1
|
Tufail P, Anjum S, Siddiqui BS, Pizzi M, Jahan H, Choudhary MI. Nitrovanillin derivative ameliorates AGE-RAGE nexus associated inflammation: A step towards the amelioration of vascular complications under diabetic environment. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167784. [PMID: 40058471 DOI: 10.1016/j.bbadis.2025.167784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/20/2025]
Abstract
INTRODUCTION Advanced glycation endproducts (AGEs) are implicated in various pathological conditions, including diabetes, inflammation, and cardiovascular diseases. Methylglyoxal (MGO), a potent glycation agent, leads to the formation of MGO-derived AGEs, which promote structural and functional anomalies in various cellular and tissues proteins. AGEs stimulate the proliferation of monocytes, and induce a pro-inflammatory state through AGE-RAGE interactions, triggering oxidative stress, and inflammatory condition that contribute to the progression of atherosclerosis, and other diabetic complications. OBJECTIVE The current study was aimed to explore the antioxidant and anti-inflammatory properties of a series of novel antiglycation compounds, nitrovanillin derivatives, by modulating the AGEs-stimulated intracellular signaling pathways involved in inflammation. METHODS The preliminary safety profile of nitrovanillin derivatives was assessed by using human hepatocytes (HepG2), and monocytes (THP-1) cell lines via MTT, and WST-1 assays, respectively. Antioxidant activity of the compounds was determined by using DCFH-DA technique. Western blotting, immunocytochemistry, and ELISA methods were employed to assess the levels of pro-inflammatory markers (RAGE, COX-1, COX-2, NF-κB, and PGE2) in MGO-AGEs stimulated THP-1 monocytes. RESULT Among the nitrovanillin derivatives 1-11, only compound 2, ((E)-2-methoxy-6-nitro-4-(((2-(trifluoromethyl)phenyl)imino)methyl)phenol), was found non-toxic to HepG2, and THP-1 cells. Compound 2 lowered the MGO-AGEs-induced reactive oxygen species (ROS) production by inhibiting the upstream signaling of NADPH oxidase and MAPK-p38, which subsequently inhibited the NF-κB activation in THP-1 monocytes. Compound 2 also reversed the AGEs-mediated COX-1 suppression, COX-2 upregulation, and PGE2 production by blocking the AGE-RAGE ligation in THP-1 monocytes. CONCLUSION In conclusion, nitrovanillin 2 ((E)-2-methoxy-6-nitro-4-(((2-(trifluoromethyl)phenyl)imino)methyl)phenol) is a potential candidate for mitigating MGO-AGEs mediated vasculopathy by the inhibition of AGE-RAGE-p38/NF-κB nexus in THP-1 monocytes. It may offer a therapeutic option for the patients with diabetes and chronic inflammatory vascular complications, and thus offering new avenues for treatment development.
Collapse
Affiliation(s)
- Priya Tufail
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sajjad Anjum
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Bina Shaheen Siddiqui
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Marina Pizzi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| | - Humera Jahan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Komplek Kampus C, JI. Mulyorejo, Surabaya 60115, Indonesia.
| | - M Iqbal Choudhary
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Komplek Kampus C, JI. Mulyorejo, Surabaya 60115, Indonesia.
| |
Collapse
|
2
|
Wang W, Song Z, Jing Y, Wei X, Li H, Xie J, Shen M. Formation of advanced glycation end-products and N-nitrosamines in salami of different recipes and fermented at different stages. Food Chem 2025; 474:143228. [PMID: 39923516 DOI: 10.1016/j.foodchem.2025.143228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/25/2025] [Accepted: 02/04/2025] [Indexed: 02/11/2025]
Abstract
Most research on the formation of advanced glycation end-products (AGEs) and N-nitrosamines (NAs) in meat products has focused on high-temperature processing. The effects of low-temperature processing on AGEs and NAs formation have rarely been studied. This study investigated the effects of salt addition (0 %, 2 %, and 4 %) and lean-to-fat ratio (10:0, 8:2, and 6:4) on the formation of AGEs and NAs in Salami. We found that the salt in Salami would inhibit CEL formation. And the Lean pork Salami showed the highest Nε-carboxyethyllysine (CEL) and lowest Nε-carboxymethyllysine (CML) contents. For NAs content, it was lowest in Salami with 40 % fat. Principal component analysis and correlation analysis revealed significant correlations between CEL and N-nitrosodiphenylamine (NDPhA) formation in Salami. Additionally, the production of CML was correlated with the extent of fat oxidation, while CEL formation was more strongly associated with protein-related reactions. Furthermore, NAs formation correlated with protein content and protein oxidation.
Collapse
Affiliation(s)
- Wenjing Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Zixiong Song
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Ying Jing
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Xiaoxiao Wei
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Haizhen Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
3
|
Settem RP, Sharma A. Oral bacterium contributes to periodontal inflammation by forming advanced glycation end products. Infect Immun 2025; 93:e0056024. [PMID: 40172539 PMCID: PMC12070732 DOI: 10.1128/iai.00560-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/26/2025] [Indexed: 04/04/2025] Open
Abstract
The oral bacterium Tannerella forsythia is associated with periodontitis, an inflammatory disease affecting tooth-supporting tissues. The bacterium produces a dicarbonyl compound, methylglyoxal (MGO), whose levels correlate with the severity of periodontitis. MGO can induce inflammation directly or via the generation of glycation products called advanced glycation end products (AGEs). T. forsythia-produced MGO has been shown to cause tissue collagen glycation, which in turn can induce pro-inflammatory cytokine secretion in monocytes via receptor for advanced glycation end product (RAGE) receptor activation. The current study investigated the impact of T. forsythia-secreted MGO on human gingival fibroblasts and endothelial cells. For assessing the in vivo impact of T. forsythia-secreted MGO, we employed an oral gavage-induced mouse model of periodontitis utilizing the wild-type and MGO-deficient strains of T. forsythia. Our results showed that the apoptotic activity was enhanced, and cell migration was reduced in fibroblasts exposed to collagen treated with the T. forsythia wild-type culture supernatant. Moreover, monocyte binding, reactive oxygen species production, and inflammatory cytokine secretion were increased in fibroblasts, and neutrophil transendothelial migration was enhanced in response to the T. forsythia wild type-treated collagen. In vivo, increased AGE accumulation in gingival tissues with increased alveolar bone loss was observed in wild-type T. forsythia as compared to the MGO-deficient strain-infected mice. These data demonstrated that T. forsythia-secreted MGO contributes to periodontal tissue destruction by mitigating gingival fibroblast-mediated tissue healing and promoting endothelial cell dysfunction. These findings provide a basis for targeting the T. forsythia-associated AGE-RAGE axis in alleviating periodontitis.
Collapse
Affiliation(s)
- Rajendra P. Settem
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, New York, USA
| | - Ashu Sharma
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
4
|
Hu G, Hu H, Zhou Z, Aziz T, Yang Z, Yang Z, Alharbi NK, Shami A, Al-Asmari F, AlQadeeb H, Alwethaynani MS, Al-Joufi FA. Elucidating the exopolysaccharide biosynthesis in Pediococcus acidilactici BCB1H regulated by iron (Fe 2+) using a multi-omics approach. Int J Biol Macromol 2025; 309:142915. [PMID: 40203930 DOI: 10.1016/j.ijbiomac.2025.142915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/19/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
One of the vital functional biopolymers produced by lactic acid bacteria (LAB) is exopolysaccharide (EPS) that has been extensively studied, but less research has been done on the EPS production by pediococci. In this study, the EPS synthesis in Pediococcus acidilactici BCB1H regulated by Fe2+ was investigated by a multi-omics method. Adding Fe2+ (0.6 g/L) in a semi-defined medium was shown to significantly increase the EPS production from 225.5 to 271.5 mg/L by BCB1H. Joint transcriptomics and proteomics analyses on BCB1H under Fe2+ interference revealed upregulation of phosphotransferase systems (PTS), the key pathway to synthesizing EPSs. Further joint transcriptomics and metabolomics analyses showed a total of 22 differential metabolic pathways, including overall metabolic pathways, biosynthesis of secondary metabolites, metabolism of microorganisms in different environments. Integrated multi-omics analysis for the key differentially expressed genes, proteins and metabolites with synergistic effects revealed decarboxylating 6-phosphogluconate dehydrogenase (Gnd), acetyl-CoA carboxylase biotin carboxylase subunit (AccD) and EII sugar-specific permease (EIIs) genes that were upregulated, while glycerol kinase (GlpK) and alcohol dehydrogenase (AdhP) downregulated. Therefore, Fe2+ enhanced the EPS synthesis in BCB1H by promoting accumulation of fructose-6-phosphate, glycerate and malate, and reducing production of d-fructose-1,6-diphosphate and glycerone-phosphate, mainly by regulation of the pentose phosphate pathway, tricarboxylic acid cycle, glycolysis and gluconeogenesis pathways, and glycerolipid metabolism pathways. The present study was significant for further understanding the regulatory mechanism of EPS biosynthesis in LAB.
Collapse
Affiliation(s)
- Gege Hu
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Hangyu Hu
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Zengjia Zhou
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Tariq Aziz
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Zhennai Yang
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China.
| | - Zhang Yang
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang 55005, China.
| | - Nada K Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ashwag Shami
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Fahad Al-Asmari
- Department of Food and Nutrition Sciences, College of Agricultural and Food Sciences, King Faisal University, Al Ahsa, Saudi Arabia
| | - Hajar AlQadeeb
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, AlKharj 11942, Saudi Arabia
| | - Maher S Alwethaynani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah, Riyadh, Saudi Arabia
| | - Fakhria A Al-Joufi
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341 Aljouf, Saudi Arabia
| |
Collapse
|
5
|
Zhang M, Li H, Liu F, Ou S, Liu P, Zheng J. Enhancement of antioxidant, carbonyl scavenging and anti-glycation activities of polysaccharide-based hydrocolloids by covalent grafting with gallic acid. Int J Biol Macromol 2025; 307:141855. [PMID: 40058420 DOI: 10.1016/j.ijbiomac.2025.141855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/23/2025] [Accepted: 03/06/2025] [Indexed: 05/07/2025]
Abstract
Carbonyl stress contributes to pathological disorders leading to the progression of a variety of chronic diseases. Exploration of food ingredients with carbonyl scavenging capacities became one of the most potential strategies for the prevention of these diseases. Polysaccharide-based hydrocolloids have wide application approaches in the food industry. However, the carbonyl scavenging capacity of some natural polysaccharide-based hydrocolloids is unsatisfactory due to structural limitations. In this research, gallic acid (GA) was grafted onto different hydrocolloids (xanthan gum, carrageenan, carboxymethylcellulose, carboxymethyl chitosan (CMCS), and sodium alginate) by a free radical-mediated reaction to improve their antioxidant, carbonyl scavenging, and anti-glycation activities. The antioxidant activity of hydrocolloids was significantly improved after GA grafting. Among them, CMCS-GA (graft ratio 15.45 mg GA/g) exhibited the same ABTS scavenging ability as the equivalent amount of free GA and Vc. The carbonyl scavenging capacity, and the inhibitory effects on the fluorescent advanced glycation end products (AGEs) and protein oxidation products of some hydrocolloids also increased significantly GA grafting. The scavenging capacity of CMCS-GA on MGO, GO, ACR, and MDA in the model reaction increased by 220 %, 100 %, 6 %, and 58 %, respectively. Overall, CMCS-GA showed the best performance in radical scavenging, carbonyl scavenging, and AGEs inhibition compared to all the other hydrocolloids investigated. The findings showed that grafting GA onto hydrocolloids is a viable strategy to enhance the carbonyl scavenging capacity and anti-glycation activity of hydrocolloids.
Collapse
Affiliation(s)
- Mianzhang Zhang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Hongliang Li
- Guangzhou Wobang Biological Technology Co., Ltd, Guangzhou 510660, China
| | - Fu Liu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Shiyi Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Pengzhan Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Jie Zheng
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong-Hong Kong Joint Innovation Platform of Baked Food Safety, Guangzhou 510632, China.
| |
Collapse
|
6
|
Long H, Guo Y, Wang J, Yang W, Chen F, Zhong Y, Gong P, Wang H. Anti-glycation activity and mechanism of Siraitia grosvenorii polysaccharide based on bovine serum albumin-fructose and Caco-2 cell models. Int J Biol Macromol 2025; 308:142267. [PMID: 40112993 DOI: 10.1016/j.ijbiomac.2025.142267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/27/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Advanced glycation end products (AGEs) are dietary risk factors formed through the non-enzymatic glycation of reducing sugars with proteins, lipids, and other compounds. Siraitia grosvenorii polysaccharide (SGP) exhibits strong antioxidant activity and holds potential as a natural inhibitor of glycation. This study aims to investigate the anti-glycation activity and mechanisms of SGP, providing a theoretical basis for the anti-glycation effects of SGP. The results demonstrated that SGP inhibited the formation of AGEs during biscuit baking in a food matrix. In the bovine serum albumin-fructose (BSA-Fru) model, SGP reduced the formation of AGEs by chelating metal ions. SGP, Fru, and BSA were found to share the same binding sites, enabling SGP to compete with Fru for the aspartic acid 108 and arginine 144 binding sites on BSA, thereby directly inhibiting AGEs formation. In the Caco-2 cell model, SGP alleviated N-ε- (Carboxymethyl)-l-lysine (CML)-induced damage by reducing oxidative stress and regulating metabolic pathways, including the glycine-serine-threonine metabolism pathway, glyoxylate and dicarboxylate metabolism pathway, and the tricarboxylic acid (TCA) cycle. In summary, SGP not only serves as a natural inhibitor of in vitro AGEs formation but also alleviates intestinal barrier damage. This study provides a theoretical foundation for developing SGP as a functional food additive.
Collapse
Affiliation(s)
- Hui Long
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Key Laboratory of Precision Nutrition and Functional Product Development in Xi'an, Xi'an 710021, China
| | - Yuxi Guo
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Key Laboratory of Precision Nutrition and Functional Product Development in Xi'an, Xi'an 710021, China
| | - Jie Wang
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Key Laboratory of Precision Nutrition and Functional Product Development in Xi'an, Xi'an 710021, China
| | - Wenjuan Yang
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Key Laboratory of Precision Nutrition and Functional Product Development in Xi'an, Xi'an 710021, China
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Yujun Zhong
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, Guangxi 537000, China
| | - Pin Gong
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, Guangxi 537000, China; Key Laboratory of Precision Nutrition and Functional Product Development in Xi'an, Xi'an 710021, China.
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Choi JY, Ha NG, Lee WJ, Boo YC. Synthetic and Natural Agents Targeting Advanced Glycation End-Products for Skin Anti-Aging: A Comprehensive Review of Experimental and Clinical Studies. Antioxidants (Basel) 2025; 14:498. [PMID: 40298870 PMCID: PMC12024170 DOI: 10.3390/antiox14040498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 04/30/2025] Open
Abstract
Advanced glycation end-products (AGEs) cause blood vessel damage and induce diabetic complications in various organs, such as the eyes, kidneys, nerves, and skin. As glycation stress causes aesthetic, physical, and functional changes in the skin, glycation-targeting skin anti-aging strategies are attracting attention in cosmetology and dermatology. The primary goal of this review is to understand the significance of glycation-induced skin aging and to examine the therapeutic potential of glycation-targeting strategies. This study covers experimental and clinical studies exploring various interventions to attenuate glycation-induced skin aging. Glycation stress decreases the viability of cells in culture media, the cell-mediated contraction of collagen lattices in reconstructed skin models, and the expression of fibrillin-1 at the dermo-epidermal junction in the skin explants. It also increases cross-links in tail tendon collagen in animals, prolonging its breakdown time. However, these changes are attenuated by several synthetic and natural agents. Animal and clinical studies have shown that dietary or topical administration of agents with antiglycation or antioxidant activity can attenuate changes in AGE levels (measured by skin autofluorescence) and skin aging parameters (e.g., skin color, wrinkles, elasticity, hydration, dermal density) induced by chronological aging, diabetes, high-carbohydrate diets, ultraviolet radiation, or oxidative stress. Therefore, the accumulating experimental and clinical evidence supports that dietary supplements or topical formulations containing one or more synthetic and natural antiglycation agents may help mitigate skin aging induced by AGEs.
Collapse
Affiliation(s)
- Joon Yong Choi
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea;
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Nam Gyoung Ha
- Department of Dermatology, Kyungpook National University Hospital, Daegu 41944, Republic of Korea; (N.G.H.); (W.J.L.)
- Bio-Medical Research Institute, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
- Department of Dermatology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Weon Ju Lee
- Department of Dermatology, Kyungpook National University Hospital, Daegu 41944, Republic of Korea; (N.G.H.); (W.J.L.)
- Bio-Medical Research Institute, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
- Department of Dermatology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Yong Chool Boo
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea;
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Dermatology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
8
|
Zhang Y, Zhang Z, Tu C, Chen X, He R. Advanced Glycation End Products in Disease Development and Potential Interventions. Antioxidants (Basel) 2025; 14:492. [PMID: 40298887 PMCID: PMC12024296 DOI: 10.3390/antiox14040492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/09/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025] Open
Abstract
Advanced glycation end products (AGEs) are a group of compounds formed through non-enzymatic reactions between reducing sugars and proteins, lipids, or nucleic acids. AGEs can be generated in the body or introduced through dietary sources and smoking. Recent clinical and animal studies have highlighted the significant role of AGEs in various health conditions. These compounds accumulate in nearly all mammalian tissues and are associated with a range of diseases, including diabetes and its complications, cardiovascular disease, and neurodegeneration. This review summarizes the major diseases linked to AGE accumulation, presenting both clinical and experimental evidence. The pathologies induced by AGEs share common mechanisms across different organs, primarily involving oxidative stress, chronic inflammation, and direct protein cross-linking. Interventions targeting AGE-related diseases focus on inhibiting AGE formation using synthetic or natural antioxidants, as well as reducing dietary AGE intake through lifestyle modifications. AGEs are recognized as significant risk factors that impact health and accelerate aging, particularly in individuals with hyperglycemia. Monitoring AGE level and implementing nutritional interventions can help maintain overall health and reduce the risk of AGE-related complications.
Collapse
Affiliation(s)
- Yihan Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China; (Y.Z.); (Z.Z.)
- BYHEALTH Institute of Nutrition & Health, No. 916, Huangpu Avenue East, Huangpu District, Guangzhou 510799, China; (C.T.); (X.C.)
| | - Zhen Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China; (Y.Z.); (Z.Z.)
- BYHEALTH Institute of Nutrition & Health, No. 916, Huangpu Avenue East, Huangpu District, Guangzhou 510799, China; (C.T.); (X.C.)
| | - Chuyue Tu
- BYHEALTH Institute of Nutrition & Health, No. 916, Huangpu Avenue East, Huangpu District, Guangzhou 510799, China; (C.T.); (X.C.)
| | - Xu Chen
- BYHEALTH Institute of Nutrition & Health, No. 916, Huangpu Avenue East, Huangpu District, Guangzhou 510799, China; (C.T.); (X.C.)
| | - Ruikun He
- BYHEALTH Institute of Nutrition & Health, No. 916, Huangpu Avenue East, Huangpu District, Guangzhou 510799, China; (C.T.); (X.C.)
| |
Collapse
|
9
|
Li LF, Wang MD, Zhang CY, Jin MY, Chen HL, Luo H, Hou TY, Zhang ZJ, Li H. Influence of hydroxyl substitution on the inhibition of flavonoids in advanced glycation end-products formation in glucose-lysine-arginine Maillard reaction models. Food Res Int 2025; 207:116068. [PMID: 40086959 DOI: 10.1016/j.foodres.2025.116068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/11/2025] [Accepted: 02/22/2025] [Indexed: 03/16/2025]
Abstract
Advanced glycation end products (AGEs) generated from the Maillard reaction (MR) during food processing in the human physiological environment, have been proven to be significantly associated with various chronic metabolic diseases. In this study, 18 flavonoids were investigated to study their effects on AGEs formation during MR within a glucose-lysine-arginine model system. Five AGEs- Nε-carboxymethyl-lysine (CML), Nε-carboxyethyl-lysine (CEL), pyrraline, pentosidine, and argpyrimidine-were determined by high-performance liquid chromatography-mass spectrometry, with inhibitory rates ranging between 0 % and 71.35 %. Isorhamnetin and naringenin exhibited the strongest inhibitory effect on the formation of CML and CEL, respectively, whereas myricetin exhibited the strongest inhibitory effect on pyrraline, pentosidine, and argpyrimidine formation. In addition, each flavonoid was reacted with glyoxal (GO) and methylglyoxal (MGO) to investigate their trapping activities and adducts. The results showed that the 18 flavonoids could effectively clear GO and MGO, with clearance rates of 1.03 %-71.42 % and 0.93 %-69.37 % for GO and MGO, respectively. Six flavonoids-chrysin, naringenin, apigenin, luteolin, diosmetin, and kaempferol-could form adduct products with mono-/di-MGO, with flavonoid to mono-/di-MGO adduct ratios of approximately 6:1, 2:1, 8:1, 23:1, 10:1, and 3:1, respectively. The number and site of phenolic hydroxyl groups, as well as methoxy substitution on the B-ring in flavonoids, had little effect, but phenolic hydroxyl groups at the C-3 position in the C-ring impeded adduct formation. The flavonoids lowered the degradation of glucose itself, and decreased ammonia-induced degradation and Amadori rearrangement product oxidation due to their antioxidant activities, and they trapped the reactive 1,2-di‑carbonyl species via nucleophilic addition reaction to form AGEs.
Collapse
Affiliation(s)
- Li-Feng Li
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - Meng-Di Wang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - Chen-Yang Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - Meng-Yao Jin
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - Hua-Lei Chen
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Huan Luo
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - Tian-Yu Hou
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - Zhi-Jun Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - He Li
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China.
| |
Collapse
|
10
|
Panja S, Rankenberg J, Michel C, Cooksley G, Glomb MA, Nagaraj RH. Proximal cysteine residues in proteins promote N ε-carboxyalkylation of lysine residues by α-dicarbonyl compounds. J Biol Chem 2025; 301:108377. [PMID: 40049410 PMCID: PMC11994404 DOI: 10.1016/j.jbc.2025.108377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/12/2025] [Accepted: 02/26/2025] [Indexed: 04/01/2025] Open
Abstract
Advanced glycation end products (AGEs) are protein modifications resulting from the chemical reaction between lysine and arginine residues in proteins, and carbonyl compounds, including glyoxal (GO) and methylglyoxal (MGO). Nε-carboxymethyllysine (CML) and Nε-carboxyethyllysine (CEL), formed by glycation from GO and MGO, are among the major AGEs in tissue proteins. Incubation with GO or MGO resulted in higher CML and CEL formation in the two cysteine residues containing αA-crystallin (αAC) than in the cysteine lacking αB-crystallin (αBC). Mass spectrometric data showed K70 and K166 to be heavily modified with CML and CEL in GO- and MGO-modified αAC. In silico analysis of the structure of αAC showed K70 and K166 to be proximal to C142. Mutation or reductive alkylation of cysteine residues in αAC significantly reduced CML and CEL formation. The addition of GSH or N-acetylcysteine enhanced CML and CEL formation in αBC. The introduction of a cysteine residue proximal to a lysine residue in αBC increased the CML and CEL accumulation. Our data showed that CML and CEL formation occurs through a hemithioacetal intermediate formed from the reaction between thiols and GO or MGO. Together, these results highlight a mechanism by which thiols influence protein AGE levels. In addition, CML and CEL are ligands for RAGE, a receptor for AGEs, which has been implicated in several aging and diabetes-associated diseases. Therefore, further understanding of the biosynthesis of CML and CEL could lead to the development of new therapies against those diseases.
Collapse
Affiliation(s)
- Sudipta Panja
- Department of Ophthalmology, School of Medicine, University of Colorado, Aurora, Colorado, USA.
| | - Johanna Rankenberg
- Department of Ophthalmology, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Cole Michel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado, USA
| | - Grace Cooksley
- Department of Ophthalmology, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Marcus A Glomb
- Institute of Chemistry, Food Chemistry, Martin-Luther-University Halle-Wittenberg, Halle(Saale), Germany
| | - Ram H Nagaraj
- Department of Ophthalmology, School of Medicine, University of Colorado, Aurora, Colorado, USA; Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado, USA.
| |
Collapse
|
11
|
Erukainure OL, Houreld NN. Vanillin Enhances Photobiomodulation Wound Healing by Modulating Glyco-Oxidative Stress and Glucose Dysmetabolism in Diabetic Wounded Fibroblast Cells. J Cell Mol Med 2025; 29:e70537. [PMID: 40194982 PMCID: PMC11975505 DOI: 10.1111/jcmm.70537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 04/09/2025] Open
Abstract
Delayed wound healing is among the major peripheral complications of diabetes. Synergistic treatment of diabetic wounds (DW) with phytochemicals and non-invasive techniques has shown promising results. The synergistic effect of vanillin and photobiomodulation (PBM) on DW healing, and their modulatory effect on oxidative stress and glucose metabolism was investigated in DW fibroblast cells (WS1). DW cells were treated with vanillin and vanillin + PBM. Control consisted of WS1 cells, untreated DW cells, and DW cells treated with PBM. Diabetes was induced by repeated growth in complete MEM containing high D-glucose (22.6 mM/L). Wounds were induced by central scratching. Cells were treated with vanillin at various concentrations for 2 h prior to PBM at 660 nm with a fluence of 5 J/cm2 for an irradiation time of 780 s, followed by 24 h incubation. Induction of DW led to a decreased glutathione level, and decreased superoxide dismutase, catalase, glutathione reductase, glyoxalase, and Na/K-ATPase activities, while concomitantly increasing the activities of fructose-1,6-bisphosphatase, glucose 6-phosphatase, E-NTPDase, and 5-lipoxygenase. These levels and activities were reversed following treatment with 12 μg/mL vanillin, and 6 μg/mL vanillin + PBM having the best effects. However, treatment with 24 μg/mL vanillin and vanillin + PBM showed no significant effects. Except for cells treated with 24 μg/mL vanillin and vanillin + PBM, morphological analysis indicated wound closures compared to the controls. These results indicate the synergistic therapeutic effect of vanillin + PBM on the management of diabetic wounds, with 6 μg/mL vanillin + PBM displaying the best effect.
Collapse
Affiliation(s)
- Ochuko L. Erukainure
- Laser Research CentreFaculty of Health Sciences, University of JohannesburgDoornfonteinSouth Africa
| | - Nicolette N. Houreld
- Laser Research CentreFaculty of Health Sciences, University of JohannesburgDoornfonteinSouth Africa
| |
Collapse
|
12
|
Zhu Y, Wang Z, Li X, Chen S, Dai D, Li W, Shi B, Wang B, Jie G, Lu B. Identification of key anti-glycation polyphenols in Sakura through metabolic profiling and in vitro assessments. Food Chem X 2025; 27:102416. [PMID: 40231119 PMCID: PMC11994908 DOI: 10.1016/j.fochx.2025.102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/18/2025] [Accepted: 03/24/2025] [Indexed: 04/16/2025] Open
Abstract
Sakura, a traditional edible flower, has been investigated for its anti-glycation potential; however, the bioactive components remain unclear. Polyphenols are recognized for their exceptional anti-glycation properties. In this study, main polyphenols were identified from seven varieties through metabolomics. 5-O-caffeoylquinic acid (5-OCA), 3-O-caffeoylquinic acid (3-OCA), and caffeic acid were confirmed as key agents through multivariate analysis, which was further validated by anti-glycation assessments. The concentrations of these polyphenols in Cerasus serrulata 'Kanzan' (CK) were 2.52 ± 0.08, 3.31 ± 0.18 and 2.38 ± 0.15 mg/g, respectively, contributing to its superior AGEs inhibition ratio (100 μg/mL) of 76.11 ± 0.40 %. Simulated digestion revealed that isomerization between 5-OCA and 3-OCA occurred during the gastric phase. Both compounds were metabolized to caffeic acid in the intestinal phase, contributing to a sustained anti-glycation activity of 64.74 ± 1.11 %. Overall, our study provides a theoretical basis for the development of Sakura-based functional foods targeting anti-glycation.
Collapse
Affiliation(s)
- Yuhang Zhu
- College of Biosystems Engineering and Food Science, Key laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Zhangtie Wang
- College of Biosystems Engineering and Food Science, Key laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Xiang Li
- College of Biosystems Engineering and Food Science, Key laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Siyu Chen
- Shiseido China Innovation Center, Shanghai, China
| | - Daoxin Dai
- Shiseido China Innovation Center, Shanghai, China
| | - Weihu Li
- Shiseido China Innovation Center, Shanghai, China
| | - Binhai Shi
- Shiseido China Innovation Center, Shanghai, China
| | - Baolong Wang
- Yangzhou China and Yeal Food Co., Ltd., Yangzhou, China
| | - Guoliang Jie
- Huangshan GreenXtract Co., Ltd., Huangshan, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, Key laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Al-Zahrany LA, Alafaleq NO, Bhat SA, Islam BU, Jali BR, Naz H, Al-Okail MS, Alenad AM, Al-Twaijry N, Khan MS. Inhibition of Catalase Glycation by Ajwa Date Phenolics: A Spectroscopic and Computational Study. Chem Biodivers 2025:e202403144. [PMID: 40156324 DOI: 10.1002/cbdv.202403144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025]
Abstract
Glycation is a non-enzymatic process where reducing sugars react with the free amino groups of proteins, a phenomenon that occurs under hyperglycemic conditions such as diabetes. Ajwa dates are widely consumed for their health benefits, but limited studies have investigated their potential to inhibit glycation. In this study, we evaluate the antiglycation effects of Ajwa date pulp extracts (ADEs) using the glyoxal (GO)-catalase (CAT) glycation model. Phytochemical analysis revealed that the dry ADE contains significantly higher total phenolic content (2619 ± 121 mg GAE/100 g dry weight [DW] [p < 0.0001]) compared to fresh Ajwa dates. Moreover, the acid hydrolysis method proved more effective for extracting bound phenolic acids (1035 ± 353 mg/100 g DW) than the alkaline hydrolysis method (446 ± 18 mg/100 g DW) from dry Ajwa dates. Using ultrahigh-performance liquid chromatography with a photodiode array detector, p-coumaric and ferulic acid were identified as the primary polyphenols in the ADE. The study demonstrated that GO-induced CAT glycation and the resulting advanced glycation end-products (AGEs) were significantly inhibited by ADE, as measured by AGE-specific fluorescence. While glycation caused conformational changes in CAT, ADE treatment effectively reduced these alterations, as observed through ultraviolet-visible absorption, circular dichroism, and tryptophan spectroscopies. Molecular docking analysis showed that Ajwa date constituent; caffeic acid, p-coumaric acid and ferulic acid had estimated binding affinities of 6.9, 7.1 and 6.1 kcal/mol, respectively with CAT. Multiple hydrogen bonds were seen between these phenolic acids and amino acid residues in addition to other weak interactions. In conclusion, this study highlights the preventive effects of ADE against glycation, offering potential pathways for addressing diabetes-related complications with increased efficacy, selectivity and safety in humans.
Collapse
Affiliation(s)
- Lamya A Al-Zahrany
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nouf O Alafaleq
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Badar Ul Islam
- Department of Biochemistry, RG Medical College and Research centre, Hathras, India
| | - Bigyan Ranjan Jali
- Department of Chemistry, Veer Surendra Sai University of Technology, Sambalpur, India
| | - Huma Naz
- Department of Internal Medicine, University of Missouri, Columbia, Missouri, USA
| | - Majed S Al-Okail
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Amal M Alenad
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nojood Al-Twaijry
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Zhang CY, Guo YR, Hou TY, Ning QR, Han WY, Zhao XY, Cui F, Li H. Formation of advanced glycation end products in glucose-amino acid models of Maillard reaction under dry- and wet-heating conditions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2342-2351. [PMID: 39501682 DOI: 10.1002/jsfa.14004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 02/14/2025]
Abstract
BACKGROUND Advanced glycation end products (AGEs) are compounds formed by non-enzymatic processes in the Maillard reaction and can cause various chronic diseases. This study explores the AGE formation process in a glucose-amino acid system under both wet- and dry-heating conditions, and analyzes the effect of cysteine in AGE formation. RESULTS Under wet-heating conditions, Nε-carboxymethyllysine (CML) and Nε-carboxyethyllysine (CEL) concentrations rose for the initial 90 min and subsequently declined after 120 min; after 90 min of heating, the maximum yields in the absence of cysteine were 1151.04 ± 14.01 and 3386.90 ± 26.55 ng mL-1, respectively. The concentration of pyrraline (Pyr) increased after 30 min and then decreased after 60 min with a maximum yield of 777.68 ± 23.36 ng mL-1. However, in dry-heating models, the AGE concentrations consistently increased with increasing heating time; the maximum yields for CML, CEL and Pyr were 468.66 ± 10.96, 1993.57 ± 14.81 and 1085.74 ± 58.06 ng mL-1, respectively. The addition of cysteine showed an inhibitory effect on AGE formation, especially for Pyr in the dry-heating model, with inhibition rates ranging from 17.14% to 95.60%. CONCLUSION Although wet-heating models produced more CML and CEL, they produced less Pyr than dry-heating models. The AGE formation in wet-heating models positively correlated with the reaction rate; however, the dry-heating reaction demonstrated a more complex relationship between reaction rate and reaction protocol. Moreover, cysteine exhibited a significant inhibitory effect on AGE production, and the degree of inhibition was proportional to the cysteine concentration. This study provides important insights into the mechanisms for AGE formation under various heating conditions, such as those representing baking (dry-heating) and steaming conditions (wet-heating). © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chen-Yang Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, China
| | - Yu-Rong Guo
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, China
| | - Tian-Yu Hou
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, China
| | - Qian-Ru Ning
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, China
| | - Wan-Yu Han
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, China
| | - Xing-Yun Zhao
- Modern Research Center for Traditional Chinese Medicine, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Feng Cui
- Research and development center, Research Institute of Bozhou Hi-tech Pharmaceutical Industry Technology, Bozhou, China
| | - He Li
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, China
| |
Collapse
|
15
|
Moretto G, Colombo R, Negri S, Cena H, Vailati L, Papetti A. Italian Biodiversity: A Source of Edible Plant Extracts with Protective Effects Against Advanced Glycation End Product-Related Diseases. Nutrients 2025; 17:935. [PMID: 40289949 PMCID: PMC11946827 DOI: 10.3390/nu17060935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/01/2025] [Accepted: 03/05/2025] [Indexed: 04/30/2025] Open
Abstract
Background: Italy's plant biodiversity, characterized by many plant species, is an important source of bioactive secondary metabolites that help reduce the risk of the development of advanced glycation end product (AGE)-related diseases. AGEs are involved in various diseases, such as diabetes, cardiovascular, and neurodegenerative disorders. Therefore, the aim of the study was to investigate the antiglycative, hypoglycemic, and neuroprotective properties of nine edible plant extracts using different in vitro assays. Methods: The ability of the extracts to counteract AGE formation was evaluated at different stages of the glycation reaction using in vitro systems based on the determination of Amadori products and the co-incubation of a model protein with a dicarbonyl compound under different experimental conditions. In addition, the extracts' methylglyoxal (MGO) and glyoxal (GO) trapping ability was investigated. Hypoglycemic activity was assessed by measuring α-amylase inhibition, while the neuroprotective effects were explored by testing amyloid β peptide 1-42 (Aβ1-42) fibrillogenesis inhibition. Results: All extracts generally had a dose-related capacity for the inhibition of AGE formation, mainly at the intermediate stage of the glycation reaction; high trapping capacity against MGO and GO; and promising hypoglycemic properties. In addition, they affected the fibrillogenesis process by reducing mature amyloid fibril formation and altering fibril morphology. Conclusions: All tested extracts had promising anti-fibrillogenic properties. Rosa canina extract was the most active among the tested plant species given its antiglycative activity (about 80% inhibition of AGE formation), trapping capacity against MGO and GO (almost 100%), hypoglycemic effects (66.20 ± 0.88%), and anti-fibrillogenic effects (69.00 ± 4.49% inhibition), indicating its suitability in the management of AGE-related diseases and for the potential development of a novel food ingredient.
Collapse
Affiliation(s)
- Giulia Moretto
- Drug Sciences Department, University of Pavia, 27100 Pavia, Italy; (G.M.); (R.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy; (S.N.); (H.C.)
| | - Raffaella Colombo
- Drug Sciences Department, University of Pavia, 27100 Pavia, Italy; (G.M.); (R.C.)
| | - Stefano Negri
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy; (S.N.); (H.C.)
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Hellas Cena
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy; (S.N.); (H.C.)
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
- Clinical Nutrition Unit, ICS Maugeri, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 27100 Pavia, Italy
| | - Lorena Vailati
- Struttura Complessa di Anatomia Patologica, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, 27100 Pavia, Italy;
| | - Adele Papetti
- Drug Sciences Department, University of Pavia, 27100 Pavia, Italy; (G.M.); (R.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy; (S.N.); (H.C.)
| |
Collapse
|
16
|
Ocampo‐Candiani J, Alas‐Carbajal R, Bonifaz‐Araujo JF, Marín‐Castro H, Valenzuela‐Ahumada F, Véliz‐Barandiarán JL, Vila Echague A, Zepeda‐Reyes DE, Miot HA. Latin American consensus on the treatment of melasma. Int J Dermatol 2025; 64:499-512. [PMID: 39415312 PMCID: PMC11840225 DOI: 10.1111/ijd.17522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/10/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024]
Abstract
Melasma is a chronic, relapsing hyperpigmentation disorder that primarily affects photoexposed areas, occurring most frequently in adult women with darker skin phototypes. The primary factors contributing to its development include sun exposure, sex hormones (e.g., pregnancy), and genetic predisposition. Melasma is highly prevalent in Latin America, where many countries lie in intertropical zones and exhibit significant ethnic diversity because of centuries of intermixing among Native Americans, Europeans, and Sub-Saharan Africans. Nine Latin American experts formulated a DELPHI-based consensus to develop a valuable approach for treating melasma in this diverse population. After establishing an accurate diagnosis, assessing the impact on quality of life, and determining disease severity, the consensus recommends mitigating known triggers and promoting rigorous photoprotection. Active therapy should be tailored based on individual characteristics (e.g., pregnancy status, previous treatments, skin sensitivity). Treatment options include topical depigmenting agents, systemic therapies, and procedural interventions such as laser therapy, microneedling, and chemical peels. Periodic reassessment of the treatment is essential, with strategies adjusted if targeted outcomes are not achieved. Once clinical remission is attained, patients should continue using topical depigmenting agents and maintain strict photoprotection measures to prevent recurrence.
Collapse
Affiliation(s)
- Jorge Ocampo‐Candiani
- Facultad de Medicina and Hospital Universitario “Dr. José E. Gonzalez”, Servicio de DermatologíaUniversidad Autónoma de Nuevo LeónMonterreyN.LMexico
| | | | | | - Hernando Marín‐Castro
- Departamento de Dermatología, HelpharmaCLIPSO (Clínica para el Manejo de Enfermedades Inmunomediadas)MedellinColombia
| | | | | | | | | | - Helio A. Miot
- Departamento de DermatologíaFMB‐UnespBotucatuSPBrazil
| |
Collapse
|
17
|
Malfa GA, Bianchi S, Spadaro V, Di Giacomo C, Raimondo FM, Acquaviva R. Oxalis pes-caprae L. (Oxalidaceae): From Invasive Concern to Promising Bioresource for Health and Sustainable Applications. PLANTS (BASEL, SWITZERLAND) 2025; 14:578. [PMID: 40006837 PMCID: PMC11858978 DOI: 10.3390/plants14040578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025]
Abstract
Oxalis pes-caprae L., an invasive plant from South Africa, has developed into a severe ecological threat in many Mediterranean and temperate areas by replacing native flora and modifying ecosystems. Although this species has detrimental effects on the ecosystem, it has unrealized potential as a significant bioresource. Current research on the secondary metabolites found in O. pes-caprae, such as phenolic acids, oxalates, and flavonoids, is summarized in this review, along with an analysis of their biological and pharmacological properties, which include antibacterial, antidiabetic, and antioxidant activities. O. pes-caprae could be converted from a troublesome intruder into a financially and ecologically advantageous bioresource of natural products for pharmaceutical, nutraceutical, cosmetic, and agricultural applications by rethinking the invasive species as a resource for phytochemical extraction. This would offer a novel approach to managing invasive species while promoting the advancement of green technologies and sustainable practices.
Collapse
Affiliation(s)
- Giuseppe Antonio Malfa
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (C.D.G.); (R.A.)
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- PLANTA/Center for Research, Documentation and Training, Via Serraglio Vecchio 28, 90123 Palermo, Italy;
| | - Simone Bianchi
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (C.D.G.); (R.A.)
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Vivienne Spadaro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Section of Botany, Anthropology and Zoology, University of Palermo, Via Archirafi 38, 90123 Palermo, Italy;
| | - Claudia Di Giacomo
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (C.D.G.); (R.A.)
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Francesco Maria Raimondo
- PLANTA/Center for Research, Documentation and Training, Via Serraglio Vecchio 28, 90123 Palermo, Italy;
| | - Rosaria Acquaviva
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (C.D.G.); (R.A.)
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- PLANTA/Center for Research, Documentation and Training, Via Serraglio Vecchio 28, 90123 Palermo, Italy;
| |
Collapse
|
18
|
Vašková J, Kováčová G, Pudelský J, Palenčár D, Mičková H. Methylglyoxal Formation-Metabolic Routes and Consequences. Antioxidants (Basel) 2025; 14:212. [PMID: 40002398 PMCID: PMC11852113 DOI: 10.3390/antiox14020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/04/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Methylglyoxal (MGO), a by-product of glycolysis, plays a significant role in cellular metabolism, particularly under stress conditions. However, MGO is a potent glycotoxin, and its accumulation has been linked to the development of several pathological conditions due to oxidative stress, including diabetes mellitus and neurodegenerative diseases. This paper focuses on the biochemical mechanisms by which MGO contributes to oxidative stress, particularly through the formation of advanced glycation end products (AGEs), its interactions with antioxidant systems, and its involvement in chronic diseases like diabetes, neurodegeneration, and cardiovascular disorders. MGO exerts its effects through multiple signaling pathways, including NF-κB, MAPK, and Nrf2, which induce oxidative stress. Additionally, MGO triggers apoptosis primarily via intrinsic and extrinsic pathways, while endoplasmic reticulum (ER) stress is mediated through PERK-eIF2α and IRE1-JNK signaling. Moreover, the activation of inflammatory pathways, particularly through RAGE and NF-κB, plays a crucial role in the pathogenesis of these conditions. This study points out the connection between oxidative and carbonyl stress due to increased MGO formation, and it should be an incentive to search for a marker that could have prognostic significance or could be a targeted therapeutic intervention in various diseases.
Collapse
Affiliation(s)
- Janka Vašková
- Department of Medical Biology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia
| | - Gabriela Kováčová
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik, 040 11 Košice, Slovakia; (G.K.)
| | - Jakub Pudelský
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik, 040 11 Košice, Slovakia; (G.K.)
| | - Drahomír Palenčár
- Department of Plastic Surgery, Faculty of Medicine, Comenius University Bratislava, 813 72 Bratislava, Slovakia
| | - Helena Mičková
- Department of Medical Biology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia
| |
Collapse
|
19
|
Oliveira JS, da Silva JA, de Freitas BVM, Alfenas RCG, Bressan J. A Mediterranean diet improves glycation markers in healthy people and in those with chronic diseases: a systematic review of clinical trials. Nutr Rev 2025; 83:e317-e331. [PMID: 38719207 DOI: 10.1093/nutrit/nuae045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
CONTEXT Consumption of the Mediterranean diet (MedDiet) has beneficial effects on cardiometabolic health and aging. OBJECTIVE This systematic review aimed to critically investigate the effect of the MedDiet on glycation markers in healthy or overweight individuals with type 2 diabetes or cardiovascular disease. DATA SOURCES MEDLINE, EMBASE, Web of Science, and the Cochrane Library were searched, using the terms "Mediterranean diet" AND "glycation end products, advanced". DATA EXTRACTION Three randomized and 3 nonrandomized clinical trials, containing data on 2935 adult and elderly individuals with normal weight or overweight, were included. All extracted data were compiled, compared, and critically analyzed. DATA ANALYSIS The authors of most of the studies demonstrated a reduction in serum concentrations of advanced glycation end products (AGEs), such as εN-carboxymethyllysine and methylglyoxal, and in skin autofluorescence levels after at least 4 weeks of adherence to the MedDiet. The MedDiet also led to positive effects on gene expression of receptors for AGEs, as RAGE and AGER1, and an enzyme involved in detoxification (glyoxalase I). There is no evidence that short-term adherence affects glycation markers. CONCLUSIONS Glycation markers improved in response to the MedDiet. The possible mechanisms involved may be related to the low AGE and refined sugars content of the diet, as well as its high monounsaturated fatty acid, phenolic compound, and dietary fiber contents. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42021284006.
Collapse
Affiliation(s)
- Julia S Oliveira
- Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Jessica A da Silva
- Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Brenda V M de Freitas
- Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Rita C G Alfenas
- Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Josefina Bressan
- Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
20
|
Chen N, Wang N, Fang Q, Yu Z, Hu Y, Jin J, Yang S. Inhibition effect of AGEs formation in vitro by the two novel peptides EDYGA and DLLCIC derived from Pelodiscus sinensis. Front Nutr 2025; 12:1537338. [PMID: 39949540 PMCID: PMC11821488 DOI: 10.3389/fnut.2025.1537338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
The antioxidant activity of natural products is closely related to their antiglycation effects. This study aimed to examine the antiglycation activity and elucidate the underlying mechanisms of two specific peptides, EDYGA (Glu-Asp-Tyr-Gly-Ala) and DLLCIC (Asp-Leu-Leu-Cys-Ile-Val), derived from protein hydrolysates of the Pelodiscus sinensis. Both EDYGA and DLLCIC were efficient in bovine serum albumin (BSA)/glucose model to inhibit BSA glycation, while DLLCIC showed higher antiglycation activity than EDYGA. Firstly, it was found that EDYGA and DLLCIC could inhibit the formation of NEG and AGEs. Moreover, EDYGA and DLLCIC were able to maintain the protein secondary structure and stabilize the band positions (amide I & II). Additionally, molecular simulations indicated that DLLCIC can spontaneously interact with the central site of BSA, specifically at Lys114 and Glu424 residues, through hydrogen bonds with an energy strength of -0.7 kcal/mol. Furthermore, CCK-8 and morphological experiments confirmed that EDYGA and DLLCIC improved cell survival against AGEs-induced cytotoxicity, with EC50 values of 17.64 μM for EDYGA and 15.08 μM for DLLCIC. These findings serve as a significant reference for the development of EDYGA and DLLCIC as effective antiglycation agents in the prevention of glycation-mediated diseases.
Collapse
Affiliation(s)
- Nuo Chen
- The College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Nan Wang
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Qiaoyun Fang
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Zuolong Yu
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Yiyuan Hu
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Jiancang Jin
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Shengli Yang
- The College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
21
|
Silva RMGD, Barbosa FC, Santos HH, Granero FO, Figueiredo CCM, Nicolau-Junior N, Hamaguchi A, Silva LP. Antioxidant and anti-glycation activities of Mandevilla velutina extract and effect on parasitemia levels in Trypanosoma cruzi experimental infection: In vivo, in vitro and in silico approaches. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118994. [PMID: 39461387 DOI: 10.1016/j.jep.2024.118994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/27/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mandevilla velutina (Mart. Ex Stadelm.) Woodson, known in Brazil as "infalível" and "jalapa", is a medicinal plant native from the Cerrado region (Brazilian Savannah). The underground organ (xylopodium) of this species is prepared as ethanolic extract or infusion and it is commonly used in traditional medicine to treat snake venom. Although, locals and indigenous populations from Cerrado have used M. velutina for the treatment of infection by Trypanosoma cruzi (Chagas' disease). AIM OF THE STUDY This study aimed to evaluate the in vitro antioxidant and anti-glycation activities of the crude hydroethanolic extract of M. velutina xylopodium. Besides, it aimed to evaluate its effect on parasitemia levels in vivo T. cruzi experimental infection. In addition, this study aimed to determine possible interactions between the main compound of the extract and molecular targets associated with survival and virulence of T. cruzi in silico approaches. MATERIALS AND METHODS Determination of total polyphenols, flavonoids and steroidal aglycones content were performed. In addition, high performance liquid chromatography (HPLC) was carried out to identify main compounds of the extract. Antioxidant activity was determined by DPPH radical scavenging, ferric ion reducing power (FRAP), Thiobarbituric acid reactive species (TBARS) and Oxygen Radical Absorbance Capacity (ORAC) methods. Anti-glycation activity was demonstrated through relative mobility in electrophoresis (RME), determination of free amino groups and inhibition of AGEs formation. Determination of the action of extract in parasitemia levels was performed by T. cruzi experimental infection of mice and nitrite levels were measured in the serum of animals evaluated in this study. Molecular docking analyses of the main compound (Velutinol A) with DNA and molecular targets associated with survival and virulence of T. cruzi. RESULTS Phytoconstituents evaluation exhibited the presence polyphenols, flavonoids and steroidal aglycone, and HPLC identified the major presence of Velutinol A. Antioxidant and anti-glycation evaluations showed that the extract present significant activity in all methods evaluated. In addition, extract reduced the number of trypomastigotes and increased the survival of treated animals. The treatment using extract showed an interference in the synthesis of physiological nitric oxide as an immune response to infection. In silico assays demonstrated interaction between Velutinol A and DNA and molecular targets of T. cruzi. CONCLUSIONS The results showed that the hydroethanolic extract of M. velutina xylopodium contains bioactive compounds including polyphenols, flavonoids and steroidal aglycones (mainly Velutinol A) of which may be responsible for the antioxidant, anti-glycation and anti-parasitic activity against T. cruzi. Trypanocidal activity of M. velutina compounds may be linked to their influence on NO synthesis during infection and/or their capacity to bind and inhibit molecules associated to virulence and survival of T. cruzi.
Collapse
Affiliation(s)
- Regildo Márcio Gonçalves da Silva
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Department of Biotechnology, Laboratory of Herbal Medicine and Natural Products, Assis, São Paulo, Brazil; São Paulo State University (UNESP), Institute of Chemistry, Araraquara, São Paulo, Brazil.
| | - Fernando Cesar Barbosa
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Department of Biotechnology, Laboratory of Herbal Medicine and Natural Products, Assis, São Paulo, Brazil
| | - Hugo Henrique Santos
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Department of Biotechnology, Laboratory of Herbal Medicine and Natural Products, Assis, São Paulo, Brazil
| | | | | | - Nilson Nicolau-Junior
- Federal University of Uberlândia (UFU), Institute of Biotechnology, Laboratory of Molecular Modeling, Uberlândia, Minas Gerais, Brazil
| | - Amélia Hamaguchi
- Federal University of Uberlândia (UFU), Institute of Biotechnology, Uberlândia, Minas Gerais, Brazil
| | | |
Collapse
|
22
|
Nobert S, Wolgien-Lowe H, Davis T, Paterson E, Wilson-Rawlins T, Golizeh M. Assessing metal-induced glycation in French fries. Metallomics 2025; 17:mfae059. [PMID: 39737723 PMCID: PMC11704954 DOI: 10.1093/mtomcs/mfae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/19/2024] [Indexed: 01/01/2025]
Abstract
Non-enzymatic glycation is the chemical reaction between the amine group of an amino acid and the carbonyl group of a reducing sugar. The final products of this reaction, advanced glycation end-products (AGEs), are known to play a key role in aging and many chronic diseases. The kinetics of the AGE formation reaction depends on several factors, including pH, temperature, and the presence of prooxidant metals, such as iron and copper. In this study, the effect of iron and copper on the rate and outcome of non-enzymatic glycation was examined in the test tube and a food model, using chromatography and spectrometry methods. Binding efficiencies of several chelating agents to selected metals were also assessed. Phytic acid was the most efficient of the tested chelating agents. The effect of phytic acid on AGE formation in French fries was evaluated. While phytic acid treatment increased the amounts of UV-absorbing compounds in fries, a food ingredient rich in phytic acid showed the opposite effect. This study suggests that prooxidant metals can affect the rate, outcome, and yield of the non-enzymatic glycation reaction and that they do so differently when free or chelated. Moreover, despite being an excellent iron chelator, phytic acid can promote AGE formation in fried food potentially via mechanisms other than metal-induced glycation.
Collapse
Affiliation(s)
- Seth Nobert
- Department of Environmental and Physical Sciences, Faculty of Science, Concordia University of Edmonton, Edmonton, Alberta, Canada
- Metals in Environment and Health (MEH) Research Cluster, Concordia University of Edmonton, Edmonton, Alberta, Canada
| | - Haley Wolgien-Lowe
- Department of Environmental and Physical Sciences, Faculty of Science, Concordia University of Edmonton, Edmonton, Alberta, Canada
- Metals in Environment and Health (MEH) Research Cluster, Concordia University of Edmonton, Edmonton, Alberta, Canada
| | - Tamara Davis
- Department of Environmental and Physical Sciences, Faculty of Science, Concordia University of Edmonton, Edmonton, Alberta, Canada
- Metals in Environment and Health (MEH) Research Cluster, Concordia University of Edmonton, Edmonton, Alberta, Canada
| | - Emma Paterson
- Department of Environmental and Physical Sciences, Faculty of Science, Concordia University of Edmonton, Edmonton, Alberta, Canada
- Metals in Environment and Health (MEH) Research Cluster, Concordia University of Edmonton, Edmonton, Alberta, Canada
| | - Thérèse Wilson-Rawlins
- Department of Environmental and Physical Sciences, Faculty of Science, Concordia University of Edmonton, Edmonton, Alberta, Canada
- Metals in Environment and Health (MEH) Research Cluster, Concordia University of Edmonton, Edmonton, Alberta, Canada
| | - Makan Golizeh
- Department of Environmental and Physical Sciences, Faculty of Science, Concordia University of Edmonton, Edmonton, Alberta, Canada
- Metals in Environment and Health (MEH) Research Cluster, Concordia University of Edmonton, Edmonton, Alberta, Canada
| |
Collapse
|
23
|
Zouaoui Z, Ennoury A, El Asri S, Laabar A, Kabach I, Laganà Vinci R, Cacciola F, Mondello L, Taghzouti K, Nhiri M. Polyphenols from rose pepper spice: LC-MS/MS characterization and therapeutic potential in diabetes mellitus management. FOOD BIOSCI 2025; 63:105644. [DOI: 10.1016/j.fbio.2024.105644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
24
|
Sun J, Wei N, Yu C, Li C, Li W, Sun X, Zhang Y, Li Y, Xie J. Natural polysaccharides: The potential biomacromolecules for treating diabetes and its complications via AGEs-RAGE-oxidative stress axis. Int Immunopharmacol 2024; 143:113426. [PMID: 39461240 DOI: 10.1016/j.intimp.2024.113426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024]
Abstract
Diabetes mellitus, a chronic metabolic disorder, poses a significantly public health challenge. Extensive research highlights that contemporary dietary patterns, characterized by excessive intake of sugar, fat, and protein, are major contributors to the onset and progression of diabetes. The central element to this process is the aberrant activation of the advanced glycation end products (AGEs) - receptor for AGEs (RAGE) - oxidative stress axis, which plays a pivotal role in disrupting normal carbohydrate metabolism. This pathway presents a critical target for developing interventions aimed at mitigating diabetes and its complications. In recent years, natural polysaccharides have emerged as promising agents in the prevention and treatment of diabetes, due to their ability to inhibit AGE formation, regulate RAGE expression, and modulate the AGEs-RAGE-oxidative stress axis. In this paper, we explore the pathogenic mechanism of this axis and review the therapeutic potential of natural polysaccharides in managing diabetes and its complications. Our goal is to provide new insights for the effective management of diabetes and its associated health challenges.
Collapse
Affiliation(s)
- Jie Sun
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Na Wei
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chenxi Yu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chao Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wei Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiuyan Sun
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yanqing Zhang
- Biotechnology & Food Science College, Tianjin University of Commerce, Tianjin 300134, China.
| | - Yaxin Li
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Junbo Xie
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
25
|
Raghavan CT. Advanced Glycation End Products in Neurodegenerative Diseases. J Mol Neurosci 2024; 74:114. [PMID: 39653979 DOI: 10.1007/s12031-024-02297-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
Advanced glycation end products (AGEs) have attracted interest as therapeutic targets for neurodegenerative diseases. AGEs facilitate the onset and progression of various neurogenerative disorders due to their ability to promote cross-linking and aggregation of proteins. Further, the interaction between AGEs and receptor for AGEs (RAGE) activates neuroinflammatory, oxidative stress and excitotoxicity processes that contribute to neuronal cell death. Various therapeutic efforts have targeted lowering the production of AGEs, inhibiting RAGE or inhibiting some of the processes of the AGE-RAGE axis as potential treatments for these disorders. Whereas effective treatments for many neurodegenerative disorders remain elusive, such efforts offer promise to slow the progression of diseases such as Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD).
Collapse
Affiliation(s)
- Cibin T Raghavan
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695 011, Kerala, India.
- Molecular Genetics Unit, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695 011, Kerala, India.
| |
Collapse
|
26
|
Semchyshyn H. Fructose-mediated AGE-RAGE axis: approaches for mild modulation. Front Nutr 2024; 11:1500375. [PMID: 39698244 PMCID: PMC11652219 DOI: 10.3389/fnut.2024.1500375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024] Open
Abstract
Fructose is a valuable and healthy nutrient when consumed at normal levels (≤50 g/day). However, long-term consumption of excessive fructose and elevated endogenous production can have detrimental health impacts. Fructose-initiated nonenzymatic glycation (fructation) is considered as one of the most likely mechanisms leading to the generation of reactive species and the propagation of nonenzymatic processes. In the later stages of glycation, poorly degraded advanced glycation products (AGEs) are irreversibly produced and accumulated in the organism in an age- and disease-dependent manner. Fructose, along with various glycation products-especially AGEs-are present in relatively high concentrations in our daily diet. Both endogenous and exogenous AGEs exhibit a wide range of biological effects, mechanisms of which can be associated with following: (1) AGEs are efficient sources of reactive species in vivo, and therefore can propagate nonenzymatic vicious cycles and amplify glycation; and (2) AGEs contribute to upregulation of the specific receptor for AGEs (RAGE), amplifying RAGE-mediated signaling related to inflammation, metabolic disorders, chronic diseases, and aging. Therefore, downregulation of the AGE-RAGE axis appears to be a promising approach for attenuating disease conditions associated with RAGE-mediated inflammation. Importantly, RAGE is not specific only to AGEs; it can bind multiple ligands, initiating a complex RAGE signaling network that is not fully understood. Maintaining an appropriate balance between various RAGE isoforms with different functions is also crucial. In this context, mild approaches related to lifestyle-such as diet optimization, consuming functional foods, intake of probiotics, and regular moderate physical activity-are valuable due to their beneficial effects and their ability to mildly modulate the fructose-mediated AGE-RAGE axis.
Collapse
Affiliation(s)
- Halyna Semchyshyn
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
27
|
Takeuchi M. Toxic AGEs (TAGE) Cause Lifestyle-Related Diseases. Antioxidants (Basel) 2024; 13:1372. [PMID: 39594514 PMCID: PMC11591050 DOI: 10.3390/antiox13111372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Advanced glycation end-products (AGEs) play a role in the onset/progression of lifestyle-related diseases (LSRD), suggesting that the suppression of AGE-induced effects can be exploited to prevent and treat LSRD. However, AGEs have a variety of structures with different biological effects. Glyceraldehyde (GA) is an intermediate of glucose, and fructose metabolism and GA-derived AGEs (GA-AGEs) have been associated with LSRD, leading to the concept of toxic AGEs (TAGE). Elevated blood TAGE levels have been implicated in the onset/progression of LSRD; therefore, the measurement of TAGE levels may enable disease prediction at an early stage. Moreover, recent studies have revealed the structures and degradation pathways of TAGE. Herein, we provide an overview of the research on TAGE. The TAGE theory provides novel insights into LSRD and is expected to elucidate new targets for many diseases.
Collapse
Affiliation(s)
- Masayoshi Takeuchi
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku 920-0293, Ishikawa, Japan
| |
Collapse
|
28
|
Dong C, Cheng Y, Zhang M, Chen M, Yan Z, Zhou S, BenxuYang, Guo Q, Wang C, Wu S. Monascus pigments suppress fructose-mediated BSA glycation by trapping methylglyoxal and covalent binding to proteins. Int J Biol Macromol 2024; 280:135961. [PMID: 39322168 DOI: 10.1016/j.ijbiomac.2024.135961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
In this study, four Monascus pigments (ankaflavin, AK; monascin MS; rubropunctatin, O1; monascorubrin, O2) were proved to exhibit considerable anti-glycation properties in bovine serum albumin (BSA)-fructose model. AK (40.62 %) and MS (48.38 %) were found to exert lower inhibitory effects on the formation of fluorescent advanced glycation end products (AGEs) than aminoguanidine (59.4 %), while O1 (90.64 %) and O2 (93.82 %) displayed much stronger abilities. AK and MS could trap methylglyoxal (MGO) with maximum capture rates of 85.67 % and 84.90 %, respectively, and only mono-MGO adducts of them were detected. LC-Orbitrap MS/MS analysis revealed that four pigments significantly altered the type and reduced the number of the glycated sites and they all covalently bound to BSA, with O1 and O2 possessing high reactivity. Altogether, AK and MS suppressed fluorescent AGEs formation mainly via trapping MGO and covalently interacting with BSA, and blocking free amino groups was the dominant mechanism for O1 and O2. These findings presented new insights into Monascus pigments as dietary supplement for inhibiting protein glycation.
Collapse
Affiliation(s)
- Changyan Dong
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, 300457, Tianjin, China
| | - Yi Cheng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, 300457, Tianjin, China
| | - Meihui Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, 300457, Tianjin, China
| | - Mianhua Chen
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, 300457, Tianjin, China
| | - Zhongli Yan
- Tianjin University of Science and Technology, 300457 Tianjin, China
| | - Sumei Zhou
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, 100048 Beijing, China.
| | - BenxuYang
- Tianjin Lida Food Technology Co., Ltd., 300393 Tianjin, China
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, 300457, Tianjin, China.
| | - Changlu Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, 300457, Tianjin, China
| | - Shufen Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, 300457, Tianjin, China.
| |
Collapse
|
29
|
Zhao L, Zhang X, He L, Li Y, Yu Y, Lu Q, Liu R. Diet with high content of advanced glycation end products induces oxidative stress damage and systemic inflammation in experimental mice: protective effect of peanut skin procyanidins. FOOD SCIENCE AND HUMAN WELLNESS 2024; 13:3570-3581. [DOI: 10.26599/fshw.2023.9250039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
30
|
Singh A, Rajoriya D, Obalesh IS, Harish Prashanth KV, Chaudhari SR, Mutturi S, Mazumder K, Eligar SM. Arabinoxylan from pearl millet bran: Optimized extraction, structural characterization, and its bioactivities. Int J Biol Macromol 2024; 279:135247. [PMID: 39222787 DOI: 10.1016/j.ijbiomac.2024.135247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/16/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Arabinoxylan (AX) from cereals and millets have garnered attention due to the myriad of their bioactivities. Pearl millet (Pennisetum glaucum) bran, an underexplored milling by-product was used to extract AX (PMAX) by optimized alkali-assisted extraction using Response Surface Methodology and Central Composite Design, achieving a yield of 15.96 ± 0.39 % (w/w) under optimal conditions (0.57 M NaOH, 1:17 g/mL solid-to-liquid ratio, 60 °C, 4 h). Structural analysis revealed that PMAX was primarily composed of arabinose, xylose, glucose, galactose, and mannose (molar ratio 45.1:36.1:10.4:7.1:1.8), with a highly substituted (1 → 4)-linked β-D-xylopyranose backbone and a molecular weight of 794.88 kDa. PMAX displayed a significant reducing power of 0.617, metal chelating activity of 51.72 %, and DPPH, and ABTS radical scavenging activities (64.43 and 75.4 %, respectively at 5 mg/mL). It also demonstrated anti-glycation effects by inhibiting fructosamine (52.5 %), protein carbonyl (53.6 %), and total advanced glycation end products (77.0 %) formation, and reduced protein oxidation products such as dityrosine (84.7 %), kynurenine (80.2 %), and N'-formyl-kynurenine (50.0 %) at 5 mg/mL. PMAX induced the growth of Lactobacillus spp. in vitro and modulate gut microbiota in male Wistar rats by increasing Bacteroidetes and decreasing Firmicutes. These results provide a basis for further research on pearl millet arabinoxylan and its possible nutraceutical application.
Collapse
Affiliation(s)
- Akanksha Singh
- Department of Traditional Foods and Applied Nutrition, CSIR-Central Food Technological Research Institute, Mysore 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Deependra Rajoriya
- Department of Food Engineering, CSIR-Central Food Technological Research Institute, Mysore 570020, India; Department of Food Technology, Rajiv Gandhi University (A Central University), Rono Hills, Doimukh 791 112, Arunachal Pradesh, India
| | - Indudhar S Obalesh
- Department of Traditional Foods and Applied Nutrition, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| | - K V Harish Prashanth
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| | - Sachin R Chaudhari
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Department of Plantation Products, Spices, and Flavour Technology, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| | - Sarma Mutturi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Depratment of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| | - Koushik Mazumder
- National Agri-Food Biotechnology Institute, Sector-81 (Knowledge City), S.A.S. Nagar, Mohali 140306, Punjab, India
| | - Sachin M Eligar
- Department of Traditional Foods and Applied Nutrition, CSIR-Central Food Technological Research Institute, Mysore 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
31
|
Sroga GE, Vashishth D. In vivo glycation-interplay between oxidant and carbonyl stress in bone. JBMR Plus 2024; 8:ziae110. [PMID: 39386996 PMCID: PMC11458925 DOI: 10.1093/jbmrpl/ziae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 06/18/2024] [Accepted: 07/28/2024] [Indexed: 10/12/2024] Open
Abstract
Metabolic syndromes (eg, obesity, type 2 diabetes (T2D), atherosclerosis, and neurodegenerative diseases) and aging, they all have a strong component of carbonyl and reductive-oxidative (redox) stress. Reactive carbonyl (RCS) and oxidant (ROS) stress species are commonly generated as products or byproducts of cellular metabolism or are derived from the environment. RCS and ROS can play a dual role in living organisms. Some RCS and ROS function as signaling molecules, which control cellular defenses against biological and environmental assaults. However, due to their high reactivity, RCS and ROS inadvertently interact with different cellular and extracellular components, which can lead to the formation of undesired posttranslational modifications of bone matrix proteins. These are advanced glycation (AGEs) and glycoxidation (AGOEs) end products generated in vivo by non-enzymatic amino-carbonyl reactions. In this review, metabolic processes involved in generation of AGEs and AGOEs within and on protein surfaces including extracellular bone matrix are discussed from the perspective of cellular metabolism and biochemistry of certain metabolic syndromes. The impact of AGEs and AGOEs on some characteristics of mineral is also discussed. Different therapeutic approaches with the potential to prevent the formation of RCS, ROS, and the resulting formation of AGEs and AGOEs driven by these chemicals are also briefly reviewed. These are antioxidants, scavenging agents of reactive species, and newly emerging technologies for the development of synthetic detoxifying systems. Further research in the area of in vivo glycation and glycoxidation should lead to the development of diverse new strategies for halting the progression of metabolic complications before irreversible damage to body tissues materializes.
Collapse
Affiliation(s)
- Grażyna E Sroga
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Shirley Ann Jackson PhD Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Deepak Vashishth
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Shirley Ann Jackson PhD Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Engineering and Precision Medicine, Rensselaer-Icahn School of Medicine at Mount Sinai, 619 West 54th Street, New York, NY 10019, United States
| |
Collapse
|
32
|
Wang Y, Li S, Zhang T, Wang J, Zhang X, Li M, Gao Y, Zhang M, Chen H. Effects of myricetin and its derivatives on nonenzymatic glycation: A mechanism study based on proteomic modification and fluorescence spectroscopy analysis. Food Chem 2024; 455:139880. [PMID: 38852282 DOI: 10.1016/j.foodchem.2024.139880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/03/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
Myricetin and its derivatives, myricitrin and dihydromyricetin, are flavonoids widely presented in foods and phytomedicine that possess tremendous health potential. In this study, we compared the antiglycation activity of myricetin and its derivatives, then investigated the underlying mechanism using proteomic modification and fluorescence spectroscopy analysis. All three compounds exhibited thorough inhibition on nonenzymatic glycation process, with the inhibitory effects on AGEs reaching 85% at 40 μmol/L. They effectively protected bovine serum albumin (BSA) structure by inhibiting protein oxidation, preventing the conversion from α-helix to β-sheet, and reducing amyloid-like cross-β structure formation. Among the three compounds, myricetin showed a predominant antiglycation activity. Proteomic analysis identified the early glycated sites that were protected by myricetin, including lysine K235, 256, 336, 421, 420, 489, etc. Additionally, fluorescence spectroscopy revealed spontaneous interactions between BSA and myricetin. Overall, myricetin holds promise as an antiglycation agent in both the food and drug industries.
Collapse
Affiliation(s)
- Yajie Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, PR China
| | - Shuqin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, PR China
| | - Tingting Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, PR China
| | - Jia Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, PR China
| | - Xiaoyu Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, PR China
| | - Mingyue Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, PR China
| | - Yan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, PR China
| | - Min Zhang
- Tianjin Agricultural University, Tianjin 300384, PR China; State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
33
|
Hosseini SS, Tavalaee M, Seifati SM, Dehghani-Ashkezari M, Nasr-Esfahani MH. Protective effects of alpha-lipoic acid and alagebrium chloride against testicular dysfunction induced by varicocele and advanced glycation end (AGE) - Rich diet in a rat mode. Tissue Cell 2024; 90:102509. [PMID: 39098258 DOI: 10.1016/j.tice.2024.102509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Heat stress from varicocele can heighten oxidative stress in the testes, impacting sperm function and male fertility. Antioxidant therapy is explored as a remedy for varicocele, while dietary factors like processed foods, sugar, and saturated fats correlate with male infertility. Advanced glycation end products (AGEs), generated through glycation processes, can provoke oxidative stress, inflammation, and adverse health consequences. Alpha-lipoic acid (ALA), a versatile antioxidant, may alleviate oxidative stress and counteract the impact of AGEs, potentially by enhancing glucose reabsorption. Alagebrium chloride (ALT711), an anti-AGE compound, exhibits promise in cardiovascular disease by disrupting AGE cross-links. This study investigates the effects of ALA and ALT-711 on testicular function in varicocele and AGEs animal models. Both AGE and varicocele were found to alter the natural trends, leading to abnormal patterns in sperm parameters, testicular functional tests, as well as the expression of CML, RAGE, and TNF-α proteins. However, the administration of ALA or ALT711 helped mitigate these effects. While ALA demonstrated a slightly greater overall benefit compared to ALT, the difference was not statistically significant.
Collapse
Affiliation(s)
- Sayedeh Sahar Hosseini
- Department of Biology, Medical Biotechnology Research Center, Ashkezar Branch, Islamic Azad University, Ashkezar, Yazd, Iran
| | - Marziyeh Tavalaee
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Seyed Morteza Seifati
- Department of Biology, Medical Biotechnology Research Center, Ashkezar Branch, Islamic Azad University, Ashkezar, Yazd, Iran.
| | - Mahmood Dehghani-Ashkezari
- Department of Biology, Medical Biotechnology Research Center, Ashkezar Branch, Islamic Azad University, Ashkezar, Yazd, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Biology, Medical Biotechnology Research Center, Ashkezar Branch, Islamic Azad University, Ashkezar, Yazd, Iran.
| |
Collapse
|
34
|
Anigboro AA, Avwioroko OJ, Oborirhovo O, Akeghware O, Durugbo EU, Apiamu A, Olaoye VI, Ezealigo US, Tonukari NJ. Characterization, Anti-glycation, Anti-inflammation, and Lipase Inhibitory Properties of Rauvolfia vomitoria Leaf Extract: In Vitro and In Silico Evaluations for Obesity Treatment. Appl Biochem Biotechnol 2024; 196:6864-6892. [PMID: 38416335 DOI: 10.1007/s12010-024-04865-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 02/29/2024]
Abstract
Pancreatic lipase (PLP) is an enzyme responsible for the catalytic hydrolysis of fats and its inhibition is relevant for obesity management. Side effects linked with orthodox inhibitors have, however, paved the way for an increased search for safe natural sources. The present study investigated the anti-glycation, anti-inflammatory, and anti-lipase properties of Rauvolfia vomitoria aqueous (ARV), ethanolic (ERV), and methanolic (MRV) leaf extracts coupled with the molecular interactions of selected bioactive compounds with PLP using in vitro and in silico techniques. Phytochemical constituents were characterized using spectroscopic techniques. Drug-likeness and chemical reactivity profile of selected bioactive compounds were analyzed using SwissADME and quantum chemical calculations. FT-IR and GC-MS affirmed the presence of phenolic compounds including 3-phenyl-2-ethoxypropylphthalimide and 5-methyl-2-phenyl-1H-indole. All extracts showed moderate anti-glycation, anti-inflammatory, and lipase inhibitory capacities relative to standard controls. However, MRV exhibited the highest lipase inhibition (IC50, 0.17 ± 0.01 mg/mL), using a mixed-inhibition pattern. MRV interaction with PLP resulted in decreased secondary structure components of PLP (α-sheet, β-turn). MRV compounds (MCP20, MCP28, etc.) exhibited low chemical hardness, EHOMO-ELUMO energy gap, and high chemical reactivity. Foremost MRV compounds obeyed Lipinski's rule of five for drug-likeness and interacted with PHE-78 amongst others at PLP catalytic domain with high binding affinity (≥ - 9.3 kcal/mol). Pi-alkyl hydrophobic interaction and hydrogen bonding were predominantly involved. Our findings provide scientific insights into the ethnotherapeutic uses of R. vomitoria extracts for the management of obesity and related complications, plus useful information for optimizable drug-like candidates against obesity.
Collapse
Affiliation(s)
- Akpovwehwee A Anigboro
- Department of Biochemistry, Faculty of Science, Delta State University, P.M.B.001, Abraka, Nigeria.
| | - Oghenetega J Avwioroko
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, Ede, Osun State, Nigeria.
- Center for Chemical and Biochemical Research (CCBR), Redeemer's University, Ede, Osun State, Nigeria.
| | - Omoerere Oborirhovo
- Department of Biochemistry, Faculty of Science, Delta State University, P.M.B.001, Abraka, Nigeria
| | - Onoriode Akeghware
- Department of Biochemistry, Faculty of Science, Delta State University, P.M.B.001, Abraka, Nigeria
- Department of Chemical Sciences, Faculty of Science, Edwin Clark University, Kiagbodo, Delta State, Nigeria
| | - Ernest U Durugbo
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | - Augustine Apiamu
- Department of Biochemistry, Faculty of Science, Delta State University, P.M.B.001, Abraka, Nigeria
| | - Victor I Olaoye
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | - Uchechukwu S Ezealigo
- Department of Material Science Engineering, African University of Science and Technology, Abuja, Nigeria
| | - Nyerhovwo J Tonukari
- Department of Biochemistry, Faculty of Science, Delta State University, P.M.B.001, Abraka, Nigeria
| |
Collapse
|
35
|
Zahir A, Khan IA, Nasim M, Azizi MN, Azi F. Food process contaminants: formation, occurrence, risk assessment and mitigation strategies - a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1242-1274. [PMID: 39038046 DOI: 10.1080/19440049.2024.2381210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/10/2024] [Accepted: 07/14/2024] [Indexed: 07/24/2024]
Abstract
Thermal treatment of food can lead to the formation of potentially harmful chemicals, known as process contaminants. These are adventitious contaminants that are formed in food during processing and preparation. Various food processing techniques, such as heating, drying, grilling, and fermentation, can generate hazardous chemicals such as acrylamide (AA), advanced glycation end products (AGEs), heterocyclic aromatic amines (HAAs), furan, polycyclic aromatic hydrocarbons (PAHs), N-nitroso compounds (NOCs), monochloropropane diols (MCPD) and their esters (MCPDE) which can be detrimental to human health. Despite efforts to prevent the formation of these compounds during processing, eliminating them is often challenging due to their unknown formation mechanisms. It is critical to identify the potential harm to human health in processed food and understand the mechanisms by which harmful compounds form during processing, as prolonged exposure to these toxic compounds can lead to health problems. Various mitigation strategies, such as the use of diverse pre- and post-processing treatments, product reformulation, additives, variable process conditions, and novel integrated processing techniques, have been proposed to control these food hazards. In this review, we summarize the formation and occurrence, the potential for harm to human health produced by process contaminants in food, and potential mitigation strategies to minimize their impact.
Collapse
Affiliation(s)
- Ahmadullah Zahir
- Faculty of Veterinary Sciences, Department of Food Science and Technology, Afghanistan National Agricultural Sciences & Technology University, Kandahar, Afghanistan
| | - Iftikhar Ali Khan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Maazullah Nasim
- Faculty of Agriculture, Department of Horticulture, Kabul University, Kabul, Afghanistan
| | - Mohammad Naeem Azizi
- Faculty of Veterinary Sciences, Department of Pre-Clinic, Afghanistan National Agricultural Sciences & Technology University, Kandahar, Afghanistan
| | - Fidelis Azi
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong, China
| |
Collapse
|
36
|
Zhang Z, Yang Z, Wang S, Wang X, Mao J. Overview of pyroptosis mechanism and in-depth analysis of cardiomyocyte pyroptosis mediated by NF-κB pathway in heart failure. Biomed Pharmacother 2024; 179:117367. [PMID: 39214011 DOI: 10.1016/j.biopha.2024.117367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
The pyroptosis of cardiomyocytes has become an essential topic in heart failure research. The abnormal accumulation of these biological factors, including angiotensin II, advanced glycation end products, and various growth factors (such as connective tissue growth factor, vascular endothelial growth factor, transforming growth factor beta, among others), activates the nuclear factor-κB (NF-κB) signaling pathway in cardiovascular diseases, ultimately leading to pyroptosis of cardiomyocytes. Therefore, exploring the underlying molecular biological mechanisms is essential for developing novel drugs and therapeutic strategies. However, our current understanding of the precise regulatory mechanism of this complex signaling pathway in cardiomyocyte pyroptosis is still limited. Given this, this study reviews the milestone discoveries in the field of pyroptosis research since 1986, analyzes in detail the similarities, differences, and interactions between pyroptosis and other cell death modes (such as apoptosis, necroptosis, autophagy, and ferroptosis), and explores the deep connection between pyroptosis and heart failure. At the same time, it depicts in detail the complete pathway of the activation, transmission, and eventual cardiomyocyte pyroptosis of the NF-κB signaling pathway in the process of heart failure. In addition, the study also systematically summarizes various therapeutic approaches that can inhibit NF-κB to reduce cardiomyocyte pyroptosis, including drugs, natural compounds, small molecule inhibitors, gene editing, and other cutting-edge technologies, aiming to provide solid scientific support and new research perspectives for the prevention and treatment of heart failure.
Collapse
Affiliation(s)
- Zeyu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhihua Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuai Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Xianliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
37
|
Gao S, Li T, Li ZR, Liao B, Huang Z, Zhou C, Jia RB. Effect of Extraction Methods on Chemical Characteristics and Bioactivity of Chrysanthemum morifolium cv. Fubaiju Extracts. Foods 2024; 13:3057. [PMID: 39410091 PMCID: PMC11476200 DOI: 10.3390/foods13193057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Chrysanthemum morifolium cv. Fubaiju (CMF) is regarded as one of the three most renowned varieties of white Chrysanthemum in China, and different extraction methods have significant effects on its composition and activities. Therefore, six extractions were used in this study to assess the effects on extracts. The basic chemical composition showed that hot water extract (Hw) had the highest total phenolic content, alkali water immersion-assisted hot water extract (Al) had the highest content of protein, and enzyme-assisted hot water extract (Enz) had the highest content of carbohydrate. The UPLC-Q-Exactive-MS results evinced the presence of 19 small-molecule compounds, including chlorogenic acid, caffeic acid, tuberonic acid glucoside, luteolin-7-O-rutinoside, and other substances. In addition, the antioxidant test found that the Hw exhibited the best 1,1-diphenyl-2-picrylhydrazyl (DPPH) (82.05 ± 1.59 mM TE/mg) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) (61.91 ± 0.27 mM TE/mg) scavenging ability. The anti-glycation test demonstrated that Enz possessed the most pronounced inhibitory effect on glycation products, including fructosamine and advanced glycation end products (AGEs). Additionally, the Enz also exhibited the most significant inhibitory effect on the protein oxidation product N'-formylkynurenine. The correlation analysis revealed that there was a close relationship between antioxidant properties and glycation resistance of extracts, and tuberonic acid glucoside, 1,3-di-O-caffeoylquinic acid, 1,4-Dicaffeoylquinic acid, quercetin-7-O-β-D-glucopyranoside, and isochlorogenic acid B were key small molecule components that affected activities. In summary, the extracts of CMF can be regarded as an excellent antioxidant and anti-glycosylation agent.
Collapse
Affiliation(s)
- Shang Gao
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China; (S.G.); (C.Z.)
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832003, China;
| | - Tiantian Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (T.L.); (Z.-R.L.)
| | - Zhao-Rong Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (T.L.); (Z.-R.L.)
| | - Bingwu Liao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832003, China;
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (T.L.); (Z.-R.L.)
| | - Zirui Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Chunxia Zhou
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China; (S.G.); (C.Z.)
| | - Rui-Bo Jia
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China; (S.G.); (C.Z.)
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (T.L.); (Z.-R.L.)
| |
Collapse
|
38
|
Xu X, Djohari KN, Jiang Y, Zhou W. Deciphering the inhibitory mechanisms of betanin and phyllocactin from Hylocereus polyrhizus peel on protein glycation, with insights into their application in bread. Food Chem 2024; 452:139594. [PMID: 38749142 DOI: 10.1016/j.foodchem.2024.139594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/27/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024]
Abstract
Protein glycation closely intertwines with the pathogenesis of various diseases, sparking a growing interest in exploring natural antiglycation agents. Herein, high-purity betacyanins (betanin and phyllocactin) derived from Hylocereus polyrhizus peel were studied for their antiglycation potential using an in vitro bovine serum albumin (BSA)-glucose model. Notably, betacyanins outperformed aminoguanidine, a recognized antiglycation agent, in inhibiting glycation product formation across different stages, especially advanced glycation end-products (AGEs). Interestingly, phyllocactin displayed stronger antiglycation activity than betanin. Subsequent mechanistic studies employing molecular docking analysis and fluorescence quenching assay unveiled that betacyanins interact with BSA endothermically and spontaneously, with hydrophobic forces playing a dominant role. Remarkably, phyllocactin demonstrated higher binding affinity and stability to BSA than betanin. Furthermore, the incorporation of betacyanins into bread dose-dependently suppressed AGEs formation during baking and shows promise for inhibiting in vivo glycation process post-consumption. Overall, this study highlights the substantial potential of betacyanins as natural antiglycation agents.
Collapse
Affiliation(s)
- Xiaojuan Xu
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117543, Republic of Singapore
| | - Kelly Natalia Djohari
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117543, Republic of Singapore
| | - Yingfen Jiang
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117543, Republic of Singapore
| | - Weibiao Zhou
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117543, Republic of Singapore; National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou Industrial Park, Jiangsu, 215123, China.
| |
Collapse
|
39
|
Amin A, Ullah N, Khan MA, Elsadek MF, Elshikh MS, Hasnain SZU, Baloch R, Chaman S, Makhkamov T, Yuldashev A, Yunusov S, Biturku J. Mango peel extracts and mangiferin chromatographic Fourier-transform infrared correlation with antioxidant, antidiabetic, and advanced glycation end product inhibitory potentials using in silico modeling and in vitro assays. Biomed Chromatogr 2024; 38:e5936. [PMID: 38956791 DOI: 10.1002/bmc.5936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/03/2024] [Accepted: 05/31/2024] [Indexed: 07/04/2024]
Abstract
Mangifera indica peels are a rich source of diverse flavonoids and xanthonoids; however, generally these are discarded. Computational studies revealed that mangiferin significantly interacts with amino acid residues of transcriptional regulators 1IK3, 3TOP, and 4f5S. The methanolic extract of Langra variety of mangoes contained the least phenol concentrations (22.6 ± 0.32 mg/gGAE [gallic acid equivalent]) compared to the chloroform (214.8 ± 0.12 mg/gGAE) and ethyl acetate fractions (195.6 ± 0.14 mg/gGAE). Similarly, the methanolic extract of Sindhri variety contained lower phenol concentrations (42.3 ± 0.13 mg/gRUE [relative utilization efficiency]) compared with the chloroform (85.6 ± 0.15 mg/gGAE) and ethyl acetate (76.1 ± 0.32 mg/gGAE) fractions. Langra extract exhibited significant α-glucosidase inhibition (IC50 0.06 mg/mL), whereas the ethyl acetate fraction was highly active (IC50 0.12 mg/mL) in Sindhri variety. Mangiferin exhibited significant inhibition (IC50 0.026 mg/mL). A moderate inhibition of 15-LOX was observed in all samples, whereas mangiferin was least active. In advanced glycation end product inhibition assay, the chloroform fraction of Langra variety exhibited significant inhibition in nonoxidative (IC50 64.4 μg/mL) and oxidative modes (IC50 54.7 μg/mL). It was concluded that both Langra and Sindhri peel extracts and fractions possess significant antidiabetic activities. The results suggest the potential use of peel waste in the management and complications of diabetes.
Collapse
Affiliation(s)
- Adnan Amin
- Natural Products Research Lab, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Niamat Ullah
- Natural Products Research Lab, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Mohsin Abbas Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Syed Zia Ul Hasnain
- Department of Pharmacognosy, Faculty of Pharmacy, Bahauddin Zakaraiya University, Multan, Pakistan
| | - Rabia Baloch
- Allama Iqbal Teaching Hospital, Dera Ghazi Khan, Punjab, Pakistan
| | - Sadia Chaman
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Punjab, Pakistan
| | - Trobjon Makhkamov
- Department of Forestry and Landscape Design, Tashkent State Agrarian University, Tashkent, Uzbekistan
| | - Akramjon Yuldashev
- Department of Ecology and Botany, Andijan State University, Andijan, Uzbekistan
| | - Salohiddinjon Yunusov
- Department of Horticulture and Viticulture, Tashkent State Agrarian University, Tashkent, Uzbekistan
| | - Jonida Biturku
- Department of Agronomy Sciences, Faculty of Agriculture and Environment, Agriculture University of Tirana, Tirana, Albania
| |
Collapse
|
40
|
Xiong K, Li MM, Chen YQ, Hu YM, Jin W. Formation and Reduction of Toxic Compounds Derived from the Maillard Reaction During the Thermal Processing of Different Food Matrices. J Food Prot 2024; 87:100338. [PMID: 39103091 DOI: 10.1016/j.jfp.2024.100338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/07/2024]
Abstract
Advanced glycation end products (AGEs), heterocyclic aromatic amines (HAAs), acrylamide (AA), 5-hydroxymethylfurfural (5-HMF), and polycyclic aromatic hydrocarbons (PAHs) are toxic substances that are produced in certain foods during thermal processing by using common high-temperature unit operations such as frying, baking, roasting, grill cooking, extrusion, among others. Understanding the formation pathways of these potential risk factors, which can cause cancer or contribute to the development of many chronic diseases in humans, is crucial for reducing their occurrence in thermally processed foods. During thermal processing, food rich in carbohydrates, proteins, and lipids undergoes a crucial Maillard reaction, leading to the production of highly active carbonyl compounds. These compounds then react with other substances to form harmful substances, which ultimately affect negatively the health of the human body. Although these toxic compounds differ in various forms of formation, they all partake in the common Maillard pathway. This review primarily summarizes the occurrence, formation pathways, and reduction measures of common toxic compounds during the thermal processing of food, based on independent studies for each specific contaminant in its corresponding food matrix. Finally, it provides several approaches for the simultaneous reduction of multiple toxic compounds.
Collapse
Affiliation(s)
- Ke Xiong
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Meng-Meng Li
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yi-Qiang Chen
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yu-Meng Hu
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Innovation Centre of Food Nutrition and Human, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Wen Jin
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
41
|
Apte M, Zambre S, Pisar P, Roy B, Tupe R. Decoding the role of aldosterone in glycation-induced diabetic complications. Biochem Biophys Res Commun 2024; 721:150107. [PMID: 38781658 DOI: 10.1016/j.bbrc.2024.150107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/01/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
Diabetes-mediated development of micro and macro-vascular complications is a global concern. One of the factors is hyperglycemia induced the non-enzymatic formation of advanced glycation end products (AGEs). Accumulated AGEs bind with receptor of AGEs (RAGE) causing inflammation, oxidative stress and extracellular matrix proteins (ECM) modifications responsible for fibrosis, cell damage and tissue remodeling. Moreover, during hyperglycemia, aldosterone (Aldo) secretion increases, and its interaction with mineralocorticoid receptor (MR) through genomic and non-genomic pathways leads to inflammation and fibrosis. Extensive research on individual involvement of AGEs-RAGE and Aldo-MR pathways in the development of diabetic nephropathy (DN), cardiovascular diseases (CVDs), and impaired immune system has led to the discovery of therapeutic drugs. Despite mutual repercussions, the cross-talk between AGEs-RAGE and Aldo-MR pathways remains unresolved. Hence, this review focuses on the possible interaction of Aldo and glycation in DN and CVDs, considering the clinical significance of mutual molecular targets.
Collapse
Affiliation(s)
- Mayura Apte
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India
| | - Saee Zambre
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India
| | - Pratiksha Pisar
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India
| | - Bishnudeo Roy
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India
| | - Rashmi Tupe
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India.
| |
Collapse
|
42
|
Baeza-Jiménez R, López-Martínez LX. Changes in Phenolic Composition and Bioactivities of Ayocote Beans under Boiling ( Phaseolus coccineus L.). Molecules 2024; 29:3744. [PMID: 39202824 PMCID: PMC11357268 DOI: 10.3390/molecules29163744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
Ayocote beans (Phaseolus coccineus L.) are a rich source of some bioactive molecules, such as phenolic compounds that exhibit antioxidant capacity that promote health benefits. Ayocote is mainly consumed after cooking, which can impact the antioxidant characteristics of the phenolic compounds responsible for some of its health benefits. Therefore, this study investigated the effects of boiling on the phenolic composition and bioactivities of ayocote beans before and after boiling. Boiling decreased the total phenolic content (70.2, 60.3, and 58.2%), total anthocyanin (74.3, 80.6, and 85.7%), and antioxidant activity (DPPH: 41.2, 46.9, and 59.1%; ORAC: 48.23, 53.6 and 65.7%) of brown, black, and purple ayocote beans, respectively. All the extracts also inhibited the activity of α-glucosidase with efficacy values from 29.7 to 87.6% and α-amylase from 25.31 to 56.2%, with moderate antiglycation potential (15.2 to 73.2%). Phenolic acids, anthocyanins, and flavonoid decreases were detected in boiled samples by HPLC-MS analysis. Although boiling reduced the phenolic compounds, bioactive compounds remained in a considerable content in boiled ayocote.
Collapse
Affiliation(s)
- Ramiro Baeza-Jiménez
- Laboratorio de Biotecnología y Bioingeniería, Centro de Investigación en Alimentación y Desarrollo, A.C. Av. Cuarta Sur 3820, Fracc. Vencedores del Desierto, Delicias CP 3089, Chihuahua, Mexico;
| | - Leticia X. López-Martínez
- Laboratorio de Antioxidantes y Alimentos Funcionales, Centro de Investigación en Alimentación y Desarrollo, CONAHCYT-CIAD, A.C. Carr. Gustavo Enrique Astiazarán Rosas 46, Col. La Victoria, Hermosillo CP 83304, Sonora, Mexico
| |
Collapse
|
43
|
Cardona-Herrera R, Quiñones-Muñoz TA, Franco-Robles E, Ozuna C. Development of a tamarind-based functional beverage with partially-hydrolyzed agave syrup and the health effects of its consumption in C57BL/6 mice. Food Chem 2024; 447:138935. [PMID: 38461724 DOI: 10.1016/j.foodchem.2024.138935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/27/2024] [Accepted: 03/02/2024] [Indexed: 03/12/2024]
Abstract
Excess consumption of sweetened beverages is associated with a global rise in metabolic diseases. Tamarind and partially-hydrolyzed agave syrup have potential for developing healthier beverages. Our objective was to develop a functional beverage using these ingredients (PH-AS-B). We also evaluate shelf-life stability (physicochemical, microbiological, and antioxidant properties) and health effects in C57BL/6 mice compared with tamarind beverages sweetened with glucose or fructose. Optimal tamarind extraction conditions were a 1:10 ratio (g pulp/mL water) and boiling for 30 min, and the resulting beverage had a shelf life of two months at 4 °C. Non-volatile metabolites were identified using HPLC/MS. PH-AS-B was associated with decreased blood cholesterol (5%) and triglyceride (20-35%) concentrations in healthy mice as well as lower lipid (82%) concentrations and evidence of protein oxidation (42%) in the liver, compared with glucose- and fructose-sweetened tamarind beverages. In conclusion, PH-AS-B was stable and associated with beneficial metabolic properties in healthy mice.
Collapse
Affiliation(s)
- Román Cardona-Herrera
- Posgrado en Biociencias, División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Irapuato, Guanajuato 36500, Mexico
| | - Tannia Alexandra Quiñones-Muñoz
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)-Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Camino Arenero 1227, El Bajío, Zapopan, Jalisco 45019, Mexico
| | - Elena Franco-Robles
- Posgrado en Biociencias, División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Irapuato, Guanajuato 36500, Mexico; Departamento de Veterinaria y Zootecnia, División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Irapuato, Guanajuato 36500, Mexico
| | - César Ozuna
- Posgrado en Biociencias, División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Irapuato, Guanajuato 36500, Mexico; Departamento de Alimentos, División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Irapuato, Guanajuato 36500, Mexico.
| |
Collapse
|
44
|
Cheun-Arom T, Kitisripanya T, Nuntawong P, Sritularak B, Chuanasa T. Exploring anti-diabetic potential of compounds from roots of Dendrobium polyanthum Wall. ex Lindl. through inhibition of carbohydrate-digesting enzymes and glycation inhibitory activity. Heliyon 2024; 10:e34502. [PMID: 39114042 PMCID: PMC11305242 DOI: 10.1016/j.heliyon.2024.e34502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Eight compounds, including one anthraquinone, two bibenzyls, one phenanthrene, three dihydrophenanthrenes, and one flavonoid, were isolated from the roots of Dendrobium polyanthum Wall. ex Lindl. Among these, six compounds were investigated for inhibitory activities against alpha-glucosidase, alpha-amylase, and advanced glycation end products (AGEs) production. Additionally, molecular docking was conducted to analyze the interactions of the test compounds with alpha-glucosidase. Moscatin, the only isolated phenanthrene, displayed the strongest anti-alpha-glucosidase activity with an IC50 of 32.45 ± 1.04 μM, approximately 10-fold smaller than that of acarbose. Furthermore, moscatilin most strongly inhibited alpha-amylase and AGEs production with IC50 values of 256.94 ± 9.87 and 67.89 ± 9.42 μM, respectively. Molecular docking analysis revealed the effective binding of all substances to alpha-glucosidase with smaller lowest binding energy values than acarbose. Moscatin was selected for kinetics studies, and it was identified as a non-competitive inhibitor with approximately 9-fold greater inhibitory capability than acarbose. This study represents the first report on the phytochemical constituents and antidiabetic potential of compounds derived from the roots of D. polyanthum Wall. ex Lindl.
Collapse
Affiliation(s)
- Thaniwan Cheun-Arom
- Department of Biology, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Tharita Kitisripanya
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Poomraphie Nuntawong
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Boonchoo Sritularak
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Taksina Chuanasa
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in DNA Barcoding of Thai Medicinal Plants, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
45
|
Shrivastav D, Kumbhakar SK, Srivastava S, Singh DD. Natural product-based treatment potential for type 2 diabetes mellitus and cardiovascular disease. World J Diabetes 2024; 15:1603-1614. [PMID: 39099809 PMCID: PMC11292323 DOI: 10.4239/wjd.v15.i7.1603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/22/2024] [Accepted: 05/16/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) is a metabolic disease of impaired glucose utilization and a major cause of cardiovascular disease (CVD). The pathogenesis of both diseases shares common risk factors and mechanisms, and both are significant contributors to global morbidity and mortality. Supplements of natural products for T2D mellitus (T2DM) and CVD can be seen as a potential preventive and effective therapeutic strategy. AIM To critically evaluate the therapeutic potential of natural products in T2D and coronary artery disease (CAD). METHODS By using specific keywords, we strategically searched the PubMed database. Randomized controlled trials (RCTs) were searched as the primary focus that examined the effect of natural products on glycemic control, oxidative stress, and antioxidant levels. We focused on outcomes such as low blood glucose levels, adjustment on markers of oxidative stress and antioxidants. After screening full-length papers, we included 9 RCTs in our review that met our inclusion criteria. RESULTS In the literature search on the database, we found that various natural products like plant secondary metabolites play a diverse role in the management of CAD. American ginseng, sesame oil and cocoa flavanols proved effective in lowering blood glucose levels and controlling blood pressure, which are key factors in managing T2DM and CVD. In diabetic patients Melissa officinalis effectively reduce inflammation and shows diabetes prevention. Both fish oil and flaxseed oil reduced insulin levels and inflammatory markers, suggesting benefits for both conditions. The lipid profile and endothelial function were enhanced by Nigella sativa oil and Terminalia chebula, which is significant for the management of cardiovascular risk factors in T2DM. Additionally Bilberry extract also showed promise for improving glycemic control in patients with T2DM. CONCLUSION The high level of antioxidant, anti-inflammatory, and anti-angiogenic properties found in natural products makes them promising therapeutic options for the management of CAD, with the potential benefit of lowering the risk of CAD.
Collapse
Affiliation(s)
- Dharmsheel Shrivastav
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, Rajasthan, India
| | - Satyam Kumar Kumbhakar
- Department of Biotechnology, Govt Veer Surendra Say P.G. College, Gariaband 493889, Chhattisgarh, India
| | - Shivangi Srivastava
- Department of Life Science, Chhatrapati Shahu ji Maharaj University, Kanpur 208024, Uttar Pradesh, India
| | - Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, Rajasthan, India
| |
Collapse
|
46
|
Li J, Feng J, Luo X, Qu Mo MM, Li WB, Huang JW, Wang S, Hu YC, Zou L, Wu DT. Potential structure-function relationships of pectic polysaccharides from quinoa microgreens: Impact of various esterification degrees. Food Res Int 2024; 187:114395. [PMID: 38763655 DOI: 10.1016/j.foodres.2024.114395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 05/21/2024]
Abstract
Pectic polysaccharides are one of the most vital functional ingredients in quinoa microgreens, which exhibit numerous health-promoting benefits. Nevertheless, the detailed information about the structure-function relationships of pectic polysaccharides from quinoa microgreens (QMP) remains unknown, thereby largely restricting their applications as functional foods or fortified ingredients. Therefore, to unveil the possible structure-function relationships of QMP, the mild alkali de-esterification was utilized to modify QMP, and then the correlations of esterification degrees of native and modified QMPs to their biological functions were systematically investigated. The results showed that the modified QMPs with different esterification degrees were successfully prepared by the mild alkali treatment, and the primary chemical structure (e.g., compositional monosaccharides and glycosidic linkages) of the native QMP was overall stable after the de-esterified modification. Furthermore, the results revealed that the antioxidant capacity, antiglycation effect, prebiotic potential, and immunostimulatory activity of the native QMP were negatively correlated to its esterification degree. In addition, both native and modified QMPs exerted immunostimulatory effects through activating the TLR4/NF-κB signaling pathway. These results are conducive to unveiling the precise structure-function relationships of QMP, and can also promote its applications as functional foods or fortified ingredients.
Collapse
Affiliation(s)
- Jie Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Jing Feng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Xiao Luo
- Chengdu Institute for Drug Control, NMPA Key Laboratory for Quality Monitoring and Evaluation of Traditional Chinese Medicine (Chinese Materia Medica), Chengdu 610045, Sichuan, China
| | - Mei-Mei Qu Mo
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology Engineering Laboratory, Southwest Minzu University, Chengdu 610225, Sichuan, China
| | - Wen-Bing Li
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology Engineering Laboratory, Southwest Minzu University, Chengdu 610225, Sichuan, China.
| | - Jing-Wei Huang
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Yi-Chen Hu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China.
| |
Collapse
|
47
|
Anwar S, Raut R, Alhumaydhi FA. A comprehensive investigation on alleviating oxidative stress and inflammation in hyperglycaemic conditions through in vitro experiments and computational analysis. Saudi J Biol Sci 2024; 31:104003. [PMID: 38766504 PMCID: PMC11097074 DOI: 10.1016/j.sjbs.2024.104003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 05/22/2024] Open
Abstract
Protein glycation, hyper-inflammatory reactions, and oxidative stress play a crucial role in the pathophysiology of numerous diseases. The current work evaluated the protective ability of ethyl alcohol extract of leaves from holy basil (Ocimum sanctum Linn) against inflammation, oxidative stress, glycation and advanced glycation endproducts formation. Various in vitro assays assessed prementioned properties of holy basil. In addition, molecular docking was conducted. The highest hydrogen peroxide reduction activity (72.7 %) and maximum percentage of DPPH scavenging (71.3 %) depicted its vigorous antioxidant abilities. Furthermore, it showed the most excellent protection against proteinase activity (67.247 %), prevention of denaturation of egg albumin (65.29 %), and BSA (bovine serum albumin) (68.87 %) with 600 µg/ml. Percent aggregation index (57.528 %), browning intensity (56.61 %), and amyloid structure (57.0 %) were all reduced significantly using 600 μg/ml of extract. Additionally, the antimicrobial potential was also confirmed. According to a molecular docking study, active leaf extract ingredients were found to bind with superoxide dismutase, catalase, and carbonic anhydrase. As a conclusion, O. sanctum has a variety of health-promoting properties that may reduce the severity of many diseases in diabetic patients. However, in order to ascertain the mechanisms of action of the components of its leaves in disease prevention, more thorough research based on pharmacological aspects is needed.
Collapse
Affiliation(s)
- Shehwaz Anwar
- Department of Medical Laboratory Technology, Mohan Institute of Nursing and Paramedical Sciences, Bareilly 243302, Uttar Pradesh, India
| | - Ravindra Raut
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur 713209, India
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
48
|
Sehnem GS, Silva JA, da C Silva T, Prado DG, Santiago MB, O Santos AL, Martins MM, Cunha LCS, Sousa RMF, Romero R, Bittar VP, Borges ALS, Martins CHG, Espindola FS, de Oliveira A. Chemical Composition of Extracts and Fractions from Miconia Ibaguensis (Melastomataceae) Leaves and Evaluation of Biological Activities. Chem Biodivers 2024; 21:e202400680. [PMID: 38748618 DOI: 10.1002/cbdv.202400680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/15/2024] [Indexed: 07/17/2024]
Abstract
The study aimed to assess the chemical composition of Miconia ibaguensis leaves extracts and fractions obtained from the ethanolic extract (EE), along with evaluating their antifungal, antibacterial, antidiabetic, and antioxidant activities. The ethyl acetate fraction (EAF) exhibited potent antifungal activity against Candida spp (1.95-3.90 μg mL-1) and potent antioxidant activity in the DPPH (1.74±0.07 μg mL-1), FRAP (654.01±42.09 μmol ETrolox/gsample), and ORAC (3698.88±37.28 μmol ETrolox/gsample) methods. The EE displayed inhibition against the α-amylase enzyme (8.42±0.05 μg mL-1). Flavonoids, hydrolysable tannins, triterpenoids, and phenolic acids, identified in the EE and fractions via (-)-HPLC-ESI-MS/MS analysis, were found to contribute to the species' biological activity potentially. These findings suggest promising avenues for further research and potential applications in pharmacology and natural products, offering new possibilities in the fight against global health issues.
Collapse
Affiliation(s)
- Gabriela S Sehnem
- Nucleus of Research in Natural Products, Institute of Chemistry, Federal University of Uberlândia -, MG, Uberlândia, Brazil
| | - Julia A Silva
- Nucleus of Research in Natural Products, Institute of Chemistry, Federal University of Uberlândia -, MG, Uberlândia, Brazil
| | - Tiara da C Silva
- Nucleus of Research in Natural Products, Institute of Chemistry, Federal University of Uberlândia -, MG, Uberlândia, Brazil
| | - Diego G Prado
- Nucleus of Research in Natural Products, Institute of Chemistry, Federal University of Uberlândia -, MG, Uberlândia, Brazil
| | - Mariana B Santiago
- Antimicrobial Testing Laboratory, Institute of Biomedical Sciences, Universidade Federal de Uberlândia -, MG, Uberlândia, Brazil
| | - Anna Lívia O Santos
- Antimicrobial Testing Laboratory, Institute of Biomedical Sciences, Universidade Federal de Uberlândia -, MG, Uberlândia, Brazil
| | - Mário M Martins
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia -, MG, Uberlândia, Brazil
| | - Luis C S Cunha
- Bioprospecting Center for Natural Products, Chemistry Department, Federal Institute of Triângulo Mineiro -, MG, Uberaba, Brazil
| | - Raquel M F Sousa
- Nucleus of Research in Natural Products, Institute of Chemistry, Federal University of Uberlândia -, MG, Uberlândia, Brazil
| | - Rosana Romero
- Institute of Biology, Federal University of Uberlândia -, MG, Uberlândia, Brazil
| | - Vinicius P Bittar
- Laboratory of Biochemistry and Molecular Biology, Institute of Biotechnology, Federal University of Uberlândia -, MG, Uberlândia, Brazil
| | - Ana Luiza S Borges
- Laboratory of Biochemistry and Molecular Biology, Institute of Biotechnology, Federal University of Uberlândia -, MG, Uberlândia, Brazil
| | - Carlos H G Martins
- Antimicrobial Testing Laboratory, Institute of Biomedical Sciences, Universidade Federal de Uberlândia -, MG, Uberlândia, Brazil
| | - Foued S Espindola
- Laboratory of Biochemistry and Molecular Biology, Institute of Biotechnology, Federal University of Uberlândia -, MG, Uberlândia, Brazil
| | - Alberto de Oliveira
- Nucleus of Research in Natural Products, Institute of Chemistry, Federal University of Uberlândia -, MG, Uberlândia, Brazil
| |
Collapse
|
49
|
Rahayu I, Arfian N, Kustanti CY, Wahyuningsih MSH. The effectiveness of antioxidant agents in delaying progression of diabetic nephropathy: A systematic review of randomized controlled trials. BIOIMPACTS : BI 2024; 15:30129. [PMID: 39963561 PMCID: PMC11830129 DOI: 10.34172/bi.30129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/16/2024] [Accepted: 02/28/2024] [Indexed: 02/20/2025]
Abstract
Introduction Oxidative stress plays a central role in the pathophysiology of diabetes mellitus and its complications, including diabetic nephropathy. Excessive production of reactive oxygen species (ROS) alters renal metabolic pathways, leading to inflammation, endothelial dysfunction, and fibrosis, ultimately resulting in end-stage renal disease (ESRD). Studies have shown that exogenous antioxidants can improve the pathophysiological condition of patients with diabetic nephropathy. Objective: This systematic review aims to investigate the types of antioxidant agents that inhibit the development of diabetic nephropathy and the effectiveness of antioxidant agent interventions to repair kidney structure and function. Methods A systematic review of randomized controlled trials that examined the role of antioxidants in improving diabetic nephropathy was conducted. The literature search was performed on PubMed, ScienceDirect, and EBSCO. The inclusion criteria covered articles on the antioxidant activity of herbal extracts and compounds that inhibit the progression of diabetic nephropathy in humans. In addition, the articles were written in English and published between 2012 and 2022. The reporting of the systematic review followed the Preferred Reporting Elements for Systematic Review and Meta-Analysis (PRISMA) guideline. The full texts of all potentially relevant systematic reviews were assessed for quality using the Risk of Bias 2 (RoB 2) tool. Results A total of 2,367 articles were identified in the three databases, of which only 15 articles met the inclusion criteria. Antioxidant agents that inhibit diabetic nephropathy can be classified as single antioxidants (silymarin, baicalin, epigallocatechin gallate, vitamin E, selenium, curcumin, α-lipoic acid, and tocotrienol-rich vitamin E) and combined antioxidants (α-lipoic acid with vitamin B6, and resveratrol with losartan). Antioxidant agents have been shown to reduce oxidative stress and inflammation, but their role in the progression of fibrosis remains unclear. The oxidative stress marker MDA was significantly reduced by silymarin, curcumin, vitamin E, tocotrienol-rich vitamin E, selenium, ALA, vitamin B, resveratrol and losartan. Silymarin was found to be the most effective (-3.43 µmol/L; 6.02 to 0.83). Compared to silymarin and epigallocatechin gallate, vitamin E was more effective (at -35.4 ng/L; P < 0.001) in reducing inflammation by decreasing TNF-α levels. In addition, tocotrienol-rich vitamin E, silymarin, baicalin, and selenium showed a decrease TGF-β levels, but did not show statistically significant differences between the placebo and intervention groups. Conclusion Potential antioxidant agents, such as flavonoids, vitamins, fatty acids, and antioxidant minerals, were examined in this systematic review. These agents contribute to reducing markers of oxidative stress and hyperglycemia-induced inflammation. Although several antioxidants play a role in reducing fibrosis markers, the effect does not appear to be statistically significant.
Collapse
Affiliation(s)
- Ika Rahayu
- Doctoral Program of Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Universitas Kristen Krida Wacana, Jakarta, Indonesia
| | - Nur Arfian
- Department of Anatomy, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Center for Herbal Medicine, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Christina Yeni Kustanti
- Sekolah Tinggi Ilmu Kesehatan Bethesda Yakkum, Yogyakarta, Indonesia
- Lotus Care, Private Clinic for Wound and Palliative Care, Homecare, Yogyakarta, Indonesia
| | - Mae Sri Hartati Wahyuningsih
- Center for Herbal Medicine, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
50
|
Afzan A, Lee JC, Adam Z, Mustafa Khalid N, Gunasegavan RDN, Md Noh MF, Wasiman MI. Mirror, mirror on the wall, which phytochemicals in Clinacanthus nutans inhibits advanced glycation end products of them all? Fitoterapia 2024; 175:105958. [PMID: 38604262 DOI: 10.1016/j.fitote.2024.105958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/07/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
In our quest to discover advanced glycation end products (AGEs) inhibitors from Clinacanthus nutans (Burm.f.) Lindau leaves, we conducted a bioactivity-based molecular networking. This approach integrates LC-MS2 profiling and in vitro antiglycation data to predict bioactive compounds. We began by screening three extracts: 100% ethanol, 70% ethanol and 100% water alongside the in vitro antioxidant activity, total phenolics content (TPC) and schaftoside content. Among these extracts, 100% ethanol extract exhibited the highest total AGEs inhibition effects (IC50 = 80.18 ± 11.6 μg/mL), DPPH scavenging activity (IC50 = 747.40 ± 10.30 μg/mL) and TPC (26.54 ± 2.09 μg GAE /mg extract). Intriguingly, 100% ethanol extract contained the lowest amount of schaftoside, suggesting the involvement of other phytochemicals in the antiglycation effects. The molecular networking and in silico structural annotations of 401 LC-MS features detected in the fractions from 100% ethanol extract predicted 21 bioactive compounds (p < 0.05, r > 0.90), including several C40 carotenoids, alkaloids containing tetrapyrrole structures and fatty acids. On the contrary, all phenolics showed weak correlations with antiglycation effects. These predictions were further validated in vitro, where carotenoid lutein showed half maximal inhibitory concentration, IC50 = 96 ± 8 μM and selected flavonoid-C-glycosides exhibited weaker inhibitions (IC50 between 568 and 1922 μM). Notably, lutein content was higher in freeze-dried leaves (12.42 ± 0.82 mg/100 g) than oven-dried, although the former was associated with elevated mercury levels. In summary, C. nutans exhibited potential antiglycation and antioxidant activity, and lutein was identified as the main bioactive principle.
Collapse
Affiliation(s)
- Adlin Afzan
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, No. 1 Jalan Setia Murni U13/52, Seksyen U13, Setia Alam, 40170 Shah Alam, Selangor, Malaysia.
| | - June Chelyn Lee
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, No. 1 Jalan Setia Murni U13/52, Seksyen U13, Setia Alam, 40170 Shah Alam, Selangor, Malaysia
| | - Zainah Adam
- Medical Technology Group, Malaysian Nuclear Agency, 43000 Kajang, Selangor, Malaysia
| | - Norhayati Mustafa Khalid
- Nutrition, Metabolic & Cardiovascular Research Centre, Institute for Medical Research, National Institutes of Health, No. 1 Jalan Setia Murni U13/52, Seksyen U13, Setia Alam, 40170 Shah Alam, Selangor, Malaysia
| | - Rathi Devi Nair Gunasegavan
- Nutrition, Metabolic & Cardiovascular Research Centre, Institute for Medical Research, National Institutes of Health, No. 1 Jalan Setia Murni U13/52, Seksyen U13, Setia Alam, 40170 Shah Alam, Selangor, Malaysia
| | - Mohd Fairulnizal Md Noh
- Nutrition, Metabolic & Cardiovascular Research Centre, Institute for Medical Research, National Institutes of Health, No. 1 Jalan Setia Murni U13/52, Seksyen U13, Setia Alam, 40170 Shah Alam, Selangor, Malaysia.
| | - Mohd Isa Wasiman
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, No. 1 Jalan Setia Murni U13/52, Seksyen U13, Setia Alam, 40170 Shah Alam, Selangor, Malaysia
| |
Collapse
|