1
|
Xu M, Cao C, Wu P, Huang X, Ma D. Advances in cervical cancer: current insights and future directions. Cancer Commun (Lond) 2025; 45:77-109. [PMID: 39611440 PMCID: PMC11833674 DOI: 10.1002/cac2.12629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 11/30/2024] Open
Abstract
In alignment with the World Health Organization's strategy to eliminate cervical cancer, substantial progress has been made in the treatment of this malignancy. Cervical cancer, largely driven by human papillomavirus (HPV) infection, is considered preventable and manageable because of its well-established etiology. Advancements in precision screening technologies, such as DNA methylation triage, HPV integration detection, liquid biopsies, and artificial intelligence-assisted diagnostics, have augmented traditional screening methods such as HPV nucleic acid testing and cytology. Therapeutic strategies aimed at eradicating HPV and reversing precancerous lesions have been refined as pivotal measures for disease prevention. The controversy surrounding surgery for early-stage cervical cancer revolves around identifying optimal candidates for minimally invasive and conservative procedures without compromising oncological outcomes. Recent clinical trials have yielded promising results for the development of systemic therapies for advanced cervical cancer. Immunotherapies, such as immune checkpoint inhibitors (ICIs), antibody-drug conjugates (ADCs), and targeted therapy have demonstrated significant effectiveness, marking a substantial advancement in cervical cancer management. Various combination therapies have been validated, and ongoing trials aim to enhance outcomes through the development of novel drugs and optimized combination regimens. The prospect of eradicating cervical cancer as the first malignancy to be eliminated is now within reach. In this review, we provide a comprehensive overview of the latest scientific insights, with a particular focus on precision managements for various stages of cervical disease, and explore future research directions in cervical cancer.
Collapse
Affiliation(s)
- Miaochun Xu
- Department of Obstetrics and GynecologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
- National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Canhui Cao
- National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
- Department of Gynecologic OncologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Peng Wu
- Department of Obstetrics and GynecologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
- National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Xiaoyuan Huang
- National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
- Department of Gynecologic OncologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Ding Ma
- National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
- Department of Gynecologic OncologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| |
Collapse
|
2
|
Kutle I, Polten R, Stalp JL, Hachenberg J, Todzey F, Hass R, Zimmermann K, von der Ohe J, von Kaisenberg C, Neubert L, Kamp JC, Schaudien D, Seyda AK, Hillemanns P, Klapdor R, Morgan MA, Schambach A. Anti-Mesothelin CAR-NK cells as a novel targeted therapy against cervical cancer. Front Immunol 2024; 15:1485461. [PMID: 39781381 PMCID: PMC11707549 DOI: 10.3389/fimmu.2024.1485461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/18/2024] [Indexed: 01/12/2025] Open
Abstract
Resistance to the currently available treatment paradigms is one of the main factors that contributes to poor outcomes in patients with advanced cervical cancer. Novel targeted therapy approaches might enhance the patient's treatment outcome and are urgently needed for this malignancy. While chimeric-antigen receptor (CAR)-based adoptive immunotherapy displays a promising treatment strategy for liquid cancers, their use against cervical cancer is largely unexplored. This study used alpharetroviral SIN vectors to equip natural killer (NK) cells with a third-generation CAR (including CD28 and 4-1BB co-stimulatory domains) targeting Mesothelin, which was identified to be highly expressed on primary human cervical cancer tissues and cervical cancer cell lines in this and other studies. Anti-Mesothelin CAR-NK cells demonstrated high cytotoxicity against cervical cancer cells in 2D and 3D culture models, which corresponded to increased degranulation of CAR-NK-92 cells upon exposure to Mesothelin+ target cells. Mesothelin- cervical cancer cells were generated by CRISPR-Cas9-mediated knockout and used to show target antigen specificity of anti-Mesothelin CAR-NK-92 cells and primary NK cells derived from different healthy donors in co-culture experiments. Combination of anti-Mesothelin CAR-NK-92 cells with chemotherapy revealed increased elimination of cancer cells as compared to monotherapy settings. Our findings indicate the promise of anti-Mesothelin CAR-NK cells as a potential treatment option against cervical cancer, as well as other Mesothelin+ malignancies.
Collapse
Affiliation(s)
- Ivana Kutle
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Robert Polten
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Jan Lennart Stalp
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Department of Gynecology and Obstetrics, Hannover Medical School, Hannover, Germany
| | - Jens Hachenberg
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Department of Gynecology and Obstetrics, Hannover Medical School, Hannover, Germany
| | - Felix Todzey
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Ralf Hass
- Department of Gynecology and Obstetrics, Hannover Medical School, Hannover, Germany
| | - Katharina Zimmermann
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Juliane von der Ohe
- Department of Gynecology and Obstetrics, Hannover Medical School, Hannover, Germany
| | | | - Lavinia Neubert
- Institute of Pathology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Jan C. Kamp
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine, ITEM, Hannover, Germany
| | - Ann-Kathrin Seyda
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Peter Hillemanns
- Department of Gynecology and Obstetrics, Hannover Medical School, Hannover, Germany
| | - Rüdiger Klapdor
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Department of Gynecology and Obstetrics, Hannover Medical School, Hannover, Germany
- Department of Gynecology and Obstetrics, Albertinen Hospital Hamburg, Hamburg, Germany
| | | | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
3
|
Gnanagurusamy J, Krishnamoorthy S, Muthusami S. Transforming growth factor-β micro-environment mediated immune cell functions in cervical cancer. Int Immunopharmacol 2024; 140:112837. [PMID: 39111147 DOI: 10.1016/j.intimp.2024.112837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/02/2024] [Accepted: 07/28/2024] [Indexed: 09/01/2024]
Abstract
Propensity to develop cervical cancer (CC) in human papilloma virus (HPV) infected individual could potentially involve the impaired immune functioning. Several stages of HPV surveillance by immune cells in tumor micro-environment (TME) is regulated mainly by transforming growth factor-beta (TGF-β) and is crucial for the establishment of CC. The role of TGF-β in the initiation and progression of CC is very complex and involve different suppressor of mothers against decapentaplegic homolog (SMAD) dependent and SMAD independent signaling mechanism(s). This review summarizes the handling of HPV by immune cells such as T lymphocytes, B lymphocytes, natural killer cells (NK), dendritic cells (DC), monocytes, macrophages, myeloid derived suppressor cells (MDSC) and their regulation by TGF-β. The hijack mechanisms adapted by HPV to evade this surveillance process is discussed. Biomarkers indicating the stages of CC and immune checkpoints that can be targeted for improved outcome are included for immune-based theragnostics. This review also addresses the direct actions of TGF-β on CC cells and tumor/immune cell interactions. Therapies focused on targeting TGF-β using small molecule inhibitors, monoclonal antibodies and TGF-β chimeric antigen receptor (CAR)T cells are collated to understand the current strategies related to TGF-β in the management of CC.
Collapse
Affiliation(s)
- Jayapradha Gnanagurusamy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | - Sneha Krishnamoorthy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | - Sridhar Muthusami
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India; Centre for Cancer Research, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India.
| |
Collapse
|
4
|
Dasgupta S, Gayen S, Chakraborty T, Afrose N, Pal R, Mahata S, Nasare V, Roy S. Potential role of immune cell therapy in gynecological cancer and future promises: a comprehensive review. Med Oncol 2024; 41:98. [PMID: 38536512 DOI: 10.1007/s12032-024-02337-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/20/2024] [Indexed: 05/31/2024]
Abstract
Gynecological malignancies are most leading causes of death among women worldwide. The high prevalence of gynecologic malignancies remains significant, necessitating to turn the novel treatment approach like immunotherapy, wherein cancer cells are killed by the invasion of immune system. In recent year, immunotherapy has mostly an advanced treatment approach to repressing the tumor cells survival, proliferation, and invasion via the activation of immune systems. Moreover, various types of immune cells including T-cells, B-cells, and dendritic cells are associated with the immunotherapeutic strategy in cancer treatment. Although the significant role of T-cells against cancer is well established, while B-cells and dendritic cells also play an important role against different gynecological cancer by regulating the immune system. This review focuses on that arena and highlight the role of immune cells in the treatment of gynaecological cancer. Various immune cell-based anticancer therapies such as T-cell therapies, Adoptive Cellular transfer, B-cell therapies as well as approaches to Dendritic Cell therapies have been discussed in detail. Furthermore, the clinical settings and future avenues regarding immunotherapy on gynecological cancer have also been reviewed and illuminated in the recent study.
Collapse
Affiliation(s)
- Sandipan Dasgupta
- Department of Pharmaceutical Technology, Maulana Abul Kalam Azad University of Technology, Kolkata, West Bengal, India
| | - Sakuntala Gayen
- NSHM Knowledge Campus, Kolkata - Group of Institutions, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India
| | - Tania Chakraborty
- NSHM Knowledge Campus, Kolkata - Group of Institutions, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India
| | - Naureen Afrose
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
| | - Ranita Pal
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Sutapa Mahata
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Vilas Nasare
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Souvik Roy
- NSHM Knowledge Campus, Kolkata - Group of Institutions, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India.
| |
Collapse
|
5
|
Jiang J, Liu Y, Zeng Y, Fang B, Chen Y. Annihilation of Non-small Cell Lung Cancer by NKG2D CAR-T Cells Produced from T Cells from Peripheral Blood of Healthy Donors. J Interferon Cytokine Res 2023; 43:445-454. [PMID: 37819621 DOI: 10.1089/jir.2023.0043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
Some progress has been made in immunotherapy with chimeric antigen receptor (CAR)-T cells targeting NKG2D-NKG2DL with the purpose of eradicating solid tumors. Non-small cell lung cancer (NSCLC) has been shown to express NKG2DL. This study hence evaluated the therapeutic effect of NKG2D CAR-T cells on NSCLC. Accordingly, NKG2D CAR-T cells were obtained from diverse human autologous T cell sources. T cells from peripheral blood T lymphocytes of healthy volunteers (without NKG2D CAR insertion) were used as NT-T cells. Coculture of effector cells (CAR-T cells or NT-T cells) with target cells (NSCLC cells such as PC-9 or NCL-H460 cells) was performed at different ratios. The cytotoxicity of CAR-T cells was examined using lactate dehydrogenase assay kits. Murine xenograft assay was conducted to investigate the in vivo antitumor effect of CAR-T cells. Cytokines secreted from CAR-T cells were assessed by enzyme-linked immunosorbent assay. CAR-T cell infiltration into xenografts was observed through immunochemical assay. Based on the results, NKG2DL was highly expressed in NSCLC cells. Compared with NT-T cells, NKG2D CAR-T cells from different sources of T cells delivered stronger toxicity, and secreted more effector and memory function-related cytokines to NSCLC cells, and those from the peripheral blood of healthy donors (H-T cells) exhibited the strongest effect. Furthermore, compared with NT-T cells, H-T cells and NKG2D CAR-T cells from NSCLC patients' peripheral blood diminished tumor, improved survival, increased body weight and tumor-infiltrating capacity, and upregulated serum IFN-γ level in NOG mice. Collectively speaking, NKG2D CAR-T cells exhibit a robust effect on eradicating NSCLC in a NKG2DL-dependent manner, thus making themselves a promising therapeutic candidate for NSCLC patients.
Collapse
Affiliation(s)
- Jinhong Jiang
- The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui City, China
| | - Yonghua Liu
- The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui City, China
| | - Yuxiao Zeng
- The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui City, China
| | - Bingmu Fang
- The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui City, China
| | | |
Collapse
|
6
|
Kumar V, Bauer C, Stewart JH. TIME Is Ticking for Cervical Cancer. BIOLOGY 2023; 12:941. [PMID: 37508372 PMCID: PMC10376148 DOI: 10.3390/biology12070941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
Cervical cancer (CC) is a major health problem among reproductive-age females and comprises a leading cause of cancer-related deaths. Human papillomavirus (HPV) is the major risk factor associated with CC incidence. However, lifestyle is also a critical factor in CC pathogenesis. Despite HPV vaccination introduction, the incidence of CC is increasing worldwide. Therefore, it becomes critical to understand the CC tumor immune microenvironment (TIME) to develop immune cell-based vaccination and immunotherapeutic approaches. The current article discusses the immune environment in the normal cervix of adult females and its role in HPV infection. The subsequent sections discuss the alteration of different immune cells comprising CC TIME and their targeting as future therapeutic approaches.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA 70012, USA
| | - Caitlin Bauer
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA 70012, USA
| | - John H Stewart
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA 70012, USA
- Louisiana Children's Medical Center Cancer Center, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA 70012, USA
| |
Collapse
|
7
|
Yu L, Lanqing G, Huang Z, Xin X, Minglin L, Fa-hui L, Zou H, Min J. T cell immunotherapy for cervical cancer: challenges and opportunities. Front Immunol 2023; 14:1105265. [PMID: 37180106 PMCID: PMC10169584 DOI: 10.3389/fimmu.2023.1105265] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/27/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer cellular immunotherapy has made inspiring therapeutic effects in clinical practices, which brings new hope for the cure of cervical cancer. CD8+T cells are the effective cytotoxic effector cells against cancer in antitumor immunity, and T cells-based immunotherapy plays a crucial role in cellular immunotherapy. Tumor infiltrated Lymphocytes (TIL), the natural T cells, is approved for cervical cancer immunotherapy, and Engineered T cells therapy also has impressive progress. T cells with natural or engineered tumor antigen binding sites (CAR-T, TCR-T) are expanded in vitro, and re-infused back into the patients to eradicate tumor cells. This review summarizes the preclinical research and clinical applications of T cell-based immunotherapy for cervical cancer, and the challenges for cervical cancer immunotherapy.
Collapse
Affiliation(s)
- Lingfeng Yu
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Gong Lanqing
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziyu Huang
- School of Arts and Sciences, Brandeis University, Boston, MA, United States
| | - Xiaoyan Xin
- School of Arts and Sciences, Brandeis University, Boston, MA, United States
| | - Liang Minglin
- School of Arts and Sciences, Brandeis University, Boston, MA, United States
| | - Lv Fa-hui
- Department of Obstetrics and Gynecology, The Second People’s Hospital of Hefei, Hefei, Anhui, China
| | - Hongmei Zou
- Department of Obstetrics, Qianjiang Central Hospital, Qianjiang, Hubei, China
| | - Jie Min
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Arianfar E, Khandoozi SR, Mohammadi S, Memarian A. Suppression of CD56 bright NK cells in breast cancer patients is associated with the PD-1 and TGF-βRII expression. Clin Transl Oncol 2023; 25:841-851. [PMID: 36414921 DOI: 10.1007/s12094-022-02997-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/26/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Natural killer (NK) cells, as professional cytotoxic cells, play a key role against cancer in the early and metastatic stages. Their functional defects are highly associated with the initiation or progression of breast cancer (BC). Here, we investigated the phenotypic characterization of NK cells in 26 newly diagnosed BC patients in comparison to 12 healthy counterparts. METHODS Expression of CXCR3 and PD-1, and also NKG2D, and TGF-βRII were studied on CD56dim and CD56bright NK cells from fresh peripheral blood (PB) samples using flow cytometry. The plasma levels of IFN-γ and soluble MIC-A levels were also assessed by ELISA. RESULTS Both CD56dim and CD56bright NK subtypes showed lower CXCR3 and NKG2D expression in BC patients than healthy subjects. Furthermore, patients' CD56bright NK cells significantly showed higher expression levels of TGF-βRII and PD-1. Interestingly, increased concentration of MIC-A level in plasma of BC patients was associated with the higher TGF-βRII and PD-1 expression in all NK cells, while the plasma level of IFN-γ was associated with the lower TGF-βRII expression on CD56bright NK cells in these patients. CONCLUSION Our results demonstrated phenotypically suppressed-NK cells, especially in the CD56bright subset of BC patients. It specifies their potential incompetence and outlines decrement of their anti-tumor activity, which could be interrelated with the tumor pathogenesis, TME immunosuppression, and so disease progression. The induction of compensatory mechanisms revives NK cells function and could be used in combination with the conventional treatments as a putative therapeutic approach for targeted immunotherapy.
Collapse
Affiliation(s)
- Elaheh Arianfar
- Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Immunology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Saeed Mohammadi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Memarian
- Department of Immunology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran. .,Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
9
|
Yan T, Zhu L, Chen J. Current advances and challenges in CAR T-Cell therapy for solid tumors: tumor-associated antigens and the tumor microenvironment. Exp Hematol Oncol 2023; 12:14. [PMID: 36707873 PMCID: PMC9883880 DOI: 10.1186/s40164-023-00373-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
The past decade has witnessed ongoing progress in immune therapy to ameliorate human health. As an emerging technique, chimeric antigen receptor (CAR) T-cell therapy has the advantages of specific killing of cancer cells, a high remission rate of cancer-induced symptoms, rapid tumor eradication, and long-lasting tumor immunity, opening a new window for tumor treatment. However, challenges remain in CAR T-cell therapy for solid tumors due to target diversity, tumor heterogeneity, and the complex microenvironment. In this review, we have outlined the development of the CAR T-cell technique, summarized the current advances in tumor-associated antigens (TAAs), and highlighted the importance of tumor-specific antigens (TSAs) or neoantigens for solid tumors. We also addressed the challenge of the TAA binding domain in CARs to overcome off-tumor toxicity. Moreover, we illustrated the dominant tumor microenvironment (TME)-induced challenges and new strategies based on TME-associated antigens (TMAs) for solid tumor CAR T-cell therapy.
Collapse
Affiliation(s)
- Ting Yan
- grid.443397.e0000 0004 0368 7493Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311 Hainan China
| | - Lingfeng Zhu
- grid.443397.e0000 0004 0368 7493Department of Urology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311 Hainan China
| | - Jin Chen
- grid.443397.e0000 0004 0368 7493Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311 Hainan China ,grid.443397.e0000 0004 0368 7493Department of Clinical Laboratory, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311 Hainan China
| |
Collapse
|
10
|
Nie Y, Fan H, Li J, Lei X, Zhang T, Wang Y, Mao Z, Tao K, Song W. Tertiary lymphoid structures: Associated multiple immune cells and analysis their formation in hepatocellular carcinoma. FASEB J 2022; 36:e22586. [PMID: 36190431 DOI: 10.1096/fj.202200269rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 09/04/2022] [Accepted: 09/21/2022] [Indexed: 11/11/2022]
Abstract
The prognostic value of immune cells in tertiary lymphoid structures (TLSs) remains unclear in hepatocellular carcinoma (HCC). Here, 59 of 145 patients had TLSs in training set, 48 of 120 patients had TLSs in testing set. Immunohistochemistry (IHC) were used to label CD3+ T cells, CD20+ B cells, CD8+ T cells, CD208+ dendritic cells, and CD21+ follicular dendritic cells in TLSs. High CD20+, CD208+, and CD8+ cell densities were favorable prognostic factors for overall survival (OS). High CD3+, CD20+, CD208+, and CD8+ cell densities were significantly associated with reduced early recurrence. TLSs were divided into three grades (A, B, and C) based on immune cell density. Patients with grade C or B had significantly improved OS. Patients with grade C had the lowest recurrence rate, followed by those with grade B, while patients with grade A had the highest recurrence rate. The stromal, immune, and ESTIMATE scores derived from the ESTIMATE package were significantly higher and tumor purity was significantly lower in patients with TLSs. Patients with TLSs had significantly higher relative numbers of memory B cells, plasma cells, CD8+ T cells, NK cells, and dendritic cells and lower relative numbers of Treg cells, macrophages, and M2 macrophages according to the CIBERSORT assessment. Bioinformatics analysis and experiments confirmed that KLRK1 and GZMA expression are associated TLSs formation and can predict TLSs existence. Grade B and grade C were favorable prognostic factors for OS and recurrence and could represent immune-active tumors.
Collapse
Affiliation(s)
- Ye Nie
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hanlu Fan
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jianhui Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xinjun Lei
- Department of General Surgery, The Centre Hospital Weinan Shaanxi, Weinan, China
| | - Tianchen Zhang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Yanfang Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.,Xi'an Medical University, Xi'an, China
| | - Zhenzhen Mao
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.,Xi'an Medical University, Xi'an, China
| | - Kaishan Tao
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wenjie Song
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
11
|
Shen X, Wang C, Li M, Wang S, Zhao Y, Liu Z, Zhu G. Identification of CD8+ T cell infiltration-related genes and their prognostic values in cervical cancer. Front Oncol 2022; 12:1031643. [PMID: 36387234 PMCID: PMC9659851 DOI: 10.3389/fonc.2022.1031643] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2023] Open
Abstract
Cervical cancer is a female-specific cancer with relatively high morbidity and mortality. As known to all, immune cell infiltrations in the cancer microenvironment are closely related to the cancer diagnosis and prognosis. Here we revealed that the CD8+ T cell infiltration was significantly upregulated in cervical cancer versus normal cervix uteri samples. Through univariate and multivariate cox analyses, we discovered that the CD8+ T cell infiltration was the only independent beneficial factor for the prognosis of cervical cancer. To explore the genes associated with the CD8+ T cell infiltration in cervical cancer, we performed the WGCNA analysis on the differentially expressed genes (DEGs) of cervical cancer versus normal cervix uteri tissues. As a result, 231 DEGs were found to be associated with CD8+ T cell infiltration in cervical cancer. Subsequently, with the Cytoscape analysis, we identified 105 hub genes out of the 231 DEGs. To further explore the genes that might be responsible for the prognosis of cervical cancer, we performed a univariate cox analysis followed by a LASSO assay on the 105 hub genes and located four genes (IGSF6, TLR10, FCRL3, and IFI30) finally. The four genes could be applied to the prediction of the prognosis of cervical cancer, and relatively higher expression of these four genes predicted a better prognosis. These findings contributed to our understanding of the prognostic values of CD8+ T cell infiltration and its associated genes in cervical cancer and thus might benefit future immune-related therapies.
Collapse
Affiliation(s)
- Xiaopeng Shen
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Chunguang Wang
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Meng Li
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Sufen Wang
- Department of Pathology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Yun Zhao
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Zhongxian Liu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Guoping Zhu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| |
Collapse
|
12
|
Qu C, Zhang H, Cao H, Tang L, Mo H, Liu F, Zhang L, Yi Z, Long L, Yan L, Wang Z, Zhang N, Luo P, Zhang J, Liu Z, Ye W, Liu Z, Cheng Q. Tumor buster - where will the CAR-T cell therapy 'missile' go? Mol Cancer 2022; 21:201. [PMID: 36261831 PMCID: PMC9580202 DOI: 10.1186/s12943-022-01669-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell (CAR-T cell) therapy based on gene editing technology represents a significant breakthrough in personalized immunotherapy for human cancer. This strategy uses genetic modification to enable T cells to target tumor-specific antigens, attack specific cancer cells, and bypass tumor cell apoptosis avoidance mechanisms to some extent. This method has been extensively used to treat hematologic diseases, but the therapeutic effect in solid tumors is not ideal. Tumor antigen escape, treatment-related toxicity, and the immunosuppressive tumor microenvironment (TME) limit their use of it. Target selection is the most critical aspect in determining the prognosis of patients receiving this treatment. This review provides a comprehensive summary of all therapeutic targets used in the clinic or shown promising potential. We summarize CAR-T cell therapies' clinical trials, applications, research frontiers, and limitations in treating different cancers. We also explore coping strategies when encountering sub-optimal tumor-associated antigens (TAA) or TAA loss. Moreover, the importance of CAR-T cell therapy in cancer immunotherapy is emphasized.
Collapse
Affiliation(s)
- Chunrun Qu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hui Cao
- Department of Psychiatry, The Second People's Hospital of Hunan Province, The Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Lanhua Tang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haoyang Mo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fangkun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenjie Yi
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lifu Long
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Luzhe Yan
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Nan Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- One-third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Weijie Ye
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
13
|
The challenge of selecting tumor antigens for chimeric antigen receptor T-cell therapy in ovarian cancer. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:232. [PMID: 36175774 DOI: 10.1007/s12032-022-01824-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/14/2022] [Indexed: 10/14/2022]
Abstract
Ovarian cancer (OC) is one of the most common cancers in women, with a high mortality rate and very few available and effective treatments. Evidence shows that immunotherapy in OC has not been very successful because immune checkpoint blockers have not achieved satisfactory clinical outcomes. On the other hand, as one of the effective treatment approaches, chimeric antigen receptor T-cell (CAR T-cell) therapy has gained a moral position, especially in blood malignancies. Although in solid tumors, CAR T-cell therapy faces various complications and challenges. One of these challenges is selecting the appropriate tumor antigen targeted by CAR T cells, making the selection difficult due to the expression of antigens by tumor cells and normal cells. In addition, the rate of tumor antigen expression and CAR T-cell access to the desired antigen and proper stimulation of CAR T cells can be other important points in antigen selection. This review summarized common tumor antigens and the challenges of selecting them in CAR T cells therapy of OC.
Collapse
|
14
|
Ge Y, Zhang Y, Zhao KN, Zhu H. Emerging Therapeutic Strategies of Different Immunotherapy Approaches Combined with PD-1/PD-L1 Blockade in Cervical Cancer. Drug Des Devel Ther 2022; 16:3055-3070. [PMID: 36110399 PMCID: PMC9470119 DOI: 10.2147/dddt.s374672] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Yanjun Ge
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Yuchen Zhang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Kong-Nan Zhao
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, People’s Republic of China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, Australia
| | - Haiyan Zhu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, People’s Republic of China
- Correspondence: Haiyan Zhu, Shanghai First Maternity and Infant Hospital, No. 2699 Gaokexi Road, Shanghai, 200092, People’s Republic of China, Tel +86 13758465255, Email
| |
Collapse
|
15
|
Sun J, Li X, Chen P, Gao Y. From Anti-HER-2 to Anti-HER-2-CAR-T Cells: An Evolutionary Immunotherapy Approach for Gastric Cancer. J Inflamm Res 2022; 15:4061-4085. [PMID: 35873388 PMCID: PMC9304417 DOI: 10.2147/jir.s368138] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/29/2022] [Indexed: 11/23/2022] Open
Abstract
Current Therapeutic modalities provide no survival advantage to gastric cancer (GC) patients. Targeting the human epidermal growth factor receptor-2 (HER-2) is a viable therapeutic strategy against advanced HER-2 positive GC. Antibody-drug conjugates, small-molecule tyrosine kinase inhibitors (TKIs), and bispecific antibodies are emerging as novel drug forms that may abrogate the resistance to HER-2-specific drugs and monoclonal antibodies. Chimeric antigen receptor-modified T cells (CAR-T) targeting HER-2 have shown considerable therapeutic potential in GC and other solid tumors. However, due to the high heterogeneity along with the complex tumor microenvironment (TME) of GC that often leads to immune escape, the immunological treatment of GC still faces many challenges. Here, we reviewed and discussed the current progress in the research of anti-HER-2-CAR-T cell immunotherapy against GC.
Collapse
Affiliation(s)
- Jiangang Sun
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Xiaojing Li
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Peng Chen
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Yongshun Gao
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| |
Collapse
|
16
|
Chen L, Chen F, Niu H, Li J, Pu Y, Yang C, Wang Y, Huang R, Li K, Lei Y, Huang Y. Chimeric Antigen Receptor (CAR)-T Cell Immunotherapy Against Thoracic Malignancies: Challenges and Opportunities. Front Immunol 2022; 13:871661. [PMID: 35911706 PMCID: PMC9334018 DOI: 10.3389/fimmu.2022.871661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Different from surgery, chemical therapy, radio-therapy and target therapy, Chimeric antigen receptor-modified T (CAR-T) cells, a novel adoptive immunotherapy strategy, have been used successfully against both hematological tumors and solid tumors. Although several problems have reduced engineered CAR-T cell therapeutic outcomes in clinical trials for the treatment of thoracic malignancies, including the lack of specific antigens, an immunosuppressive tumor microenvironment, a low level of CAR-T cell infiltration into tumor tissues, off-target toxicity, and other safety issues, CAR-T cell treatment is still full of bright future. In this review, we outline the basic structure and characteristics of CAR-T cells among different period, summarize the common tumor-associated antigens in clinical trials of CAR-T cell therapy for thoracic malignancies, and point out the current challenges and new strategies, aiming to provide new ideas and approaches for preclinical experiments and clinical trials of CAR-T cell therapy for thoracic malignancies.
Collapse
Affiliation(s)
- Long Chen
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Fukun Chen
- Department of Nuclear Medicine, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Huatao Niu
- Department of Neurosurgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Jindan Li
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Yongzhu Pu
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Conghui Yang
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Yue Wang
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Rong Huang
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Ke Li
- Department of Cancer Biotherapy Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Yujie Lei
- Department of Thoracic Surgery I, Key Laboratory of Lung Cancer of Yunnan Province, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Yunchao Huang
- Department of Thoracic Surgery I, Key Laboratory of Lung Cancer of Yunnan Province, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| |
Collapse
|
17
|
Zhou Y, Espenel S, Achkar S, Leary A, Gouy S, Chargari C. Combined modality including novel sensitizers in gynecological cancers. Int J Gynecol Cancer 2022; 32:389-401. [PMID: 35256428 DOI: 10.1136/ijgc-2021-002529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/06/2021] [Indexed: 01/05/2023] Open
Abstract
Standard treatment of locally advanced gynecological cancers relies mainly on platinum-based concurrent chemoradiotherapy followed by brachytherapy. Current chemotherapeutic drugs are only transiently effective and patients with advanced disease often develop resistance and subsequently, distant metastases despite significant initial responses of the primary tumor. In addition, some patients still develop local failure or progression, suggesting that there is still a place for increasing the anti-tumor radiation effect. Several strategies are being developed to increase the probability of curing patients. Vaginal cancer and vulva cancer are rare diseases, which resemble cervical cancer in their histology and pathogenesis. These gynecological cancers are predominantly associated with human papilloma virus infection. Treatment strategies in other unresectable gynecologic cancers are usually derived from evidence in locally advanced cervical cancers. In this review, we discuss mechanisms by which novel therapies could work synergistically with conventional chemoradiotherapy, from pre-clinical and ongoing clinical data. Trimodal, even quadrimodal treatment are currently being tested in clinical trials. Novel combinations derived from a metastatic setting, and being tested in locally advanced tumors, include anti-angiogenic agents, immunotherapy, tumor-infiltrating lymphocytes therapy, adoptive T-cell therapy and apoptosis inducers to enhance chemoradiotherapy efficacy through complementary molecular pathways. In parallel, radiosensitizers, such as nanoparticles and radiosensitizers of hypoxia aim to maximize the effect of radiotherapy locally.
Collapse
Affiliation(s)
- Yuedan Zhou
- Department of Radiation Oncology, CHU Amiens-Picardie, Amiens, Picardie, France
| | - Sophie Espenel
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| | - Samir Achkar
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| | - Alexandra Leary
- Departement of Medical Oncology, Gustave Roussy Cancer Center, Villejuif, France
| | - Sebastien Gouy
- Department of Surgery, Gustave Roussy Cancer Campus, Villejuif, France
| | - Cyrus Chargari
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| |
Collapse
|
18
|
De Bousser E, Callewaert N, Festjens N. T Cell Engaging Immunotherapies, Highlighting Chimeric Antigen Receptor (CAR) T Cell Therapy. Cancers (Basel) 2021; 13:6067. [PMID: 34885176 PMCID: PMC8657024 DOI: 10.3390/cancers13236067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
In the past decade, chimeric antigen receptor (CAR) T cell technology has revolutionized cancer immunotherapy. This strategy uses synthetic CARs to redirect the patient's own immune cells to recognize specific antigens expressed on the surface of tumor cells. The unprecedented success of anti-CD19 CAR T cell therapy against B cell malignancies has resulted in its approval by the US Food and Drug Administration (FDA) in 2017. However, major scientific challenges still remain to be addressed for the broad use of CAR T cell therapy. These include severe toxicities, limited efficacy against solid tumors, and immune suppression in the hostile tumor microenvironment. Furthermore, CAR T cell therapy is a personalized medicine of which the production is time- and resource-intensive, which makes it very expensive. All these factors drive new innovations to engineer more powerful CAR T cells with improved antitumor activity, which are reviewed in this manuscript.
Collapse
Affiliation(s)
- Elien De Bousser
- Vlaams Instituut voor Biotechnologie (VIB)—UGent Center for Medical Biotechnology, Technologiepark—Zwijnaarde 75, 9052 Ghent, Belgium;
- Department of Biochemistry and Microbiology, Ghent University, Technologiepark—Zwijnaarde 75, 9052 Ghent, Belgium
| | - Nico Callewaert
- Vlaams Instituut voor Biotechnologie (VIB)—UGent Center for Medical Biotechnology, Technologiepark—Zwijnaarde 75, 9052 Ghent, Belgium;
- Department of Biochemistry and Microbiology, Ghent University, Technologiepark—Zwijnaarde 75, 9052 Ghent, Belgium
| | - Nele Festjens
- Vlaams Instituut voor Biotechnologie (VIB)—UGent Center for Medical Biotechnology, Technologiepark—Zwijnaarde 75, 9052 Ghent, Belgium;
- Department of Biochemistry and Microbiology, Ghent University, Technologiepark—Zwijnaarde 75, 9052 Ghent, Belgium
| |
Collapse
|
19
|
Fuertes MB, Domaica CI, Zwirner NW. Leveraging NKG2D Ligands in Immuno-Oncology. Front Immunol 2021; 12:713158. [PMID: 34394116 PMCID: PMC8358801 DOI: 10.3389/fimmu.2021.713158] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/02/2021] [Indexed: 12/14/2022] Open
Abstract
Immune checkpoint inhibitors (ICI) revolutionized the field of immuno-oncology and opened new avenues towards the development of novel assets to achieve durable immune control of cancer. Yet, the presence of tumor immune evasion mechanisms represents a challenge for the development of efficient treatment options. Therefore, combination therapies are taking the center of the stage in immuno-oncology. Such combination therapies should boost anti-tumor immune responses and/or target tumor immune escape mechanisms, especially those created by major players in the tumor microenvironment (TME) such as tumor-associated macrophages (TAM). Natural killer (NK) cells were recently positioned at the forefront of many immunotherapy strategies, and several new approaches are being designed to fully exploit NK cell antitumor potential. One of the most relevant NK cell-activating receptors is NKG2D, a receptor that recognizes 8 different NKG2D ligands (NKG2DL), including MICA and MICB. MICA and MICB are poorly expressed on normal cells but become upregulated on the surface of damaged, transformed or infected cells as a result of post-transcriptional or post-translational mechanisms and intracellular pathways. Their engagement of NKG2D triggers NK cell effector functions. Also, MICA/B are polymorphic and such polymorphism affects functional responses through regulation of their cell-surface expression, intracellular trafficking, shedding of soluble immunosuppressive isoforms, or the affinity of NKG2D interaction. Although immunotherapeutic approaches that target the NKG2D-NKG2DL axis are under investigation, several tumor immune escape mechanisms account for reduced cell surface expression of NKG2DL and contribute to tumor immune escape. Also, NKG2DL polymorphism determines functional NKG2D-dependent responses, thus representing an additional challenge for leveraging NKG2DL in immuno-oncology. In this review, we discuss strategies to boost MICA/B expression and/or inhibit their shedding and propose that combination strategies that target MICA/B with antibodies and strategies aimed at promoting their upregulation on tumor cells or at reprograming TAM into pro-inflammatory macrophages and remodeling of the TME, emerge as frontrunners in immuno-oncology because they may unleash the antitumor effector functions of NK cells and cytotoxic CD8 T cells (CTL). Pursuing several of these pipelines might lead to innovative modalities of immunotherapy for the treatment of a wide range of cancer patients.
Collapse
Affiliation(s)
- Mercedes Beatriz Fuertes
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Carolina Inés Domaica
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Norberto Walter Zwirner
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina.,Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
20
|
Xu Y, Jiang J, Wang Y, Wang W, Li H, Lai W, Zhou Z, Zhu W, Xiang Z, Wang Z, Zhu Z, Yu L, Huang X, Zheng H, Wu S. Engineered T Cell Therapy for Gynecologic Malignancies: Challenges and Opportunities. Front Immunol 2021; 12:725330. [PMID: 34386017 PMCID: PMC8353443 DOI: 10.3389/fimmu.2021.725330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/13/2021] [Indexed: 12/24/2022] Open
Abstract
Gynecologic malignancies, mainly including ovarian cancer, cervical cancer and endometrial cancer, are leading causes of death among women worldwide with high incidence and mortality rate. Recently, adoptive T cell therapy (ACT) using engineered T cells redirected by genes which encode for tumor-specific T cell receptors (TCRs) or chimeric antigen receptors (CARs) has demonstrated a delightful potency in B cell lymphoma treatment. Researches impelling ACT to be applied in treating solid tumors like gynecologic tumors are ongoing. This review summarizes the preclinical research and clinical application of engineered T cells therapy for gynecologic cancer in order to arouse new thoughts for remedies of this disease.
Collapse
Affiliation(s)
- Yifan Xu
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jin Jiang
- Guangzhou Blood Center, Department of Blood Source Management, Guangzhou, China
| | - Yutong Wang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haokun Li
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wenyu Lai
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhipeng Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wei Zhu
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zheng Xiang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Zhiming Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Sino-British Research Center for Molecular Oncology, National Center for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhe Zhu
- Huikezhe Biological Tech. Beijing, R&D Department, Beijing, China
| | - Lingfeng Yu
- School of Basic Medicine Science, Tianjin Medical University, Tianjin, China
| | - Xiaolan Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hua Zheng
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sha Wu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,National Demonstration Center for Experimental Education of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
21
|
Chokshi CR, Brakel BA, Tatari N, Savage N, Salim SK, Venugopal C, Singh SK. Advances in Immunotherapy for Adult Glioblastoma. Cancers (Basel) 2021; 13:cancers13143400. [PMID: 34298615 PMCID: PMC8305609 DOI: 10.3390/cancers13143400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Therapy failure and disease recurrence are hallmarks of glioblastoma (GBM), the most common and lethal tumor in adults that originates in the brain. Despite aggressive standards of care, tumor recurrence is inevitable with no standardized second-line therapy. Recent clinical studies evaluating therapies that augment the anti-tumor immune response (i.e., immunotherapies) have yielded promising results in subsets of GBM patients. Here, we summarize clinical studies in the past decade that evaluate vaccines, immune checkpoint inhibitors and chimeric antigen receptor (CAR) T cells for treatment of GBM. Although immunotherapies have yet to return widespread efficacy for the majority of GBM patients, critical insights from completed and ongoing clinical trials are informing development of the next generation of therapies, with the goal to alleviate disease burden and extend patient survival. Abstract Despite aggressive multimodal therapy, glioblastoma (GBM) remains the most common malignant primary brain tumor in adults. With the advent of therapies that revitalize the anti-tumor immune response, several immunotherapeutic modalities have been developed for treatment of GBM. In this review, we summarize recent clinical and preclinical efforts to evaluate vaccination strategies, immune checkpoint inhibitors (ICIs) and chimeric antigen receptor (CAR) T cells. Although these modalities have shown long-term tumor regression in subsets of treated patients, the underlying biology that may predict efficacy and inform therapy development is being actively investigated. Common to all therapeutic modalities are fundamental mechanisms of therapy evasion by tumor cells, including immense intratumoral heterogeneity, suppression of the tumor immune microenvironment and low mutational burden. These insights have led efforts to design rational combinatorial therapies that can reignite the anti-tumor immune response, effectively and specifically target tumor cells and reliably decrease tumor burden for GBM patients.
Collapse
Affiliation(s)
- Chirayu R. Chokshi
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada; (C.R.C.); (B.A.B.); (N.T.); (N.S.); (S.K.S.)
| | - Benjamin A. Brakel
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada; (C.R.C.); (B.A.B.); (N.T.); (N.S.); (S.K.S.)
| | - Nazanin Tatari
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada; (C.R.C.); (B.A.B.); (N.T.); (N.S.); (S.K.S.)
| | - Neil Savage
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada; (C.R.C.); (B.A.B.); (N.T.); (N.S.); (S.K.S.)
| | - Sabra K. Salim
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada; (C.R.C.); (B.A.B.); (N.T.); (N.S.); (S.K.S.)
| | - Chitra Venugopal
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada;
| | - Sheila K. Singh
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada; (C.R.C.); (B.A.B.); (N.T.); (N.S.); (S.K.S.)
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada;
- Correspondence:
| |
Collapse
|