1
|
Zhong Y, He JW, Huang CX, Lai HZ, Li XK, Zheng C, Fu X, You FM, Ma Q. The NcRNA/Wnt axis in lung cancer: oncogenic mechanisms, remarkable indicators and therapeutic targets. J Transl Med 2025; 23:326. [PMID: 40087753 PMCID: PMC11907837 DOI: 10.1186/s12967-025-06326-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/27/2025] [Indexed: 03/17/2025] Open
Abstract
Early diagnosis of lung cancer (LC) is challenging, treatment options are limited, and treatment resistance leads to poor prognosis and management in most patients. The Wnt/β-catenin signaling pathway plays a vital role in the occurrence, progression, and therapeutic response of LC. Recent studies indicate that non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) function as epigenetic regulators that can promote or inhibit Wnt/β-catenin signaling by interacting with Wnt proteins, receptors, signaling transducers, and transcriptional effectors, thereby affecting LC cell proliferation, metastasis, invasion, and treatment resistance. Deepening our understanding of the regulatory network between ncRNAs and the Wnt/β-catenin signaling pathway will help overcome the limitations of current LC diagnosis and treatment methods. This article comprehensively reviews the regulatory mechanisms related to the functions of ncRNAs and the Wnt/β-catenin pathway in LC, examining their potential as diagnostic and prognostic biomarkers and therapeutic targets, aiming to offer new promising perspectives for LC diagnosis and treatment.
Collapse
Affiliation(s)
- Yang Zhong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China
| | - Jia-Wei He
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China
| | - Chun-Xia Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China
| | - Heng-Zhou Lai
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China
| | - Xue-Ke Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China
| | - Chuan Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China.
| | - Xi Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China.
| | - Feng-Ming You
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China.
| | - Qiong Ma
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China.
| |
Collapse
|
2
|
Alnefaie GO. A review of the complex interplay between chemoresistance and lncRNAs in lung cancer. J Transl Med 2024; 22:1109. [PMID: 39639388 PMCID: PMC11619437 DOI: 10.1186/s12967-024-05877-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
Lung Cancer (LC) is characterized by chemoresistance, which poses a significant clinical challenge and results in a poor prognosis for patients. Long non-coding RNAs (lncRNAs) have recently gained recognition as crucial mediators of chemoresistance in LC. Through the regulation of key cellular processes, these molecules play important roles in the progression of LC and response to therapy. The mechanisms by which lncRNAs affect chemoresistance include the modulation of gene expression, chromatin structure, microRNA interactions, and signaling pathways. Exosomes have emerged as key mediators of lncRNA-driven chemoresistance, facilitating the transfer of resistance-associated lncRNAs between cancer cells and contributing to tumor development. Consequently, exosomal lncRNAs may serve as biomarkers and therapeutic targets for the treatment of LC. Therapeutic strategies targeting lncRNAs offer novel approaches to circumvent chemoresistance. Different approaches, including RNA interference (RNAi) and antisense oligonucleotides (ASOs), are available to degrade lncRNAs or alter their function. ASO-based therapies are effective at reducing lncRNA expression levels, increasing chemotherapy sensitivity, and improving clinical outcomes. The use of these strategies can facilitate the development of targeted interventions designed to disrupt lncRNA-mediated mechanisms of chemoresistance. An important aspect of this review is the discussion of the complex relationship between lncRNAs and drug resistance in LC, particularly through exosomal pathways, and the development of innovative therapeutic strategies to enhance drug efficacy by targeting lncRNAs. The development of new pathways and interventions for treating LC holds promise in overcoming this resistance.
Collapse
Affiliation(s)
- Ghaliah Obaid Alnefaie
- Department of Pathology, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| |
Collapse
|
3
|
Nie X, Ge H, Wu K, Liu R, He C. Unlocking the Potential of Disulfidptosis-Related LncRNAs in Lung Adenocarcinoma: A Promising Prognostic LncRNA Model for Survival and Immunotherapy Prediction. Cancer Med 2024; 13:e70337. [PMID: 39431755 PMCID: PMC11492340 DOI: 10.1002/cam4.70337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/19/2023] [Accepted: 09/30/2024] [Indexed: 10/22/2024] Open
Abstract
OBJECTIVE Disulfidptosis was stimulated in high SLC7A11 expression cells starving to glucose. We attempted to identify disulfidptosis-related lncRNAs (DRLs), built a prognostic model to predict survival, and analyzed the tumor microenvironment. METHODS The TCGA database was utilized to procure the pertinent data. By utilizing both Cox regression and the least absolute shrinkage and selection operator (LASSO) method, a risk model based on DRLs was formulated for prognostic evaluation. The ability of survival prediction was validated by multiple approaches. The biological functions were screened through GO, KEGG, and GSEA. Various methods were employed to evaluate the tumor immune environment, which included ESTIMATE, tumor mutation burden (TMB) score, CIBERSORT algorithm, and tumor immune dysfunction and exclusion (TIDE) score. RESULTS Ninety-one DRLs were recognized, and lncRNA AC092718.4, AL365181.2, AL606489.1, EMSLR, and ENTPD3-AS1 were involved in the risk model. The GEO database was used to verify the influence of these lncRNAs on survival. The following analyses showed that survival could be predicted excellently by the DRLs risk model. The results of enrichment analyses pointed toward the involvement of the cell cycle and IgA production pathways. In the low-risk patient group, there was a notable surge in stromal, immune, and ESTIMATE scores, while the TMB scores took a tumble. Conversely, the high-risk patient group displayed a converse trend. Notably, the group of patients with lower risk scores and higher TMB scores showed the most favorable survival outcomes, underscoring the importance of considering both risk score and TMB in predicting the response to immune checkpoint blockade therapy. Furthermore, patients classified as high-risk might display resistance to both chemotherapy and targeted therapy. Cellular biological experiments proved that lncRNA AC092718.4 promoted invasion, migration, and proliferation abilities in vitro. These results provided valuable insights into the role of DRLs in LUAD and presented a possible effective treatment approach for LUAD. CONCLUSIONS We developed a disulfidptosis-related risk model with 5 lncRNAs that enables survival prediciton for LUAD patients and aids cilinical decisions by forecasting the TME, TMB, and drug sensitivity, making it a valuable tool for outcomes prediction.
Collapse
Affiliation(s)
- Xin Nie
- Department of Radiation OncologyThe Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhouPeople's Republic of China
| | - Hong Ge
- Department of Radiation OncologyThe Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhouPeople's Republic of China
| | - Kongming Wu
- Department of OncologyTongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhanPeople's Republic of China
| | - Ru Liu
- Department of Radiation OncologyThe Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhouPeople's Republic of China
| | - Chunyu He
- Department of Radiation OncologyThe Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhouPeople's Republic of China
| |
Collapse
|
4
|
Lv H, Qian D, Xu S, Fan G, Qian Q, Cha D, Qian X, Zhou G, Lu B. Modulation of long noncoding RNAs by polyphenols as a novel potential therapeutic approach in lung cancer: A comprehensive review. Phytother Res 2024; 38:3240-3267. [PMID: 38739454 DOI: 10.1002/ptr.8202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/10/2024] [Accepted: 03/19/2024] [Indexed: 05/16/2024]
Abstract
Lung cancer stands as a formidable global health challenge, necessitating innovative therapeutic strategies. Polyphenols, bioactive compounds synthesized by plants, have garnered attention for their diverse health benefits, particularly in combating various cancers, including lung cancer. The advent of whole-genome and transcriptome sequencing technologies has illuminated the pivotal roles of long noncoding RNAs (lncRNAs), operating at epigenetic, transcriptional, and posttranscriptional levels, in cancer progression. This review comprehensively explores the impact of polyphenols on both oncogenic and tumor-suppressive lncRNAs in lung cancer, elucidating on their intricate regulatory mechanisms. The comprehensive examination extends to the potential synergies when combining polyphenols with conventional treatments like chemotherapy, radiation, and immunotherapy. Recognizing the heterogeneity of lung cancer subtypes, the review emphasizes the need for the integration of nanotechnology for optimized polyphenol delivery and personalized therapeutic approaches. In conclusion, we collect the latest research, offering a holistic overview of the evolving landscape of polyphenol-mediated modulation of lncRNAs in lung cancer therapy. The integration of polyphenols and lncRNAs into multidimensional treatment strategies holds promise for enhancing therapeutic efficacy and navigating the challenges associated with lung cancer treatment.
Collapse
Affiliation(s)
- Hong Lv
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| | - Dawei Qian
- Department of Thoracic Surgery, Tongling Yi'an District People's Hospital, Tongling, China
| | - Shuhua Xu
- Department of Cardiothoracic Surgery, Dongtai Hospital of Traditional Chinese Medicine, Dongtai, China
| | - Guiqin Fan
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| | - Qiuhong Qian
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| | - Dongsheng Cha
- Department of Thoracic Surgery, Tongling Yi'an District People's Hospital, Tongling, China
| | - Xingjia Qian
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| | - Guoping Zhou
- Department of Cardiothoracic Surgery, Dongtai Hospital of Traditional Chinese Medicine, Dongtai, China
| | - Bing Lu
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| |
Collapse
|
5
|
Zheng Y, Yang C, Xie S, Liu D, Wang H, Liu J. miR-199a-5p targets DUSP14 to regulate cell proliferation, invasion and stemness in non-small cell lung cancer. Heliyon 2024; 10:e29102. [PMID: 38644862 PMCID: PMC11033068 DOI: 10.1016/j.heliyon.2024.e29102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/23/2024] Open
Abstract
Background Non-small cell lung cancer (NSCLC) shows the highest morbidity among malignant tumors worldwide. Despite improvements of diagnosis and treatment, patient prognosis remains unfavorable. Therefore, there is a need to discover a novel treatment strategy for NSCLC. DUSP14 is related to various cancers as the regulatory factor for cellular processes. However, its specific roles in NSCLC and the upstream modulator remain largely unclear. Methods DUSP14 expression patterns within the lung cancer patient cohort from TCGA database were analyzed using UALCAN online tool. Different databases including miRDB, starbase, and Targetscan were employed to screen the upstream regulator of DUSP14. DUSP14 and miR-199a-5p expression was determined by qRT-PCR and Western blot techniques. To confirm binding interaction of DUSP14 with miR-199a-5p, we conducted a dual-luciferase reporter assay. Cell viability, migration, and stemness properties were assessed using CCK-8, EdU (5-ethynyl-2'-deoxyuridine) incorporation, transwell invasion, and sphere formation assays. The effect of DUSP14 silencing on tumorigenesis was assessed with the NSCLC cell xenograft mouse model. Results Our study discovered that DUSP14 exhibited high expression within NSCLC tumor samples, which is related to the dismal prognostic outcome in NSCLC patients. Silencing DUSP14 impaired NSCLC cell proliferation, migration, and tumor sphere formation. Besides, we identified miR-199a-5p as the upstream regulatory factor for DUSP14, and its expression was negatively related to DUSP14 level within NSCLC tissues. Introducing miR-199a-5p recapitulated the function of DUSP14 silencing in NSCLC cell aggressiveness and stemness. Moreover, knocking down DUSP14 efficiently inhibited tumor formation in NSCLC cells of the xenograft model. Conclusions Our study suggests that DUSP14 is negatively regulated by miR-199a-5p within NSCLC, whose overexpression is required for sustaining NSCLC cell proliferation, invasion and stemness.
Collapse
Affiliation(s)
- Ying Zheng
- Department of Anesthesiology, Yibin Second People's Hospital, No.96, North Street, Cuiping District, Yibin City, 644000, PR China
| | - Chaokun Yang
- Department of Thoracic Surgery, Yibin Second People's Hospital, No.96, North Street, Cuiping District, Yibin City, 644000, PR China
| | - Shaoqiang Xie
- Department of Thoracic Surgery, Yibin Second People's Hospital, No.96, North Street, Cuiping District, Yibin City, 644000, PR China
| | - Desheng Liu
- Department of Thoracic Surgery, Yibin Second People's Hospital, No.96, North Street, Cuiping District, Yibin City, 644000, PR China
| | - Hui Wang
- Department of Thoracic Surgery, Yibin Second People's Hospital, No.96, North Street, Cuiping District, Yibin City, 644000, PR China
| | - Jinxin Liu
- Department of Thoracic Surgery, Yibin Second People's Hospital, No.96, North Street, Cuiping District, Yibin City, 644000, PR China
| |
Collapse
|
6
|
Wang Z, Liang X, Yi G, Wu T, Sun Y, Zhang Z, Fu M. Bioinformatics analysis proposes a possible role for long noncoding RNA MIR17HG in retinoblastoma. Cancer Rep (Hoboken) 2024; 7:e1933. [PMID: 38321787 PMCID: PMC10864729 DOI: 10.1002/cnr2.1933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/27/2023] [Accepted: 11/06/2023] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Retinoblastoma (RB) is the most common prevalent intraocular malignancy among infants and children, particularly in underdeveloped countries. With advancements in genomics and transcriptomics, noncoding RNAs have been increasingly utilized to investigate the molecular pathology of diverse diseases. AIMS This study aims to establish the competing endogenous RNAs network associated with RB, analyse the function of mRNAs and lncRNAs, and finds the relevant regulatory network. METHODS AND RESULTS This study establishes a network of competing endogenous RNAs by Spearman correlation analysis and prediction based on RB patients and healthy children. Enrichment analyzes based on Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes are conducted to analyze the potential biological functions of lncRNA and mRNA networks. Weighted gene co-expression network analysis (WGCNA) is employed to identify gene cluster modules exhibiting the strongest correlation with RB. The results indicate a significant correlation between the lncRNA MIR17HG (R = .73, p = .02) and the RB phenotype. ceRNA networks reveal downstream miRNAs (hsa-mir-425-5p and hsa-mir455-5p) and mRNAs (MDM2, IPO11, and ITGA1) associated with MIR17Hg. As an inhibitor of the p53 signaling pathway, MDM2 can suppress the development of RB. CONCLUSION In conclusion, lncRNAs play a role in RB, and the MIR17HG/hsa-mir-425-5p/MDM2 pathway may contribute to RB development by inhibiting the p53 signaling pathway.
Collapse
Affiliation(s)
- Zijin Wang
- The Second Clinical Medicine SchoolSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xiaotian Liang
- Department of Cardiovascular Medicine, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Guoguo Yi
- Department of OphthalmologyThe Sixth Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Tong Wu
- The First Clinical Medicine SchoolSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yuxin Sun
- The Second Clinical Medicine SchoolSouthern Medical UniversityGuangzhouGuangdongChina
| | - Ziran Zhang
- The Second Clinical Medicine SchoolSouthern Medical UniversityGuangzhouGuangdongChina
| | - Min Fu
- Department of Ophthalmology, Zhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
7
|
Saadh MJ, Rasulova I, Almoyad MAA, Kiasari BA, Ali RT, Rasheed T, Faisal A, Hussain F, Jawad MJ, Hani T, Sârbu I, Lakshmaiya N, Ciongradi CI. Recent progress and the emerging role of lncRNAs in cancer drug resistance; focusing on signaling pathways. Pathol Res Pract 2024; 253:154999. [PMID: 38118218 DOI: 10.1016/j.prp.2023.154999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/22/2023]
Abstract
It is becoming more and more apparent that many of the genetic alterations associated with cancer are located in areas that do not encode proteins. lncRNAs are a class of RNAs that do not code for proteins but play a crucial role in maintaining cell function and regulating various cellular processes. By doing this, they have recently introduced what may be a brand-new and essential layer of biological control. These have more than 200 nucleotides and are linked to several diseases; as a result, they have become potential tools for therapeutic intervention. Emerging technologies suggest the presence of mutations on genomic loci that give rise to lncRNAs rather than proteins in a disease as complex as cancer. These lncRNAs play essential parts in gene regulation, which impacts several cellular homeostasis processes, including proliferation, survival, migration, and genomic stability. The leading cause of death in the world today is cancer. Delays in diagnosis and a lack of standard and efficient treatments are the leading causes of the high death rate. Clinically, surgery is frequently used successfully to remove cancers that have not spread, but it is less successful in treating metastatic cancer, which has a drastically lower chance of survival. Chemotherapeutic drugs are a typical therapy to treat the cancer that has spread to other organs. Drug resistance to chemotherapy, however, presents a significant challenge to achieving positive outcomes and is frequently the cause of treatment failure. A substantial barrier to progress in medical oncology is cancer drug resistance. Resistance can develop clinically either before or after cancer treatment. According to this study, lncRNAs influence drug resistance through several different methods. LncRNAs often impact drug resistance by controlling the expression of a few intermediary regulatory variables rather than by directly affecting drug resistance. Additionally, lncRNAs have a variety of roles in cancer medication resistance. Most lncRNAs induce drug resistance when overexpressed; however, other lncRNAs have inhibitory effects. This study provides an overview of the current understanding of lncRNAs, relevance to cancer, and potential therapeutic applications.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | - Irodakhon Rasulova
- School of Humanities, Natural & Social Sciences, New Uzbekistan University, 54 Mustaqillik Ave., Tashkent 100007, Uzbekistan; Department of Public Health, Samarkand State Medical University, Amir Temur Street 18, Samarkand, Uzbekistan
| | - Muhammad Ali Abdullah Almoyad
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 4536, 47 Abha Mushait, 61412, Saudi Arabia
| | - Bahman Abedi Kiasari
- Microbiology & Immunology Group, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ronak Taher Ali
- College of Medical Technology, Al-Kitab University, Kirkuk, Iraq
| | - Tariq Rasheed
- College of Science and Humanities, Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ahmed Faisal
- Department of Pharmacy, Al-Noor University College, Nineveh, Iraq
| | - Farah Hussain
- Medical Technical College, Al-Farahidi University, Iraq
| | | | - Thamer Hani
- Dentistry Department, Al-Turath University College, Baghdad, Iraq
| | - Ioan Sârbu
- 2nd Department of Surgery-Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania.
| | - Natrayan Lakshmaiya
- Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - Carmen Iulia Ciongradi
- 2nd Department of Surgery-Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania.
| |
Collapse
|
8
|
Gilyazova I, Gimalova G, Nizamova A, Galimova E, Ishbulatova E, Pavlov V, Khusnutdinova E. Non-Coding RNAs as Key Regulators in Lung Cancer. Int J Mol Sci 2023; 25:560. [PMID: 38203731 PMCID: PMC10778604 DOI: 10.3390/ijms25010560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
For several decades, most lung cancer investigations have focused on the search for mutations in candidate genes; however, in the last decade, due to the fact that most of the human genome is occupied by sequences that do not code for proteins, much attention has been paid to non-coding RNAs (ncRNAs) that perform regulatory functions. In this review, we principally focused on recent studies of the function, regulatory mechanisms, and therapeutic potential of ncRNAs including microRNA (miRNA), long ncRNA (lncRNA), and circular RNA (circRNA) in different types of lung cancer.
Collapse
Affiliation(s)
- Irina Gilyazova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of Russian Academy of Sciences, 450054 Ufa, Russia
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| | - Galiya Gimalova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of Russian Academy of Sciences, 450054 Ufa, Russia
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| | - Aigul Nizamova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of Russian Academy of Sciences, 450054 Ufa, Russia
| | - Elmira Galimova
- Department of Pathological Physiology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Ekaterina Ishbulatova
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| | - Valentin Pavlov
- Institute of Urology and Clinical Oncology, Department of Urology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of Russian Academy of Sciences, 450054 Ufa, Russia
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| |
Collapse
|
9
|
Ren C, Cui L, Li R, Song X, Li J, Xi Q, Zhang Z, Zhao L. Hsa_circ_0080608 Attenuates Lung Cancer Progression by Functioning as a Competitive Endogenous RNA to Regulate the miR-661/ADRA1A Pathway. Horm Metab Res 2023; 55:876-884. [PMID: 37820700 DOI: 10.1055/a-2179-0283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Circular RNAs (circRNAs) participate in the progression of human cancers and have been broadly elucidated. Here, we aimed to elucidate the roles and functional mechanisms of hsa_circ_0080608 (circ_0080608) in lung cancer. Quantitative real-time PCR (qPCR) was performed to assess the mRNA expression levels of circ_0080608, miR-661, and adrenoceptor alpha 1A (ADRA1A). Western blotting was performed to measure ADRA1A protein levels. CCK-8, colony formation, and Transwell assays were performed to determine the effect of circ_0080608 on cell proliferation and migration. Animal models were used to assess how circ_0080608 influences tumor progression in vivo. The binding relationships of miR-661's with circ_0080608 and ADRA1A was confirmed using dual-luciferase reporter and RIP assays. Circ_0080608 exhibited relatively low expression in lung cancer samples and cells. Lung cancer cells overexpressing circ_0080608 exhibited reduced migratory and proliferative abilities. Additionally, circ_0080608 binds to miR-661 and operates as a competing endogenous RNA (ceRNA) and shares a miR-661 binding site with the 3' UTR of ADRA1A. Furthermore, circ_0080608 inversely regulates miR-661 expression, consequently restraining the aggressive behavior of lung cancer cells. Lung cancer cells overexpressing ADRA1A also exhibit repressed migratory and proliferative abilities. However, reintroduction of miR-661 led to a decline in ADRA1A expression, thereby attenuating the functional effects of ADRA1A. Circ_0080608 impedes lung cancer progression by regulating the miR-661/ADRA1A pathway. Our findings provide new insights into the progression of lung cancer.
Collapse
Affiliation(s)
- Chengbo Ren
- Department of Radiotherapy, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Ling Cui
- Department of Radiotherapy, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Ruibiao Li
- Department of Radiotherapy, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Xiao Song
- Department of Radiotherapy, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Jinqiu Li
- Department of Radiotherapy, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Qiang Xi
- Department of Radiotherapy, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Zhilin Zhang
- Department of Radiotherapy, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Lixia Zhao
- Department of Internal Medicine Oncology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| |
Collapse
|
10
|
Mollazadeh S, Abdolahzadeh N, Moghbeli M, Arab F, Saburi E. The crosstalk between non-coding RNA polymorphisms and resistance to lung cancer therapies. Heliyon 2023; 9:e20652. [PMID: 37829813 PMCID: PMC10565774 DOI: 10.1016/j.heliyon.2023.e20652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023] Open
Abstract
Lung cancer (LC) is one of the most common cancer-related mortality in the world. Even with intensive multimodality therapies, lung cancer has a poor prognosis and a high morbidity rate. This review focused on the role of non-coding RNA polymorphisms such as lncRNAs and miRNAs in the resistance to LC therapies, which could open promising avenue for better therapeutic response. Of note, there is currently no valid biomarker to predict lung cancer sensitivity in patients during treatment. Since genetic variations cause many challenges in treating patients, genotyping of known polymorphisms must be thoroughly explored to find desirable treatment platforms. With this knowledge, individualized treatments could become more possible in management of LC.
Collapse
Affiliation(s)
- Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Negar Abdolahzadeh
- Department of Advanced Sciences and Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Meysam Moghbeli
- Medical Genetics and Molecular Medicine Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Arab
- Medical Genetics and Molecular Medicine Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Saburi
- Medical Genetics and Molecular Medicine Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Shen Q, Peng L, Zhang Y, Wang R. Editorial: Application of nanotechnology in diagnosis and/or therapy of non-small cell lung cancer. Front Oncol 2023; 13:1234727. [PMID: 37397385 PMCID: PMC10314132 DOI: 10.3389/fonc.2023.1234727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 07/04/2023] Open
Affiliation(s)
- Qinglin Shen
- Department of Oncology, Jiangxi Provincial People’s Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, China
- Institute of Clinical Medicine, Jiangxi Provincial People’s Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Ling Peng
- Department of Respiratory Disease, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Yi Zhang
- Department of Biomedical Science, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Ruoxiang Wang
- Department of Medicine, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
12
|
Gencel-Augusto J, Wu W, Bivona TG. Long Non-Coding RNAs as Emerging Targets in Lung Cancer. Cancers (Basel) 2023; 15:3135. [PMID: 37370745 PMCID: PMC10295998 DOI: 10.3390/cancers15123135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Long non-coding RNAs (LncRNAs) are mRNA-like molecules that do not encode for proteins and that are longer than 200 nucleotides. LncRNAs play important biological roles in normal cell physiology and organism development. Therefore, deregulation of their activities is involved in disease processes such as cancer. Lung cancer is the leading cause of cancer-related deaths due to late stage at diagnosis, distant metastasis, and high rates of therapeutic failure. LncRNAs are emerging as important molecules in lung cancer for their oncogenic or tumor-suppressive functions. LncRNAs are highly stable in circulation, presenting an opportunity for use as non-invasive and early-stage cancer diagnostic tools. Here, we summarize the latest works providing in vivo evidence available for lncRNAs role in cancer development, therapy-induced resistance, and their potential as biomarkers for diagnosis and prognosis, with a focus on lung cancer. Additionally, we discuss current therapeutic approaches to target lncRNAs. The evidence discussed here strongly suggests that investigation of lncRNAs in lung cancer in addition to protein-coding genes will provide a holistic view of molecular mechanisms of cancer initiation, development, and progression, and could open up a new avenue for cancer treatment.
Collapse
Affiliation(s)
- Jovanka Gencel-Augusto
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, CA 94158, USA;
- UCSF Hellen Diller Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Wei Wu
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, CA 94158, USA;
- UCSF Hellen Diller Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Trever G. Bivona
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, CA 94158, USA;
- UCSF Hellen Diller Comprehensive Cancer Center, San Francisco, CA 94158, USA
- Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
13
|
Feng Y, Wu F, Wu Y, Guo Z, Ji X. LncRNA DGUOK-AS1 facilitates non-small cell lung cancer growth and metastasis through increasing TRPM7 stability via m6A modification. Transl Oncol 2023; 32:101661. [PMID: 37037089 PMCID: PMC10120365 DOI: 10.1016/j.tranon.2023.101661] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/23/2023] [Accepted: 03/17/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) modification plays key roles in tumor progression. LncRNA deoxyguanosine kinase antisense RNA 1 (DGUOK-AS1) has been reported as a promoter in tumors, but its role and mechanism in non-small cell lung cancer (NSCLC) development remain uncertain. METHODS Cell proliferation, migration, invasion and angiogenesis were investigated via CCK-8, colony formation, transwell, and tube formation assays, respectively. The location of DGUOK-AS1 was detected via FISH assay. The interaction relationship among DGUOK-AS1, IGF2BP2 and TRPM7 was confirmed by RIP and MeRIP assays. The effects of DGUOK-AS1 on NSCLC growth and metastasis in vivo were investigated using xenograft and pulmonary metastatic models. RESULTS DGUOK-AS1 was upregulated in NSCLC. DGUOK-AS1 silencing inhibited NSCLC cell proliferation, migration, invasion and angiogenesis. DGUOK-AS1 was mostly expressed in cytoplasm, and positively regulated IGF2BP2. METTL3/IGF2BP2 axis could increase TRPM7 mRNA stability in m6A-dependent manner. TRPM7 overexpression reversed the inhibitive function of DGUOK-AS1 silencing on NSCLC development. DGUOK-AS1 knockdown suppressed NSCLC cell growth and metastasis in nude mice. CONCLUSION DGUOK-AS1 silencing restrains NSCLC cell growth and metastasis through decreasing TRPM7 stability via regulation of the METTL3/IGF2BP2-mediated m6A modification.
Collapse
Affiliation(s)
- Yimin Feng
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, Shandong 250033, China
| | - Fengjuan Wu
- Department of Pulmonary and Critical Care Medicine, Heze Municipal Hospital, Heze, Shandong 274031, China
| | - Yuanning Wu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Respiratory Diseases, No.16766 Jingshi Road, Jinan, Shandong 250014, China
| | - Zihan Guo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Respiratory Diseases, No.16766 Jingshi Road, Jinan, Shandong 250014, China
| | - Xiang Ji
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Respiratory Diseases, No.16766 Jingshi Road, Jinan, Shandong 250014, China.
| |
Collapse
|
14
|
Liu Z, Ren C, Cai J, Yin B, Yuan J, Ding R, Ming W, Sun Y, Li Y. A Novel Aging-Related Prognostic lncRNA Signature Correlated with Immune Cell Infiltration and Response to Immunotherapy in Breast Cancer. Molecules 2023; 28:molecules28083283. [PMID: 37110517 PMCID: PMC10141963 DOI: 10.3390/molecules28083283] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Breast cancer (BC) is among the most universal malignant tumors in women worldwide. Aging is a complex phenomenon, caused by a variety of factors, that plays a significant role in tumor development. Consequently, it is crucial to screen for prognostic aging-related long non-coding RNAs (lncRNAs) in BC. The BC samples from the breast-invasive carcinoma cohort were downloaded from The Cancer Genome Atlas (TCGA) database. The differential expression of aging-related lncRNAs (DEarlncRNAs) was screened by Pearson correlation analysis. Univariate Cox regression, LASSO-Cox analysis, and multivariate Cox analysis were performed to construct an aging-related lncRNA signature. The signature was validated in the GSE20685 dataset from the Gene Expression Omnibus (GEO) database. Subsequently, a nomogram was constructed to predict survival in BC patients. The accuracy of prediction performance was assessed through the time-dependent receiver operating characteristic (ROC) curves, Kaplan-Meier analysis, principal component analyses, decision curve analysis, calibration curve, and concordance index. Finally, differences in tumor mutational burden, tumor-infiltrating immune cells, and patients' response to chemotherapy and immunotherapy between the high- and low-risk score groups were explored. Analysis of the TCGA cohort revealed a six aging-related lncRNA signature consisting of MCF2L-AS1, USP30-AS1, OTUD6B-AS1, MAPT-AS1, PRR34-AS1, and DLGAP1-AS1. The time-dependent ROC curve proved the optimal predictability for prognosis in BC patients with areas under curves (AUCs) of 0.753, 0.772, and 0.722 in 1, 3, and 5 years, respectively. Patients in the low-risk group had better overall survival and significantly lower total tumor mutational burden. Meanwhile, the high-risk group had a lower proportion of tumor-killing immune cells. The low-risk group could benefit more from immunotherapy and some chemotherapeutics than the high-risk group. The aging-related lncRNA signature can provide new perspectives and methods for early BC diagnosis and therapeutic targets, especially tumor immunotherapy.
Collapse
Affiliation(s)
- Zhixin Liu
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, China
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Chongkang Ren
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, China
| | - Jinyi Cai
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, China
| | - Baohui Yin
- Department of Pediatrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, China
| | - Jingjie Yuan
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, China
| | - Rongjuan Ding
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, China
| | - Wenzhuo Ming
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, China
| | - Yunxiao Sun
- Department of Pediatrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, China
| | - Youjie Li
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, China
| |
Collapse
|
15
|
Tumor Suppressor miR-613 Alleviates Non-Small Cell Lung Cancer Cell via Repressing M2 Macrophage Polarization. JOURNAL OF ONCOLOGY 2023; 2023:2311231. [PMID: 36844868 PMCID: PMC9950322 DOI: 10.1155/2023/2311231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/10/2022] [Accepted: 11/24/2022] [Indexed: 02/18/2023]
Abstract
Background Non-small cell lung cancer (NSCLC) is a crucial crux of cancer-related death, and M2 macrophage polarization facilitates NSCLC development. MicroRNA-613 (miR-613) is a tumor suppressor. This research aimed to clarify the miR-613 function in NSCLC and its impact on M2 macrophage polarization. Methods. miR-613 expressions in NSCLC tissues and cells were evaluated using quantitative real-time PCR. For miR-613 function in NSCLC, cell proliferation analysis, cell counting kit-8, flow cytometry, western blot, transwell, and wound-healing were conducted. Meanwhile, the miR-613 impact on M2 macrophage polarization was assessed by the NSCLC models. Results. miR-613 was lessened in NSCLC cells and tissues. It was corroborated that miR-613 overexpression retrained NSCLC cell proliferation, invasion, and migration but facilitated cell apoptosis. Moreover, miR-613 overexpression restrained NSCLC development by repressing M2 macrophage polarization. Conclusion Tumor suppressor miR-613 ameliorated NSCLC by restraining M2 macrophage polarization.
Collapse
|
16
|
Xu J, Xu W, Wang Z, Jiang Y. Study on combination therapy for lung cancer through pemetrexed-loaded mesoporous polydopamine nanoparticles. J Biomed Mater Res A 2023; 111:158-169. [PMID: 36479812 PMCID: PMC10087741 DOI: 10.1002/jbm.a.37436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/30/2022] [Accepted: 07/28/2022] [Indexed: 12/13/2022]
Abstract
Lung cancer is one of the most commonly diagnosed cancers, and surgical resection is the optimal choice for the primary lung tumor. But for the secondary lung cancer, chemotherapy and combined radiotherapy still are the main strategies. To realize the combined treatment for non-small cell lung cancer (NSCLC), in this work, a nanoplatform based on pemetrexed (PE)-loaded mesoporous polydopamine (MPDA) nanoparticles were investigated. PE, a special therapeutic drug for NSCLC, was loaded into the MPDA nanoparticles via electrostatic attraction and was encapsulated with polyvinyl pyrrolidone (PVP). The results showed that, when irradiating with 808 nm near-infrared light, the PE loaded MPDA (MPDA@PE@PVP) nanoparticles have excellent photothermal conversion properties, which would result in increase of ambient temperature and could accelerate the release of PE. In vitro cell experiments proved that MPDA@PE@PVP nanoparticles have excellent killing ability for NSCLC A549 cells by the functions of PE and photothermal ability of MPDA nanoparticles. Meanwhile, the intra-cellular reactive oxygen species (ROS) levels of A549 cells in the MPDA@PE@PVP nanoparticle-treated group could be promoted significantly after irradiation, leading to the death of A549 cells. In vivo animal model results showed that MPDA@PE@PVP nanoparticles could gather at the tumor site by enhanced permeability and retention (EPR) effect and have significant inhibition ability for lung tumor by synergistic therapy of chemotherapy, photothermal therapy and photodynamic therapy.
Collapse
Affiliation(s)
- Jian Xu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Wei Xu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Zhiqiang Wang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Yuequan Jiang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
17
|
Khan FH, Bhat BA, Sheikh BA, Tariq L, Padmanabhan R, Verma JP, Shukla AC, Dowlati A, Abbas A. Microbiome dysbiosis and epigenetic modulations in lung cancer: From pathogenesis to therapy. Semin Cancer Biol 2022; 86:732-742. [PMID: 34273520 DOI: 10.1016/j.semcancer.2021.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/25/2021] [Accepted: 07/11/2021] [Indexed: 02/07/2023]
Abstract
The lung microbiome plays an essential role in maintaining healthy lung function, including host immune homeostasis. Lung microbial dysbiosis or disruption of the gut-lung axis can contribute to lung carcinogenesis by causing DNA damage, inducing genomic instability, or altering the host's susceptibility to carcinogenic insults. Thus far, most studies have reported the association of microbial composition in lung cancer. Mechanistic studies describing host-microbe interactions in promoting lung carcinogenesis are limited. Considering cancer as a multifaceted disease where epigenetic dysregulation plays a critical role, epigenetic modifying potentials of microbial metabolites and toxins and their roles in lung tumorigenesis are not well studied. The current review explains microbial dysbiosis and epigenetic aberrations in lung cancer and potential therapeutic opportunities.
Collapse
Affiliation(s)
- Faizan Haider Khan
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | | | | | - Lubna Tariq
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Roshan Padmanabhan
- Department of Medicine, Case Western Reserve University, and University Hospital, Cleveland, OH, 44106, USA
| | - Jay Prakash Verma
- Institute of Environment and Sustainable Development, Banaras Hindu University Varanasi, India
| | | | - Afshin Dowlati
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA; University Hospitals Seidman Cancer Center, Cleveland, OH, 44106, USA; Developmental Therapeutics Program, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44116, USA
| | - Ata Abbas
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA; Developmental Therapeutics Program, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44116, USA.
| |
Collapse
|
18
|
Li Y, Dong Y, Zhao S, Gao J, Hao X, Wang Z, Li M, Wang M, Liu Y, Yu X, Xu W. Serum-derived piR-hsa-164586 of extracellular vesicles as a novel biomarker for early diagnosis of non-small cell lung cancer. Front Oncol 2022; 12:850363. [PMID: 36249068 PMCID: PMC9559724 DOI: 10.3389/fonc.2022.850363] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is a major cause of death in those with malignant tumors. To achieve the early diagnosis of NSCLC, we investigated serum-derived Piwi-interacting RNA (piRNA) of extracellular vesicles to filter diagnostic biomarkers for NSCLC. High-throughput sequencing from cancerous tissues and adjacent noncancerous tissues in patients with NSCLC was first applied to recognize candidate piRNAs as diagnostic biomarkers. These screened piRNAs were further validated in 115 patients (including 95 cases in stage I) and 47 healthy individuals using quantitative real-time PCR (qRT-PCR). We showed that piR-hsa-164586 was significantly upregulated compared with paracancerous tissues and extracellular vesicles from the serum samples of healthy individuals. Moreover, the area under the curve (AUC) value of piR-hsa-164586 was 0.623 and 0.624 to distinguish patients with all stages or stage I of NSCLC, respectively, from healthy individuals. The diagnostic performance of piR-hsa-164586 was greatly improved compared with the cytokeratin-19-fragment (CYFRA21-1). Additionally, piR-hs-164586 was associated with the clinical characteristics of patients with NSCLC. Its expression was associated with the age and TNM stage of patients with NSCLC, indicating that it can serve as an effective and promising biomarker for the early diagnosis of NSCLC.
Collapse
Affiliation(s)
- Yanli Li
- Department of Pathology and Pathophysiology, The Medical Faculty of Qingdao University, Qingdao, China
| | - Yanhan Dong
- Institute of Translational Medicine, Qingdao University, Qingdao, China
| | - Shupeng Zhao
- Asset and Laboratory Management Office, Qingdao University, Qingdao, China
| | - Jinning Gao
- Institute of Translational Medicine, Qingdao University, Qingdao, China
| | - Xiaodan Hao
- Institute of Translational Medicine, Qingdao University, Qingdao, China
| | - Zibo Wang
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China
| | - Meng Li
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China
| | - Mengyuan Wang
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China
| | - Yiming Liu
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China
| | - Xiaoling Yu
- Department of Pathology and Pathophysiology, The Medical Faculty of Qingdao University, Qingdao, China
- *Correspondence: Xiaoling Yu, ; Wenhua Xu,
| | - Wenhua Xu
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China
- *Correspondence: Xiaoling Yu, ; Wenhua Xu,
| |
Collapse
|
19
|
Huang Y, Xia L, Tan X, Zhang J, Zeng W, Tan B, Yu X, Fang W, Yang Z. Molecular mechanism of lncRNA SNHG12 in immune escape of non-small cell lung cancer through the HuR/PD-L1/USP8 axis. Cell Mol Biol Lett 2022; 27:43. [PMID: 35658874 PMCID: PMC9164758 DOI: 10.1186/s11658-022-00343-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/05/2022] [Indexed: 02/08/2023] Open
Abstract
Background The pivotal role of long noncoding RNAs (lncRNAs) in cancer immune responses has been well established. This study was conducted with the aim of exploring the molecular mechanism of lncRNA small nucleolar RNA host gene 12 (SNHG12) in immune escape of non-small cell lung cancer (NSCLC). Methods Expression of lncRNA SNHG12, programmed cell death receptor ligand 1 (PD-L1), ubiquitin-specific protease 8 (USP8), and human antigen R (HuR) in NSCLC tissues and cells was measured, and their binding relationship was determined. NSCLC cell proliferation and apoptosis were assessed. Peripheral blood mononuclear cells (PBMCs) were co-cultured with NSCLC cells. The ratio of CD8+ T cells, PBMC proliferation, and inflammatory factors were determined. lncRNA SNHG12 localization was assessed via subcellular fractionation assay. The half-life period of mRNA was determined using actinomycin D. Xenograft tumor models were established to confirm the role of lncRNA SNHG12 in vivo. Results LncRNA SNHG12 was found to be prominently expressed in NSCLC tissues and cells, which was associated with a poor prognosis. Silencing lncRNA SNHG12 resulted in the reduction in proliferation and the promotion of apoptosis of NSCLC cells, while simultaneously increasing PBMC proliferation and the ratio of CD8+ T cells. Mechanically, the binding of lncRNA SNHG12 to HuR improved mRNA stability and expression of PD-L1 and USP8, and USP8-mediated deubiquitination stabilized the protein level of PD-L1. Overexpression of USP8 or PD-L1 weakened the inhibition of silencing lncRNA SNHG12 on the immune escape of NSCLC. Silencing lncRNA SNHG12 restricted tumor growth and upregulated the ratio of CD8+ T cells by decreasing USP8 and PD-L1. Conclusion LncRNA SNHG12 facilitated the immune escape of NSCLC by binding to HuR and increasing PD-L1 and USP8 levels.
Collapse
Affiliation(s)
- Yusheng Huang
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Tianwen Avenue No. 288, Nan'an District, Chongqing, 400010, China
| | - Lei Xia
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Tianwen Avenue No. 288, Nan'an District, Chongqing, 400010, China
| | - Xiangwu Tan
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Tianwen Avenue No. 288, Nan'an District, Chongqing, 400010, China
| | - Jingyi Zhang
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Tianwen Avenue No. 288, Nan'an District, Chongqing, 400010, China
| | - Weiwei Zeng
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Tianwen Avenue No. 288, Nan'an District, Chongqing, 400010, China
| | - Benxu Tan
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Tianwen Avenue No. 288, Nan'an District, Chongqing, 400010, China
| | - Xian Yu
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Tianwen Avenue No. 288, Nan'an District, Chongqing, 400010, China
| | - Wei Fang
- Chongqing University, Three Gorges Hospital, No. 165 Xincheng Road, Wanzhou District, Chongqing, 404100, China.
| | - Zhenzhou Yang
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Tianwen Avenue No. 288, Nan'an District, Chongqing, 400010, China.
| |
Collapse
|
20
|
Huang X, Huang M, Chen M, Chen X. lncRNA SLC9A3-AS1 Promotes Oncogenesis of NSCLC via Sponging microRNA-760 and May Serve as a Prognosis Predictor of NSCLC Patients. Cancer Manag Res 2022; 14:1087-1098. [PMID: 35300063 PMCID: PMC8921674 DOI: 10.2147/cmar.s352308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/27/2022] [Indexed: 12/24/2022] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is a prevalent type of lung cancer worldwide. Long noncoding RNA (lncRNA) SLC9A3-AS1 is reported to play a carcinogenic role in nasopharyngeal carcinoma, but its full-scale role in NSCLC remains elusive. Methods SLC9A3-AS1 expression was detected in serum and tissue of NSLCC patients and NSCLC cell lines. The effects of SLC9A3-AS1 on NSCLC proliferation, migration and invasion were evaluated using CCK-8 and transwell assays. In addition, the potential downstream molecules of SLC9A3-AS1 were searched and explored by bioinformatics analysis, RT-qPCR, dual-luciferase reporter, and rescue experiments. Results SLC9A3-AS1 was upregulated in NSCLC tissues and cell lines. SLC9A3-AS1 possessed a favorable ability in diagnosing NSCLC. A high level of SLC9A3-AS1 was associated with poor prognosis in NSCLC patients. Functionally, SLC9A3-AS1 knockdown inhibited cell proliferation, migration, and invasion of NSCLC cells. Mechanistically, SLC9A3-AS1 acted as competing endogenous RNA for miR-760 to regulate NSCLC progression. In addition, rescue assay showed that downregulation of miR-760 could reverse the modulatory activity of SLC9A3-AS1 knockdown on NSCLC cells. Conclusion SLC9A3-AS1 was upregulated in NSCLC, and SLC9A3-AS1 knockdown hindered NSCLC progression through targeting miR-760, suggesting that it may prove to be a novel biomarker and therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Xiuming Huang
- Department of Thoracic Surgery, Hainan General Hospital, Haikou, Hainan, 570311, People’s Republic of China
| | - Mingfang Huang
- Department of Thoracic Surgery, Hainan General Hospital, Haikou, Hainan, 570311, People’s Republic of China
| | - Minbiao Chen
- Department of Thoracic Surgery, Hainan General Hospital, Haikou, Hainan, 570311, People’s Republic of China
| | - Xianshan Chen
- Department of Thoracic Surgery, Hainan General Hospital, Haikou, Hainan, 570311, People’s Republic of China
- Correspondence: Xianshan Chen, Department of Thoracic Surgery, Hainan General Hospital, No. 19 Xiuhua Road, Haikou, Hainan, 570311, People’s Republic of China, Email
| |
Collapse
|
21
|
Zhang C, Huang J, Lou K, Ouyang H. Long noncoding RNASEH1-AS1 exacerbates the progression of non-small cell lung cancer by acting as a ceRNA to regulate microRNA-516a-5p/FOXK1 and thereby activating the Wnt/β-catenin signaling pathway. Cancer Med 2022; 11:1589-1604. [PMID: 35166053 PMCID: PMC8986139 DOI: 10.1002/cam4.4509] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/14/2021] [Accepted: 11/19/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Till now, no study has focused on the functions of RNASEH1 antisense RNA 1 (RNASEH1-AS1) in non-small cell lung cancer (NSCLC). Accordingly, we measured the expression of RNASEH1-AS1 in NSCLC and characterized its functions in detail. Finally, our research elucidated the mechanisms that occurred downstream of RNASEH1-AS1. METHODS RNASEH1-AS1 expression was examined utilizing TCGA database and qRT-PCR. Functional experiments were conducted to study the tumor-associated functions of RNASEH1-AS1. The targeting relationship among RNASEH1-AS1, microRNA-516a-5p (miR-516a-5p), and forkhead box K1 (FOXK1) was revealed utilizing RNA immunoprecipitation and luciferase reporter assays. RESULTS Utilizing TCGA database and our own cohort, we found a significantly increased level of RNASEH1-AS1 in NSCLC. The high level of RNASEH1-AS1 was markedly related with poor clinical outcomes. Knockdown of RNASEH1-AS1 expression inhibited NSCLC cell growth, metastatic capacities, and epithelial-mesenchymal transition and promoted the apoptosis in vitro, whereas RNASEH1-AS1 overexpression exerted the opposite effects. Additionally, knocking down RNASEH1-AS1 expression suppressed tumor growth in vivo. RNASEH1-AS1 was confirmed to act as a miR-516a-5p sponge, consequently upregulating FOXK1 expression in NSCLC cells. As revealed by the subsequent rescue experiments, the miR-516a-5p/FOXK1 axis served as a downstream effector of RNASEH1-AS1. In addition, by controlling the miR-516a-5p/FOXK1 axis, RNASEH1-AS1 was capable of activating the Wnt/β-catenin pathway. CONCLUSION RNASEH1-AS1 exacerbated the oncogenicity of NSCLC by affecting the miR-516a-5p/FOXK1 axis and consequently promoting the activation of Wnt/β-catenin pathway. Our newly identified RNASEH1-AS1/miR-516a-5p/FOXK1/Wnt/β-catenin network may offer an interesting foundation for NSCLC treatment in the clinic.
Collapse
Affiliation(s)
- Chan Zhang
- Department of Respiratory Medicine, The Fourth Hospital of Changsha, Changsha, Hunan, China
| | - Jian Huang
- Department of Respiratory Medicine, The Fourth Hospital of Changsha, Changsha, Hunan, China
| | - Ke Lou
- Department of Respiratory Medicine, The Fourth Hospital of Changsha, Changsha, Hunan, China
| | - Hui Ouyang
- Department of Respiratory Medicine, The Fourth Hospital of Changsha, Changsha, Hunan, China
| |
Collapse
|
22
|
Huang Y, Qin S, Gu X, Zheng M, Zhang Q, Liu Y, Cheng C, Huang K, Peng C, Ju S. Comprehensive Assessment of Serum hsa_circ_0070354 as a Novel Diagnostic and Predictive Biomarker in Non-small Cell Lung Cancer. Front Genet 2022; 12:796776. [PMID: 35096013 PMCID: PMC8793632 DOI: 10.3389/fgene.2021.796776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
Background: More and more studies have shown that circular RNAs (circRNAs) play an essential role in the occurrence and development of tumors. Hence, they can be used as biomarkers to assist in diagnosing tumors. This study focuses on exploring the role of circular RNA (hsa_circ_0070354) in the diagnosis and prognosis of non-small cell lung cancer (NSCLC). Materials and Methods: First of all, high-throughput sequencing was used to find the difference in the expression of circular RNA between NSCLC and adjacent tissues. The circRNAs with higher differences in expression were selected to verify their expressions in tissues, cells, and serum using qRT-PCR. Secondly, the hsa_circ_0070354 with a significant difference was chosen as the research goal, and the molecular properties were verified by agarose gel electrophoresis and Sanger sequencing, etc. Then, actinomycin D and repeated freeze-thaw were used to explore the stability and repeatability of hsa_circ_0070354. Finally, the expression of hsa_circ_0070354 in serum of 133 patients with NSCLC and 97 normal donors was detected, and its sensitivity, specificity, and prognosis as tumor markers were statistically analyzed. Results: Hsa_circ_0070354 was highly expressed in tissues, cells, and serum of NSCLC, and it has the characteristics of sensitivity, stability, and repeatability. The ROC curve indicates that hsa_circ_0070354 is superior to conventional tumor markers in detecting NSCLC, and the combined diagnosis is of more significance in the diagnosis. The high expression of hsa_circ_0070354 is closely related to the late-stage, poor differentiation of the tumor and the short survival time of the patients, which is an independent indicator of poor prognosis. Conclusion: Hsa_circ_0070354 is not only a novel sensitive index for the diagnosis of NSCLC but also a crucial marker for bad biological behavior.
Collapse
Affiliation(s)
- Yuejiao Huang
- Department of Medical Oncology, Affiliated Hospital of Nantong University, Nantong, China.,Medical School of Nantong University, Nantong, China
| | - Shiyi Qin
- Medical School of Nantong University, Nantong, China.,Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Xinliang Gu
- Medical School of Nantong University, Nantong, China.,Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Ming Zheng
- Medical School of Nantong University, Nantong, China.,Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Qi Zhang
- Medical School of Nantong University, Nantong, China.,Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yupeng Liu
- Department of Thoracic Surgery, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Chun Cheng
- Department of Thoracic Surgery, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Kaibin Huang
- Department of General Surgery, Nantong Haimen People's Hospital, Nantong, China
| | - Chunlei Peng
- Department of Medical Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Shaoqing Ju
- Medical School of Nantong University, Nantong, China.,Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
23
|
Tan Y, Xu F, Xu L, Cui J. Long non‑coding RNA LINC01748 exerts carcinogenic effects in non‑small cell lung cancer cell lines by regulating the microRNA‑520a‑5p/HMGA1 axis. Int J Mol Med 2022; 49:22. [PMID: 34970695 PMCID: PMC8722766 DOI: 10.3892/ijmm.2021.5077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/22/2021] [Indexed: 12/09/2022] Open
Abstract
The important functions of long non‑coding RNAs in the malignancy of non‑small cell lung cancer (NSCLC) has been increasingly highlighted. However, whether LINC01748 functions in a crucial regulatory role still requires further research. The aim of the present study was to investigate the biological roles of LINC01748 in NSCLC. Furthermore, different experiments were utilized to investigate the mechanism of action of LINC01748 in 2 NSCLC cell lines. Reverse transcription‑quantitative PCR was used to measure mRNA expression levels. Cell Counting Kit‑8 assay, flow cytometry analysis and Transwell and Matrigel assays were also used to analyze, cell viability, apoptosis, and migration and invasion, respectively. A tumor xenograft model was used for in vivo experiments. RNA immunoprecipitation experiments, luciferase reporter assays and rescue experiments were used to investigate the mechanisms involved. Data from The Cancer Genome Atlas dataset and patients recruited into the present study showed that LINC01748 was overexpressed in NSCLC. Patients with high LINC01748 mRNA expression level had shorter overall survival rate compared with that in patients with low LINC01748 mRNA expression level. Then, knockdown of LINC01748 mRNA expression level reduced cell proliferation, migration and invasion, but increased cell apoptosis in vitro. Knockdown of LINC01748 also reduced tumor growth in vivo. Mechanistically, LINC01748 could act as a competing endogenous (ce)RNA to sponge microRNA(miR)‑520a‑5p, to increase the expression level of the target gene, high mobility group AT‑hook 1 (HMGA1) in the NSCLC cell lines. Furthermore, rescue experiments illustrated that the functions exerted by LINC01748 knockdown were negated by miR‑520a‑5p inhibition or HMGA1 overexpression. In summary, LINC01748 acted as a ceRNA by sponging miR‑520a‑5p, leading to HMGA1 overexpression, thus increasing the aggressiveness of the NSCLC cells. Accordingly, targeting the LINC01748/miR‑520a‑5p/HMGA1 pathway may benefit NSCLC therapy.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Apoptosis/genetics
- Base Sequence
- Carcinogenesis/genetics
- Carcinogenesis/pathology
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Line, Tumor
- Cell Movement/genetics
- Cell Proliferation/genetics
- Disease Progression
- Female
- Gene Expression Regulation, Neoplastic
- Gene Knockdown Techniques
- HMGA1a Protein/genetics
- HMGA1a Protein/metabolism
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Male
- Mice, Inbred BALB C
- Mice, Nude
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Middle Aged
- Neoplasm Invasiveness
- Prognosis
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Up-Regulation/genetics
- Mice
Collapse
Affiliation(s)
- Yinling Tan
- Department of Respiratory, Weifang Yidu Central Hospital, Weifang, Shandong 262500, P.R. China
| | - Fengxia Xu
- Department of Respiratory, Weifang Yidu Central Hospital, Weifang, Shandong 262500, P.R. China
| | - Lingling Xu
- Department of Oncology, Weifang Yidu Central Hospital, Weifang, Shandong 262500, P.R. China
| | - Jianying Cui
- Department of Respiratory, Anqiu People's Hospital, Anqiu, Shandong 262100, P.R. China
| |
Collapse
|
24
|
Li T, Shi W, Yao J, Hu J, Sun Q, Meng J, Wan J, Song H, Wang H. Combinatorial nanococktails via self-assembling lipid prodrugs for synergistically overcoming drug resistance and effective cancer therapy. Biomater Res 2022; 26:3. [PMID: 35101154 PMCID: PMC8805243 DOI: 10.1186/s40824-022-00249-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/10/2022] [Indexed: 02/08/2023] Open
Abstract
Background Combinatorial systemic chemotherapy is a powerful treatment paradigm against cancer, but it is fraught with problems due to the emergence of chemoresistance and additive systemic toxicity. In addition, coadministration of individual drugs suffers from uncontrollable pharmacokinetics and biodistribution, resulting in suboptimal combination synergy. Methods Toward the goal of addressing these unmet medical issues, we describe a unique strategy to integrate multiple structurally disparate drugs into a self-assembling nanococktail platform. Conjugation of a polyunsaturated fatty acid (e.g., linoleic acid) with two chemotherapies generated prodrug entities that were miscible with tunable drug ratios for aqueous self-assembly. In vitro and in vivo assays were performed to investigate the mechanism of combinatorial nanococktails in mitigating chemoresistance and the efficacy of nanotherapy. Results The coassembled nanoparticle cocktails were feasibly fabricated and further refined with an amphiphilic matrix to form a systemically injectable and PEGylated nanomedicine with minimal excipients. The drug ratio incorporated into the nanococktails was optimized and carefully examined in lung cancer cells to maximize therapeutic synergy. Mechanistically, subjugated resistance by nanococktail therapy was achieved through the altered cellular uptake pathway and compromised DNA repair via the ATM/Chk2/p53 cascade. In mice harboring cisplatin-resistant lung tumor xenografts, administration of the nanococktail outperformed free drug combinations in terms of antitumor efficacy and drug tolerability. Conclusion Overall, our study provides a facile and cost-effective approach for the generation of cytotoxic nanoparticles to synergistically treat chemoresistant cancers. Supplementary Information The online version contains supplementary material available at 10.1186/s40824-022-00249-7.
Collapse
|
25
|
Cao Z, Oyang L, Luo X, Xia L, Hu J, Lin J, Tan S, Tang Y, Zhou Y, Cao D, Liao Q. The roles of long non-coding RNAs in lung cancer. J Cancer 2022; 13:174-183. [PMID: 34976181 PMCID: PMC8692699 DOI: 10.7150/jca.65031] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/05/2021] [Indexed: 12/29/2022] Open
Abstract
Lung cancer is the most common malignancy, being a serious threat of human lives. The incidence and mortality of lung cancer has been increasing rapidly in the past decades. Although the development of new therapeutic modes, such as target therapy, the overall survival rate of lung cancer remains low. It is urgent to advance the understanding of molecular oncology and find novel biomarkers and targets for the early diagnosis, treatment, and prognostic prediction of lung cancer. Long non-coding RNAs (lncRNAs) are non-protein coding RNA transcripts that are more than 200 nucleotides in length. LncRNAs exert diverse biological functions by regulating gene expressions at transcriptional, translational, and post-translational levels. In the past decade, it has been shown that lncRNAs are extensively involved in the pathogenesis of various diseases, including lung cancer. In this review, we highlighted the lncRNAs characterized in lung cancer and discussed their translational potential in lung cancer clinics.
Collapse
Affiliation(s)
- Zhe Cao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Xia Luo
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Jiaqi Hu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,Clinical Research Center for Wound Healing in Hunan Province, Changsha 410013, Hunan, China
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Deliang Cao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,Clinical Research Center for Wound Healing in Hunan Province, Changsha 410013, Hunan, China
| |
Collapse
|
26
|
Ghahramani Almanghadim H, Ghorbian S, Khademi NS, Soleymani Sadrabadi M, Jarrahi E, Nourollahzadeh Z, Dastani M, Shirvaliloo M, Sheervalilou R, Sargazi S. New Insights into the Importance of Long Non-Coding RNAs in Lung Cancer: Future Clinical Approaches. DNA Cell Biol 2021; 40:1476-1494. [PMID: 34931869 DOI: 10.1089/dna.2021.0563] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In mammals, a large part of the gene expression products come from the non-coding ribonucleotide sequences of the protein. These short and long sequences are within the range of tens to hundreds of nucleotides, encompassing more than 200 RNA molecules, and their function is known as the molecular structure of long non-coding RNA (lncRNA). LncRNA molecules are unique nucleotides that have a substantial role in epigenetic regulation, transcription, and post-transcriptional modifications in different ways. According to the results of recent studies, lncRNAs have been shown to assume various roles, including tumor suppression or oncogenic functions in common types of cancer such as lung and breast cancer. These non-coding RNAs (ncRNAs) play a pivotal role in activating transcription factors, managing the ribonucleoproteins, the framework for collecting co-proteins, intermittent processing regulations, chromatin status alterations, and maintaining the control within the cell. Cutting-edge technologies have been introduced to disclose several types of lncRNAs within the nucleus and the cytoplasm, which have accomplished important achievements that are applicable in medicine. Due to these efforts, various data centers have been created to facilitate and modify scientific information related to these molecules, including detection, classification, biological evolution, gene status, spatial structure, status, and location of these small molecules. In the present study, we attempt to present the impacts of these ncRNAs on lung cancer with an emphasis on their mechanisms and functions.
Collapse
Affiliation(s)
| | - Saeed Ghorbian
- Department of Molecular Genetics, Ahar Branch, Islamic Azad University, Ahar, Iran
| | - Nazanin Sadat Khademi
- Department of Genetics, Faculty of Biological Science, Shahid Beheshti University, Tehran, Iran
| | | | - Esmaeil Jarrahi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zahra Nourollahzadeh
- Department of Biological Science, Ahar Branch, Islamic Azad University, Ahar, Iran
| | - Masomeh Dastani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Milad Shirvaliloo
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
27
|
Hassanein SS, Ibrahim SA, Abdel-Mawgood AL. Cell Behavior of Non-Small Cell Lung Cancer Is at EGFR and MicroRNAs Hands. Int J Mol Sci 2021; 22:12496. [PMID: 34830377 PMCID: PMC8621388 DOI: 10.3390/ijms222212496] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022] Open
Abstract
Lung cancer is a complex disease associated with gene mutations, particularly mutations of Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS) and epidermal growth factor receptor (EGFR). Non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) are the two major types of lung cancer. The former includes most lung cancers (85%) and are commonly associated with EGFR mutations. Several EGFR-tyrosine kinase inhibitors (EGFR-TKIs), including erlotinib, gefitinib, and osimertinib, are effective therapeutic agents in EGFR-mutated NSCLC. However, their effectiveness is limited by the development (acquired) or presence of intrinsic drug resistance. MicroRNAs (miRNAs) are key gene regulators that play a profound role in the development and outcomes for NSCLC via their role as oncogenes or oncosuppressors. The regulatory role of miRNA-dependent EGFR crosstalk depends on EGFR signaling pathway, including Rat Sarcoma/Rapidly Accelerated Fibrosarcoma/Mitogen-Activated Protein Kinase/Extracellular Signal-Regulated Kinase 1/2 (Ras/Raf/MEK/ERK1/2), Signal Transducer and Activator of Transcription (STAT), Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B Cells (NF-kB), phosphoinositide 3-kinase/protein kinase B (PI3K/AKT), Janus kinase 1 (JAK1), and growth factor receptor-bound protein 2 (GRB2). Dysregulated expression of miRNAs affects sensitivity to treatment with EGFR-TKIs. Thus, abnormalities in miRNA-dependent EGFR crosstalk can be used as diagnostic and prognostic markers, as well as therapeutic targets in NSCLC. In this review, we present an overview of miRNA-dependent EGFR expression regulation, which modulates the behavior and progression of NSCLC.
Collapse
Affiliation(s)
- Sarah Sayed Hassanein
- Biotechnology Program, Basic and Applied Sciences (BAS) Institute, Egypt-Japan University of Science and Technology (E-JUST), Alexandria 21934, Egypt;
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | | | - Ahmed Lotfy Abdel-Mawgood
- Biotechnology Program, Basic and Applied Sciences (BAS) Institute, Egypt-Japan University of Science and Technology (E-JUST), Alexandria 21934, Egypt;
| |
Collapse
|
28
|
Chen P, Qin Z, Sun X, Yang J, Lv J, Diao M. Expression and clinical significance of lncRNA OSER1-AS1 in peripheral blood of patients with non-small cell lung cancer. Cells Tissues Organs 2021; 211:589-600. [PMID: 34525476 DOI: 10.1159/000519529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/05/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Peirui Chen
- Department of Cardiothoracic Surgery, People's Hospital of Deyang City, Deyang City, China
| | - Zheng Qin
- Department of Cardiothoracic Surgery, People's Hospital of Deyang City, Deyang City, China
| | - Xiaokang Sun
- Department of Cardiothoracic Surgery, People's Hospital of Deyang City, Deyang City, China
| | - Junrong Yang
- Department of Cardiothoracic Surgery, People's Hospital of Deyang City, Deyang City, China
| | - Jing Lv
- Department of Cardiothoracic Surgery, People's Hospital of Deyang City, Deyang City, China
| | - Mingqiang Diao
- Department of Cardiothoracic Surgery, People's Hospital of Deyang City, Deyang City, China
| |
Collapse
|
29
|
A innovative prognostic symbol based on neutrophil extracellular traps (NETs)-related lncRNA signature in non-small-cell lung cancer. Aging (Albany NY) 2021; 13:17864-17879. [PMID: 34257164 PMCID: PMC8312458 DOI: 10.18632/aging.203289] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/18/2021] [Indexed: 12/24/2022]
Abstract
Neutrophil extracellular traps (NETs) are closely related to cancer progression. NETs-related lncRNAs play crucial roles in non-small-cell lung cancer (NSCLC) but there have been no systematic studies regarding NETs-related long noncoding RNA (lncRNA) signatures to forecast the prognosis of NSCLC patients. It’s essential to build commensurate NETs-related lncRNA signatures. The expression profiles of prognostic mRNAs and lncRNAs and relevant clinical data of NSCLC patients were downloaded from The Cancer Genome Atlas (TCGA) database. The NETs-related genes came from the results of our transcriptome RNA microarray data. The co-expression network of lncRNAs and NETs-related genes was structured to confirm NETs-related lncRNAs. The 19 lncRNAs correlated with overall survival (OS) were selected by exploiting univariate Cox regression (P < 0.05). Lasso regression and multivariate Cox regression (P < 0.05) were utilized to develop a 12-NETs-related lncRNA signature. We established a risk score based on the signature, which suggested that patients in the high-risk group displayed significantly shorter OS than patients in the low-risk group (P < 0.0001, P = 0.0023 respectively in the two cohorts). The risk score worked as an independent predictive factor for OS in both univariate and multivariate Cox regression analyses (HR> 1, P< 0.001). Additionally, by RT-qPCR, we confirmed that NSCLC cell lines have higher levels of the three adverse prognostic NETs-related lncRNAs than normal lung cells. The expression of lncRNAs significantly increases after NETs stimulation. In short, the 12 NETs-related lncRNAs and their model could play effective roles as molecular markers in predicting survival for NSCLC patients.
Collapse
|
30
|
Chen J, Gao C, Zhu W. Long non-coding RNA SLC25A25-AS1 exhibits oncogenic roles in non-small cell lung cancer by regulating the microRNA-195-5p/ITGA2 axis. Oncol Lett 2021; 22:529. [PMID: 34055094 PMCID: PMC8138898 DOI: 10.3892/ol.2021.12790] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNA SLC25A25 antisense RNA 1 (SLC25A25-AS1) exerts antitumour activity in colorectal cancer. The present study investigated whether SLC25A25-AS1 is implicated in the aggressiveness of non-small cell lung cancer (NSCLC) and the possible underlying mechanism. SLC25A25-AS1 expression in NSCLC was determined by reverse transcription-quantitative PCR. The proliferation, apoptosis, migration and invasion of NSCLC cells were tested in vitro through cell counting kit-8 assay, flow cytometry analysis, Transwell migration and invasion assays, followed by in vivo validation using animal experiments. Additionally, the competitive endogenous RNA theory for SLC25A25-AS1, microRNA-195-5p (miR-195-5p) and integrin α2 (ITGA2) was identified using subcellular fractionation, bioinformatics analysis, reverse transcription-quantitative PCR, western blotting, a luciferase assay and RNA immunoprecipitation. As compared with normal lung tissues, increased expression of SLC25A25-AS1 was demonstrated in NSCLC tissues using The Cancer Genome Atlas database.. In addition, SLC25A25-AS1 was overexpressed in both NSCLC tissues and cell lines. High SLC25A25-AS1 expression was markedly associated with shorter overall survival time of patients with NSCLC. SLC25A25-AS1 silencing impeded NSCLC cell proliferation and triggered apoptosis, while restricting cell migration and invasion. Tumour growth in vivo was also impaired by SLC25A25-AS1 silencing. Mechanistically, SLC25A25-AS1 was demonstrated to be an miR-195-5p sponge in NSCLC cells. miR-195-5p mimics decreased ITGA2 expression in NSCLC cells by directly targeting ITGA2, and SLC25A25-AS1 interference decreased ITGA2 expression by sequestering miR-195-5p. Furthermore, the antitumour effects of SLC25A25-AS1 silencing on malignant behaviours were counteracted when ITGA2 was restored or when miR-195-5p was silenced. In summary, by controlling the miR-195-5p/ITGA2 axis, SLC25A25-AS1 served tumour-promoting roles in NSCLC cells. Therefore, the SLC25A25-AS1/miR-195-5p/ITGA2 signalling pathway might be an attractive target for future therapeutic options in NSCLC.
Collapse
Affiliation(s)
- Jinqin Chen
- Department of Chest Surgery, Weifang People's Hospital, Weifang, Shandong 261401, P.R. China
| | - Chengpeng Gao
- Department of Respiratory Medicine, Weifang People's Hospital, Weifang, Shandong 261401, P.R. China
| | - Wei Zhu
- Department of Chest Surgery, Weifang People's Hospital, Weifang, Shandong 261401, P.R. China
| |
Collapse
|
31
|
Xu H, Zhou W, Zhang F, Wu L, Li J, Ma T, Cao T, Lian C, Xia J, Wang P, Ma J, Li Y. PDS5B inhibits cell proliferation, migration, and invasion via upregulation of LATS1 in lung cancer cells. Cell Death Discov 2021; 7:168. [PMID: 34226509 PMCID: PMC8257726 DOI: 10.1038/s41420-021-00537-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/08/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022] Open
Abstract
PDS5B (precocious dissociation of sisters 5B) plays a pivotal role in carcinogenesis and progression. However, the biological functions of PDS5B in lung cancer and its underlying mechanisms are not fully elucidated. In the present study, we used MTT assays, wound-healing assays, and transwell migration and invasion approach to examine the cell viability, migration, and invasion of non-small cell lung cancer (NSCLC) cells after PDS5B modulation. Moreover, we investigated the function of PDS5B overexpression in vivo. Furthermore, we detected the expression of PDS5B in tissue samples of lung cancer patients by immunohistochemical study. We found that upregulation of PDS5B repressed cell viability, migration, and invasion in NSCLC cells, whereas downregulation of PDS5B had the opposite effects. We also observed that PDS5B overexpression retarded tumor growth in nude mice. Notably, PDS5B positively regulated LATS1 expression in NSCLC cells. Strikingly, low expression of PDS5B was associated with lymph node metastasis in lung cancer patients. Our findings suggest that PDS5B might be a therapeutic target for lung cancer.
Collapse
Affiliation(s)
- Hui Xu
- Department of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Wenjing Zhou
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Fan Zhang
- Department of Pharmacology, Adagene Limited Company, Suzhou, Jiangsu, 215000, China
| | - Linhui Wu
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Juan Li
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Tongtong Ma
- School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Tong Cao
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, China
| | - Chaoqun Lian
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Jun Xia
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Peter Wang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China.
| | - Jia Ma
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China.
| | - Yuyun Li
- Department of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China.
| |
Collapse
|
32
|
Huang L, Rong Y, Tang X, Yi K, Wu J, Wang F. Circular RNAs Are Promising Biomarkers in Liquid Biopsy for the Diagnosis of Non-small Cell Lung Cancer. Front Mol Biosci 2021; 8:625722. [PMID: 34136531 PMCID: PMC8201604 DOI: 10.3389/fmolb.2021.625722] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/19/2021] [Indexed: 01/15/2023] Open
Abstract
The high incidence and mortality of lung cancer make early detection of lung cancer particularly important. At present, the diagnosis of lung cancer mainly depends on diagnostic imaging and tissue biopsy. However, current diagnostics are not satisfactory owing to the low specificity and inability of multiple sampling. Accumulating evidence indicates that circular RNAs (circRNAs) play a critical role in cancer progression and are promising cancer biomarkers. In particular, circRNAs are considered novel specific diagnostic markers for non-small cell lung cancer (NSCLC). Liquid biopsy is an important method in the early diagnosis of cancer due to its high sensitivity and specificity, as well as the possibility of performing multiple sampling. circRNAs are stably present in exosomes and sometimes become part of circulating nucleic acids, making them ideal for liquid biopsy. In this review, we summarize the advances in the research on circRNAs in NSCLC, and also highlight their potential applications for NSCLC detection.
Collapse
Affiliation(s)
- Lanxiang Huang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuan Rong
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xuan Tang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kezhen Yi
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianyuan Wu
- Clinical Trial Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China.,Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
33
|
Wu L, Wen Z, Song Y, Wang L. A novel autophagy-related lncRNA survival model for lung adenocarcinoma. J Cell Mol Med 2021; 25:5681-5690. [PMID: 33987935 PMCID: PMC8184679 DOI: 10.1111/jcmm.16582] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
Long non‐coding RNA (lncRNA) is an important regulatory factor in the development of lung adenocarcinoma, which is related to the control of autophagy. LncRNA can also be used as a biomarker of prognosis in patients with lung adenocarcinoma. Therefore, it is important to determine the prognostic value of autophagy‐related lncRNA in lung adenocarcinoma. In this study, autophagy‐related mRNAs‐lncRNAs were screened from lung adenocarcinoma and a co‐expression network of autophagy‐related mRNAs‐lncRNAs was constructed by using The Cancer Genome Atlas (TCGA). The univariate and multivariate Cox proportional hazard analyses were used to evaluate the prognostic value of the autophagy‐related lncRNAs and finally obtained a survival model composed of 11 autophagy‐related lncRNAs. Through Kaplan‐Meier analysis, univariate and multivariate Cox regression analysis and time‐dependent receiver operating characteristic (ROC) curve analysis, it was further verified that the survival model was a new independent prognostic factor for patients with lung adenocarcinoma. In addition, based on the survival model, gene set enrichment analysis (GSEA) was used to illustrate the function of genes in low‐risk and high‐risk groups. These 11 lncRNAs were GAS6‐AS1, AC106047.1, AC010980.2, AL034397.3, NKILA, AL606489.1, HLA‐DQB1‐AS1, LINC01116, LINC01806, FAM83A‐AS1 and AC090559.1. The hazard ratio (HR) of the risk score was 1.256 (1.196‐1.320) (P < .001) in univariate Cox regression analysis and 1.215 (1.149‐1.286) (P < .001) in multivariate Cox regression analysis. And the AUC value of the risk score was 0.809. The 11 autophagy‐related lncRNA survival models had important predictive value for the prognosis of lung adenocarcinoma and may become clinical autophagy‐related therapeutic targets.
Collapse
Affiliation(s)
- Liwei Wu
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zilu Wen
- Department of Scientific Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yanzheng Song
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,TB Center, Shanghai Emerging & Re-emerging Infectious Diseases Institute, Shanghai, China
| | - Lin Wang
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
34
|
Zheng Y, Hu J, Li Y, Hao R, Qi Y. Clinicopathological and prognostic significance of circRNAs in lung cancer: A systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e25415. [PMID: 33832139 PMCID: PMC8036086 DOI: 10.1097/md.0000000000025415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 03/10/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) regulate multiple pathways during lung cancer pathogenesis. Apart from functional significance, many circRNAs have been shown to be associated with clinicopathological characteristics and predict lung cancer prognosis. Our aim is to summarize the expanding knowledge of clinical roles of circRNAs in lung cancer. METHODS A thorough search of literature was conducted to identify articles about the correlation between circRNA expression and its prognostic and clinicopathological values. Biological mechanisms were summarized. RESULTS This study included 35 original articles and 32 circRNAs with prognostic roles for lung cancer. Increased expression of 25 circRNAs and decreased expression of 7 circRNAs predicted poor prognosis. For non-small cell lung cancer, changes of circRNAs were correlated with tumor size, lymph node metastasis, distant metastasis, tumor node metastasis (TNM) stage, and differentiation, indicating the major function of circRNAs is to promote lung cancer invasion and migration. Particularly, meta-analysis of ciRS-7, hsa_circ_0020123, hsa_circ_0067934 showed increase of the 3 circRNAs was associated with positive lymph node metastasis. Increase of ciRS-7 and hsa_circ_0067934 was also related with advanced TNM stage. The biological effects depend on the general function of circRNA as microRNA sponge. CONCLUSIONS CircRNAs have the potential to function as prognostic markers and are associated with lung cancer progression and metastasis.
Collapse
Affiliation(s)
- Yuxuan Zheng
- School of Nursing, Hebei Medical University, Shijiazhuang, Hebei
- Department of Respiratory Medicine, First Hospital of Jilin University, Changchun, Jilin, China
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY
- Morning Star Academic Cooperation, Shanghai
| | - Jie Hu
- Department of Science and Technology, Hebei Medical University
| | - Yishuai Li
- Department of Thoracic Surgery, Hebei Provincial Chest Hospital
| | - Ran Hao
- School of Nursing, Hebei Medical University, Shijiazhuang, Hebei
- Morning Star Academic Cooperation, Shanghai
| | - Yixin Qi
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
35
|
Micallef I, Baron B. The Mechanistic Roles of ncRNAs in Promoting and Supporting Chemoresistance of Colorectal Cancer. Noncoding RNA 2021; 7:24. [PMID: 33807355 PMCID: PMC8103280 DOI: 10.3390/ncrna7020024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/03/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal Cancer (CRC) is one of the most common gastrointestinal malignancies which has quite a high mortality rate. Despite the advances made in CRC treatment, effective therapy is still quite challenging, particularly due to resistance arising throughout the treatment regimen. Several studies have been carried out to identify CRC chemoresistance mechanisms, with research showing different signalling pathways, certain ATP binding cassette (ABC) transporters and epithelial mesenchymal transition (EMT), among others to be responsible for the failure of CRC chemotherapies. In the last decade, it has become increasingly evident that certain non-coding RNA (ncRNA) families are involved in chemoresistance. Research investigations have demonstrated that dysregulation of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) contribute towards promoting resistance in CRC via different mechanisms. Considering the currently available data on this phenomenon, a better understanding of how these ncRNAs participate in chemoresistance can lead to suitable solutions to overcome this problem in CRC. This review will first focus on discussing the different mechanisms of CRC resistance identified so far. The focus will then shift onto the roles of miRNAs, lncRNAs and circRNAs in promoting 5-fluorouracil (5-FU), oxaliplatin (OXA), cisplatin and doxorubicin (DOX) resistance in CRC, specifically using ncRNAs which have been recently identified and validated under in vivo or in vitro conditions.
Collapse
Affiliation(s)
| | - Byron Baron
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD2080 Msida, Malta;
| |
Collapse
|