1
|
Zeng L, Sun J, Ji K, Zhang L, Niu J, Ma K, Yan Y, Hei Z, Sun Y. CISD2 ameliorates heatstroke-associated early cognitive deficits by inhibiting ferroptosis and maintaining dendritic spine density in hippocampal neurons in mice. Neuroscience 2025; 577:282-299. [PMID: 40398723 DOI: 10.1016/j.neuroscience.2025.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/21/2025] [Accepted: 05/16/2025] [Indexed: 05/23/2025]
Abstract
Heatstroke encephalopathy is a universal primary manifestation of heatstroke. Early brain injury caused by heatstroke may lead to long-term cognitive impairment in survivors, yet it frequently evades detection by standard diagnostic techniques. Thus, the discovery of reliable biomarkers for early brain injury detection is necessary. In this study, CISD2 downregulation in HT-22 cells was observed following hyperthermia treatment by using transcriptomics analysis. Subsequent mechanistic investigations revealed that CISD2 downregulation triggeres ferroptosis via AMPK-dependent BECN1 phosphorylation at Ser93, while CISD2 overexpression confers ferroptosis resistance in HT-22 cells at 41 °C. Furthermore, the downregulation of CISD2 expression and ferroptotic alterations were firmly observed in hippocampal tissues of mice during the early stage of heatstroke, and the overexpression of CISD2 by injecting lentivirus overexpressing CISD2 into the hippocampus of mice significantly alleviated heatstroke-induced neuronal loss, and meanwhile, the density of dendritic spines in the CA1 pyramidal neurons of the mice was effectively preserved. Moreover, knockdown of the CISD2 in the hippocampus exacerbated the loss of hippocampal neurons and the reduction of dendritic spine density. In summary, our results illustrated that CISD2 plays a pivotal role in preserving normal hippocampal function by regulating lipid peroxidation and iron homeostasis of heatstroke conditions. These finds provide novel insights into the mechanisms underlying heatstroke-induced cognitive deficits and offer potential strategies for improving risk prediction of heatstroke encephalopathy.
Collapse
Affiliation(s)
- Liang Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Jinhan Sun
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Kai Ji
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Lianxiang Zhang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, Yinchuan 750004, China
| | - Jiandong Niu
- General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Kang Ma
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Yan Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Zhiping Hei
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Yuning Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
2
|
Zhang J, Wang L, Lu Y, Zheng F, Ding X, Yao X, Bai J, Wang N, Yang G, Qiu T, Sun X. CISD2-mediated mitochondrial dysfunction and iron redistribution contributes to ferroptosis in arsenic-induced nonalcoholic steatohepatitis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117694. [PMID: 39808878 DOI: 10.1016/j.ecoenv.2025.117694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/12/2024] [Accepted: 01/05/2025] [Indexed: 01/16/2025]
Abstract
Arsenic in the environment, such as sodium arsenic (NaAsO2), is a frequently occurring hazard that has been linked to nonalcoholic steatohepatitis (NASH). Our prior research established the involvement of ferroptosis in arsenic-induced NASH, but the precise underlying mechanisms remain elusive. Here, we found that exposure to NaAsO2 had a suppressive effect on the expression of CDGSH iron-sulfur domain-containing protein 2 (CISD2) at the protein and gene levels, and overexpression of CISD2 inhibited NaAsO2-induced ferroptosis and NASH. Additionally, administration of NaAsO2 to hepatocytes triggered mitochondrial dysfunction, manifesting as the release of cytochrome c, impairment of the mitochondrial respiratory chain, and reduction in ATP synthesis. However, these adverse effects were alleviated through overexpression of CISD2. Intracellular iron redistribution was induced by overexpression of CISD2 and inhibited NaAsO2-induced ferroptosis. This inhibition was characterized by a reduction in cytoplasmic iron levels and an increase in mitochondrial iron levels. Our study demonstrated that NaAsO2 induced intracellular iron reorganization and mitochondrial dysfunction through CISD2 inhibition, leading to ferroptosis and NASH. This may provide a novel means of treatment of nonalcoholic fatty liver disease triggered by environmental factors.
Collapse
Affiliation(s)
- Jingyuan Zhang
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Lu Wang
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Yang Lu
- Department of Radiology, the Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian 116044, PR China
| | - Fei Zheng
- Department of Gastrointestinal Cancer, the Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian 116044, PR China
| | - Xiaoqian Ding
- Department of Gastrointestinal Cancer, the Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian 116044, PR China
| | - Xiaofeng Yao
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Jie Bai
- Department of Public Health Experimental Teaching Center, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Ningning Wang
- Department of Public Health Experimental Teaching Center, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China; Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China; Global Health Research Center, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Guang Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Tianming Qiu
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| | - Xiance Sun
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China; Global Health Research Center, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| |
Collapse
|
3
|
Wei Y, Pan T, Zhao Y, Chen Z, Wu L, Fang S, Wang X, Wang X, Chen D, Chen Y. Nicotine aggravates high-fat diet-induced non-alcoholic fatty liver disease in mice via inhibition of CISD3. Int Immunopharmacol 2024; 142:113067. [PMID: 39241515 DOI: 10.1016/j.intimp.2024.113067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/01/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease globally. Growing data suggests that smoking plays an important role in the evolution of NAFLD. CDGSH iron sulfur domain 3 (CISD3) regulates critical biological activities. However, its role in nicotine-associated NAFLD and its underlying mechanisms have not been elucidated. Mice were given a high-fat diet for 10 weeks to induce the development of NAFLD. The results revealed that in mice with NAFLD, nicotine treatment resulted in reduced CISD3 expression, leading to mitochondrial dysfunction and impaired β-oxidation. Notably, exacerbation of hepatic steatosis and inflammatory injury was observed. Furthermore, Cisd3-knockout exacerbated lipid accumulation, aggravating oxidative stress and apoptosis. In conclusion, these results contribute to our knowledge of the function of CISD3 in nicotine-associated NAFLD, revealing the possibility of using CISD3 as a potential molecular target for treating NAFLD.
Collapse
Affiliation(s)
- Yifeng Wei
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou 325035, China
| | - Tongtong Pan
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou 325035, China
| | - Youhong Zhao
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou 325035, China
| | - Zhiyi Chen
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou 325035, China
| | - Lina Wu
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou 325035, China
| | - Sizhe Fang
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou 325035, China
| | - Xiaowei Wang
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou 325035, China
| | - Xiaodong Wang
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou 325035, China
| | - Dazhi Chen
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou 325035, China; Hangzhou Medical College, Hangzhou 311300, China.
| | - Yongping Chen
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou 325035, China.
| |
Collapse
|
4
|
Zhang J, Wang T, Zhang H, Li N, Liu B, Fang L. Inhibition of CDGSH iron‑sulfur domain 2 exhibits tumor-suppressing effects on diffuse large B-cell lymphoma (DLBCL) by inducing ferroptosis through the regulation of the NRF2/SLC7A11/GPX4 pathway. Toxicol Appl Pharmacol 2024; 493:117148. [PMID: 39521147 DOI: 10.1016/j.taap.2024.117148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/18/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
CDGSH iron‑sulfur domain 2 (CISD2) is recognized as a ferroptosis-related gene that has potential as a target for cancer treatment. However, it is still uncertain whether targeting CISD2 can modulate ferroptosis in diffuse large B-cell lymphoma (DLBCL) cells and exhibit cancer-suppressing effects. The present study thoroughly investigated the role of CISD2 in DLBCL. CISD2 was found to be overexpressed in DLBCL, and its inhibition resulted in substantial growth inhibition in DLBCL cells. The growth inhibition effect resulting from CISD2 silencing could be reversed by a ferroptosis inhibitor, whereas inhibitors of apoptosis and necrosis did not yield the same reversal. CISD2-silenced DLBCL cells exhibited increased sensitivity to growth inhibition induced by ferroptosis suppressors. The inhibition of CISD2 induced ferroptotic cell death in DLBCL cells, which was supported by the overproduction of lipid peroxides, depletion of glutathione, accumulation of iron, and increased presence of shrunken mitochondria. Further investigation revealed reduced levels of NRF2, GPX4, and SLC7A11 in CISD2-silenced DLBCL cells. The overexpression of NRF2 significantly reduced the occurrence of ferroptotic cell death in DLBCL cells in which CISD2 was silenced. Furthermore, CISD2 inhibition exhibited tumor-suppressing effects in vivo associated with the induction of ferroptotic cell death in xenografts. These findings suggest that CISD2inhibition has tumor-suppressing effects on DLBCL by promoting ferroptotic cell death via the NRF2/SLC7A11/GPX4 pathway. Therefore, CISD2 holds promise as a viable candidate target for treating DLBCL.
Collapse
MESH Headings
- Ferroptosis/drug effects
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- NF-E2-Related Factor 2/metabolism
- NF-E2-Related Factor 2/genetics
- Humans
- Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism
- Phospholipid Hydroperoxide Glutathione Peroxidase/genetics
- Animals
- Cell Line, Tumor
- Amino Acid Transport System y+/genetics
- Amino Acid Transport System y+/metabolism
- Mice
- Signal Transduction/drug effects
- Mice, Nude
- Xenograft Model Antitumor Assays
- Iron-Sulfur Proteins/genetics
- Iron-Sulfur Proteins/metabolism
- Mice, Inbred BALB C
- Male
- Membrane Proteins
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Ultrasound, Xi'an Children's Hospital, No. 69 Xijuyuan Xiang, Xi'an, Shaanxi 710003, China
| | - Ting Wang
- Department of Ultrasound, Xi'an Children's Hospital, No. 69 Xijuyuan Xiang, Xi'an, Shaanxi 710003, China
| | - Hui Zhang
- Department of Ultrasound, Xi'an Children's Hospital, No. 69 Xijuyuan Xiang, Xi'an, Shaanxi 710003, China
| | - Na Li
- Department of Ultrasound, Xi'an Children's Hospital, No. 69 Xijuyuan Xiang, Xi'an, Shaanxi 710003, China
| | - Bailing Liu
- Department of Ultrasound, Xi'an Children's Hospital, No. 69 Xijuyuan Xiang, Xi'an, Shaanxi 710003, China
| | - Ling Fang
- Department of Ultrasound, Xi'an Children's Hospital, No. 69 Xijuyuan Xiang, Xi'an, Shaanxi 710003, China.
| |
Collapse
|
5
|
Wu HH, Zhu Q, Liang N, Xiang Y, Xu TY, Huang ZC, Cai JY, Weng LL, Ge HS. CISD2 regulates oxidative stress and mitophagy to maintain the balance of the follicular microenvironment in PCOS. Redox Rep 2024; 29:2377870. [PMID: 39010730 PMCID: PMC467114 DOI: 10.1080/13510002.2024.2377870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024] Open
Abstract
OBJECTIVES To observe the CISD2 expression among PCOS patients and to explore its profound impact on the follicular microenvironment. Moreover, we want to elucidate the intricate mechanistic contribution of CISD2 to the onset and progression of PCOS. METHODS Oxidase NOX2, mitophagy-related proteins, and CISD2 were detected by WB. The changes in mitochondrial structure and quantity were observed by transmission electron microscopy. Mitochondrial and lysosome colocalization was used to detect the changes of mitophagy. MDA kit, GSH and GSSG Assay kit and ROS probe were used to detect oxidative stress damage. RESULTS We found that CISD2, mitophagy and oxidase in the GCs of PCOS patients were significantly increased. Testosterone stimulation leads to the increase of oxidase, mitophagy, and CISD2 in KGN cells. CISD2 inhibition promoted the increase of mitophagy, and the activation of mitochondria-lysosome binding, while alleviating the oxidative stress. CONCLUSIONS Inhibition of CISD2 can improve the occurrence of oxidative stress by increasing the level of mitophagy, thus affecting the occurrence and development of PCOS diseases.
Collapse
Affiliation(s)
- Hong-Hui Wu
- Graduate School, Dalian Medical University, Liaoning, People’s Republic of China
- Reproduction Medicine Centre, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, People’s Republic of China
| | - Qi Zhu
- Reproduction Medicine Centre, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, People’s Republic of China
- Graduate School, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Na Liang
- Graduate School, Dalian Medical University, Liaoning, People’s Republic of China
- Reproduction Medicine Centre, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, People’s Republic of China
| | - Yu Xiang
- Reproduction Medicine Centre, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, People’s Republic of China
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Tian-Yue Xu
- Reproduction Medicine Centre, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, People’s Republic of China
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Zi-Chao Huang
- Reproduction Medicine Centre, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, People’s Republic of China
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Jie-Yu Cai
- Reproduction Medicine Centre, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, People’s Republic of China
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Ling-Lin Weng
- Reproduction Medicine Centre, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, People’s Republic of China
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Hong-Shan Ge
- Graduate School, Dalian Medical University, Liaoning, People’s Republic of China
- Reproduction Medicine Centre, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, People’s Republic of China
- Graduate School, Nanjing Medical University, Nanjing, People’s Republic of China
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| |
Collapse
|
6
|
Zhang C, Zhan S, He Y, Pan Z, You Z, Zhu X, Lin Q. Inhibition of CISD2 enhances sensitivity to doxorubicin in diffuse large B-cell lymphoma by regulating ferroptosis and ferritinophagy. Front Pharmacol 2024; 15:1482354. [PMID: 39605902 PMCID: PMC11598492 DOI: 10.3389/fphar.2024.1482354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Background CDGSH iron-sulfur domain 2 (CISD2), an iron-sulfur protein with a [2Fe-2S] cluster, plays a pivotal role in the progression of various cancers, including Diffuse Large B-cell Lymphoma (DLBCL). However, the mechanisms by which CISD2 regulates the occurrence and development of DLBCL remain to be fully elucidated. Methods The potential role of CISD2 as a predictive marker in DLBCL patients treated with the R-CHOP regimen was investigated through bioinformatics analysis and clinical cohort studies. DLBCL cell lines (SUDHL-4 and HBL-1) were employed in this research. Adenoviral (AV) plasmids were used to either silence or overexpress CISD2 in these DLBCL cell lines. Additionally, the induction of ferroptosis in DLBCL cell lines was assessed. Various parameters, including cell proliferation, intracellular free iron levels, lipid peroxides, reactive oxygen species (ROS), and mitochondrial membrane potential (MMP), were measured. Furthermore, the expression of proteins associated with ferroptosis and ferritinophagy was analyzed. Drug-resistant DLBCL cell lines were developed by gradually increasing doxorubicin (DOX) concentration over 6 months. The biological role of CISD2 in these drug-resistant DLBCL cell lines was subsequently assessed. Results Elevated CISD2 levels were found to be associated with decreased sensitivity of DLBCL patients to the R-CHOP regimen, as indicated by bioinformatics and clinical cohort analysis. Silencing CISD2 significantly reduced cell proliferation, increased iron accumulation, depleted glutathione (GSH), and elevated malondialdehyde (MDA) levels, alongside the accumulation of ROS and increased MMP. Additionally, BECN1 and NCOA4 expressions were upregulated, while p62, FTH1, and GPX4 expressions were downregulated. Conversely, overexpression of CISD2 reversed these effects. Treatment of DLBCL cell lines with Erastin led to decreased CISD2 levels. Notably, in drug-resistant DLBCL cell lines, CISD2 knockdown promoted ferroptosis and ferritinophagy, restoring sensitivity to DOX and enhancing the efficacy of Erastin treatment. Conclusion Our findings suggest that CISD2 may play a role in the drug resistance observed in DLBCL patients. Inhibition of CISD2 could enhance ferroptosis and ferritinophagy, potentially improving the sensitivity of DLBCL cells to DOX treatment.
Collapse
Affiliation(s)
- Chaofeng Zhang
- Department of Hematology and Rheumatology, the Affiliated Hospital of Putian University, Putian, Fujian Province, China
- Department of Haematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
- School of Basic Medical Science, Putian University, Putian, Fujian Province, China
| | - Siting Zhan
- School of Basic Medical Science, Putian University, Putian, Fujian Province, China
| | - Yanjun He
- Department of Haematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Zhiqun Pan
- Department of Hematology and Rheumatology, the Affiliated Hospital of Putian University, Putian, Fujian Province, China
| | - Zhongyi You
- School of Basic Medical Science, Putian University, Putian, Fujian Province, China
| | - Xiongpeng Zhu
- Department of Haematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Qi Lin
- Department of Pharmacy, The Affiliated Hospital of Putian University, Putian, Fujian Province, China
- Key Laboratory of Translational Tumor Medicine in Fujian Province, Putian University, Putian, Fujian Province, China
| |
Collapse
|
7
|
Baig SI, Naseer M, Munir AR, Ali Y, Razzaq MA. Immunoinformatic-based drug design utilizing hesperetin to target CISD2 activation for liver aging in humans. Biogerontology 2024; 25:1189-1213. [PMID: 39196437 DOI: 10.1007/s10522-024-10130-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/10/2024] [Indexed: 08/29/2024]
Abstract
The CISD protein family, consisting of CISD1, CISD2, and CISD3, encodes proteins that feature CDGSH iron-sulfur domains crucial for cellular functions and share a common 2Fe-2S domain. CISD2, which is pivotal in cells, regulates intracellular calcium levels, maintains the endoplasmic reticulum and mitochondrial function, and is associated with longevity and overall health, with exercise stimulating CISD2 production. However, CISD2 expression decreases with age, impacting age-related processes. According to in silico docking, HST is a CISD2 activator that affects metabolic dysfunction and age-related illnesses by affecting metabolic pathways. This study investigated the ability of CISD2 and HST to reduce age-related ailments, with a particular emphasis on liver aging. CISD2 deficiency has a major effect on the function of cells, as it undermines the integrity of the ER, mitochondria, and calcium homeostasis. It also increases susceptibility to oxidative stress and metabolic dysregulation, which is linked to Wolfram syndrome and exacerbates age-related illnesses and metabolic disorders. By shielding cells from stress, CISD2 extends the life of cells and maintains liver health as people age. Its protective effecfts on the liver during aging are further enhanced by its control of translation factors such as Nrf2 and IL-6. This work paves the way for future investigations and clinical applications by examining the structural and functional properties of CISD2 and the interaction between CISD2 and HST. This highlights the therapeutic potential of these findings in promoting healthy livers in humans and battling age-related illnesses.
Collapse
Affiliation(s)
- Saad Ilyas Baig
- Department of Biotechnology, University of Central Punjab, Lahore, Pakistan.
| | - Maria Naseer
- Department of Biotechnology, University of Central Punjab, Lahore, Pakistan
| | - Abdur-Rehman Munir
- Department of Biotechnology, University of Central Punjab, Lahore, Pakistan
| | - Yasir Ali
- Department of Biotechnology, University of Central Punjab, Lahore, Pakistan
| | | |
Collapse
|
8
|
Li Z, Xing J. Nuclear factor erythroid 2-related factor-mediated signaling alleviates ferroptosis during cerebral ischemia-reperfusion injury. Biomed Pharmacother 2024; 180:117513. [PMID: 39341075 DOI: 10.1016/j.biopha.2024.117513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 09/30/2024] Open
Abstract
Cardiac arrest (CA) is a significant challenge for emergency physicians worldwide and leads to increased morbidity and mortality rates. The poor prognosis of CA primarily stems from the complexity and irreversibility of cerebral ischemia-reperfusion injury (CIRI). Ferroptosis, a form of programmed cell death characterized by iron overload and lipid peroxidation, plays a crucial role in the progression and treatment of CIRI. In this review, we highlight the mechanisms of ferroptosis within the context of CIRI, focusing on its role as a key contributor to neuronal damage and dysfunction post-CA. We explore the crucial involvement of the nuclear factor erythroid 2-related factor (Nrf2)-mediated signaling pathway in modulating ferroptosis-associated processes during CIRI. Through comprehensive analysis of the regulatory role of Nrf2 in the cellular responses to oxidative stress, we highlight its potential as a therapeutic target for mitigating ferroptotic cell death and improving the neurological prognosis of patients experiencing CA. Furthermore, we discuss interventions targeting the Kelch-like ECH-associated protein 1/Nrf2/antioxidant response element pathway, including the use of traditional Chinese medicine and Western medicine, which demonstrate potential for attenuating ferroptosis and preserving neuronal function in CIRI. Owing to the limitations in the safety, specificity, and effectiveness of Nrf2-targeted drugs, as well as the technical difficulties and ethical constraints in obtaining the results related to the brain pathological examination of patients, most of the studies focusing on Nrf2-related regulation of ferroptosis in CIRI are still in the basic research stage. Overall, this review aims to provide a comprehensive understanding of the mechanisms underlying ferroptosis in CIRI, offering insights into novel therapeutics aimed at enhancing the clinical outcomes of patients with CA.
Collapse
Affiliation(s)
- Zheng Li
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Jihong Xing
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
9
|
Lan T, Ren S, Hu H, Wang R, Chen Q, Wu F, Xu Q, Li Y, Shao L, Wang L, Liu X, Cao H, Li J. Integrated Single-cell and Bulk RNA Sequencing Analysis Cross Talk between Ferroptosis-related Genes and Prognosis in Oral Cavity Squamous Cell Carcinoma. Recent Pat Anticancer Drug Discov 2024; 19:354-372. [PMID: 38214321 DOI: 10.2174/1574892818666230602112042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/09/2023] [Accepted: 05/03/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Ferroptosis is a new type of programmed apoptosis and plays an important role in tumour inhibition and immunotherapy. OBJECTIVE In this study, we aimed to explore the potential role of ferroptosis-related genes (FRGs) and the potential therapeutic targets in oral cavity squamous cell carcinoma (OCSCC). METHODS The transcription data of OCSCC samples were obtained from the Cancer Genome Atlas (TCGA) database as a training dataset. The prognostic FRGs were extracted by univariate Cox regression analysis. Then, we constructed a prognostic model using the least absolute shrinkage and selection operator (LASSO) and Cox analysis to determine the independent prognosis FRGs. Based on this model, risk scores were calculated for the OCSCC samples. The model's capability was further evaluated by the receiver operating characteristic curve (ROC). Then, we used the GSE41613 dataset as an external validation cohort to confirm the model's predictive capability. Next, the immune infiltration and somatic mutation analysis were applied. Lastly, single-cell transcriptomic analysis was used to identify the key cells. RESULTS A total of 12 prognostic FRGs were identified. Eventually, 6 FRGs were screened as independent predictors and a prognostic model was constructed in the training dataset, which significantly stratified OCSCC samples into high-risk and low-risk groups based on overall survival. The external validation of the model using the GSE41613 dataset demonstrated a satisfactory predictive capability for the prognosis of OCSCC. Further analysis revealed that patients in the highrisk group had distinct immune infiltration and somatic mutation patterns from low-risk patients. Mast cell infiltrations were identified as prognostic immune cells and played a role in OCSCC partly through ferroptosis. CONCLUSION We successfully constructed a novel 6 FRGs model and identified a prognostic immune cell, which can serve to predict clinical prognoses for OCSCC. Ferroptosis may be a new direction for immunotherapy of OCSCC.
Collapse
Affiliation(s)
- Tianjun Lan
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510010, China
| | - Siqi Ren
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510010, China
| | - Huijun Hu
- Department of Radiology, Sun Yat-Sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510010, China
| | - Ruixin Wang
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510010, China
| | - Qian Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510010, China
| | - Fan Wu
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510010, China
| | - Qiuping Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yatsen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yanyan Li
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510010, China
| | - Libin Shao
- Department of Endodontics, Sun Yat-sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, 510010, China
| | - Liansheng Wang
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510010, China
| | - Xin Liu
- Department of Stomatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, 528308, China
| | - Haotian Cao
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510010, China
| | - Jinsong Li
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510010, China
| |
Collapse
|
10
|
Zhang C, Lin Q, Li C, Qiu Y, Chen J, Zhu X. Comprehensive analysis of the prognostic implication and immune infiltration of CISD2 in diffuse large B-cell lymphoma. Front Immunol 2023; 14:1277695. [PMID: 38155967 PMCID: PMC10754510 DOI: 10.3389/fimmu.2023.1277695] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/15/2023] [Indexed: 12/30/2023] Open
Abstract
Background Diffuse large B-cell lymphoma (DLBCL) is the most common B-cell lymphoma in adults. CDGSH iron sulfur domain 2 (CISD2) is an iron-sulfur protein and plays a critical role of cell proliferation. The aberrant expression of CISD2 is associated with the progression of multiple cancers. However, its role in DLBCL remains unclear. Methods The differential expression of CISD2 was identified via public databases, and quantitative real-time PCR (qRT-PCR) and western blot were used to identifed the expression of CISD2. We estimated the impact of CISD2 on clinical prognosis using the Kaplan-Meier plotter. Meanwhile, the drug sensitivity of CISD2 was assessed using CellMiner database. The 100 CISD2-related genes from STRING obtained and analyzed using the LASSO Cox regression. A CISD2 related signature for risk model (CISD2Risk) was established. The PPI network of CISD2Risk was performed, and functional enrichment was conducted through the DAVID database. The impacts of CISD2Risk on clinical features were analyzed. ESTIMATE, CIBERSORT, and MCP-counter algorithm were used to identify CISD2Risk associated with immune infiltration. Subsequently, Univariate and multivariate Cox regression analysis were applied, and a prognostic nomogram, accompanied by a calibration curve, was constructed to predict 1-, 3-, and 5-years survival probabilities. Results CISD2 was upregulated in DLBCL patients comparing with normal controls via public datasets, similarly, CISD2 was highly expressed in DLBCL cell lines. Overexpression of CISD2 was associated with poor prognosis in DLBCL patients based on the GSE31312, the GSE32918, and GSE93984 datasets (P<0.05). Nine drugs was considered as a potential therapeutic agents for CISD2. By using the LASSO cox regression, twenty seven genes were identified to construct CISD2Risk, and biological functions of these genes might be involved in apoptosis and P53 signaling pathway. The high CISD2Risk value had a worse prognosis and therapeutic effect (P<0.05). The higher stromal score, immune score, and ESTIMATE score were associated with lowe CISD2Risk value, CISD2Risk was negatively correlated with several immune infiltrating cells (macrophages M0 and M1, CD8 T cells, CD4 naïve T cells, NK cell, etc) that might be correlated with better prognosis. Additionally, The high CISD2Risk was identified as an independent prognostic factor for DLBCL patients using both univariate and multivariate Cox regression. The nomogram produced accurate predictions and the calibration curves were in good agreement. Conclusion Our study demonstrates that high expression of CISD2 in DLBCL patients is associated with poor prognosis. We have successfully constructed and validated a good prognostic prediction and efficacy monitoring for CISD2Risk that included 27 genes. Meanwhile, CISD2Risk may be a promising evaluator for immune infiltration and serve as a reference for clinical decision-making in DLBCL patients.
Collapse
Affiliation(s)
- ChaoFeng Zhang
- Department of Haematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
- Department of Hematology and Rheumatology, The Affiliated Hospital of Putian University, Putian, China
- The School of Basic Medicine, Putian University, Putian, China
| | - Qi Lin
- Department of Pharmacy, The Affiliated Hospital of Putian University, Putian, China
| | - ChunTuan Li
- Department of Haematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Yang Qiu
- The School of Basic Medicine, Putian University, Putian, China
| | - JingYu Chen
- The School of Basic Medicine, Putian University, Putian, China
| | - XiongPeng Zhu
- Department of Haematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| |
Collapse
|
11
|
Wang L, Wang Y, Wang C, Yang K, Ye G. CISD2 transcriptional activated by transcription factor E2F7 promotes the malignant progression of cervical cancer. J Mol Histol 2023; 54:489-498. [PMID: 37615745 DOI: 10.1007/s10735-023-10145-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023]
Abstract
Cervical cancer (CC) is the second most common type of cancer in women, and presents a serious threat to public health. We aimed to investigate the regulatory impacts of CDGSH iron-sulfur domain-containing protein 2 (CISD2) in CC and to discuss its relationship with E2F transcription factor 7 (E2F7). With the employment of real-time reverse transcriptase-polymerase chain reaction (RT-qPCR) and western blot, the expression of CISD2 and E2F7 in SiHa cells before or after transfection was estimated. Cell counting kit-8 (CCK-8) assay, Terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) assay, wound healing and transwell were used to detect the proliferation, apoptosis, migration and invasion of SiHa cells. The activity of CISD2 was detected using luciferase report assay and chromatin immunoprecipitation (ChIP) assay was used to confirm the binding of E2F7 and CISD2 promoter. The contents of proliferation- and apoptosis-related proteins were detected using western blot. Results revealed that CISD2 expression was greatly enhanced in CC cell lines. CISD2 depletion inhibited the proliferation, migration and invasion of SiHa cells but promoted the cell apoptosis. It was also found that E2F7 was remarkably elevated in SiHa cells. According to JASPAR database, the binding sites of E2F7 and CISD2 were predicted and ChIP confirmed the binding of E2F7 and CISD2 promoter. Results obtained from luciferase report assay indicated that E2F7 overexpression increased the activity of CISD2 promoter region. Furthermore, further functional experiments demonstrated that the impacts of E2F7 interference on the proliferation, migration, invasion and apoptosis of SiHa cells were reversed by CISD2 overexpression. In summary, CISD2 silence could alleviate the malignant progression of CC and could be transcribed by E2F7.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Gynecology, the First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, 233004, Anhui, China
| | - Yan Wang
- Department of Gynecology, the First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, 233004, Anhui, China
| | - Caizhi Wang
- Department of Gynecology, the First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, 233004, Anhui, China
| | - Kang Yang
- Department of Gynecology, the First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, 233004, Anhui, China
| | - Guoliu Ye
- Department of Gynecology, the First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, 233004, Anhui, China.
| |
Collapse
|
12
|
Pauleta SR, Grazina R, Carepo MS, Moura JJ, Moura I. Iron-sulfur clusters – functions of an ancient metal site. COMPREHENSIVE INORGANIC CHEMISTRY III 2023:105-173. [DOI: 10.1016/b978-0-12-823144-9.00116-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
13
|
Ren X, Yu J, Guo L, Zhang Z. CDGSH iron sulfur domain 2 mitigates apoptosis, oxidative stress and inflammatory response caused by oxygen-glucose deprivation/reoxygenation in HT22 hippocampal neurons by Akt-Nrf2-activated pathway. Metab Brain Dis 2022; 37:2417-2429. [PMID: 35819709 DOI: 10.1007/s11011-022-01043-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/23/2022] [Indexed: 10/17/2022]
Abstract
CDGSH iron sulfur domain 2 (Cisd2) is known as a key determinant factor in maintaining cellular homeostasis. However, whether Cisd2 contributes to the mediation of neuronal injury during ischemic stroke has not been well stressed. This work focuses on investigating the role of Cisd2 in regulating neuronal injury caused by oxygen-glucose deprivation/reoxygenation (OGD/R). The dramatic down-regulation of Cisd2 was observed in hippocampal neurons suffering from OGD/R injury. In Cisd2-overexpressed neurons, OGD/R-induced neuronal apoptosis, oxidative stress and inflammation were prominently mitigated. Further investigation uncovered that the forced expression of Cisd2 reinforced the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in OGD/R-exposed neurons. Moreover, the overexpression of Cisd2 enhanced Akt activation, and the restraint of Akt abolished Cisd2-induced Nrf2 activation. Importantly, restraint of Nrf2 reversed Cisd2-conferred neuroprotective effects in OGD/R-exposed neurons. Taken together, our findings indicate that Cisd2 is able to protect neurons from OGD/R-induced injuries by strengthening Nrf2 activation via Akt. Our work identifies Cisd2 as a potential determinant factor for neuronal injury during cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Xiaoyan Ren
- Anesthesiology Department, The First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, 110001, Liaoning Province, China
| | - Jiangang Yu
- Anesthesiology Department, The First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, 110001, Liaoning Province, China
| | - Lili Guo
- Anesthesiology Department, The First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, 110001, Liaoning Province, China
| | - Zaili Zhang
- Anesthesiology Department, The First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
14
|
High Expression of CISD2 in Relation to Adverse Outcome and Abnormal Immune Cell Infiltration in Glioma. DISEASE MARKERS 2022; 2022:8133505. [PMID: 35493303 PMCID: PMC9050253 DOI: 10.1155/2022/8133505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 03/09/2022] [Accepted: 03/17/2022] [Indexed: 12/02/2022]
Abstract
Glioma is a serious disease burden globally, with high mortality and recurrence rates. CDGSH iron sulfur domain 2 (CISD2) is an evolutionarily conserved protein that is involved in several cancers. However, its role in the prognosis and immune infiltration in glioma remains unclear. In our research, RNA-seq matrix and clinicopathological relevant data for CISD2 were downloaded from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. Human Protein Atlas was used to verify the CISD2 protein level in glioma, and STRING was used to establish relative coexpression gene network. The Kaplan-Meier plotter was adopted to analyze the effect of CISD2 on prognosis. The connection between CISD2 expression and immune infiltration was analyzed using single-sample GSEA (ssGSEA), TIMER, and GEPIA. In contrast to normal tissues, CISD2 expression was significantly higher in glioma tissues, and CISD2 presented a certain diagnostic value in distinguishing glioma tissues from normal tissues. Furthermore, the CISD2 level was correlated with age, histologic grade, histological type, isocitrate dehydrogenase (IDH) status, 1p/19q codeletion status, and primary therapy outcome of glioma, while high CISD2 mRNA expression was correlated with grave overall survival. Multivariate analysis demonstrated that CISD2 was an independent risk factor for patients with glioma. Functional enrichment analysis indicated that CISD2 could regulate proliferation, immune reaction, and mitochondrial function. The results from the ssGSEA and TIMER databases confirmed that CISD2 acts a prominent role in immune cell infiltration in the tumor microenvironment, especially in low-grade glioma (LGG). Furthermore, CISD2 expression was observably correlated to M2 polarization in macrophages with glioma progression. This is the first research to investigate the immune role of CISD2 in glioma. CISD2 may be an innovative prognostic biomarker and can act as a potential target for future therapy for glioma.
Collapse
|
15
|
Overexpression of CISD1 Predicts Worse Survival in Hepatocarcinoma Patients. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7823191. [PMID: 35313629 PMCID: PMC8933656 DOI: 10.1155/2022/7823191] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 02/07/2022] [Accepted: 02/22/2022] [Indexed: 12/24/2022]
Abstract
Background Ferroptosis plays a vital role in hepatocellular carcinoma (HCC). CISD1 is known to regulate ferroptosis negatively. However, the correlations of CISD1 to prognosis in HCC and its potential mechanism remain unclear. Aim To investigate the expression level and prognostic value of CISD1 in HCC. Methods Gene expression and clinical data for 33 cancer types in TCGA were downloaded from the UCSC Xena platform. Pan-cancer analysis was performed to determine the expression profile and prognostic value of CISD1 in human cancers. GEO datasets and Human Protein Atlas (HPA) were used to verify the mRNA and protein expression levels. The influence of CISD1 on clinical prognosis in HCC was evaluated using a Kaplan-Meier plotter. The PPI network was constructed using the STRING database and Cytoscape. GO and KEGG pathways were constructed using the “clusterProfiler” R package with the FDR cutoff of 0.05. The methylation at the CISD1 promoter was detected using UALCAN and GEO datasets. The correlations between CISD1 and HCC immune infiltrates were investigated via TIMER. Results Pan-cancer analysis of TCGA data showed that CISD1 is differentially expressed in multiple tumors. Data of gene expression microarrays reveal that the mRNA expression of CISD1 is higher in HCC than that in normal tissue. The protein level of CISD1, validated by the Human Protein Atlas (HPA) database, was upregulated consistently with mRNA levels in HCC samples. High CISD1 expression was associated with better overall survival (OS), disease-free survival (DFS), disease-specific survival (DSS), and progression-free survival (PFS) in LGG, but with poorer OS, DFS, DSS, and PFS in LIHC. Protein-protein interaction (PPI) analysis and GO/KEGG analysis showed that the PPI network and GO term of CISD1 were mainly associated with energy and iron metabolism. Promoter hypomethylation correlated with overexpression of CISD1. CISD1 expression was positively correlated with infiltrating levels of CD8+ T cells, macrophages, neutrophils, and dendritic cells (DCs) in HCC. Conclusions These findings suggest that hypomethylation of the CISD1 promoter increases its expression in HCC. CISD1 is associated with prognosis and immune infiltrating levels of CD8+ T cells, macrophages, neutrophils, and DCs in HCC patients. These findings suggest that CISD1 can be used as a prognostic biomarker for determining prognosis in HCC.
Collapse
|
16
|
Tagde P, Tagde P, Islam F, Tagde S, Shah M, Hussain ZD, Rahman MH, Najda A, Alanazi IS, Germoush MO, Mohamed HRH, Algandaby MM, Nasrullah MZ, Kot N, Abdel-Daim MM. The Multifaceted Role of Curcumin in Advanced Nanocurcumin Form in the Treatment and Management of Chronic Disorders. Molecules 2021; 26:7109. [PMID: 34885693 PMCID: PMC8659038 DOI: 10.3390/molecules26237109] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 12/25/2022] Open
Abstract
Curcumin is the primary polyphenol in turmeric's curcuminoid class. It has a wide range of therapeutic applications, such as anti-inflammatory, antioxidant, antidiabetic, hepatoprotective, antibacterial, and anticancer effects against various cancers, but has poor solubility and low bioavailability. Objective: To improve curcumin's bioavailability, plasma concentration, and cellular permeability processes. The nanocurcumin approach over curcumin has been proven appropriate for encapsulating or loading curcumin (nanocurcumin) to increase its therapeutic potential. Conclusion: Though incorporating curcumin into nanocurcumin form may be a viable method for overcoming its intrinsic limitations, and there are reasonable concerns regarding its toxicological safety once it enters biological pathways. This review article mainly highlights the therapeutic benefits of nanocurcumin over curcumin.
Collapse
Affiliation(s)
- Priti Tagde
- Amity Institute of Pharmacy, Amity University, Noida 201303, India
- PRISAL Foundation (Pharmaceutical Royal International Society), Bhopa l462026, India;
| | - Pooja Tagde
- Practice of Medicine Department, Government Homeopathy College, Bhopa l462016, India;
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh;
| | - Sandeep Tagde
- PRISAL Foundation (Pharmaceutical Royal International Society), Bhopa l462026, India;
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | | | - Md. Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
- Department of Global Medical Science, Graduate School, Yonsei University, Wonju 26426, Korea
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland;
| | - Ibtesam S. Alanazi
- Department of Biology, Faculty of Sciences, University of Hafr Al Batin, Hafr Al Batin 39524, Saudi Arabia;
| | - Mousa O. Germoush
- Biology Department, College of Science, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia;
| | - Hanan R. H. Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Mardi M. Algandaby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohammed Z. Nasrullah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Natalia Kot
- Department of Landscape Architecture, University of Life Science in Lublin, 28 Gleboka Street, 20-612 Lublin, Poland;
| | - Mohamed M. Abdel-Daim
- Pharmacy Program, Department of Pharmaceutical Sciences, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|