1
|
Anshori I, Marcius D, Syaifie PH, Siregar KAAK, Syakuran LA, Jauhar MM, Arda AG, Shalannanda W, Mardliyati E. Therapeutic Potential of Propolis Extract in Managing Hyperinflammation and Long COVID-19: A Bioinformatics Study. Chem Biodivers 2025; 22:e202401947. [PMID: 39576127 DOI: 10.1002/cbdv.202401947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/06/2024]
Abstract
Hyperinflammation is a significant factor in long COVID, impacting over 65 million post-COVID-19 individuals globally. Herbal remedies, including propolis, show promise in reducing severity and pro-inflammatory cytokines. However, the natural pharmacological role of propolis in COVID-19 management remains underexplored. Employing network pharmacology and in silico techniques, we assessed propolis extract's potential in countering SARS-CoV-2-induced inflammation. We identified 80 flavonoids via LC-MS/MS QTOF and employed 11 anti-inflammatory drugs as references for inflammation target fishing. Utilizing in silico techniques encompassing target fishing, molecular docking, and dynamics, we examined propolis' effects. We identified 1105 gene targets connected to inflammation through multiple validated target predictors. By integrating SARS-CoV-2 DEGs from GSE147507 with these targets, we identify 25 inflammation-COVID-19-associated propolis targets, including STAT1, NOS2, CFB, EIF2K2, NPY5R, and BTK. Enrichment analyses highlighted primary pharmacological pathways related to Epstein-Barr virus infection and COVID-19. Molecular docking validated isokaempferide, iristectorigenin B, 3'-methoxypuerarin, cosmosiin, and baicalein-7-O-β-d-glucopyranoside, which exhibited strong binding affinity and stability with relevant genes. Moreover, our findings indicate that propolis ligands could potentially suppress reactivation of Epstein-Barr Virus infections in post-COVID-19 cases. However, this study has a limitation in that the concentration of each propolis compound has not been quantified. Therefore, further exploration of propolis compounds quantification and experimental validation are needed to support these findings.
Collapse
Affiliation(s)
- Isa Anshori
- School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung, Indonesia
- Research Center for Nanosciences and Nanotechnology (RCNN), Bandung Institute of Technology, Bandung, Indonesia
| | - Donny Marcius
- School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung, Indonesia
| | - Putri Hawa Syaifie
- Nano Center Indonesia, Jl. PUSPIPTEK, South Tangerang, Banten, Indonesia
| | - Khalish Arsy Al Khairy Siregar
- Nano Center Indonesia, Jl. PUSPIPTEK, South Tangerang, Banten, Indonesia
- Faculty of Pharmacy, Universitas Muhammadiyah Kalimantan Timur, Samarinda, East Borneo, Indonesia
| | | | | | | | - Wervyan Shalannanda
- School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung, Indonesia
| | - Etik Mardliyati
- Nano Center Indonesia, Jl. PUSPIPTEK, South Tangerang, Banten, Indonesia
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| |
Collapse
|
2
|
Herdiana Y. Nanoparticles of natural product-derived medicines: Beyond the pandemic. Heliyon 2025; 11:e42739. [PMID: 40083991 PMCID: PMC11904502 DOI: 10.1016/j.heliyon.2025.e42739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 03/16/2025] Open
Abstract
This review explores the synergistic potential of natural products and nanotechnology for viral infections, highlighting key antiviral, immunomodulatory, and antioxidant properties to combat pandemics caused by highly infectious viruses. These pandemics often result in severe public health crises, particularly affecting vulnerable populations due to respiratory complications and increased mortality rates. A cytokine storm is initiated when an overload of pro-inflammatory cytokines and chemokines is released, leading to a systemic inflammatory response. Viral mutations and the limited availability of effective drugs, vaccines, and therapies contribute to the continuous transmission of the virus. The coronavirus disease-19 (COVID-19) pandemic has sparked renewed interest in natural product-derived antivirals. The efficacy of traditional medicines against pandemic viral infections is examined. Their antiviral, immunomodulatory, anti-inflammatory, and antioxidant properties are highlighted. This review discusses how nanotechnology enhances the efficacy of herbal medicines in combating viral infections.
Collapse
Affiliation(s)
- Yedi Herdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| |
Collapse
|
3
|
Loo YS, Yusoh NA, Lim WF, Ng CS, Zahid NI, Azmi IDM, Madheswaran T, Lee TY. Phytochemical-based nanosystems: recent advances and emerging application in antiviral photodynamic therapy. Nanomedicine (Lond) 2025; 20:401-416. [PMID: 39848784 PMCID: PMC11812329 DOI: 10.1080/17435889.2025.2452151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 01/08/2025] [Indexed: 01/25/2025] Open
Abstract
Phytochemicals are typically natural bioactive compounds or metabolites produced by plants. Phytochemical-loaded nanocarrier systems, designed to overcome bioavailability limitations and enhance therapeutic effects, have garnered significant attention in recent years. The coronavirus disease 2019 (COVID-19) pandemic has intensified interest in the therapeutic application of phytochemicals to combat viral infections. This review explores nanoparticle-based treatment strategies incorporating phytochemicals for antiviral application, highlighting their demonstrated antiviral mechanisms. It specifically examines the antiviral activities of phytochemical-loaded nanosystems against (i) influenza virus (IAV), respiratory syncytial virus (RSV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); (ii) mosquito-borne viruses [dengue (DENV), Zika (ZIKV), and Chikungunya (CHIKV)]; and (iii) sexually transmitted/blood borne viruses [e.g. herpes simplex virus (HSV), human papillomavirus (HPV), and human immunodeficiency virus (HIV)]. Furthermore, this review highlights the emerging role of these nanosystems in photodynamic therapy (PDT)-mediated attenuation of viral proliferation, and offers a perspective on the future directions of research in this promising area of multimodal therapeutic approach.
Collapse
Affiliation(s)
- Yan Shan Loo
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nur Aininie Yusoh
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan, China
| | - Wai Feng Lim
- Sunway Medical Centre, Subang Jaya, Selangor, Malaysia
| | - Chen Seng Ng
- School of Science, Monash University Malaysia, Bandar Sunway, Subang Jaya, Selangor, Malaysia
| | - N. Idayu Zahid
- Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Intan Diana Mat Azmi
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Centre for Foundation Studies in Science of Universiti Putra Malaysia, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, IMU University, Kuala Lumpur, Malaysia
| | - Tze Yan Lee
- Clinical Laboratory Science Section, Institute of Medical Science Technology, Universiti Kuala Lumpur, Kajang, Selangor, Malaysia
| |
Collapse
|
4
|
Shah S, Chauhan H, Madhu H, Mori D, Soniwala M, Singh S, Prajapati B. Lipids Fortified Nano Phytopharmaceuticals: A Breakthrough Approach in Delivering Bio-actives for Improved Therapeutic Efficacy. Pharm Nanotechnol 2025; 13:70-89. [PMID: 38279712 DOI: 10.2174/0122117385277686231127050723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 01/28/2024]
Abstract
Phytopharmaceuticals, derived from natural sources, manifest tremendous potential for therapeutic applications. Nevertheless, effective delivery of these bio-actives presents significant challenges. A breakthrough in fortifying phytopharmaceuticals within phosphatidylcholine is a promising remedy to overcome solubility, permeability, and other related drawbacks. This intrinsic lipid, which is obtained from both natural and synthetic sources, confers numerous benefits, encompassing heightened solubility, augmented bioavailability, and enhanced stability. The conjugation of phytopharmaceuticals with phosphatidylcholine enables improved dermal permeation, absorption, targeted distribution, and the possibility of synergistic results, eventually improving therapeutic efficacy. Additionally, the use of phytopharmaceuticals enriched with phosphatidylcholine presents a promising route for overcoming the limitations imposed by conventional delivery techniques, encouraging more effective treatments. The review provides a thorough analysis of phosphatidylcholine- incorporated phytopharmaceuticals as nanomedicine with variables that significantly affect their therapeutic efficacy. Moreover, the review elaborates on how phosphatidylcholine improves solubility, permeability, and tissue distribution and boosts the potential of phytopharmaceuticals. Further, the review underscores the significance of nano-formulation strategies, analytical methodologies, and forthcoming prospects to propel this field forward. Furthermore, the review emphasizes the potential inherent in this innovative approach while highlighting the importance of additional research endeavors and collaborative initiatives to unlock the therapeutic benefits of phosphatidylcholinefortified phytopharmaceuticals, enhancing patient well-being.
Collapse
Affiliation(s)
- Sunny Shah
- B. K. Mody Government Pharmacy College, Rajkot, Gujarat, 360003, India
| | - Harshida Chauhan
- B. K. Mody Government Pharmacy College, Rajkot, Gujarat, 360003, India
| | - Hardik Madhu
- B. K. Mody Government Pharmacy College, Rajkot, Gujarat, 360003, India
| | - Dhaval Mori
- B. K. Mody Government Pharmacy College, Rajkot, Gujarat, 360003, India
| | | | - Sudarshan Singh
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Bhupendra Prajapati
- Shree. S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, 384012, Gujarat, India
| |
Collapse
|
5
|
Abdelbaki MM, Arafa AA, Rabie NS, Ghetas AM. The Effect of Propolis on Hatched Eggs Previously Infected With Avian Pathogenic E. coli. J Anim Physiol Anim Nutr (Berl) 2024. [PMID: 39722232 DOI: 10.1111/jpn.14090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/26/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
We investigated the effect of propolis as a sanitiser on hatched eggs previously infected with avian Pathogenic Escherichia coli (E. coli) (APEC) serogroup O78. A green propolis watery extract at 24% and a native breed hatching eggs have been used in this study. A total number of five virulence genes had been detected in E. coli serotype O78 used in this study indicating the pathogenicity of this isolate. The use propolis as a sanitiser for hatching eggs negatively decreased the hatchability percent and increased the embryonic death percent. However, it had a high strength against E. coli serogroup O78 as it significantly reduced the mean colony-forming unit (CFU) count in livers and yolks 4 days post-challenge and in 1-day-old chicks. Our results indicated the antibacterial effect of a green propolis watery extract at 24% against APEC serogroup O78. However, the effect of low concentrations of the propolis against hatchability and embryonic death rates should be tested.
Collapse
Affiliation(s)
| | - Amany Ahmed Arafa
- Microbiology and Immunology Department, Veterinary Research Institute, National Research Centre, Cairo, Egypt
| | - Nagwa Saad Rabie
- Poultry Diseases Department, Veterinary Research Institute, National Research Centre, Dokki, Egypt
| | - Aly Mohammed Ghetas
- Poultry Diseases Department, Veterinary Research Institute, National Research Centre, Dokki, Egypt
| |
Collapse
|
6
|
Quadros de Azevedo D, Vinícius Viera Nóia J, Ribeiro YCM, Alves Dos Reis R, Ribeiro PHO, Almeida Moura G, Mendes P, Barbosa de Souza AB, Carpini Mermejo S, Serafim MSM, Fernandes THM, O'Donoghue AJ, Campos ACFA, Campos SVA, Gonçalves Maltarollo V, Oliveira Castilho R. Development of an Antiviral Medicinal Plant and Natural Product Database (avMpNp Database) from Biodiversity. Chem Biodivers 2024; 21:e202400285. [PMID: 39546588 DOI: 10.1002/cbdv.202400285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/27/2024] [Indexed: 11/17/2024]
Abstract
The construction of compound databases (DB) is a strategy for the rational search of bioactive compounds and drugs for new and old diseases. In order to bring greater impact to drug discovery, we propose the development of a DB of bioactive antiviral compounds. Several research groups have presented evidence of the antiviral activity of medicinal plants and compounds isolated from these plants. We believe that compiling these discoveries in a DB would benefit the scientific research community and increase the speed to discover new potential drugs and medicines. Thus, we present the Antiviral Medicinal Plant and Natural Product DB (avMpNp DB) as an important source for acquiring, organizing, and distributing knowledge related to natural products and antiviral drug discovery. The avMpNp DB contains a series of chemically diverse compounds with drug-like profiles. To test the potential of this DB, SARS-CoV-2 Mpro and PLpro enzymatic inhibition assays were performed for available compounds resulting in IC50 values ranging from 6.308±0.296 to 15.795±0.155 μM. As a perspective, artificial intelligence tools will be added to implement computational predictions, as well as other chemical functionalities that allow data validation.
Collapse
Affiliation(s)
- Daniela Quadros de Azevedo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG. 31270-901, Brazil
| | - João Vinícius Viera Nóia
- Departamento de Ciência da Computação, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Yasmim Carla M Ribeiro
- Departamento de Ciência da Computação, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Raphael Alves Dos Reis
- Departamento de Ciência da Computação, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Paulo Henrique Otoni Ribeiro
- Departamento de Ciência da Computação, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Gustavo Almeida Moura
- Departamento de Ciência da Computação, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Pamela Mendes
- Departamento de Ciência da Computação, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ana Beatriz Barbosa de Souza
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG. 31270-901, Brazil
| | - Sofia Carpini Mermejo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG. 31270-901, Brazil
| | - Mateus Sá Magalhães Serafim
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Thaís Helena Maciel Fernandes
- Departamento de Matéria Prima, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Rio Grande do Sul, RS, Brazil
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego (UCSD), San Diego, CA, US
| | - Alessandra C Faria Aguiar Campos
- Departamento de Ciência da Computação, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Sérgio Vale Aguiar Campos
- Departamento de Ciência da Computação, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Vinícius Gonçalves Maltarollo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG. 31270-901, Brazil
| | - Rachel Oliveira Castilho
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG. 31270-901, Brazil
| |
Collapse
|
7
|
Al Balawi AN, Eldiasty JG, Mosallam SAER, El-Alosey AR, Elmetwalli A. Assessing multi-target antiviral and antioxidant activities of natural compounds against SARS-CoV-2: an integrated in vitro and in silico study. BIORESOUR BIOPROCESS 2024; 11:108. [PMID: 39604740 PMCID: PMC11602940 DOI: 10.1186/s40643-024-00822-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
There is an urgent need for preventive and therapeutic drugs to effectively treat and prevent viral diseases from resurfacing as they emerge during the COVID-19 pandemic. This study aims to assess the antiviral effects of four natural compounds commonly used in traditional medicine to treat SARS-CoV-2 infection. A cytotoxicity, dose-dependent, and plaque reduction assay was performed on Vero CCL-81 cells to figure out their effects on the cells. Quantification of cytokines was assessed. In silico analysis for the selected compound was also evaluated. Results revealed that the compounds could disrupt the viral replication cycle through direct inhibition of the virus or immune system stimulation. The cytotoxicity assay results revealed that the compounds were well tolerated by the cells, indicating that the compounds were not toxic to the cells. This study evaluated the antioxidant capacities of propolis, curcumin, quercetin, and ginseng using ABTS, FRAP, and CUPRAC assays, revealing that propolis exhibited the highest antioxidant activity of ABTS with 1250.40 ± 17.10 μmol Trolox eq/g, with FRAP values reaching 1200.55 ± 15.90 μmol Fe2⁺ eq/g and CUPRAC values of 1150.80 ± 14.20 μmol Trolox eq/g at 1000 µg/mL, highlighting its potential as a potent natural antioxidant. The results of the plaque reduction assay revealed that the compounds could reduce the size and number of plaques, indicating that the compounds could inhibit the virus replication cycle. Subsequently, using molecular docking to analyze the effect of propolis, curcumin, quercetin, and ginseng as inhibitors, it was unveiled that the four compounds are likely to have the potential to inhibit the protease activity, spike protein S1, and RNA polymerase of SARS-CoV-2 and the virus titer was reduced by 100% after post-infection using propolis as an inhibitor control.
Collapse
Affiliation(s)
- Aisha Nawaf Al Balawi
- Biology Department, University College of Haql, "University of Tabuk", Tabuk, Saudi Arabia.
| | - Jayda G Eldiasty
- Biology Department, University College of Haql, "University of Tabuk", Tabuk, Saudi Arabia
| | | | - Alaa R El-Alosey
- Department of Mathematics, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Alaa Elmetwalli
- Department of Clinical Trial Research Unit and Drug Discovery, Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt.
- Microbiology Division, Higher Technological Institute of Applied Health Sciences, Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt.
| |
Collapse
|
8
|
Amtaghri S, Slaoui M, Eddouks M. Phytomedical compounds as promising therapeutic agents for COVID-19 targeting angiotensin-converting enzyme 2: a review. J Pharm Pharmacol 2024; 76:1239-1268. [PMID: 39018169 DOI: 10.1093/jpp/rgae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/07/2024] [Indexed: 07/19/2024]
Abstract
AIMS The aim of the present review was to highlight natural product investigations in silico and in vitro to find plants and chemicals that inhibit or stimulate angiotensin-converting enzyme 2 (ACE-2). BACKGROUND The global reduction of incidents and fatalities attributable to infections with SARS-CoV-2 is one of the most public health problems. In the absence of specific therapy for coronavirus disease 2019 (COVID-19), phytocompounds generated from plant extracts may be a promising strategy worth further investigation, motivating researchers to evaluate the safety and anti-SARS-CoV-2 effectiveness of these ingredients. OBJECTIVE To review phytochemicals in silico for anti-SARS-CoV-2 activity and to assess their safety and effectiveness in vitro and in vivo. METHODS The present review was conducted using various scientific databases and studies on anti-SARS-CoV-2 phytochemicals were analyzed and summarized. The results obtained from the in silico screening were subjected to extraction, isolation, and purification. The in vitro studies on anti-SarcoV-2 were also included in this review. In addition, the results of this research were interpreted, analyzed, and documented on the basis of the bibliographic information obtained. RESULTS This review discusses recent research on using natural remedies to cure or prevent COVID-19 infection. The literature analysis shows that the various herbal preparations (extracts) and purified compounds can block the replication or entrance of the virus directly to carry out their anti-SARS-CoV-2 effects. It is interesting to note that certain items can prevent SARS-CoV-2 from infecting human cells by blocking the ACE-2 receptor or the serine protease TMPRRS2. Moreover, natural substances have been demonstrated to block proteins involved in the SARS-CoV-2 life cycle, such as papain- or chymotrypsin-like proteases. CONCLUSION The natural products may have the potential for use singly or in combination as alternative drugs to treat/prevent COVID-19 infection, including blocking or stimulating ACE-2. In addition, their structures may provide indications for the development of anti-SARS-CoV-2 drugs.
Collapse
Affiliation(s)
- Smail Amtaghri
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, Errachidia 52000, Morocco
- Energy, Materials and Sustainable Development (EMDD) Team-Higher School of Technology-SALE, Center for Water, Natural Resources Environment and Sustainable Development (CERNE2D), Mohammed V University in Rabat, Rabat, Morocco
| | - Miloudia Slaoui
- Energy, Materials and Sustainable Development (EMDD) Team-Higher School of Technology-SALE, Center for Water, Natural Resources Environment and Sustainable Development (CERNE2D), Mohammed V University in Rabat, Rabat, Morocco
| | - Mohamed Eddouks
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, Errachidia 52000, Morocco
| |
Collapse
|
9
|
Arslan I. Natural PAK1 inhibitors: potent anti-inflammatory effectors for prevention of pulmonary fibrosis in COVID-19 therapy. Nat Prod Res 2024; 38:3644-3656. [PMID: 37690001 DOI: 10.1080/14786419.2023.2254454] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/20/2023] [Accepted: 08/28/2023] [Indexed: 09/11/2023]
Abstract
One of the main efforts of scientists to study drug development is the discovery of novel antiviral agents that could be beneficial in the struggle against viruses that cause diseases in humans. Natural products are complex metabolites that are designed and synthesised by different sources in an attempt to optimise nature. Recently, natural products are still a source of biologically active molecules, facilitating drug discovery. A p21-activating kinase PAK1 is a key regulator of cytoskeletal actin assembly, phenotypic signalling, and transcription process which affects a wide range of cellular processes such as cell motility, invasion, metastasis, cell growth, angiogenesis, and cell cycle progression. Most recently, PAK1 was shown to be involved in the progression of coronavirus-caused pulmonary inflammation (lung fibrosis), but clinical data is not currently available yet. This review highlights the naturally occurring compounds that inhibit the oncogenic, melanogenic, and ageing kinase PAK1. Additionally, the potent anti-inflammatory effects of natural products in an attempt to prevent pulmonary fibrosis in COVID-19 have also been discussed.
Collapse
Affiliation(s)
- Idris Arslan
- Zonguldak Bülent Ecevit University, Faculty of Science, Molecular Biology and Genetics, Zonguldak, Turkey
| |
Collapse
|
10
|
Primaguna MR, Rasyid H, Aman M, Bakri S, Kasim H, Iskandar H, Dwiyanti R, Junita AR, Ridwan R, Noviyanthi RA, Purnamasar NI, Hatta M. The Strong Effect of Propolis in Suppressing NF-κB, CysC, and ACE2 on a High-fat Diet. BIOMEDICAL AND PHARMACOLOGY JOURNAL 2024; 17:1539-1554. [DOI: 10.13005/bpj/2963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Background: A high fat diet (HFD)is one of the main causes of obesity and is closely linked to metabolic disorders brought on by stress and malfunctioning tissues. Propolis (Trigona Honey) is considered to be helpful in treating inflammatory diseases because it has also been demonstrated to have anti-inflammatory and anti-free radical properties. This study to demonstrate how much propolis supplementation affects BW, NF-κB, CysC, and ACE2 levels in Wistar rats (Rattus norvegicus) fed a HFD. Methods: Post-test and control group designs in an experimental setup. A total of twenty-four rats were randomly assigned to four groups of six. Group I received a normal diet for sixteen weeks (ND), Group II received a high fat diet (HFD) for sixteen weeks (HFD), Group III received an HFD for sixteen weeks plus propolis for eight weeks (HFD-8), and Group IV received an HFD and propolis for sixteen weeks (HFD-16). Using the Enzyme-Linked Immunosorbent Assay (ELISA), body weight (BW), serum NF-κB, Cys C, and ACE2 levels were measured before treatment (week 0), after 8 weeks of HFD (HFD-8) (week 8), and after 16 weeks of HFD (HFD-16). Results: The mean starting weight in the ND, HFD, HFD-8, and HFD-16 groups did not differ significantly (p > 0.001). By week eight, the HFD group's body weight had increased considerably (254.83 grams vs. 202.0 grams) in comparison to the ND group (p<0.001). The HFD and HFD-8 groups' body weight increased significantly at week 16 in comparison to the ND group (334.83 grams and 269.50 grams vs. 208.67 grams) (p<0.001). At week 16, there was no discernible difference in mean BW between ND and HFD-16 (p > 0.001). There was no significant difference found in the mean initial NF-κB levels between the ND, HFD, HFD-8, and HFD-16 groups (p > 0.001). At week 8, NF-κB levels in the HFD group were significantly higher (5,038 ng/ml vs. 3,655 ng/ml) (p<0.001) than in the ND group. At week 16, NF-κB levels in the HFD and HFD-8 groups were notably higher than those in the ND group (p<0.001), at 6,136 ng/ml and 4,378 ng/ml, respectively, compared to 3,775 ng/ml. Between ND and HFD-16, there was no significant distinction in the mean NF-κB levels at week 16 (p>0.001). There was no significant difference observed in the mean CysC and ACE2 between the ND, HFD, HFD-8, and HFD-16 groups (p > 0.001). CysC and ACE2 levels in the HFD group were significantly higher than those in the ND group at week 8, and in the HFD and HFD-8 groups, they were significantly higher than those in the ND group at week 16. When propolis is administered for eight weeks, the rise in BW, NF-κB, CysC, and ACE2 is suppressed until the eighth week, at which point it increases once more until the sixteenth week. Propolis administration, however, will halt the rise in BW, NF-κB, CysC, and ACE2 until the sixteenth week. Conclusion: Propolis administration for 16 weeks can suppress the increase in BW, LI, RI, NF-κB, CysC and ACE2 levels in rats given a high fat diet (HFD).
Collapse
Affiliation(s)
- Muhammad Reza Primaguna
- 1Department of Internal Medicine, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Haerani Rasyid
- 2Nephrology and Hypertension Division, Department of Internal Medicine, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Makbul Aman
- 3Endocrine and Metabolic Division, Department of Internal Medicine, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Syakib Bakri
- 2Nephrology and Hypertension Division, Department of Internal Medicine, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Hasyim Kasim
- 2Nephrology and Hypertension Division, Department of Internal Medicine, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Harun Iskandar
- 1Department of Internal Medicine, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Ressy Dwiyanti
- 4Department of Microbiology, Faculty of Medicine, Tadulako University, Palu, Indonesia
| | - Ade Rifka Junita
- 5Department of Biology and Immunology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Ridwan Ridwan
- 5Department of Biology and Immunology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Rizki Amelia Noviyanthi
- 5Department of Biology and Immunology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Nur Indah Purnamasar
- 7Department of Obstetrics and Gynecology, Faculty of Medicine, Haluoleo University, Kendari, Indonesia
| | - Mochammad Hatta
- 5Department of Biology and Immunology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
11
|
Garbis DVO, Fortes TS, Brito JM, Silva LDM, Trovão LDO, Oliveira AS, Alves PCS, Vale AAM, Reis AS, Azevedo-Santos APS, Maciel MCG, Guerra RNM, Abreu AG, Silva LA, Berretta AA, Nascimento FRF. Prophylactic use of standardized extract of propolis of Apis mellifera (EPP-AF®) reduces lung inflammation and improves survival in experimental lethal sepsis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118294. [PMID: 38729541 DOI: 10.1016/j.jep.2024.118294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/22/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sepsis poses one of the biggest public health problems, necessitating the search for new therapeutic alternatives. For centuries, propolis has been widely used in folk medicine to treat various inflammatory and infectious diseases. Given its extensive use, it has excellent potential as an adjuvant treatment for patients with sepsis. OBJECTIVE This study evaluated prophylactic treatment with standardized propolis extract (EPP-AF®) and followed the prognosis of sepsis induced by ligation and cecal ligation and puncture (CLP). METHODS Initially, for survival assessment, Swiss mice were separated into five groups: Sham (false operated), control (PBS), ATB (received antibiotic, 8 mg/kg), P10 (received EPP-AF®, 10 mg/kg), and P100 (received EPP-AF®, 100 mg/kg). The animals received PBS, antibiotic, or EPP-AF® by the subcutaneous route 6 h before the CLP procedure. Animal survival was assessed every 12 h for five days when all of them were euthanized. RESULTS We show that the treatment with EPP-AF® significantly increased the life expectancy of animals with sepsis compared to the control group. Interestingly, prophylactic treatment with EPP-AF® showed no effect on the number of colony-forming units in the peritoneum, blood, or lung. However, there was a decrease in cellular influx in the peritoneum. This alteration was unrelated to the number of bone marrow cells or the differential counting of peripheral blood cells. The coagulogram remained unchanged, including the number of platelets and prothrombin time-activated partial thromboplastin time. However, the inflammatory infiltrate and bleeding in the lung tissue were lower in the animals that received EPP-AF®. CONCLUSION Thus, it was possible to conclude that prophylactic treatment with EPP-AF® preserved the lung parenchyma, resulting in an increased lifespan of mice with sepsis. It can be a helpful adjuvant in prophylactic treatment with antibiotics in presurgical conditions.
Collapse
Affiliation(s)
- Dimitrius V O Garbis
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís, Maranhão, Brazil; Laboratório de Imunofisiologia, Universidade Federal do Maranhão, São Luís, Brazil
| | - Thiare S Fortes
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís, Maranhão, Brazil; Laboratório de Imunofisiologia, Universidade Federal do Maranhão, São Luís, Brazil
| | - Jefferson M Brito
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís, Maranhão, Brazil; Laboratório de Patologia e Imunoparasitologia (LPI), Universidade Federal do Maranhão, São Luís, Maranhão, Brazil
| | - Luis Douglas M Silva
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís, Maranhão, Brazil; Laboratório de Patologia e Imunoparasitologia (LPI), Universidade Federal do Maranhão, São Luís, Maranhão, Brazil
| | - Liana de O Trovão
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Aluisio S Oliveira
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís, Maranhão, Brazil; Laboratório de Imunofisiologia, Universidade Federal do Maranhão, São Luís, Brazil
| | - Patrícia C S Alves
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís, Maranhão, Brazil; Laboratório de Imunofisiologia, Universidade Federal do Maranhão, São Luís, Brazil
| | - André A M Vale
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís, Maranhão, Brazil; Laboratório de Imunologia Aplicada ao Câncer (LIAC), Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís, Maranhão, Brazil
| | - Aramys S Reis
- Laboratório de Fisiopatologia e Investigação Terapêutica (LAFIT), Centro de Ciências de Imperatriz, Universidade Federal do Maranhão, Imperatriz, Maranhão, Brazil; Programa de Pós-Graduação em Saúde e Tecnologia, Universidade Federal do Maranhão, Imperatriz, Maranhão, Brazil
| | - Ana Paula S Azevedo-Santos
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís, Maranhão, Brazil; Laboratório de Imunologia Aplicada ao Câncer (LIAC), Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís, Maranhão, Brazil
| | - Marcia C G Maciel
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís, Maranhão, Brazil; Programa de Pós-Graduação em Saúde e Tecnologia, Universidade Federal do Maranhão, Imperatriz, Maranhão, Brazil; Departmento de Biologia Celular, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Rosane N M Guerra
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís, Maranhão, Brazil; Laboratório de Imunofisiologia, Universidade Federal do Maranhão, São Luís, Brazil
| | - Afonso G Abreu
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís, Maranhão, Brazil; Programa de Pós-Graduação em Biologia Microbiana, Universidade CEUMA, São Luís, Maranhão, Brazil
| | - Lucilene A Silva
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís, Maranhão, Brazil; Laboratório de Patologia e Imunoparasitologia (LPI), Universidade Federal do Maranhão, São Luís, Maranhão, Brazil
| | - Andresa A Berretta
- Laboratório de Pesquisa, Desenvolvimento & Inovação, Apis Flora Indl. Coml. Ltda., Ribeirão Preto, São Paulo, Brazil
| | - Flávia R F Nascimento
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís, Maranhão, Brazil; Laboratório de Imunofisiologia, Universidade Federal do Maranhão, São Luís, Brazil.
| |
Collapse
|
12
|
Zhang Y, Wang D, Wang X, Ma H, Liu Y, Hong Z, Zhu Z, Chen X, Lv D, Cao Y, Chai Y. A dual-target SPR screening system for simultaneous ligand discovery of SARS-CoV-2 spike protein and its receptor ACE2 from Chinese herbs. J Pharm Biomed Anal 2024; 245:116142. [PMID: 38631070 DOI: 10.1016/j.jpba.2024.116142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/14/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024]
Abstract
Traditional Chinese Medicine (TCM) is a supremely valuable resource for the development of drug discovery. Few methods are capable of hunting for potential molecule ligands from TCM towards more than one single protein target. In this study, a novel dual-target surface plasmon resonance (SPR) biosensor was developed to perform targeted compound screening of two key proteins involved in the cellular invasion process of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): the spike (S) protein receptor binding domain (RBD) and the angiotensin-converting enzyme 2 (ACE2). The screening and identification of active compounds from six Chinese herbs were conducted taking into consideration the multi-component and multi-target nature of Traditional Chinese Medicine (TCM). Puerarin from Radix Puerariae Lobatae was discovered to exhibit specific binding affinity to both S protein RBD and ACE2. The results highlight the efficiency of the dual-target SPR system in drug screening and provide a novel approach for exploring the targeted mechanisms of active components from Chinese herbs for disease treatment.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Biochemical Pharmacy, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Dongyao Wang
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Naval Medical University, Shanghai 200433, China; Department of Pharmaceutical Analysis, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Xiying Wang
- Suzhou Innovation Center of Shanghai University, Suzhou 215127, China
| | - Huilin Ma
- Department of Biochemical Pharmacy, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Yue Liu
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Naval Medical University, Shanghai 200433, China; Department of Pharmaceutical Analysis, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Zhanying Hong
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Naval Medical University, Shanghai 200433, China; Department of Pharmaceutical Analysis, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Zhenyu Zhu
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Naval Medical University, Shanghai 200433, China; Center for Instrumental Analysis, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Xiaofei Chen
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Naval Medical University, Shanghai 200433, China; Center for Instrumental Analysis, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Diya Lv
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Naval Medical University, Shanghai 200433, China; Center for Instrumental Analysis, School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Yan Cao
- Department of Biochemical Pharmacy, School of Pharmacy, Naval Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Yifeng Chai
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Naval Medical University, Shanghai 200433, China; Department of Pharmaceutical Analysis, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
13
|
Remedio LN, Garcia VADS, Rochetti AL, Berretta AA, Ferreira JA, Fukumasu H, Vanin FM, Yoshida CMP, de Carvalho RA. Oral Films Printed with Green Propolis Ethanolic Extract. Polymers (Basel) 2024; 16:1811. [PMID: 39000666 PMCID: PMC11243841 DOI: 10.3390/polym16131811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 07/17/2024] Open
Abstract
Oral film (OF) research has intensified due to the effortless administration and advantages related to absorption in systemic circulation. Chitosan is one of the polymers widely used in the production of OFs; however, studies evaluating the maintenance of the active principles' activity are incipient. Propolis has been widely used as an active compound due to its different actions. Printing techniques to incorporate propolis in OFs prove to be efficient. The objective of the present study is to develop and characterize oral films based on chitosan and propolis using printing techniques and to evaluate the main activities of the extract incorporated into the polymeric matrix. The OFs were characterized in relation to the structure using scanning and atomic force electron microscopy; the mechanical properties, disintegration time, wettability, and stability of antioxidant activity were evaluated. The ethanolic extract of green propolis (GPEE) concentration influenced the properties of the OFs. The stability (phenolic compounds and antioxidant activity) was reduced in the first 20 days, and after this period, it remained constant.
Collapse
Affiliation(s)
- Leandro Neodini Remedio
- Faculty of Animal Science and Food Engineering, USP—University of São Paulo, Av. Duque de Caxias Norte 225, Pirassununga 13635-900, SP, Brazil; (L.N.R.); (A.L.R.); (H.F.); (F.M.V.)
| | - Vitor Augusto dos Santos Garcia
- Faculty of Agricultural Sciences, UNESP—São Paulo State University, José Barbosa de Barros 1780, Botucatu 18610-034, SP, Brazil;
| | - Arina Lazaro Rochetti
- Faculty of Animal Science and Food Engineering, USP—University of São Paulo, Av. Duque de Caxias Norte 225, Pirassununga 13635-900, SP, Brazil; (L.N.R.); (A.L.R.); (H.F.); (F.M.V.)
| | - Andresa Aparecida Berretta
- Research, Development & Innovation Department, Apis Flora Industrial e Comercial Ltda, Rua Triunfo 945, Ribeirão Preto 14020-670, SP, Brazil;
| | - Julieta Adriana Ferreira
- FHO—Hermínio Ometto Foundation, Av. Doutor Maximiliano Baruto 500, Araras 13607-339, SP, Brazil;
| | - Heidge Fukumasu
- Faculty of Animal Science and Food Engineering, USP—University of São Paulo, Av. Duque de Caxias Norte 225, Pirassununga 13635-900, SP, Brazil; (L.N.R.); (A.L.R.); (H.F.); (F.M.V.)
| | - Fernanda Maria Vanin
- Faculty of Animal Science and Food Engineering, USP—University of São Paulo, Av. Duque de Caxias Norte 225, Pirassununga 13635-900, SP, Brazil; (L.N.R.); (A.L.R.); (H.F.); (F.M.V.)
| | - Cristiana Maria Pedroso Yoshida
- Institute of Environmental, Chemical and Pharmaceutical Sciences, UNIFESP—Federal University of São Paulo, Rua São Nicolau 210, Diadema 09913-030, SP, Brazil;
| | - Rosemary Aparecida de Carvalho
- Faculty of Animal Science and Food Engineering, USP—University of São Paulo, Av. Duque de Caxias Norte 225, Pirassununga 13635-900, SP, Brazil; (L.N.R.); (A.L.R.); (H.F.); (F.M.V.)
| |
Collapse
|
14
|
Ferrucci V, Miceli M, Pagliuca C, Bianco O, Castaldo L, Izzo L, Cozzolino M, Zannella C, Oglio F, Polcaro A, Randazzo A, Colicchio R, Galdiero M, Berni Canani R, Salvatore P, Zollo M. Modulation of innate immunity related genes resulting in prophylactic antimicrobial and antiviral properties. J Transl Med 2024; 22:574. [PMID: 38886736 PMCID: PMC11184722 DOI: 10.1186/s12967-024-05378-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND The innate immunity acts during the early phases of infection and its failure in response to a multilayer network of co-infections is cause of immune system dysregulation. Epidemiological SARS-CoV-2 infections data, show that Influenza Virus (FLU-A-B-C) and Respiratory Syncytial Virus (RSV) are co-habiting those respiratory traits. These viruses, especially in children (mostly affected by 'multi-system inflammatory syndrome in children' [MIS-C] and the winter pandemic FLU), in the aged population, and in 'fragile' patients are causing alteration in immune response. Then, bacterial and fungal pathogens are also co-habiting the upper respiratory traits (e.g., Staphylococcus aureus and Candida albicans), thus contributing to morbidity in those COVID-19 affected patients. METHODS Liquid chromatography coupled with high-resolution mass spectrometry using the quadrupole orbital ion trap analyser (i.e., UHPLC-Q-Orbitrap HRMS) was adopted to measure the polyphenols content of a new nutraceutical formula (Solution-3). Viral infections with SARS-CoV-2 (EG.5), FLU-A and RSV-A viruses (as performed in BLS3 authorised laboratory) and real time RT-PCR (qPCR) assay were used to test the antiviral action of the nutraceutical formula. Dilution susceptibility tests have been used to estimate the minimum inhibitory and bactericidal concentration (MIC and MBC, respectively) of Solution-3 on a variety of microorganisms belonging to Gram positive/ negative bacteria and fungi. Transcriptomic data analyses and functional genomics (i.e., RNAseq and data mining), coupled to qPCR and ELISA assays have been used to investigate the mechanisms of action of the nutraceutical formula on those processes involved in innate immune response. RESULTS Here, we have tested the combination of natural products containing higher amounts of polyphenols (i.e., propolis, Verbascum thapsus L., and Thymus vulgaris L.), together with the inorganic long chain polyphosphates 'polyPs' with antiviral, antibacterial, and antifungal behaviours, against SARS-CoV-2, FLU-A, RSV-A, Gram positive/ negative bacteria and fungi (i.e., Candida albicans). These components synergistically exert an immunomodulatory action by enhancing those processes involved in innate immune response (e.g., cytokines: IFNγ, TNFα, IL-10, IL-6/12; chemokines: CXCL1; antimicrobial peptides: HBD-2, LL-37; complement system: C3). CONCLUSION The prophylactic antimicrobial success of this nutraceutical formula against SARS-CoV-2, FLU-A and RSV-A viruses, together with the common bacteria and fungi co-infections as present in human oral cavity, is expected to be valuable.
Collapse
Affiliation(s)
- Veronica Ferrucci
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples 'Federico II', Via Sergio Pansini 5, 80131, Naples, Italy.
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy.
- Elysium Cell Bio Ita, Via Gaetano Salvatore 486, 80145, Naples, Italy.
| | - Marco Miceli
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Chiara Pagliuca
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples 'Federico II', Via Sergio Pansini 5, 80131, Naples, Italy
| | - Orazio Bianco
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Luigi Castaldo
- Department of Pharmacy, University of Naples 'Federico II', Via Domenico Montesano 49, 80131, Naples, Italy
| | - Luana Izzo
- Department of Pharmacy, University of Naples 'Federico II', Via Domenico Montesano 49, 80131, Naples, Italy
| | - Marica Cozzolino
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy
- Dipartimento Di Scienze Mediche Traslazionali, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Franca Oglio
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy
- Dipartimento Di Scienze Mediche Traslazionali, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Antonio Polcaro
- Polcaro Fitopreparazioni S.R.L, Via Sant Agnello, 9 D; 80030, Roccarainola, Naples, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples 'Federico II', Via Domenico Montesano 49, 80131, Naples, Italy
| | - Roberta Colicchio
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples 'Federico II', Via Sergio Pansini 5, 80131, Naples, Italy
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
- UOC of Virology and Microbiology, University Hospital of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Roberto Berni Canani
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy
- Dipartimento Di Scienze Mediche Traslazionali, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Paola Salvatore
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples 'Federico II', Via Sergio Pansini 5, 80131, Naples, Italy
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Massimo Zollo
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples 'Federico II', Via Sergio Pansini 5, 80131, Naples, Italy.
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy.
- Elysium Cell Bio Ita, Via Gaetano Salvatore 486, 80145, Naples, Italy.
- DAI Medicina di Laboratorio e Trasfusionale, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
15
|
Ji L, Lou S, Fang Y, Wang X, Zhu W, Liang G, Lee K, Luo W, Zhuang Z. Patchouli Alcohol Protects the Heart against Diabetes-Related Cardiomyopathy through the JAK2/STAT3 Signaling Pathway. Pharmaceuticals (Basel) 2024; 17:631. [PMID: 38794201 PMCID: PMC11124524 DOI: 10.3390/ph17050631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/20/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) represents a common pathological state brought about by diabetes mellitus (DM). Patchouli alcohol (PatA) is known for its diverse advantageous effects, notably its anti-inflammatory properties and protective role against metabolic disorders. Despite this, the influence of PatA on DCM remains relatively unexplored. To explore the effect of PatA on diabetes-induced cardiac injury and dysfunction in mice, streptozotocin (STZ) was used to mimic type 1 diabetes in mice. Serological markers and echocardiography show that PatA treatment protects the heart against cardiomyopathy by controlling myocardial fibrosis but not by reducing hyperglycemia in diabetic mice. Discovery Studio 2017 software was used to perform reverse target screening of PatA, and we found that JAK2 may be a potential target of PatA. RNA-seq analysis of heart tissues revealed that PatA activity in the myocardium was primarily associated with the inflammatory fibrosis through the Janus tyrosine kinase 2 (JAK2)/signal transducer and activator of the transcription 3 (STAT3) pathway. In vitro, we also found that PatA alleviates high glucose (HG) + palmitic acid (PA)-induced fibrotic and inflammatory responses via inhibiting the JAK2/STAT3 signaling pathway in H9C2 cells. Our findings illustrate that PatA mitigates the effects of HG + PA- or STZ-induced cardiomyopathy by acting on the JAK2/STAT3 signaling pathway. These insights indicate that PatA could potentially serve as a therapeutic agent for DCM treatment.
Collapse
Affiliation(s)
- Lijun Ji
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, China; (L.J.); (S.L.); (Y.F.); (X.W.); (W.Z.); (G.L.)
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Shuaijie Lou
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, China; (L.J.); (S.L.); (Y.F.); (X.W.); (W.Z.); (G.L.)
| | - Yi Fang
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, China; (L.J.); (S.L.); (Y.F.); (X.W.); (W.Z.); (G.L.)
| | - Xu Wang
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, China; (L.J.); (S.L.); (Y.F.); (X.W.); (W.Z.); (G.L.)
| | - Weiwei Zhu
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, China; (L.J.); (S.L.); (Y.F.); (X.W.); (W.Z.); (G.L.)
| | - Guang Liang
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, China; (L.J.); (S.L.); (Y.F.); (X.W.); (W.Z.); (G.L.)
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou 311399, China
| | - Kwangyoul Lee
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Wu Luo
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, China; (L.J.); (S.L.); (Y.F.); (X.W.); (W.Z.); (G.L.)
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou 311399, China
| | - Zaishou Zhuang
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, China; (L.J.); (S.L.); (Y.F.); (X.W.); (W.Z.); (G.L.)
| |
Collapse
|
16
|
Wang CH, Yang JS, Chen CJ, Su SH, Yu HY, Juan YN, Chiu YJ, Ho TJ. Protective effects of Jing-Si-herbal-tea in inflammatory cytokines-induced cell injury on normal human lung fibroblast via multiomic platform analysis. Tzu Chi Med J 2024; 36:152-165. [PMID: 38645788 PMCID: PMC11025590 DOI: 10.4103/tcmj.tcmj_267_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 04/23/2024] Open
Abstract
OBJECTIVES The protective effects and related mechanisms of Jing-Si herbal tea (JSHT) were investigated in cellular damage mediated by pro-inflammatory cytokines, including interleukin (IL)-1β, IL-6, and tumor necrosis factor-α, on normal human lung fibroblast by multiomic platform analysis. MATERIALS AND METHODS The in silico high-throughput target was analyzed using pharmacophore models by BIOVIA Discovery Studio 2022 with ingenuity pathway analysis software. To assess cell viability, the study utilized the MTT assay technique. In addition, the IncuCyte S3 ZOOM System was implemented for the continuous monitoring of cell confluence of JSHT-treated cytokine-injured HEL 299 cells. Cytokine concentrations were determined using a Quantibody Human Inflammation Array. Gene expression and signaling pathways were determined using next-generation sequencing. RESULTS In silico high-throughput target analysis of JSHT revealed ingenuity in canonical pathways and their networks. Glucocorticoid receptor signaling is a potential signaling of JSHT. The results revealed protective effects against the inflammatory cytokines on JSHT-treated HEL 299 cells. Transcriptome and network analyses revealed that induction of helper T lymphocytes, TNFSF12, NFKB1-mediated relaxin signaling, and G-protein coupled receptor signaling play important roles in immune regulatory on JSHT-treated cytokine-injured HEL 299 cells. CONCLUSION The findings from our research indicate that JSHT holds promise as a therapeutic agent, potentially offering advantageous outcomes in treating virus infections through various mechanisms. Furthermore, the primary bioactive components in JSHT justify extended research in antiviral drug development, especially in the context of addressing coronavirus.
Collapse
Affiliation(s)
- Chien-Hao Wang
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chao-Jung Chen
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Research, Proteomics Core Laboratory, China Medical University Hospital, Taichung, Taiwan
| | - San-Hua Su
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Hsin-Yuan Yu
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Yu-Ning Juan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yu-Jen Chiu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tsung-Jung Ho
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
17
|
Ali FEM, Badran KSA, Baraka MA, Althagafy HS, Hassanein EHM. Mechanism and impact of heavy metal-aluminum (Al) toxicity on male reproduction: Therapeutic approaches with some phytochemicals. Life Sci 2024; 340:122461. [PMID: 38286208 DOI: 10.1016/j.lfs.2024.122461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
Heavy metals are ubiquitous environmental toxicants that have been known to have a serious effect on human and animal health. Aluminum (Al) is a widely distributed metal in nature. Al exposure has a detrimental impact on human fertility. This review focused on Al-induced male reproductive toxicity and the potential therapeutic approaches with some phytochemicals. Data from the literature showed that Al exposure is accompanied by a drastic decline in blood levels of FSH, LH, and testosterone, reduced sperm count, and affected sperm quality. Al exposure at high levels can cause oxidative stress by increasing ROS and RNS production, mediated mainly by downregulating Nrf2 signaling. Moreover, several investigations demonstrated that Al exposure evoked inflammation, evidenced by increased TNF-α and IL-6 levels. Additionally, substantial evidence concluded the key role of apoptosis in Al-induced testicular toxicity mediated by upregulating caspase-3 and downregulating Bcl2 protein. The damaging effects of Al on mitochondrial bioenergetics are thought to be due to the excessive generation of free radicals. This review helps to clarify the main mechanism involved in Al-associated testicular intoxication and the treatment strategy to attenuate the notable harmful effects on the male reproductive system. It will encourage clinical efforts to target the pathway involved in Al-associated testicular intoxication.
Collapse
Affiliation(s)
- Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| | - Khalid S A Badran
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Mohammad A Baraka
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| |
Collapse
|
18
|
Manginstar CO, Tallei TE, Niode NJ, Salaki CL, Hessel SS. Therapeutic potential of propolis in alleviating inflammatory response and promoting wound healing in skin burn. Phytother Res 2024; 38:856-879. [PMID: 38084816 DOI: 10.1002/ptr.8092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/22/2023] [Accepted: 11/28/2023] [Indexed: 02/15/2024]
Abstract
Burns can cause inflammation and delayed healing, necessitating alternative therapies due to the limitations of conventional treatments. Propolis, a natural bee-produced substance, has shown promise in facilitating burn healing. This literature review provides a comprehensive overview of propolis' mechanisms of action, wound-healing properties, and its application in treating skin burns. Propolis contains bioactive compounds with antimicrobial, antioxidant, and anti-inflammatory properties, making it a promising candidate for managing skin burn injuries. It helps prevent infections, neutralize harmful free radicals, and promote a well-balanced inflammatory response. Moreover, propolis aids in wound closure, tissue regeneration, collagen synthesis, cellular proliferation, and angiogenesis, contributing to tissue regeneration and remodeling. The article discusses various propolis extracts, extraction methods, chemical composition, and optimized formulations like ointments and creams for burn wound treatment. Considerations regarding dosage and safety are addressed. Further research is needed to fully understand propolis' mechanisms, determine optimal formulations, and establish suitable clinical dosages. Nevertheless, propolis' natural origin and demonstrated benefits make it a compelling avenue for burn care exploration, potentially complementing existing therapies and improving burn management outcomes.
Collapse
Grants
- 158/E5/PG.02.00.PL/2023 Directorate of Research, Technology, and Community Engagement at the Ministry of Education, Culture, Research, and Technology, Republic of Indonesia
- 1803/UN12.13/LT/2023 Directorate of Research, Technology, and Community Engagement at the Ministry of Education, Culture, Research, and Technology, Republic of Indonesia
Collapse
Affiliation(s)
- Christian Oktavianus Manginstar
- Entomology Study Program, Postgraduate Program, Sam Ratulangi University, Manado, Indonesia
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, Sam Ratulangi University, Prof. Dr. R. D. Kandou Central General Hospital, Manado, Indonesia
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, Indonesia
- Department of Biology, Faculty of Medicine, Sam Ratulangi University, Manado, Indonesia
| | - Nurdjannah Jane Niode
- Department of Dermatology and Venereology, Faculty of Medicine, Sam Ratulangi University, Prof. Dr. R. D. Kandou Central General Hospital, Manado, Indonesia
| | - Christina Leta Salaki
- Plant Protection Study Program, Faculty of Agriculture, Sam Ratulangi University, Manado, Indonesia
| | - Sofia Safitri Hessel
- Indonesia Biodiversity and Biogeography Research Institute (INABIG), Bandung, Indonesia
| |
Collapse
|
19
|
Kustiawan PM, Syaifie PH, Al Khairy Siregar KA, Ibadillah D, Mardliyati E. New insights of propolis nanoformulation and its therapeutic potential in human diseases. ADMET AND DMPK 2024; 12:1-26. [PMID: 38560717 PMCID: PMC10974817 DOI: 10.5599/admet.2128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/06/2024] [Indexed: 04/04/2024] Open
Abstract
Background and purpose Scientific research is crucial to develop therapies for various disease severity levels, as modern drugs cause side effects and are difficult to predict. Researchers are exploring herbal alternatives with fewer side effects, particularly propolis, which has been validated through in vitro, in vivo, and clinical studies. This will focus on scientific evidence and its supporting technology for developing new bioactive compounds for chronic diseases. Nanotechnology can improve the delivery and absorption of herbal medicines, which often have poor bioavailability due to their high molecular weight and solubility in water, particularly in oral medicines. This technology can enhance propolis's effects through multi-target therapy and reduce side effects. Experimental approach All publications related to each section of this review were discovered using the search engines Google Scholar, Scopus, and Pubmed. This was only available for publication between 2013 and 2023. The selected publications were used as references in this review after being thoroughly studied. Key results Evaluation of propolis active compounds, the classification of propolis nano formulations, design concepts, and mechanisms of action of propolis nano formulation. Additionally, the challenges and prospects for how these insights can be translated into clinical benefits are discussed. Conclusion In the last ten years, a list of nanoformulation propolis has been reported. This review concludes the difficulties encountered in developing large-scale nanoformulations. To commercialize them, improvements in nano carrier synthesis, standardized evaluation methodology within the framework of strategy process improvement, and Good Manufacturing Practices would be required.
Collapse
Affiliation(s)
- Paula Mariana Kustiawan
- Faculty of Pharmacy, Universitas Muhammadiyah Kalimantan Timur, Samarinda, East Kalimantan 75124, Indonesia
| | - Putri Hawa Syaifie
- Center of Excellence Life Sciences, Nano Center Indonesia, South Tangerang 15314, Indonesia
| | - Khalish Arsy Al Khairy Siregar
- Faculty of Pharmacy, Universitas Muhammadiyah Kalimantan Timur, Samarinda, East Kalimantan 75124, Indonesia
- Center of Excellence Life Sciences, Nano Center Indonesia, South Tangerang 15314, Indonesia
| | - Delfritama Ibadillah
- Center of Excellence Life Sciences, Nano Center Indonesia, South Tangerang 15314, Indonesia
| | - Etik Mardliyati
- Research Center for Vaccine and Drug, National Research and Innovation Agency (BRIN), Bogor 16911, Indonesia
| |
Collapse
|
20
|
Pham TX, Huynh TTX, Kim B, Lim YS, Hwang SB. A natural product YSK-A blocks SARS-CoV-2 propagation by targeting multiple host genes. Sci Rep 2023; 13:21489. [PMID: 38057373 PMCID: PMC10700534 DOI: 10.1038/s41598-023-48854-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
Natural products and herbal medicine have been widely used in drug discovery for treating infectious diseases. Recent outbreak of COVID-19 requires various therapeutic strategies. Here, we used YSK-A, a mixture of three herbal components Boswellia serrata, Commiphora myrrha, and propolis, to evaluate potential antiviral activity against SARS-CoV-2. We showed that YSK-A inhibited SARS-CoV-2 propagation with an IC50 values of 12.5 µg/ml and 15.42 µg/ml in Vero E6 and Calu-3 cells, respectively. Using transcriptome analysis, we further demonstrated that YSK-A modulated various host gene expressions in Calu-3 cells. Among these, we selected 9 antiviral- or immune-related host genes for further study. By siRNA-mediated knockdown experiment, we verified that MUC5AC, LIF, CEACAM1, and GDF15 host genes were involved in antiviral activity of YSK-A. Therefore, silencing of these genes nullified YSK-A-mediated inhibition of SARS-CoV-2 propagation. These data indicate that YSK-A displays an anti-SARS-CoV-2 activity by targeting multiple antiviral genes. Although the exact antiviral mechanism of each constituent has not been verified yet, our data indicate that YSK-A has an immunomodulatory effect on SARS-CoV-2 and thus it may represent a novel natural product-derived therapeutic agent for treating COVID-19.
Collapse
Affiliation(s)
- Thuy X Pham
- Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Jeonbuk National University, 820-120, Hana-Ro, Iksan, 54531, South Korea
| | - Trang T X Huynh
- Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Jeonbuk National University, 820-120, Hana-Ro, Iksan, 54531, South Korea
| | - Bumseok Kim
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
| | - Yun-Sook Lim
- Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Jeonbuk National University, 820-120, Hana-Ro, Iksan, 54531, South Korea.
| | - Soon B Hwang
- Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Jeonbuk National University, 820-120, Hana-Ro, Iksan, 54531, South Korea.
- Ilsong Institute of Life Science, Hallym University, Seoul, South Korea.
| |
Collapse
|
21
|
Rocha Caldas G, do Amaral L, Munhoz Rodrigues D, Mayrink de Miranda A, Aparecida Guinaim Dos Santos N, Machado Rocha L, Tame Parreira RL, Cardozo Dos Santos A, Kenupp Bastos J. Brazilian Green Propolis' Artepillin C and Its Acetylated Derivative Activate the NGF-Signaling Pathways and Induce Neurite Outgrowth in NGF-Deprived PC12 Cells. Chem Biodivers 2023; 20:e202301294. [PMID: 37953436 DOI: 10.1002/cbdv.202301294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/14/2023]
Abstract
Artepillin C is the most studied compound in Brazilian Green Propolis and, along with its acetylated derivative, displays neurotrophic activity on PC12 cells. Specific inhibitors of the trkA receptor (K252a), PI3K/Akt (LY294002), and MAPK/ERK (U0126) signaling pathways were used to investigate the neurotrophic mechanism. The expression of proteins involved in axonal and synaptic plasticity (GAP-43 and Synapsin I) was assessed by western blotting. Additionally, physicochemical properties, pharmacokinetics, and drug-likeness were evaluated by the SwissADME web tool. Both compounds induced neurite outgrowth by activating the NGF-signaling pathways but through different neuronal proteins. Furthermore, in silico analyses showed interesting physicochemical and pharmacokinetic properties of these compounds. Therefore, these compounds could play an important role in axonal and synaptic plasticity and should be further investigated.
Collapse
Affiliation(s)
- Gabriel Rocha Caldas
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Lilian do Amaral
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Débora Munhoz Rodrigues
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Aline Mayrink de Miranda
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Leandro Machado Rocha
- Natural Products Technology Laboratory-Fluminense Federal University, Niterói, RJ, Brazil
| | | | | | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
22
|
Jansen-Alves C, Martins Fonseca L, Doring Krumreich F, Zavareze EDR. Applications of propolis encapsulation in food products. J Microencapsul 2023; 40:567-586. [PMID: 37867427 DOI: 10.1080/02652048.2023.2274059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Propolis has beneficial health properties attributed to of phenolic compounds. However, its application is limited. Thus, encapsulation protects the bioactive compounds of propolis from degradation, allowing their release under controlled and specific conditions and increasing their solubility. In addition to protecting flavonoids, encapsulation also minimises the undesirable characteristics of propolis, such as strong odour. We brought attention to the high antioxidant and antimicrobial activities of encapsulated propolis, and its maintained biological activity enables more uses in different areas. Encapsulated propolis can be applied in food products as an ingredient. This review describes recent advances in improving the bioactivity of propolis extracts by using encapsulation techniques, and biopolymer research strategies, focusing on applications in food products. Encapsulated propolis has a promising market perspective due to the industrial and scientific-technological advancement, the increase in the amount of research, the improvement of propolis extraction techniques, and the need of consumers for innovative products.
Collapse
Affiliation(s)
- Cristina Jansen-Alves
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Postgraduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, Brazil
| | - Laura Martins Fonseca
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Postgraduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, Brazil
| | | | - Elessandra Da Rosa Zavareze
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Postgraduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
23
|
Silveira MAD, Menezes MDA, de Souza SP, Galvão EBDS, Berretta AA, Caldas J, Teixeira MB, Gomes MMD, Damiani LP, Bahiense BA, Cabral JB, De Oliveira CWLM, Mascarenhas TR, Pinheiro PCG, Alves MS, de Melo RMV, Leite FM, Nonaka CKV, Souza BSDF, Baptista NU, Teles F, da Guarda SF, Mendes AVA, Passos RDH. Standardized Brazilian green propolis extract (EPP-AF®) in COVID-19 outcomes: a randomized double-blind placebo-controlled trial. Sci Rep 2023; 13:18405. [PMID: 37891178 PMCID: PMC10611696 DOI: 10.1038/s41598-023-43764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
SARS-CoV-2 and its different variants caused a "wave and wave" pandemic pattern. During the first wave we demonstrated that standardized Brazilian green propolis extract (EPP-AF®) reduces length of hospital stay in adult patients with COVID-19. Afterwards, we decided to evaluate the impact of EPP-AF in hospitalized patients during the third wave of the pandemic. BeeCovid2 was a randomized, double-blind, placebo-controlled clinical trial in hospitalized COVID-19 adult patients. Patients were allocated to receive an oral dose of 900 mg/day of EPP-AF® or placebo for 10 days. The primary outcome was length of hospital stay. Secondary outcomes included safety, secondary infection rate, duration of oxygen therapy dependency, acute kidney injury and need for intensive care. Patients were followed up for 28 days after admission. We enrolled 188 patients; 98 were assigned to the propolis group and 90 to the placebo group. The post-intervention length of hospital stay was of 6.5 ± 6.0 days in the propolis group versus 7.7 ± 7.1 days in the control group (95% CI - 0.74 [- 1.94 to 0.42]; p = 0.22). Propolis did not have significant impact on the need for oxygen supplementation or frequency of AKI. There was a significant difference in the incidence of secondary infection between groups, with 6.1% in the propolis group versus 18.9% in the control group (95% CI - 0.28 [0.1-0.76], p = 0.01). The use of EPP-AF was considered safe and associated with a decrease in secondary infections. The drug was not associated with a significant reduction in length of hospital stay. ClinicalTrials.gov (NCT04800224).
Collapse
Affiliation(s)
- Marcelo Augusto Duarte Silveira
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador, BA, 41253-190, Brazil.
| | - Matheus de Alencar Menezes
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador, BA, 41253-190, Brazil
| | - Sergio Pinto de Souza
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador, BA, 41253-190, Brazil
| | - Erica Batista Dos Santos Galvão
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador, BA, 41253-190, Brazil
| | - Andresa Aparecida Berretta
- Development and Innovation Department, Apis Flora Indl. Coml. Ltda, Rua Triunfo 945, Subsetor Sul 3, Ribeirão Preto, SP, 14020-670, Brazil
| | - Juliana Caldas
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador, BA, 41253-190, Brazil
| | - Maurício Brito Teixeira
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador, BA, 41253-190, Brazil
| | - Marcel Miranda Dantas Gomes
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador, BA, 41253-190, Brazil
| | - Lucas Petri Damiani
- Academic Research Organization, Hospital Israelita Albert Einstein, Av. Albert Einstein, 627, Morumbi, São Paulo, SP, 05652-000, Brazil
| | - Bruno Andrade Bahiense
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador, BA, 41253-190, Brazil
| | - Julia Barros Cabral
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador, BA, 41253-190, Brazil
| | | | - Talita Rocha Mascarenhas
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador, BA, 41253-190, Brazil
| | - Priscila Carvalho Guedes Pinheiro
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador, BA, 41253-190, Brazil
| | - Milena Souza Alves
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador, BA, 41253-190, Brazil
| | - Rodrigo Morel Vieira de Melo
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador, BA, 41253-190, Brazil
- School of Medicine, Federal University of Bahia, Rua Augusto Viana s/n, Canela, Salvador, BA, 40110-909, Brazil
| | - Flávia Mendes Leite
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador, BA, 41253-190, Brazil
| | - Carolina Kymie Vasques Nonaka
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador, BA, 41253-190, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Bahia, 40296-710, Brazil
| | - Bruno Solano de Freitas Souza
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador, BA, 41253-190, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Bahia, 40296-710, Brazil
| | - Nathália Ursoli Baptista
- Development and Innovation Department, Apis Flora Indl. Coml. Ltda, Rua Triunfo 945, Subsetor Sul 3, Ribeirão Preto, SP, 14020-670, Brazil
| | - Flávio Teles
- School of Medicine, Federal University of Alagoas, Av. Lourival de Melo Mota S/N, Tabuleiro do Martins, Maceió, Alagoas, 57072-900, Brazil
| | - Suzete Farias da Guarda
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador, BA, 41253-190, Brazil
- School of Medicine, Federal University of Bahia, Rua Augusto Viana s/n, Canela, Salvador, BA, 40110-909, Brazil
| | - Ana Verena Almeida Mendes
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador, BA, 41253-190, Brazil
| | - Rogério da Hora Passos
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador, BA, 41253-190, Brazil
| |
Collapse
|
24
|
Shen MH, Liu CY, Chang KW, Lai CL, Chang SC, Huang CJ. Propolis Has an Anticancer Effect on Early Stage Colorectal Cancer by Affecting Epithelial Differentiation and Gut Immunity in the Tumor Microenvironment. Nutrients 2023; 15:4494. [PMID: 37960147 PMCID: PMC10648826 DOI: 10.3390/nu15214494] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers and is the second leading cause of cancer-related death in the world. Due to the westernization of diets, young patients with CRC are often diagnosed at advanced stages with an associated poor prognosis. Improved lifestyle choices are one way to minimize CRC risk. Among diet choices is the inclusion of bee propolis, long recognized as a health supplement with anticancer activities. Understanding the effect of propolis on the gut environment is worth exploring, and especially its associated intratumoral immune changes and its anticancer effect on the occurrence and development of CRC. In this study, early stage CRC was induced with 1,2-dimethylhydrazine (DMH) and dextran sulfate sodium (DSS) for one month in an animal model, without and with propolis administration. The phenotypes of early stage CRC were evaluated by X-ray microcomputed tomography and histologic examination. The gut immunity of the tumor microenvironment was assessed by immunohistochemical staining for tumor-infiltrating lymphocytes (TILs) and further comparative quantification. We found that the characteristics of the CRC mice, including the body weight, tumor loading, and tumor dimensions, were significantly changed due to propolis administration. With further propolis administration, the CRC tissues of DMH/DSS-treated mice showed decreased cytokeratin 20 levels, a marker for intestinal epithelium differentiation. Additionally, the signal intensity and density of CD3+ and CD4+ TILs were significantly increased and fewer forkhead box protein P3 (FOXP3) lymphocytes were observed in the lamina propria. In conclusion, we found that propolis, a natural supplement, potentially prevented CRC progression by increasing CD3+ and CD4+ TILs and reducing FOXP3 lymphocytes in the tumor microenvironment of early stage CRC. Our study could suggest a promising role for propolis in complementary medicine as a food supplement to decrease or prevent CRC progression.
Collapse
Affiliation(s)
- Ming-Hung Shen
- Department of Surgery, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City 243089, Taiwan;
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
| | - Chih-Yi Liu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
- Department of Pathology, Sijhih Cathay General Hospital, New Taipei City 221037, Taiwan
| | - Kang-Wei Chang
- Taipei Neuroscience Institute, Taipei Medical University, Taipei City 110301, Taiwan;
- Laboratory Animal Center, Taipei Medical University, Taipei City 110301, Taiwan
| | - Ching-Long Lai
- Division of Basic Medical Sciences, Department of Nursing, Chang Gung University of Science and Technology, Taoyuan City 333324, Taiwan;
- Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan City 333324, Taiwan
| | - Shih-Chang Chang
- Division of Colorectal Surgery, Department of Surgery, Cathay General Hospital, Taipei City 106438, Taiwan;
| | - Chi-Jung Huang
- Department of Biochemistry, National Defense Medical Center, Taipei City 114201, Taiwan
- Department of Medical Research, Cathay General Hospital, Taipei City 106438, Taiwan
| |
Collapse
|
25
|
Iesa NB, Chaipoot S, Phongphisutthinant R, Wiriyacharee P, Lim BG, Sringarm K, Burgett M, Chuttong B. Effects of Maltodextrin and Gum Arabic Composition on the Physical and Antioxidant Activities of Dewaxed Stingless Bee Cerumen. Foods 2023; 12:3740. [PMID: 37893633 PMCID: PMC10606187 DOI: 10.3390/foods12203740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/16/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Cerumen is a mixture of beeswax and plant resin made by stingless bees. It has antimicrobial and antioxidant properties and is often used in biological and therapeutic treatments. However, its adhesive characteristic makes cerumen challenging to process into powder. METHODS This study investigated the physical characteristics and antioxidant activity of the encapsulated freeze-dried dewaxed cerumen of Tetragonula laevicpes. The combination of coating materials at concentrations of 20%, 30% and 40% and carrier ratios of maltodextrin to gum arabic of 9:1, 5:5 and 3:7 were used to encapsulate dewaxed cerumen when freeze-dried; the control was maltodextrin at a concentration of 31.25%. RESULTS All carrier matrices showed high yields of >80% and similar powder characteristics of low moisture content, low water activity, high glass transition temperature and water dispersibility. Overall, antioxidant activities ranged from 69-80%, while the encapsulation efficiency of total phenolic content ranged from 46-68%. All carrier matrices show higher antioxidant activities than 31.25% maltodextrin, with the lowest antioxidant at 57%. CONCLUSIONS The carrier ratio of 5:5 resulted in better physical properties and retained 68% of polyphenolic activity in powders.
Collapse
Affiliation(s)
- Nuha Binte Iesa
- Chemical Engineering and Food Technology Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore; (N.B.I.); (B.G.L.)
- Meliponini and Apini Research Laboratory, Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Supakit Chaipoot
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand; (S.C.); (R.P.)
| | - Rewat Phongphisutthinant
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand; (S.C.); (R.P.)
| | - Pairote Wiriyacharee
- Division of Product Development Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Bee Gim Lim
- Chemical Engineering and Food Technology Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore; (N.B.I.); (B.G.L.)
| | - Korawan Sringarm
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Michael Burgett
- Meliponini and Apini Research Laboratory, Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA
| | - Bajaree Chuttong
- Meliponini and Apini Research Laboratory, Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
26
|
Yazdanian A, Jahandideh A, Hesaraki S. The effect of green synthesis of TiO 2 nanoparticles/collagen/HA scaffold in bone regeneration: As an animal study. Vet Med Sci 2023; 9:2342-2351. [PMID: 37485579 PMCID: PMC10508526 DOI: 10.1002/vms3.1222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND The bone defects cannot heal by themselves when their range exceeds the critical size defect (CSD). In clinical treatment, significant bone defects are often caused by trauma, developmental deformity, tumour resection and infection. OBJECTIVES The purpose of this study was to investigate the effect of green synthesis of TiO2 from propolis extract/collagen/HA (Hydroxyapatite) scaffolds on bone regeneration in rats. METHODS Water uptake, biodegradability, porosity and biodegradation of the scaffolds were evaluated after they were synthesised using freeze-dry method. Cell viability by MTT assay was then evaluated. During the 4, 8 and 12 weeks following the scaffold implantation, the bone regeneration was evaluated using macroscopic and microscopic tests to determine the effectiveness of green synthesis of TiO2 from propolis extract/collagen/HA scaffolds. RESULTS Compared to the HA/Coll scaffold, ProTiO2 /HA/Coll scaffold was reduced porosity, water absorption and degradability porosity. Based on in vitro tests, both synthetic scaffolds induced cell growth and were less toxic and stimulated cell growth. Based on histopathological testing, the ProTiO2 /HA/Coll scaffolds formed high levels of bone during 12 weeks in comparison with HA/Coll and control group. CONCLUSIONS ProTiO2 /HA/Coll composite can be used in regenerative medicine, bone fillers and scaffolds. As a result, this research suggests that ProTiO2 /HA/Coll composites could be promising candidates for bone regeneration.
Collapse
Affiliation(s)
- Alireza Yazdanian
- Department of Veterinary Medicine, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Alireza Jahandideh
- Faculty of Veterinary Medicine, Science and Research BranchDepartment of Clinical SciencesIslamic Azad UniversityTehranIran
| | - Saeed Hesaraki
- Faculty of Specialized Veterinary Science, Science and Research BranchDepartment of PathobiologyIslamic Azad UniversityTehranIran
| |
Collapse
|
27
|
Figueiredo CS, Roseira ES, Viana TT, Silveira MAD, de Melo RMV, Fernandez MG, Lemos LMG, Passos LCS. Inflammation in Coronary Atherosclerosis: Insights into Pathogenesis and Therapeutic Potential of Anti-Inflammatory Drugs. Pharmaceuticals (Basel) 2023; 16:1242. [PMID: 37765050 PMCID: PMC10534546 DOI: 10.3390/ph16091242] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
Atherosclerosis is a lipid-driven immune-inflammatory disease that affects the arteries, leading to multifocal plaque development. The inflammatory process involves the activation of immune cells and various inflammatory pathways. Anti-inflammatory drugs have been shown to be effective in reducing cardiovascular events in individuals with coronary disease. However, their use is still limited due to concerns about long-term follow-up, cost-effectiveness, adverse effects, and the identification of the ideal patient profile to obtain maximum benefits. This review aims to improve the understanding of inflammation in coronary atherosclerosis and explore potential therapeutic interventions, encompassing both traditional and non-traditional anti-inflammatory approaches. By addressing these concepts, we seek to contribute to the advancement of knowledge about this type of treatment for coronary artery disease.
Collapse
Affiliation(s)
- Clara Salles Figueiredo
- Programa de Pós Graduação em Medicina e Saúde (Graduate Program in Medicine and Health), Federal University of Bahia, Salvador 40110-060, BA, Brazil (L.C.S.P.)
- Hospital Ana Nery, Salvador 40301-155, BA, Brazil; (E.S.R.)
| | | | - Tainá Teixeira Viana
- Programa de Pós Graduação em Medicina e Saúde (Graduate Program in Medicine and Health), Federal University of Bahia, Salvador 40110-060, BA, Brazil (L.C.S.P.)
- Hospital Ana Nery, Salvador 40301-155, BA, Brazil; (E.S.R.)
| | - Marcelo Augusto Duarte Silveira
- Programa de Pós Graduação em Medicina e Saúde (Graduate Program in Medicine and Health), Federal University of Bahia, Salvador 40110-060, BA, Brazil (L.C.S.P.)
| | - Rodrigo Morel Vieira de Melo
- Programa de Pós Graduação em Medicina e Saúde (Graduate Program in Medicine and Health), Federal University of Bahia, Salvador 40110-060, BA, Brazil (L.C.S.P.)
- Hospital Ana Nery, Salvador 40301-155, BA, Brazil; (E.S.R.)
| | | | | | - Luiz Carlos Santana Passos
- Programa de Pós Graduação em Medicina e Saúde (Graduate Program in Medicine and Health), Federal University of Bahia, Salvador 40110-060, BA, Brazil (L.C.S.P.)
- Hospital Ana Nery, Salvador 40301-155, BA, Brazil; (E.S.R.)
| |
Collapse
|
28
|
Alkafaas SS, Abdallah AM, Hussien AM, Bedair H, Abdo M, Ghosh S, Elkafas SS, Apollon W, Saki M, Loutfy SA, Onyeaka H, Hessien M. A study on the effect of natural products against the transmission of B.1.1.529 Omicron. Virol J 2023; 20:191. [PMID: 37626376 PMCID: PMC10464336 DOI: 10.1186/s12985-023-02160-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND The recent outbreak of the Coronavirus pandemic resulted in a successful vaccination program launched by the World Health Organization. However, a large population is still unvaccinated, leading to the emergence of mutated strains like alpha, beta, delta, and B.1.1.529 (Omicron). Recent reports from the World Health Organization raised concerns about the Omicron variant, which emerged in South Africa during a surge in COVID-19 cases in November 2021. Vaccines are not proven completely effective or safe against Omicron, leading to clinical trials for combating infection by the mutated virus. The absence of suitable pharmaceuticals has led scientists and clinicians to search for alternative and supplementary therapies, including dietary patterns, to reduce the effect of mutated strains. MAIN BODY This review analyzed Coronavirus aetiology, epidemiology, and natural products for combating Omicron. Although the literature search did not include keywords related to in silico or computational research, in silico investigations were emphasized in this study. Molecular docking was implemented to compare the interaction between natural products and Chloroquine with the ACE2 receptor protein amino acid residues of Omicron. The global Omicron infection proceeding SARS-CoV-2 vaccination was also elucidated. The docking results suggest that DGCG may bind to the ACE2 receptor three times more effectively than standard chloroquine. CONCLUSION The emergence of the Omicron variant has highlighted the need for alternative therapies to reduce the impact of mutated strains. The current review suggests that natural products such as DGCG may be effective in binding to the ACE2 receptor and combating the Omicron variant, however, further research is required to validate the results of this study and explore the potential of natural products to mitigate COVID-19.
Collapse
Affiliation(s)
- Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Abanoub Mosaad Abdallah
- Narcotic Research Department, National Center for Social and Criminological Research (NCSCR), Giza, 11561, Egypt
| | - Aya Misbah Hussien
- Biotechnology Department at Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Heba Bedair
- Botany Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mahmoud Abdo
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa.
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia, Egypt
| | - Wilgince Apollon
- Department of Agricultural and Food Engineering, Faculty of Agronomy, Universidad Autónoma de Nuevo León, Francisco Villa S/N, Ex-Hacienda El Canadá, 66050, General Escobedo, Nuevo León, Mexico
| | - Morteza Saki
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Samah A Loutfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
- Nanotechnology Research Center, British University, Cairo, Egypt
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Mohamed Hessien
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
29
|
Pi P, Zeng Z, Zeng L, Han B, Bai X, Xu S. Molecular mechanisms of COVID-19-induced pulmonary fibrosis and epithelial-mesenchymal transition. Front Pharmacol 2023; 14:1218059. [PMID: 37601070 PMCID: PMC10436482 DOI: 10.3389/fphar.2023.1218059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023] Open
Abstract
As the outbreak of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) first broke out in Hubei Province, China, at the end of 2019. It has brought great challenges and harms to global public health. SARS-CoV-2 mainly affects the lungs and is mainly manifested as pulmonary disease. However, one of the biggest crises arises from the emergence of COVID-19-induced fibrosis. At present, there are still many questions about how COVID-19 induced pulmonary fibrosis (PF) occurs and how to treat and regulate its long-term effects. In addition, as an important process of fibrosis, the effect of COVID-19 on epithelial-mesenchymal transition (EMT) may be an important factor driving PF. This review summarizes the main pathogenesis and treatment mechanisms of COVID-19 related to PF. Starting with the basic mechanisms of PF, such as EMT, transforming growth factor-β (TGF-β), fibroblasts and myofibroblasts, inflammation, macrophages, innate lymphoid cells, matrix metalloproteinases and tissue inhibitors of metalloproteinases, hedgehog pathway as well as Notch signaling. Further, we highlight the importance of COVID-19-induced EMT in the process of PF and provide an overview of the related molecular mechanisms, which will facilitate future research to propose new clinical therapeutic solutions for the treatment of COVID-19-induced PF.
Collapse
Affiliation(s)
- Peng Pi
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Zhipeng Zeng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Liqing Zeng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Bing Han
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Xizhe Bai
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Shousheng Xu
- School of Sports Engineering, Beijing Sport University, Beijing, China
| |
Collapse
|
30
|
Aghazadeh N, Moradi P, Noras P. Constructing Multiwavelet-based Shearlets and using Them for Automatic Segmentation of Noisy Brain Images Affected by COVID-19. JOURNAL OF MEDICAL SIGNALS & SENSORS 2023; 13:183-190. [PMID: 37622045 PMCID: PMC10445678 DOI: 10.4103/jmss.jmss_29_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/18/2022] [Accepted: 08/17/2022] [Indexed: 08/26/2023]
Abstract
Backgorund Nowadays, everybody's life is dominated by COVID-19, which might have been the source of severe acute respiratory syndrome coronavirus 2. This virus disrupts the lungs first of all. Recently, it has been found that coronavirus may affect the brain. Because all body actions rely on the brain, hence investigating its healthy is an essential item in coronavirus effects. Method Brain image segmentation can be helpful in the detection of the regions damaged by the effects of coronavirus. Since every image given by photography devices may have noises, therefore, first of all, the brain magnetic resonance angiography (MRA) images must be denoised for best investigation. In the present paper, we have presented the construction of multishearlets based on multiwavelets for the first time and have used them for the purpose of denoising. Multiwavelets have some advantages to wavelets. Therefore, we have used them in the shearlet system to expand the properties of multiwavelets in all directions. After denoising, we have proposed a scheme for the automatic characterization of the initial curve in the active contour model for segmentation. Detecting the initial curve is a challenging task in active contour-based segmentation because detecting an initial curve far from the desired region can lead to unfavorable results. Results The results show the performance of using multishearlets in detecting affected regions by COVID-19. Using multishearlets has led to the high value of peak signal-to-noise ratio and Structural similarity index measure in comparison with original shearlets. Original shearlets are constructed from wavelets whereas we have constructed multishearlets from multiwavelets. Conclusion The results show that multishearlets can neutralize the effect of noise in MRA images in a good way rather than shearlets. Moreover, the proposed scheme for segmentation can lead to 0.99 accuracy.
Collapse
Affiliation(s)
- Nasser Aghazadeh
- Department of Applied Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Paria Moradi
- Department of Applied Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Parisa Noras
- Department of Applied Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
31
|
Karaoğlu Ö, Serhatlı M, Pelvan E, Karadeniz B, Demirtas I, Çakırca G, Sipahix H, Özhan Y, Karapınar G, Charehsaz M, Aydın A, Yesilada E, Alasalvar C. Chewable tablet with herbal extracts and propolis arrests Wuhan and Omicron variants of SARS-CoV-2 virus. J Funct Foods 2023; 105:105544. [PMID: 37155488 PMCID: PMC10113600 DOI: 10.1016/j.jff.2023.105544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/23/2023] [Accepted: 04/14/2023] [Indexed: 05/10/2023] Open
Abstract
Prevention of COVID-19 is of paramount importance for public health. Some natural extracts might have the potential to suppress COVID-19 infection. Therefore, this study aimed to design a standardised, efficient, and safe chewable tablet formulation (with propolis and three herbal extracts) for possible prevention against two variants (Wuhan B.1.36 and Omicron BA.1.1) of SARS-CoV-2 virus and other viral infections. Green tea, bilberry, dried pomegranate peel, and propolis extracts were selected for this purpose. Cytotoxicity and antiviral activity of each component, as well as the developed chewable tablet, were examined against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus using Vero E6 cells with the xCELLigence real-time cell analyser-multiple plates system. Anti-inflammatory and analgesic activities, as well as mutagenicity and anti-mutagenicity of the chewable tablet were also analysed. Compared to the control, it was observed that the chewable tablet at concentrations of 110 and 55 µg/mL had antiviral activity rates of 101% and 81%, respectively, for the Wuhan variant and 112% and 35%, respectively, for the Omicron variant. The combination of herbal extracts with propolis extract were synergically more effective (∼7-fold higher) than that of individual extract. The present work suggests that a combination of herbal extracts with propolis at suitable concentrations can effectively be used as a food supplement for the prevention of both variants of the SARS-CoV-2 virus in the oral cavity (the first entry point of the SARS-CoV-2 virus).
Collapse
Affiliation(s)
- Öznur Karaoğlu
- Life Sciences, TÜBİTAK Marmara Research Center, Gebze-Kocaeli, Turkey
| | - Müge Serhatlı
- Life Sciences, TÜBİTAK Marmara Research Center, Gebze-Kocaeli, Turkey
| | - Ebru Pelvan
- Life Sciences, TÜBİTAK Marmara Research Center, Gebze-Kocaeli, Turkey
| | - Bülent Karadeniz
- Life Sciences, TÜBİTAK Marmara Research Center, Gebze-Kocaeli, Turkey
| | - Ilknur Demirtas
- Life Sciences, TÜBİTAK Marmara Research Center, Gebze-Kocaeli, Turkey
| | - Gamze Çakırca
- Life Sciences, TÜBİTAK Marmara Research Center, Gebze-Kocaeli, Turkey
- Department of Molecular Biology and Genetics, Faculty of Science, Gebze Technical University, Gebze-Kocaeli, Turkey
| | - Hande Sipahix
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, Ataşehir-İstanbul, Turkey
| | - Yağmur Özhan
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, Ataşehir-İstanbul, Turkey
| | - Gözdem Karapınar
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, Ataşehir-İstanbul, Turkey
| | - Mohammad Charehsaz
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, Ataşehir-İstanbul, Turkey
| | - Ahmet Aydın
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, Ataşehir-İstanbul, Turkey
| | - Erdem Yesilada
- Department of Pharmacognosy, Faculty of Pharmacy, Yeditepe University, Ataşehir-İstanbul, Turkey
| | | |
Collapse
|
32
|
Bobiş O, Berretta AA, Vilas-Boas M, De Jong D. Editorial: Therapeutic potential of propolis-from in vitro studies to clinical trials. Front Pharmacol 2023; 14:1192045. [PMID: 37305532 PMCID: PMC10248498 DOI: 10.3389/fphar.2023.1192045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/18/2023] [Indexed: 06/13/2023] Open
Affiliation(s)
- Otilia Bobiş
- Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | | | - Miguel Vilas-Boas
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - David De Jong
- Ribeirão Preto Medical School, University of São Paulo (FMRP/USP), Ribeirão Preto, Brazil
| |
Collapse
|
33
|
Halma MTJ, Plothe C, Marik P, Lawrie TA. Strategies for the Management of Spike Protein-Related Pathology. Microorganisms 2023; 11:1308. [PMID: 37317282 PMCID: PMC10222799 DOI: 10.3390/microorganisms11051308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 06/16/2023] Open
Abstract
In the wake of the COVID-19 crisis, a need has arisen to prevent and treat two related conditions, COVID-19 vaccine injury and long COVID-19, both of which can trace at least part of their aetiology to the spike protein, which can cause harm through several mechanisms. One significant mechanism of harm is vascular, and it is mediated by the spike protein, a common element of the COVID-19 illness, and it is related to receiving a COVID-19 vaccine. Given the significant number of people experiencing these two related conditions, it is imperative to develop treatment protocols, as well as to consider the diversity of people experiencing long COVID-19 and vaccine injury. This review summarizes the known treatment options for long COVID-19 and vaccine injury, their mechanisms, and their evidentiary basis.
Collapse
Affiliation(s)
| | - Christof Plothe
- Center for Biophysical Osteopathy, Am Wegweiser 27, 55232 Alzey, Germany
| | - Paul Marik
- Front Line COVID-19 Critical Care Alliance (FLCCC), 2001 L St. NW Suite 500, Washington, DC 20036, USA;
| | | |
Collapse
|
34
|
Berretta AA, Zamarrenho LG, Correa JA, De Lima JA, Borini GB, Ambrósio SR, Barud HDS, Bastos JK, De Jong D. Development and Characterization of New Green Propolis Extract Formulations as Promising Candidates to Substitute for Green Propolis Hydroalcoholic Extract. Molecules 2023; 28:molecules28083510. [PMID: 37110745 PMCID: PMC10145546 DOI: 10.3390/molecules28083510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The technologies used to produce the different dosage forms of propolis can selectively affect the original propolis compounds and their biological activities. The most common type of propolis extract is hydroethanolic. However, there is considerable demand for ethanol-free propolis presentations, including stable powder forms. Three propolis extract formulations were developed and investigated for chemical composition and antioxidant and antimicrobial activity: polar propolis fraction (PPF), soluble propolis dry extract (PSDE), and microencapsulated propolis extract (MPE). The different technologies used to produce the extracts affected their physical appearance, chemical profile, and biological activity. PPF was found to contain mainly caffeic and p-Coumaric acid, while PSDE and MPE showed a chemical fingerprint closer to the original green propolis hydroalcoholic extract used. MPE, a fine powder (40% propolis in gum Arabic), was readily dispersible in water, and had less intense flavor, taste, and color than PSDE. PSDE, a fine powder (80% propolis) in maltodextrin as a carrier, was perfectly water-soluble and could be used in liquid formulations; it is transparent and has a strong bitter taste. PPF, a purified solid with large amounts of caffeic and p-Coumaric acids, had the highest antioxidant and antimicrobial activity, and therefore merits further study. PSDE and MPE had antioxidant and antimicrobial properties and could be used in products tailored to specific needs.
Collapse
Affiliation(s)
- Andresa Aparecida Berretta
- Research, Development & Innovation Department, Apis Flora Industrial e Comercial Ltda., Ribeirão Preto 14020-670, SP, Brazil
| | - Luana Gonçalves Zamarrenho
- Research, Development & Innovation Department, Apis Flora Industrial e Comercial Ltda., Ribeirão Preto 14020-670, SP, Brazil
- Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 05508-060, SP, Brazil
| | - Juliana Arcadepani Correa
- Research, Development & Innovation Department, Apis Flora Industrial e Comercial Ltda., Ribeirão Preto 14020-670, SP, Brazil
| | - Jéssica Aparecida De Lima
- Research, Development & Innovation Department, Apis Flora Industrial e Comercial Ltda., Ribeirão Preto 14020-670, SP, Brazil
| | - Giovanna Bonfante Borini
- Research, Development & Innovation Department, Apis Flora Industrial e Comercial Ltda., Ribeirão Preto 14020-670, SP, Brazil
| | - Sérgio Ricardo Ambrósio
- Nucleus of Research in Sciences and Technolog, University of Franca, Franca 14404-600, SP, Brazil
| | - Hernane da Silva Barud
- Biopolymers and Biomaterials Group, University of Araraquara, Araraquara 14801-320, SP, Brazil
| | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-900, SP, Brazil
| | - David De Jong
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| |
Collapse
|
35
|
Chen B, Ning K, Sun ML, Zhang XA. Regulation and therapy, the role of JAK2/STAT3 signaling pathway in OA: a systematic review. Cell Commun Signal 2023; 21:67. [PMID: 37013568 PMCID: PMC10071628 DOI: 10.1186/s12964-023-01094-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/26/2023] [Indexed: 04/05/2023] Open
Abstract
Osteoarthritis (OA) is a multifactorial chronic disease primarily characterized by the degeneration of articular cartilage. Currently, there is a lack of effective treatments for OA other than surgery. The exploration of the mechanisms of occurrence is important in exploring other new and effective treatments for OA. The current evidence shows that the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway plays a vital role in cytogenesis and is involved in OA progression. The terms "JAK2", "STAT3", and "Osteoarthritis"were used in a comprehensive literature search in PubMed to further investigate the relationship between the JAK2/STAT3 signaling pathway and OA. This review focuses on the role and mechanism of JAK2/STAT3 signaling in cartilage degradation, subchondral bone dysfunction, and synovial inflammation. In addition, this review summarizes recent evidence of therapeutic approaches to treat OA by targeting the JAK2/STAT3 pathway to accelerate the translation of evidence into the progression of strategies for OA treatment. Video abstract.
Collapse
Affiliation(s)
- Bo Chen
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Ke Ning
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Ming-Li Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Xin-An Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China.
| |
Collapse
|
36
|
Chatterjee S, Nalla LV, Sharma M, Sharma N, Singh AA, Malim FM, Ghatage M, Mukarram M, Pawar A, Parihar N, Arya N, Khairnar A. Association of COVID-19 with Comorbidities: An Update. ACS Pharmacol Transl Sci 2023; 6:334-354. [PMID: 36923110 PMCID: PMC10000013 DOI: 10.1021/acsptsci.2c00181] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Indexed: 03/03/2023]
Abstract
Coronavirus disease (COVID-19) is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) which was identified in Wuhan, China in December 2019 and jeopardized human lives. It spreads at an unprecedented rate worldwide, with serious and still-unfolding health conditions and economic ramifications. Based on the clinical investigations, the severity of COVID-19 appears to be highly variable, ranging from mild to severe infections including the death of an infected individual. To add to this, patients with comorbid conditions such as age or concomitant illnesses are significant predictors of the disease's severity and progression. SARS-CoV-2 enters inside the host cells through ACE2 (angiotensin converting enzyme2) receptor expression; therefore, comorbidities associated with higher ACE2 expression may enhance the virus entry and the severity of COVID-19 infection. It has already been recognized that age-related comorbidities such as Parkinson's disease, cancer, diabetes, and cardiovascular diseases may lead to life-threatening illnesses in COVID-19-infected patients. COVID-19 infection results in the excessive release of cytokines, called "cytokine storm", which causes the worsening of comorbid disease conditions. Different mechanisms of COVID-19 infections leading to intensive care unit (ICU) admissions or deaths have been hypothesized. This review provides insights into the relationship between various comorbidities and COVID-19 infection. We further discuss the potential pathophysiological correlation between COVID-19 disease and comorbidities with the medical interventions for comorbid patients. Toward the end, different therapeutic options have been discussed for COVID-19-infected comorbid patients.
Collapse
Affiliation(s)
- Sayan Chatterjee
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India
| | - Lakshmi Vineela Nalla
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India.,Department of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh 522302, India
| | - Monika Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India
| | - Nishant Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India
| | - Aditya A Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India
| | - Fehmina Mushtaque Malim
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India
| | - Manasi Ghatage
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India
| | - Mohd Mukarram
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India
| | - Abhijeet Pawar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India
| | - Nidhi Parihar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India
| | - Neha Arya
- Department of Translational Medicine, All India Institute of Medical Sciences (AIIMS), Bhopal, Bhopal 462020, India
| | - Amit Khairnar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno 602 00, Czech Republic.,ICRC-FNUSA Brno 656 91, Czech Republic.,Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 62500 Brno, Czechia
| |
Collapse
|
37
|
Zhu S, Sun P, Bennett S, Charlesworth O, Tan R, Peng X, Gu Q, Kujan O, Xu J. The therapeutic effect and mechanism of parthenolide in skeletal disease, cancers, and cytokine storm. Front Pharmacol 2023; 14:1111218. [PMID: 37033622 PMCID: PMC10080395 DOI: 10.3389/fphar.2023.1111218] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/17/2023] [Indexed: 03/12/2023] Open
Abstract
Parthenolide (PTL or PAR) was first isolated from Magnolia grandiflora and identified as a small molecule cancer inhibitor. PTL has the chemical structure of C15H20O3 with characteristics of sesquiterpene lactones and exhibits the biological property of inhibiting DNA biosynthesis of cancer cells. In this review, we summarise the recent research progress of medicinal PTL, including the therapeutic effects on skeletal diseases, cancers, and inflammation-induced cytokine storm. Mechanistic investigations reveal that PTL predominantly inhibits NF-κB activation and other signalling pathways, such as reactive oxygen species. As an inhibitor of NF-κB, PTL appears to inhibit several cytokines, including RANKL, TNF-α, IL-1β, together with LPS induced activation of NF-κB and NF-κB -mediated specific gene expression such as IL-1β, TNF-α, COX-2, iNOS, IL-8, MCP-1, RANTES, ICAM-1, VCAM-1. It is also proposed that PTL could inhibit cytokine storms or hypercytokinemia triggered by COVID-19 via blocking the activation of NF-κB signalling. Understanding the pharmacologic properties of PTL will assist us in developing its therapeutic application for medical conditions, including arthritis, osteolysis, periodontal disease, cancers, and COVID-19-related disease.
Collapse
Affiliation(s)
- Sipin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- *Correspondence: Sipin Zhu, ; Jiake Xu,
| | - Ping Sun
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Samuel Bennett
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Oscar Charlesworth
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Renxiang Tan
- The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Nanjing University, Nanjing, China
| | - Xing Peng
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qiang Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Omar Kujan
- UWA Dental School, The University of Western Australia, Perth, WA, Australia
| | - Jiake Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- *Correspondence: Sipin Zhu, ; Jiake Xu,
| |
Collapse
|
38
|
Chavda VP, Chaudhari AZ, Teli D, Balar P, Vora L. Propolis and Their Active Constituents for Chronic Diseases. Biomedicines 2023; 11:biomedicines11020259. [PMID: 36830794 PMCID: PMC9953602 DOI: 10.3390/biomedicines11020259] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Propolis is a mass of chemically diverse phytoconstituents with gummy textures that are naturally produced by honeybees upon collection of plant resins for utilization in various life processes in beehives. Since ancient times, propolis has been a unique traditional remedy globally utilized for several purposes, and it has secured value in pharmaceutical and nutraceutical areas in recent years. The chemical composition of propolis comprises diverse constituents and deviations in the precise composition of the honeybee species, plant source used for propolis production by bees, climate conditions and harvesting season. Over 300 molecular structures have been discovered from propolis, and important classes include phenolic acids, flavonoids, terpenoids, benzofurans, benzopyrene and chalcones. Propolis has also been reported to have diverse pharmacological activities, such as antidiabetic, anti-inflammatory, antioxidant, anticancer, immunomodulatory, antibacterial, antiviral, antifungal, and anticaries. As chronic diseases have risen as a global health threat, abundant research has been conducted to track propolis and its constituents as alternative therapies for chronic diseases. Several clinical trials have also revealed the potency of propolis and its constituents for preventing and curing some chronic diseases. This review explores the beneficial effect of propolis and its active constituents with credible mechanisms and computational studies on chronic diseases.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad 380008, India
- Correspondence: (V.P.C.); (L.V.)
| | - Amit Z. Chaudhari
- Department of Pharmaceutical Chemistry, L. M. College of Pharmacy, Ahmedabad 380009, India
| | - Divya Teli
- Department of Pharmaceutical Chemistry, L. M. College of Pharmacy, Ahmedabad 380009, India
| | - Pankti Balar
- Pharmacy Section, L. M. College of Pharmacy, Navrangpura, Ahmedabad 380009, India
| | - Lalitkumar Vora
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
- Correspondence: (V.P.C.); (L.V.)
| |
Collapse
|
39
|
Liu H, Bai Y, Huang C, Wang Y, Ji Y, Du Y, Xu L, Yu DG, Bligh SWA. Recent Progress of Electrospun Herbal Medicine Nanofibers. Biomolecules 2023; 13:184. [PMID: 36671570 PMCID: PMC9855805 DOI: 10.3390/biom13010184] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Herbal medicine has a long history of medical efficacy with low toxicity, side effects and good biocompatibility. However, the bioavailability of the extract of raw herbs and bioactive compounds is poor because of their low water solubility. In order to overcome the solubility issues, electrospinning technology can offer a delivery alternative to resolve them. The electrospun fibers have the advantages of high specific surface area, high porosity, excellent mechanical strength and flexible structures. At the same time, various natural and synthetic polymer-bound fibers can mimic extracellular matrix applications in different medical fields. In this paper, the development of electrospinning technology and polymers used for incorporating herbal medicine into electrospun nanofibers are reviewed. Finally, the recent progress of the applications of these herbal medicine nanofibers in biomedical (drug delivery, wound dressing, tissue engineering) and food fields along with their future prospects is discussed.
Collapse
Affiliation(s)
- Hang Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yubin Bai
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chang Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ying Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuexin Ji
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yutong Du
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lin Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Sim Wan Annie Bligh
- School of Health Sciences, Caritas Institute of Higher Education, Hong Kong 999077, China
| |
Collapse
|
40
|
SALES-PERES SHDC, AZEVEDO-SILVA LJD, CASTILHO AVSS, CASTRO MS, SALES-PERES ADC, MACHADO MADAM. Propolis effects in periodontal disease seem to affect coronavirus disease: a meta-analysis. Braz Oral Res 2023; 37:e031. [PMID: 37018812 DOI: 10.1590/1807-3107bor-2023.vol37.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 10/17/2022] [Indexed: 04/05/2023] Open
Abstract
This meta-analysis aimed to investigate the effects of propolis on the severity of coronavirus disease symptoms by reducing periodontal disease. PubMed, EMBASE, SciELO, Web of Science, and SCOPUS databases were systematically searched. Studies have been conducted analyzing propolis's effects on COVID-19 and periodontitis. The study was conducted according to the PRISMA statement and registered in PROSPERO. Risk of Bias (RoB) assessment and meta-analysis of clinical studies were performed (Review Manager 5, Cochrane). The certainty of the evidence was assessed using GradePro (GDT). Studies have shown propolis flavonoids inhibit viral replication in several DNA and RNA viruses, including coronaviruses. Propolis components have an aminopeptidase inhibitor activity that can inhibit the main proteases of SARS viruses and seem to inhibit protein spikes, which are sites of most mutations in SARS-CoV strains. The meta-analysis showed favorable results with the use of propolis on probing depth (95%CI: 0.92; p < 0.001), clinical attachment level (95%CI: 1.48; p < 0.001), gingival index (95%CI: 0.14; p = 0.03), plaque index (95%CI: 0.11; p = 0.23), and blending on probing (95%CI: 0.39; p < 0.001). The antibacterial activity of propolis could be mediated through its direct action on microorganisms or the stimulation of the immune system, activating natural defenses. Thus, propolis inhibits the replication of SARS-CoV-2 as well as its bacterial activity. Treatment with propolis improves general health and facilitates the activation of the immune system against coronavirus.
Collapse
|
41
|
Ożarowski M, Karpiński TM. The Effects of Propolis on Viral Respiratory Diseases. Molecules 2023; 28:359. [PMID: 36615554 PMCID: PMC9824023 DOI: 10.3390/molecules28010359] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/18/2022] [Accepted: 12/24/2022] [Indexed: 01/04/2023] Open
Abstract
Propolis remains an interesting source of natural chemical compounds that show, among others, antibacterial, antifungal, antiviral, antioxidative and anti-inflammatory activities. Due to the growing incidence of respiratory tract infections caused by various pathogenic viruses, complementary methods of prevention and therapy supporting pharmacotherapy are constantly being sought out. The properties of propolis may be important in the prevention and treatment of respiratory tract diseases caused by viruses such as severe acute respiratory syndrome coronavirus 2, influenza viruses, the parainfluenza virus and rhinoviruses. One of the main challenges in recent years has been severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing COVID-19. Recently, an increasing number of studies are focusing on the activity of various propolis preparations against SARS-CoV-2 as an adjuvant treatment for this infection. Propolis has shown a few key mechanisms of anti-SARS-CoV-2 action such as: the inhibition of the interaction of the S1 spike protein and ACE-2 protein; decreasing the replication of viruses by diminishing the synthesis of RNA transcripts in cells; decreasing the particles of coronaviruses. The anti-viral effect is observed not only with extracts but also with the single biologically active compounds found in propolis (e.g., apigenin, caffeic acid, chrysin, kaempferol, quercetin). Moreover, propolis is effective in the treatment of hyperglycemia, which increases the risk of SARS-CoV-2 infections. The aim of the literature review was to summarize recent studies from the PubMed database evaluating the antiviral activity of propolis extracts in terms of prevention and the therapy of respiratory tract diseases (in vitro, in vivo, clinical trials). Based upon this review, it was found that in recent years studies have focused mainly on the assessment of the effectiveness of propolis and its chemical components against COVID-19. Propolis exerts wide-spectrum antimicrobial activities; thus, propolis extracts can be an effective option in the prevention and treatment of co-infections associated with diseases of the respiratory tract.
Collapse
Affiliation(s)
- Marcin Ożarowski
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants—National Research Institute, Wojska Polskiego 71b, 60-630 Poznań, Poland
| | - Tomasz M. Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Rokietnicka 10, 60-806 Poznań, Poland
| |
Collapse
|
42
|
T. M. C, P. I. SJ, G. N, R. M. N, R. Z. M. Antimicrobial activity of flavonoids glycosides and pyrrolizidine alkaloids from propolis of Scaptotrigona aff. postica. TOXIN REV 2022. [DOI: 10.1080/15569543.2022.2150647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Cantero T. M.
- Laboratory of Parasitology, Butantan Institute, Sao Paulo, Brazil
| | - Silva Junior P. I.
- Laboratory for Applied Toxinology (LETA), Center of Toxins, Immuneresponse and cell signaling (CeTICS/CEPID), Butantan Institute, Sao Paulo, Brazil
| | - Negri G.
- Laboratory of Phytochemistry, Department of Botany, Institute of Biosciences, University of São Paulo, Sao Paulo, Brazil
| | - Nascimento R. M.
- Laboratory of Parasitology, Butantan Institute, Sao Paulo, Brazil
| | - Mendonça R. Z.
- Laboratory of Parasitology, Butantan Institute, Sao Paulo, Brazil
| |
Collapse
|
43
|
Alqathama AA, Ahmad R, Alsaedi RB, Alghamdi RA, Abkar EH, Alrehaly RH, Abdalla AN. The vital role of animal, marine, and microbial natural products against COVID-19. PHARMACEUTICAL BIOLOGY 2022; 60:509-524. [PMID: 35234563 PMCID: PMC8896193 DOI: 10.1080/13880209.2022.2039215] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/21/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
CONTEXT Since the outbreak of SARS-CoV-2, researchers have been working on finding ways to prevent viral entry and pathogenesis. Drug development from naturally-sourced pharmacological constituents may be a fruitful approach to COVID-19 therapy. OBJECTIVE Most of the published literature has focussed on medicinal plants, while less attention has been given to biodiverse sources such as animal, marine, and microbial products. This review focuses on highlighting natural products and their derivatives that have been evaluated for antiviral, anti-inflammatory, and immunomodulatory properties. METHODS We searched electronic databases such as PubMed, Scopus, Science Direct and Springer Link to gather raw data from publications up to March 2021, using terms such as 'natural products', marine, micro-organism, and animal, COVID-19. We extracted a number of documented clinical trials of products that were tested in silico, in vitro, and in vivo which paid specific attention to chemical profiles and mechanisms of action. RESULTS Various classes of flavonoids, 2 polyphenols, peptides and tannins were found, which exhibit inhibitory properties against viral and host proteins, including 3CLpro, PLpro, S, hACE2, and NF-κB, many of which are in different phases of clinical trials. DISCUSSION AND CONCLUSIONS The synergistic effects of logical combinations with different mechanisms of action emphasizes their value in COVID19 management, such as iota carrageenan nasal spray, ermectin oral drops, omega-3 supplementation, and a quadruple treatment of zinc, quercetin, bromelain, and vitamin C. Though in vivo efficacy of these compounds has yet to be established, these bioproducts are potentially useful in counteracting the effects of SARS-CoV-2.
Collapse
Affiliation(s)
- Aljawharah A. Alqathama
- Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Rizwan Ahmad
- Department of Natural Products and Alternative Medicines, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ruba B. Alsaedi
- Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Raghad A. Alghamdi
- Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ekram H. Abkar
- Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Rola H. Alrehaly
- Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ashraf N. Abdalla
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
44
|
Assessment of Antioxidant and Antimicrobial Properties of Selected Greek Propolis Samples (North East Aegean Region Islands). MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238198. [PMID: 36500292 PMCID: PMC9735805 DOI: 10.3390/molecules27238198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Propolis is a bee-produced substance rich in bioactive compounds, which has been utilized widely in folk medicine, in food supplement and cosmetology areas because of its biological properties, (antibacterial, antiviral, antioxidant, anti-inflammatory, etc.). The subject of this study is associated with the chemical analysis and the biological evaluation of 16 propolis samples from the northeast Aegean region Greek islands, a well-recognized geographic area and the homeland of rich flora as a crossroads between Europe and Asia. Our study resulted in the detection of a significant percentage of diterpenes by gas chromatography-mass spectrometry (GC-MS), while flavonoids were identified in low percentages among studied samples. Furthermore, the DPPH assay highlighted that eight of the samples (Lesvos and Lemnos origin) demonstrated a promising antioxidant profile, further verified by their total phenolic content (TPC). Additionally, the propolis samples most rich in diterpenes showed significant antibacterial and fungicidal properties against human pathogenic microorganisms, proving them to be a very interesting and promising crude material for further applications, concluding that floral diversity is the most responsible for the bioactivity of the propolis samples.
Collapse
|
45
|
Duarte Silveira MA, Malta-Santos H, Rebouças-Silva J, Teles F, Batista dos Santos Galvão E, Pinto de Souza S, Dantas Dutra FR, Dantas Gomes MM, Teixeira MB, Miranda Rebelo da Conceição LF, Nascimento CS, Vasques Nonaka CK, Cezar RS, Pena Batista PB, Berretta AA, Borges VM, da Hora Passos R. Effects of Standardized Brazilian Green Propolis Extract (EPP-AF®) on Inflammation in Haemodialysis Patients: A Clinical Trial. Int J Nephrol 2022; 2022:1035475. [PMID: 36457860 PMCID: PMC9708369 DOI: 10.1155/2022/1035475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Patients on haemodialysis (HD) present a significant inflammatory status, which has a pronounced negative impact on their outcomes. Propolis is a natural resin with anti-inflammatory and immunomodulatory properties. We assessed the safety and impact of a standardized Brazilian green propolis extract (EPP-AF®) on the inflammatory status in patients under conventional HD. METHODS Patients were assigned to receive 200 mg/day of EPP-AF® for 4 weeks followed by 4 weeks without the drug, and changes in plasma levels of interleukins (ILs), interferon gamma (IFN-γ), tumour necrosis factor-alpha (TNF-α), and high-sensitivityc-reactive protein (HsCRP) were measured. A heatmap was used to illustrate trends in data variation. RESULTS In total, 37 patients were included in the final analysis. Patients presented an exacerbated inflammatory state at baseline. During EPP-AF® use, there was a significant reduction in IFN-γ (p=0.005), IL-13 (p=0.04 2), IL-17 (p=0.039), IL-1ra (p=0.008), IL-8 (p=0.009), and TNF-α (p < 0.001) levels compared to baseline, and significant changes were found in Hs-CRP levels. The heatmap demonstrated a pattern of pronounced proinflammatory status at baseline, especially in patients with primary glomerulopathies, and a clear reduction in this pattern during the use of EPP-AF®. There was a tendency to maintain this reduction after suspension of EPP-AF®. No significant side effects were observed. CONCLUSION Patients under haemodialysis presented a pronounced inflammatory status, and EPP-AF® was demonstrated to be safe and associated with a significant and maintained reduction in proinflammatory cytokines in this population. This trial is registered with Clinicaltrials.gov NCT04072341.
Collapse
Affiliation(s)
- Marcelo Augusto Duarte Silveira
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Nephrology Department, Avenida São Rafael 2152, São Marcos, Salvador, BA 41253190, Brazil
- UNIME Medical School, Fazenda Pitangueira, Lauro de Freitas, Bahia 42700000, Brazil
| | - Hayna Malta-Santos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rua Waldemar Falcão 121, Candeal, Salvador, BA 40296710, Brazil
- School of Medicine, Federal University of Bahia, Rua Augusto Viana s/n, Canela, Salvador, BA 40110909, Brazil
| | - Jéssica Rebouças-Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rua Waldemar Falcão 121, Candeal, Salvador, BA 40296710, Brazil
- School of Medicine, Federal University of Bahia, Rua Augusto Viana s/n, Canela, Salvador, BA 40110909, Brazil
| | - Flávio Teles
- School of Medicine, Federal University of Alagoas, Av. Lourival de Melo Mota S/N, Tabuleiro do Martins 57072900, Maceió, Alagoas, Brazil
| | - Erica Batista dos Santos Galvão
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Nephrology Department, Avenida São Rafael 2152, São Marcos, Salvador, BA 41253190, Brazil
| | - Sergio Pinto de Souza
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Nephrology Department, Avenida São Rafael 2152, São Marcos, Salvador, BA 41253190, Brazil
- Escola Bahiana de Medicina e Saúde Pública-EBMSP, Av. Dom João VI 275, Brotas, Salvador, BA 40290000, Brazil
| | - Fábio Ricardo Dantas Dutra
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Nephrology Department, Avenida São Rafael 2152, São Marcos, Salvador, BA 41253190, Brazil
| | - Marcel Miranda Dantas Gomes
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Nephrology Department, Avenida São Rafael 2152, São Marcos, Salvador, BA 41253190, Brazil
| | - Maurício Brito Teixeira
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Nephrology Department, Avenida São Rafael 2152, São Marcos, Salvador, BA 41253190, Brazil
- Escola Bahiana de Medicina e Saúde Pública-EBMSP, Av. Dom João VI 275, Brotas, Salvador, BA 40290000, Brazil
- Universidade do Estado da Bahia (UNEB), Rua Silveira Martin 2555, Cabula, Salvador, BA 41150000, Brazil
| | - Luis Filipe Miranda Rebelo da Conceição
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Nephrology Department, Avenida São Rafael 2152, São Marcos, Salvador, BA 41253190, Brazil
| | - Carolina Sa Nascimento
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Nephrology Department, Avenida São Rafael 2152, São Marcos, Salvador, BA 41253190, Brazil
| | - Carolina Kymie Vasques Nonaka
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Nephrology Department, Avenida São Rafael 2152, São Marcos, Salvador, BA 41253190, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rua Waldemar Falcão 121, Candeal, Salvador, BA 40296710, Brazil
| | - Rodrigo Silva Cezar
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Nephrology Department, Avenida São Rafael 2152, São Marcos, Salvador, BA 41253190, Brazil
| | - Paulo Benigno Pena Batista
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Nephrology Department, Avenida São Rafael 2152, São Marcos, Salvador, BA 41253190, Brazil
- UNIME Medical School, Fazenda Pitangueira, Lauro de Freitas, Bahia 42700000, Brazil
| | - Andresa Aparecida Berretta
- Research, Development and Innovation Department, Apis Flora Indl. Coml. Ltd, Rua Triunfo 945, Subse-tor Sul 3, Ribeirão Preto, SP 14020670, Brazil
| | - Valeria M. Borges
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rua Waldemar Falcão 121, Candeal, Salvador, BA 40296710, Brazil
- School of Medicine, Federal University of Bahia, Rua Augusto Viana s/n, Canela, Salvador, BA 40110909, Brazil
| | - Rogerio da Hora Passos
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Nephrology Department, Avenida São Rafael 2152, São Marcos, Salvador, BA 41253190, Brazil
| |
Collapse
|
46
|
Rizvi SAA, Einstein GP, Tulp OL, Sainvil F, Branly R. Introduction to Traditional Medicine and Their Role in Prevention and Treatment of Emerging and Re-Emerging Diseases. Biomolecules 2022; 12:1442. [PMID: 36291651 PMCID: PMC9599697 DOI: 10.3390/biom12101442] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/29/2022] Open
Abstract
Infectious diseases have been a threat to human health globally. The relentless efforts and research have enabled us to overcome most of the diseases through the use of antiviral and antibiotic agents discovered and employed. Unfortunately, the microorganisms have the capability to adapt and mutate over time and antibiotic and antiviral resistance ensues. There are many challenges in treating infections such as failure of the microorganisms to respond to the therapeutic agents, which has led to more chronic infections, complications, and preventable loss of life. Thus, a multidisciplinary approach and collaboration is warranted to create more potent, effective, and versatile therapies to prevent and eradicate the old and newly emerging diseases. In the recent past, natural medicine has proven its effectiveness against various illnesses. Most of the pharmaceutical agents currently used can trace their origin to the natural products in one way, shape, or form. The full potential of natural products is yet to be realized, as numerous natural resources have not been explored and analyzed. This merits continuous support in research and analysis of ancient treatment systems to explore their full potential and employ them as an alternative or principal therapy.
Collapse
Affiliation(s)
- Syed A. A. Rizvi
- College of Biomedical Sciences, Larkin University, Miami, FL 33169, USA
| | - George P. Einstein
- College of Medicine, University of Science, Arts and Technology, Olveston P.O. Box 506, UK
| | - Orien L. Tulp
- College of Medicine, University of Science, Arts and Technology, Olveston P.O. Box 506, UK
| | - Frantz Sainvil
- College of Medicine, University of Science, Arts and Technology, Olveston P.O. Box 506, UK
| | - Rolando Branly
- Physical Sciences Department, Broward College, Davie, FL 33332, USA
| |
Collapse
|
47
|
Allergic Inflammation: Effect of Propolis and Its Flavonoids. Molecules 2022; 27:molecules27196694. [PMID: 36235230 PMCID: PMC9570745 DOI: 10.3390/molecules27196694] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
The incidence of allergic diseases and their complications are increasing worldwide. Today, people increasingly use natural products, which has been termed a "return to nature". Natural products with healing properties, especially those obtained from plants and bees, have been used in the prevention and treatment of numerous chronic diseases, including allergy and/or inflammation. Propolis is a multi-component resin rich in flavonoids, collected and transformed by honeybees from buds and plant wounds for the construction and adaptation of their nests. This article describes the current views regarding the possible mechanisms and multiple benefits of flavonoids in combating allergy and allergy-related complications. These benefits arise from flavonoid anti-allergic, anti-inflammatory, antioxidative, and wound healing activities and their effects on microbe-immune system interactions in developing host responses to different allergens. Finally, this article presents various aspects of allergy pathobiology and possible molecular approaches in their treatment. Possible mechanisms regarding the antiallergic action of propolis on the microbiota of the digestive and respiratory tracts and skin diseases as a method to selectively remove allergenic molecules by the process of bacterial biotransformation are also reported.
Collapse
|
48
|
Tseng YH, Lin SJS, Hou SM, Wang CH, Cheng SP, Tseng KY, Lee MY, Lee SM, Huang YC, Lin CJ, Lin CK, Tsai TL, Lin CS, Cheng MH, Fong TS, Tsai CI, Lu YW, Lin JC, Huang YW, Hsu WC, Kuo HH, Wang LH, Liaw CC, Wei WC, Tsai KC, Shen YC, Chiou WF, Lin JG, Su YC. Curbing COVID-19 progression and mortality with traditional Chinese medicine among hospitalized patients with COVID-19: A propensity score-matched analysis. Pharmacol Res 2022; 184:106412. [PMID: 36007774 PMCID: PMC9395232 DOI: 10.1016/j.phrs.2022.106412] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Viral- and host-targeted traditional Chinese medicine (TCM) formulae NRICM101 and NRICM102 were administered to hospitalized patients with COVID-19 during the mid-2021 outbreak in Taiwan. We report the outcomes by measuring the risks of intubation or admission to intensive care unit (ICU) for patients requiring no oxygen support, and death for those requiring oxygen therapy. METHODS This multicenter retrospective study retrieved data of 840 patients admitted to 9 hospitals between May 1 and July 26, 2021. After propensity score matching, 302 patients (151 received NRICM101 and 151 did not) and 246 patients (123 received NRICM102 and 123 did not) were included in the analysis to assess relative risks. RESULTS During the 30-day observation period, no endpoint occurred in the patients receiving NRICM101 plus usual care while 14 (9.27%) in the group receiving only usual care were intubated or admitted to ICU. The numbers of deceased patients were 7 (5.69%) in the group receiving NRICM102 plus usual care and 27 (21.95%) in the usual care group. No patients receiving NRICM101 transitioned to a more severe status; NRICM102 users were 74.07% less likely to die than non-users (relative risk= 25.93%, 95% confidence interval 11.73%-57.29%). CONCLUSION NRICM101 and NRICM102 were significantly associated with a lower risk of intubation/ICU admission or death among patients with mild-to-severe COVID-19. This study provides real-world evidence of adopting broad-spectrum oral therapeutics and shortening the gap between outbreak and effective response. It offers a new vision in our preparation for future pandemics.
Collapse
Affiliation(s)
- Yu-Hwei Tseng
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan ROC
| | - Sunny Jui-Shan Lin
- Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan ROC
| | - Sheng-Mou Hou
- Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan ROC
| | - Chih-Hung Wang
- Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan ROC
| | - Shun-Ping Cheng
- Taipei Hospital, Ministry of Health and Welfare, Taipei, Taiwan ROC
| | - Kung-Yen Tseng
- Chang-Hua Hospital, Ministry of Health and Welfare, Changhua, Taiwan ROC
| | - Ming-Yung Lee
- Department of Data Science and Big Data Analytics, Providence University, Taichung, Taiwan ROC
| | - Shen-Ming Lee
- Department of Statistics, Feng Chia University, Taichung, Taiwan ROC
| | - Yi-Chia Huang
- Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan ROC
| | - Chien-Jung Lin
- Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan ROC
| | - Chi-Kuei Lin
- Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan ROC
| | - Tsung-Lung Tsai
- Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan ROC
| | - Chen-Shien Lin
- Taipei Hospital, Ministry of Health and Welfare, Taipei, Taiwan ROC
| | - Ming-Huei Cheng
- Feng Yuan Hospital, Ministry of Health and Welfare, Taichung, Taiwan ROC
| | - Tieng-Siong Fong
- Chang-Hua Hospital, Ministry of Health and Welfare, Changhua, Taiwan ROC
| | - Chia-I Tsai
- Taichung Veterans General Hospital, Taichung, Taiwan ROC
| | - Yu-Wen Lu
- Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan ROC
| | - Jung-Chih Lin
- Chung Shan Medical University Hospital, Taichung, Taiwan ROC
| | - Yi-Wen Huang
- Chang-Hua Hospital, Ministry of Health and Welfare, Changhua, Taiwan ROC
| | - Wei-Chen Hsu
- Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan ROC
| | - Hsien-Hwa Kuo
- Taipei Hospital, Ministry of Health and Welfare, Taipei, Taiwan ROC
| | | | - Chia-Ching Liaw
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan ROC
| | - Wen-Chi Wei
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan ROC
| | - Keng-Chang Tsai
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan ROC
| | - Yuh-Chiang Shen
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan ROC
| | - Wen-Fei Chiou
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan ROC
| | - Jaung-Geng Lin
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan ROC; Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Yi-Chang Su
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan ROC.
| |
Collapse
|
49
|
Zullkiflee N, Taha H, Usman A. Propolis: Its Role and Efficacy in Human Health and Diseases. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186120. [PMID: 36144852 PMCID: PMC9504311 DOI: 10.3390/molecules27186120] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 02/07/2023]
Abstract
With technological advancements in the medicinal and pharmaceutical industries, numerous research studies have focused on the propolis produced by stingless bees (Meliponini tribe) and Apis mellifera honeybees as alternative complementary medicines for the potential treatment of various acute and chronic diseases. Propolis can be found in tropical and subtropical forests throughout the world. The composition of phytochemical constituents in propolis varies depending on the bee species, geographical location, botanical source, and environmental conditions. Typically, propolis contains lipid, beeswax, essential oils, pollen, and organic components. The latter include flavonoids, phenolic compounds, polyphenols, terpenes, terpenoids, coumarins, steroids, amino acids, and aromatic acids. The biologically active constituents of propolis, which include countless organic compounds such as artepillin C, caffeic acid, caffeic acid phenethyl ester, apigenin, chrysin, galangin, kaempferol, luteolin, genistein, naringin, pinocembrin, coumaric acid, and quercetin, have a broad spectrum of biological and therapeutic properties such as antidiabetic, anti-inflammatory, antioxidant, anticancer, rheumatoid arthritis, chronic obstruct pulmonary disorders, cardiovascular diseases, respiratory tract-related diseases, gastrointestinal disorders, as well as neuroprotective, immunomodulatory, and immuno-inflammatory agents. Therefore, this review aims to provide a summary of recent studies on the role of propolis, its constituents, its biologically active compounds, and their efficacy in the medicinal and pharmaceutical treatment of chronic diseases.
Collapse
Affiliation(s)
- Nadzirah Zullkiflee
- Department of Chemistry, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei
| | - Hussein Taha
- Environmental and Life Science, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei
| | - Anwar Usman
- Department of Chemistry, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei
- Correspondence:
| |
Collapse
|
50
|
Dankwa B, Broni E, Enninful KS, Kwofie SK, Wilson MD. Consensus docking and MM-PBSA computations identify putative furin protease inhibitors for developing potential therapeutics against COVID-19. Struct Chem 2022; 33:2221-2241. [PMID: 36118173 PMCID: PMC9470509 DOI: 10.1007/s11224-022-02056-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/05/2022] [Indexed: 12/16/2022]
Abstract
The coronavirus disease 2019 (COVID-19) is a pandemic that has severely posed substantial health challenges and claimed millions of lives. Though vaccines have been produced to stem the spread of this disease, the death rate remains high since drugs used for treatment have therapeutic challenges. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes the disease, has a slew of potential therapeutic targets. Among them is the furin protease, which has a cleavage site on the virus’s spike protein. The cleavage site facilitates the entry of the virus into human cells via cell–cell fusion. This critical involvement of furin in the disease pathogenicity has made it a viable therapeutic strategy against the virus. This study employs the consensus docking approach using HYBRID and AutoDock Vina to virtually screen a pre-filtered library of 3942 natural product compounds of African origin against the human furin protease (PDB: 4RYD). Twenty of these compounds were selected as hits after meeting molecular docking cut-off of − 7 kcal.mol−1, pose alignment inspection, and having favorable furin-ligand interactions. An area under the curve (AUC) value of 0.72 was computed from the receiver operator characteristic (ROC) curve, and Boltzmann-enhanced discrimination of the ROC curve (BEDROC) value of 0.65 showed that AutoDock Vina was a reasonable tool for selecting actives for this target. Seven of these hits were proposed as potential leads having had bonding interactions with catalytic triad residues Ser368, His194, and Asp153, and other essential residues in the active site with plausible binding free energies between − 189 and − 95 kJ/mol from the Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) calculations as well as favorable ADME/Tox properties. The molecules were also predicted as antiviral, anti-inflammatory, membrane permeability inhibitors, RNA synthesis inhibitors, cytoprotective, and hepatoprotective with probable activity (Pa) above 0.5 and probable inactivity values below 0.1. Some of them also have anti-influenza activity. Influenza virus has many similarities with SARS-CoV-2 in their mode of entry into human cells as both are facilitated by the furin protease. Pinobanksin 3-(E)-caffeate, one of the potential leads is a propolis compound. Propolis compounds have shown inhibitory effects against ACE2, TMPRSS2, and PAK1 signaling pathways of SARS-CoV-2 in previous studies. Likewise, quercitrin is structurally similar to isoquercetin, which is currently in clinical trials as possible medication for COVID-19.
Collapse
Affiliation(s)
- Bismark Dankwa
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra LG 581, Ghana
- Department of Computer Science, School of Physical & Mathematical Science, College of Basic & Applied Sciences, University of Ghana, LG 163 Legon, Accra Ghana
| | - Emmanuel Broni
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra LG 581, Ghana
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153 USA
| | - Kweku S. Enninful
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra LG 581, Ghana
| | - Samuel K. Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra LG 54, Ghana
| | - Michael D. Wilson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra LG 581, Ghana
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153 USA
| |
Collapse
|