects cancer progression. Especially the Notch3 receptor was found to be dysregulated in cancer, where its expression is correlated with worse clinicopathological features and poor prognosis. The activation of Notch3 signaling is closely related to the activation of cancer stem cells (CSCs), a small subpopulation in cancer that is responsible for cancer progression. In addition, Notch3 signaling also contributes to tumor chemoresistance against several drugs, including doxorubicin, platinum, taxane, epidermal growth factor receptor (EGFR)–tyrosine kinase inhibitors (TKIs) and gemcitabine, through complex mechanisms. In this review, we mainly focus on discussing the molecular mechanisms by which Notch3 modulates cancer stemness and chemoresistance, as well as other cancer behaviors including metastasis and angiogenesis. What’s more, we propose potential treatment strategies to block Notch3 signaling, such as non-coding RNAs, antibodies and antibody-drug conjugates, providing a comprehensive reference for research on precise targeted cancer therapy.
Collapse
Affiliation(s)
- Mengxi Xiu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Yongbo Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Baoli Li
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Xifeng Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fan Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Shoulin Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Lieliang Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Bin Zhou
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| |
Collapse
|
50
|
Bi H, Shang J, Zou X, Xu J, Han Y. Palbociclib induces cell senescence and apoptosis of gastric cancer cells by inhibiting the Notch pathway. Oncol Lett 2021; 22:603. [PMID: 34188705 PMCID: PMC8227472 DOI: 10.3892/ol.2021.12864] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 04/08/2021] [Indexed: 12/24/2022] Open
Abstract
Palbociclib (PD0332991), a selective cyclin-dependent kinase 4/6 (CDK4/6) inhibitor, has been reported to exert anticancer activity in some cancers, including gastric cancer (GC). However, the role of palbociclib in GC remains largely unknown. The present study aimed to investigate the effects of palbociclib on the progression of GC and the potential mechanisms underlying its effects. The colony formation, proliferation, senescence, as well as apoptosis and cell cycle progression of AGS and HGC-27 cells following treatment with palbociclib were analyzed using colony formation assays, MTT assays, senescence-associated β-galactosidase (SA-β-gal) staining and flow cytometry, respectively. The protein expression levels of Bax, Caspase-3, Bcl-2, p16, p21, p53, Notch1, Notch2 and hairy and enhancer of split 1 (Hes1) were measured in AGS and HGC-27 cells using western blotting. Moreover, the mRNA expression levels of Notch1, Notch2 and Hes1 in AGS and HGC-27 cells were determined by reverse transcription-quantitative PCR. In the present study, palbociclib significantly inhibited cell proliferation and induced cell senescence, cell cycle arrest and apoptosis in both cell lines in a dose-dependent manner. Additionally, palbociclib significantly increased the expression levels of Bax, Caspase-3, p16, p21 and p53, whilst decreasing the expression of Bcl-2, Notch1, Notch2 and Hes1 in AGS and HGC-27 cells. Furthermore, the Notch pathway activator Jagged-1/FC reversed the effects of palbociclib on cell proliferation, apoptosis, senescence and cell cycle progression. These findings demonstrated that palbociclib could inhibit proliferation and induce senescence, cell cycle arrest and apoptosis in GC cells by inhibiting the Notch pathway.
Collapse
Affiliation(s)
- Hengtai Bi
- Department of Pharmacy, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Juan Shang
- Department of Pharmacy, The People's Hospital of Bin Zhou, Bin Zhou, Shandong 256600, P.R. China
| | - Xiao Zou
- Department of Oncology, The First People's Hospital of Tai'an, Tai'an, Shandong 271000, P.R. China
| | - Jing Xu
- Department of Neurology, The First People's Hospital of Tai'an, Tai'an, Shandong 271000, P.R. China
| | - Yumei Han
- Department of General Surgery, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|