1
|
Trapanese V, Dagostino A, Natale MR, Giofrè F, Vatalaro C, Melina M, Cosentino F, Sergi S, Imoletti F, Spagnuolo R, Arturi F. Bidirectional Interactions Between the Gut Microbiota and Incretin-Based Therapies. Life (Basel) 2025; 15:843. [PMID: 40566497 PMCID: PMC12193786 DOI: 10.3390/life15060843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 05/16/2025] [Accepted: 05/20/2025] [Indexed: 06/28/2025] Open
Abstract
Obesity, insulin resistance, type 2 diabetes mellitus (T2DM) and metabolic syndrome have been largely correlated to a reduction in bacterial load and diversity, resulting in a condition known as intestinal dysbiosis. The recent emergence of novel antidiabetic medications has been demonstrated to exert a favourable influence on the composition of the intestinal microbiota. Incretin-based therapy exerts a multifaceted influence on the composition of the gut microbiota, leading to alterations in bacterial flora. Of particular significance is the capacity of numerous metabolites produced by the gut microbiota to modulate the activity and hormonal secretion of enteroendocrine cells. This review examines the effects of dipeptidyl peptidase 4 (DPP-4) inhibitors, glucagon-like peptide 1 (GLP-1) receptor agonists and GLP-1/gastric inhibitory polypeptide (GIP) receptor dual agonists on the composition of the gut microbiota in both mice and human subjects. The nature of this interaction is complex and bidirectional. The present study demonstrates the involvement of the incretinic axis in modulating the microbial composition, with the objective of providing novel preventative strategies and potential personalised therapeutic targets for obesity and T2DM.
Collapse
Affiliation(s)
- Vincenzo Trapanese
- Internal Medicine Unit, Department of Medical and Surgical Sciences, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (A.D.); (M.R.N.); (F.G.); (C.V.); (M.M.); (F.C.); (S.S.); (F.A.)
| | - Annamaria Dagostino
- Internal Medicine Unit, Department of Medical and Surgical Sciences, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (A.D.); (M.R.N.); (F.G.); (C.V.); (M.M.); (F.C.); (S.S.); (F.A.)
| | - Maria Resilde Natale
- Internal Medicine Unit, Department of Medical and Surgical Sciences, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (A.D.); (M.R.N.); (F.G.); (C.V.); (M.M.); (F.C.); (S.S.); (F.A.)
| | - Federica Giofrè
- Internal Medicine Unit, Department of Medical and Surgical Sciences, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (A.D.); (M.R.N.); (F.G.); (C.V.); (M.M.); (F.C.); (S.S.); (F.A.)
| | - Clara Vatalaro
- Internal Medicine Unit, Department of Medical and Surgical Sciences, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (A.D.); (M.R.N.); (F.G.); (C.V.); (M.M.); (F.C.); (S.S.); (F.A.)
| | - Melania Melina
- Internal Medicine Unit, Department of Medical and Surgical Sciences, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (A.D.); (M.R.N.); (F.G.); (C.V.); (M.M.); (F.C.); (S.S.); (F.A.)
| | - Francesca Cosentino
- Internal Medicine Unit, Department of Medical and Surgical Sciences, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (A.D.); (M.R.N.); (F.G.); (C.V.); (M.M.); (F.C.); (S.S.); (F.A.)
| | - Silvia Sergi
- Internal Medicine Unit, Department of Medical and Surgical Sciences, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (A.D.); (M.R.N.); (F.G.); (C.V.); (M.M.); (F.C.); (S.S.); (F.A.)
| | - Felice Imoletti
- Department of Health Sciences, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (F.I.); (R.S.)
| | - Rocco Spagnuolo
- Department of Health Sciences, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (F.I.); (R.S.)
| | - Franco Arturi
- Internal Medicine Unit, Department of Medical and Surgical Sciences, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (A.D.); (M.R.N.); (F.G.); (C.V.); (M.M.); (F.C.); (S.S.); (F.A.)
- Research Centre for the Prevention and Treatment of Metabolic Diseases (CR METDIS), “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
2
|
Gofron KK, Wasilewski A, Małgorzewicz S. Effects of GLP-1 Analogues and Agonists on the Gut Microbiota: A Systematic Review. Nutrients 2025; 17:1303. [PMID: 40284168 PMCID: PMC12029897 DOI: 10.3390/nu17081303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND GLP-1 analogues are a relatively new class of medications that form the cornerstone of diabetes treatment. They possess invaluable glucose-lowering properties without hypoglycemic effects as well as strong cardioprotective effects. The gut microbiome has become the focus of numerous studies, demonstrating its influence not only on the gut but also on the overall well-being of the entire body. However, the effects of GLP-1 analogs on gut microbiota remain uncertain. SCOPE OF REVIEW Our systematic review (based on PRISMA guidelines) aimed to gather knowledge on the effects of GLP-1 analogue medications on the composition, richness, and abundance of gut microbiota in both animal and human models. CONCLUSIONS Thirty-eight studies were included in this systematic review. GLP-1 analogues have demonstrated a notable impact on the composition, richness, and diversity of gut microbiota. We can conclude, following the obtained research results of our study, that liraglutide promotes the growth of beneficial genera relevant for beneficial metabolic functions. Exenatide and exendin-4 administration showed various effects on the microbiome composition in animal and human studies. In animal models, it increased genera associated with improved metabolism; however, in human models, genera linked to better metabolic functions and escalated inflammation increased. Following dulaglutide administration, increases in Bacteroides, Akkermansia, and Ruminococcus, genera connected to an improved metabolic model, were significant. Finally, varied results were obtained after semaglutide treatment, in which A. muciniphila, known for its positive metabolic functions, increased; however, microbial diversity decreased. Semaglutide treatment provided various results indicating many confounding factors in semaglutide's impact on the gut microbiota. Results varied due to dissimilarities in the studied populations and the duration of the studies. Further research is essential to confirm these findings and to better recognize their implications for the clinical outcomes of patients.
Collapse
Affiliation(s)
- Krzysztof Ksawery Gofron
- Student Scientific Circle at Department of Clinical Nutrition, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210 Gdańsk, Poland
| | - Andrzej Wasilewski
- Student Scientific Association of Medical Chemistry and Immunochemistry, Wroclaw Medical University, Marii Skłodowskiej-Curie 48/50, 59-369 Wroclaw, Poland;
| | - Sylwia Małgorzewicz
- Department of Clinical Nutrition, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210 Gdańsk, Poland;
- Department of Nephrology, Transplantology, and Internal Medicine, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210 Gdańsk, Poland
| |
Collapse
|
3
|
Kong F, Lei L, Cai L, Li J, Zhao C, Liu M, Qi D, Gao J, Li E, Gao W, Du X, Song Y, Liu G, Li X. Hypoxia-inducible factor 2α mediates nonesterified fatty acids and hypoxia-induced lipid accumulation in bovine hepatocytes. J Dairy Sci 2025; 108:4062-4078. [PMID: 39890076 DOI: 10.3168/jds.2024-25839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/23/2024] [Indexed: 02/03/2025]
Abstract
Ketosis is a metabolic disorder frequently occurring in the perinatal period, characterized by elevated circulating concentrations of nonesterified fatty acids (NEFA) due to negative energy balance, resulting in fatty liver in dairy cows. However, the mechanism of hepatic steatosis induced by high concentrations of NEFA in ketosis remains unclear. Hypoxia-inducible factor 2α (HIF-2α), which mediates adaptation to hypoxic stress, plays a critical role in regulating lipid metabolism. In this study, we investigate whether HIF-2α is involved in NEFA-driven hepatic lipid accumulation in dairy cows with ketosis. Liver and blood samples were collected from 10 healthy cows (blood BHB concentration <1.2 mM) and 10 ketotic cows (blood BHB concentration >3.0 mM with clinical symptoms) with similar lactation numbers (median = 3, range = 2-4) at 3 to 9 DIM (median = 6). In cows with ketosis, serum concentrations of NEFA and BHB were greater, but serum concentrations of glucose were lower. Moreover, hepatic triglyceride content increased significantly. In the liver of ketotic cows, which was accompanied by upregulated HIF-2α expression. To determine the potential association among hypoxia, HIF-2α, and the formation of hepatocellular steatosis in vitro, we isolated hepatocytes from healthy calves for the following experiments. First, hepatocytes were treated with 0, 0.6, 1.2, or 2.4 mM NEFA (52.7 mM stock NEFA solution was diluted in RPMI-1640 basic medium supplemented with 2% fatty acid-free BSA to achieve the specified concentrations) for 18 h, showing that HIF-2α expression and cellular hypoxia occurred in a dose-dependent manner. Next, hepatocytes were infected with HIF-2α (encoded by EPAS1) small interfering RNA (Si-HIF-2α) for 48 h and then treated with 1.2 mM NEFA for 18 h. Results indicated that silencing HIF-2α decreased NEFA-induced lipid accumulation in bovine hepatocytes. Subsequently, hepatocytes treated with or without NEFA were placed in an AnaeroPack System, mimicking a hypoxic condition, for 0, 12, 18, or 24 h. Results showed that hypoxia could induce and further exacerbate lipid accumulation in bovine hepatocytes. Meanwhile, normal or NEFA-treated hepatocytes were cocultured with or without PT2385, a specific HIF-2α inhibitor, showing that hypoxia promoted steatosis through HIF-2α. Activating transcription factor 4 (ATF4) is an endoplasmic reticulum (ER) stress and hypoxia-inducible transcription factor. Here, bovine hepatocytes were treated with NEFA or hypoxia following transfecting ATF4 small interfering RNA, which demonstrated that ATF4 knockdown alleviated the extent of lipid accumulation in bovine hepatocytes. In addition, we found that ATF4 expression was correlated with HIF-2α levels in both liver tissue and cultured hepatocyte models. Moreover, overexpression of ATF4 weakened the beneficial effects of HIF-2α inhibition. Overall, these data suggest that NEFA-induced hepatic hypoxia significantly contributes to the progression of hepatic steatosis which in turn, intensifies hypoxia and leads to a self-perpetuating cycle of reciprocal causation, further exacerbating hepatic lipid deposition. Additionally, accumulated HIF-2α plays a critical role in this complex-origin steatosis, potentially through ATF4.
Collapse
Affiliation(s)
- Fanrong Kong
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lin Lei
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lin Cai
- College of Food and Biology of Changchun Polytechnic, Changchun 130062, China
| | - Jinxia Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Chenchen Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Menglin Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Dandan Qi
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jie Gao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Enzhu Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wenwen Gao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiliang Du
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yuxiang Song
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Guowen Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xinwei Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
4
|
Zhang QR, Dong Y, Fan JG. Early-life exposure to gestational diabetes mellitus predisposes offspring to pediatric nonalcoholic fatty liver disease. Hepatobiliary Pancreat Dis Int 2025; 24:128-137. [PMID: 38195352 DOI: 10.1016/j.hbpd.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as the prevailing chronic liver disease in the pediatric population due to the global obesity pandemic. Evidence shows that prenatal and postnatal exposure to maternal abnormalities leads to a higher risk of pediatric NAFLD through persistent alterations in developmental programming. Gestational diabetes mellitus (GDM) is a hyperglycemic syndrome which has become the most prevalent complication in pregnant women. An increasing number of both epidemiologic investigations and animal model studies have validated adverse and long-term outcomes in offspring following GDM exposure in utero. Similarly, GDM is considered a crucial risk factor for pediatric NAFLD. This review aimed to summarize currently published studies concerning the inductive roles of GDM in offspring NAFLD development during childhood and adolescence. Dysregulations in hepatic lipid metabolism and gut microbiota in offspring, as well as dysfunctions in the placenta are potential factors in the pathogenesis of GDM-associated pediatric NAFLD. In addition, potentially effective interventions for GDM-associated offspring NAFLD are also discussed in this review. However, most of these therapeutic approaches still require further clinical research for validation.
Collapse
Affiliation(s)
- Qian-Ren Zhang
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yan Dong
- Department of Endocrinology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jian-Gao Fan
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China.
| |
Collapse
|
5
|
Dong C, Zhou B, Zhao B, Lin K, Tian Y, Zhang R, Xie D, Wu S, Yang L. GLP-1RAs attenuated obesity and reversed leptin resistance partly via activating the microbiome-derived inosine/A2A pathway. Acta Pharm Sin B 2025; 15:1023-1038. [PMID: 40177547 PMCID: PMC11959926 DOI: 10.1016/j.apsb.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/26/2024] [Accepted: 07/24/2024] [Indexed: 03/19/2025] Open
Abstract
Extensive evidence has demonstrated that glucagon-like peptide-1 receptor agonists (GLP-1RAs) can ameliorate obesity. Our previous studies revealed that (Ex-4)2-Fc, a long-acting GLP-1RA we developed, depends on the leptin pathway to treat obesity. However, the mechanisms linking (Ex-4)2-Fc and leptin resistance remain largely unclear. To address this question, we explored the mechanism of GLP-1RAs from the perspective of the gut microbiota, as increasing evidence indicates an important link between the gut microbiota and obesity. This study aimed to explore the potential role of the gut microbiota in the treatment of GLP-1RAs. We found that (Ex-4)2-Fc treatment reshaped obesity-induced gut microbiota disturbances and substantially increased the abundance of Akkermansia muciniphila (Am). In addition, (Ex-4)2-Fc did not respond well in antibiotic-treated (ATB) Obese mice. Subsequent studies have shown that this defect can be overcome by gavage with Am. In addition, we found that Am enhanced (Ex-4)2-Fc therapy by producing the metabolite inosine. Inosine regulates the macrophage adenosine A2A receptor (A2A) pathway to indirectly reduce leptin levels in adipocytes Thus, elucidating the role of metabolites in regulating the leptin pathway will provide new insights into GLP-1RAs therapy and may lead to more effective strategies for guiding the clinical use of antidiabetic agents.
Collapse
Affiliation(s)
- Chunyan Dong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Bailing Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Binyan Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Ke Lin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Yaomei Tian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Rui Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Daoyuan Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Siwen Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| |
Collapse
|
6
|
Krishnan A, Schneider CV, Arkenau HT, Mauro EM, Forner A, Scott Butsch W, Walsh D, Alqahtani SA. Association between incretin-based drugs and risk of cholangiocarcinoma among patients with type 2 diabetes: A large population-based matched cohort study. J Clin Transl Endocrinol 2024; 38:100370. [PMID: 39386155 PMCID: PMC11460491 DOI: 10.1016/j.jcte.2024.100370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
AIM To examine the association between the use of incretin-based drugs [glucagon-like peptide-1 receptor agonists (GLP-1RAs), dipeptidyl peptidase-4 inhibitors (DPP-4Is)] and the risk of cholangiocarcinoma (CCA) in the United States. METHODS This large population-based, retrospective cohort study using the TriNetX datasets included adult patients with type 2 diabetes mellitus (T2DM) who were new users of GLP-1RAs, DPP-4Is, or other second- or third-line antidiabetic drugs between 2010 and 2021. The primary outcome was the incidence of CCA. RESULTS A total of 3,816,071 patients were included (mean age, 61.4 years, female, 49.3 %). A 51 % and 23 % risk reduction in CCA after 1 year of exposure to GLP-1RAs (hazard ratio 0.49; 95 % CI 0.40-0.60) and DPP4Is (0.77, 95 % CI 0.67-0.90), respectively compared to new second-or third-line users. Results were consistent at 3, 5, and 7 years of follow-up (0.66, 0.71, and 0.72 for GLP-1RAs and 0.84, 0.87, and 0.85 for DPP-4Is, respectively). Compared to new metformin users, GLP-1RA users were associated with a 42 % lower risk of developing CCA, whereas DPP-4I group was not associated with an increased risk. CONCLUSIONS GLP-1RAs and DPP-4Is were not associated with a significantly increased risk of CCA. GLP-1RAs even showed a reduced risk of CCA development. They can be considered as safe and effective treatment options for patients with T2DM at risk of CCA.
Collapse
Affiliation(s)
- Arunkumar Krishnan
- Department of Supportive Oncology, Atrium Health Levine Cancer, Charlotte, NC, USA
- Department of Medicine, Section of Hematology and Oncology, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | | | - Hendrik-Tobias Arkenau
- Sarah Cannon Research Institute, Cancer Institute, University College London, London, UK
| | - Ezequiel Matias Mauro
- Barcelona Clinic Liver Cancer Group, Liver Unit, Hospital Clinic Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - Alejandro Forner
- Barcelona Clinic Liver Cancer Group, Liver Unit, Hospital Clinic Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - W. Scott Butsch
- Bariatric and Metabolic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Declan Walsh
- Department of Supportive Oncology, Atrium Health Levine Cancer, Charlotte, NC, USA
| | - Saleh A. Alqahtani
- Organ Transplant Center of Excellence, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
7
|
Xuan Y, Ding TT, Mao XL, Pang S, He R, Qin L, Yuan JZ. Liraglutide alleviates high-fat diet-induced kidney injury in mice by regulating the CaMKKβ/AMPK pathway. Ren Fail 2024; 46:2351473. [PMID: 38915241 PMCID: PMC11207906 DOI: 10.1080/0886022x.2024.2351473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/30/2024] [Indexed: 06/26/2024] Open
Abstract
OBJECTIVE Liraglutide, a glucagon-like peptide-1 receptor agonist, has been shown to regulate blood sugar and control body weight, but its ability to treat obesity-related nephropathy has been poorly studied. Therefore, this study was designed to observe the characteristics and potential mechanism of liraglutide against obesity-related kidney disease. METHODS Thirty-six C57BL/6J male mice were randomly divided into six groups (n = 6 per group). Obesity-related nephropathy was induced in mice by continuous feeding of high-fat diet (HFD) for 12 weeks. After 12 weeks, liraglutide (0.6 mg/kg) and AMP-activated protein kinase (AMPK) agonists bortezomib (200 μg/kg) were injected for 12 weeks, respectively. Enzyme-linked immunosorbent assay was employed to detect the levels of total cholesterol, triglycerides, low-density lipoprotein cholesterol, blood urea nitrogen, creatinine in serum, as well as urinary protein in urine. Besides, hematoxylin-eosin staining and periodic acid-Schiff staining were used to observe the pathological changes of kidney tissue; immunohistochemistry, western blot, and real-time quantitative PCR to assess the calmodulin-dependent protein kinase kinase beta (CaMKKβ)/AMPK signaling pathway activation. RESULTS Liraglutide significantly reduced serum lipid loading, improved kidney function, and relieved kidney histopathological damage and glycogen deposition in the mouse model of obesity-related kidney disease induced by HFD. In addition, liraglutide also significantly inhibited the CaMKKβ/AMPK signaling pathway in kidney tissue of HFD-induced mice. However, bortezomib partially reversed the therapeutic effect of liraglutide on HDF-induced nephropathy in mice. CONCLUSIONS Liraglutide has a therapeutic effect on obesity-related kidney disease, and such an effect may be achieved by inhibiting the CaMKKβ/AMPK signaling pathway in kidney tissue.
Collapse
Affiliation(s)
- Yingli Xuan
- Department of Nephrology, School of Medicine, Baoshan Branch of Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ting-ting Ding
- Department of Nephrology, School of Medicine, Baoshan Branch of Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-lei Mao
- Department of Nephrology, School of Medicine, Baoshan Branch of Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shiqing Pang
- Department of Nephrology, School of Medicine, Baoshan Branch of Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ruibin He
- Department of Nephrology, School of Medicine, Baoshan Branch of Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Li Qin
- Department of Nephrology, School of Medicine, Baoshan Branch of Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jiang zi Yuan
- Department of Nephrology, School of Medicine, Baoshan Branch of Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Bu T, Sun Z, Pan Y, Deng X, Yuan G. Glucagon-Like Peptide-1: New Regulator in Lipid Metabolism. Diabetes Metab J 2024; 48:354-372. [PMID: 38650100 PMCID: PMC11140404 DOI: 10.4093/dmj.2023.0277] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/01/2024] [Indexed: 04/25/2024] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is a 30-amino acid peptide hormone that is mainly expressed in the intestine and hypothalamus. In recent years, basic and clinical studies have shown that GLP-1 is closely related to lipid metabolism, and it can participate in lipid metabolism by inhibiting fat synthesis, promoting fat differentiation, enhancing cholesterol metabolism, and promoting adipose browning. GLP-1 plays a key role in the occurrence and development of metabolic diseases such as obesity, nonalcoholic fatty liver disease, and atherosclerosis by regulating lipid metabolism. It is expected to become a new target for the treatment of metabolic disorders. The effects of GLP-1 and dual agonists on lipid metabolism also provide a more complete treatment plan for metabolic diseases. This article reviews the recent research progress of GLP-1 in lipid metabolism.
Collapse
Affiliation(s)
- Tong Bu
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ziyan Sun
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yi Pan
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xia Deng
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Guoyue Yuan
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
9
|
Roumane A, Mcilroy GD, Sommer N, Han W, Heisler LK, Rochford JJ. GLP-1 receptor agonist improves metabolic disease in a pre-clinical model of lipodystrophy. Front Endocrinol (Lausanne) 2024; 15:1379228. [PMID: 38745956 PMCID: PMC11091257 DOI: 10.3389/fendo.2024.1379228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Abstract
Aims Individuals with lipodystrophies typically suffer from metabolic disease linked to adipose tissue dysfunction including lipoatrophic diabetes. In the most severe forms of lipodystrophy, congenital generalised lipodystrophy, adipose tissue may be almost entirely absent. Better therapies for affected individuals are urgently needed. Here we performed the first detailed investigation of the effects of a glucagon like peptide-1 receptor (GLP-1R) agonist in lipoatrophic diabetes, using mice with generalised lipodystrophy. Methods Lipodystrophic insulin resistant and glucose intolerant seipin knockout mice were treated with the GLP-1R agonist liraglutide either acutely preceding analyses of insulin and glucose tolerance or chronically prior to metabolic phenotyping and ex vivo studies. Results Acute liraglutide treatment significantly improved insulin, glucose and pyruvate tolerance. Once daily injection of seipin knockout mice with liraglutide for 14 days led to significant improvements in hepatomegaly associated with steatosis and reduced markers of liver fibrosis. Moreover, liraglutide enhanced insulin secretion in response to glucose challenge with concomitantly improved glucose control. Conclusions GLP-1R agonist liraglutide significantly improved lipoatrophic diabetes and hepatic steatosis in mice with generalised lipodystrophy. This provides important insights regarding the benefits of GLP-1R agonists for treating lipodystrophy, informing more widespread use to improve the health of individuals with this condition.
Collapse
Affiliation(s)
- Ahlima Roumane
- The Rowett Institute and Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, United Kingdom
| | - George D. Mcilroy
- The Rowett Institute and Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, United Kingdom
| | - Nadine Sommer
- The Rowett Institute and Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, United Kingdom
| | - Weiping Han
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Lora K. Heisler
- The Rowett Institute and Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, United Kingdom
| | - Justin J. Rochford
- The Rowett Institute and Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
10
|
Zhang SX, Hui DC, Sun MY. Progress in research of type 2 diabetes with nonalcoholic fatty liver in traditional Chinese and Western medicine. Shijie Huaren Xiaohua Zazhi 2024; 32:16-22. [DOI: 10.11569/wcjd.v32.i1.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/24/2023] [Accepted: 01/11/2024] [Indexed: 01/26/2024] Open
Abstract
By analyzing the recent relevant literature on type 2 diabetes with nonalcoholic fatty liver disease, this paper summarizes its etiology, pathogenesis, syndrome differentiation and treatment, clinical treatment, and other aspects from the perspective of traditional Chinese medicine (TCM) and Western medicine. There has been some progress in the treatment of this disease in both TCM and Western medicine, but further in-depth study is required to explore its pathogenesis. Moreover, the etiology, pathogenesis, and syndrome differentiation of this disease in TCM are not yet unified, and large-scale, multicenter, and prospective clinical research is insufficient. There is also a lack of research on the action and targets of TCM in this disease.
Collapse
Affiliation(s)
- Shun-Xiao Zhang
- Department of Endocrinology, Shanghai Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai 201999, China
| | - Deng-Cheng Hui
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ming-Yu Sun
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
11
|
Luo M, Wang Y, Ma Y, Li J, Wang J, Liu C. Celastrol Stabilizes Glycolipid Metabolism in Hepatic Steatosis by Binding and Regulating the Peroxisome Proliferator-Activated Receptor γ Signaling Pathway. Metabolites 2024; 14:64. [PMID: 38276299 PMCID: PMC10818689 DOI: 10.3390/metabo14010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) has been increasing. Obesity, insulin resistance, and lipid metabolic dysfunction are always accompanied by NAFLD. Celastrol modulates the Peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα) signaling pathways, thereby promoting lipolysis in 3T3-L1 adipocytes. In the present study, oleic-acid-induced NAFLD and differentiated 3T3-L1 preadipocytes were used as models of NAFLD and obesity to investigate the protective effect of celastrol. We investigated the impact of celastrol on hepatic steatosis caused by oleic acid (OA), as well as the associated underlying molecular pathways. To address the aforementioned questions, we used a cellular approach to analyze the signaling effects of celastrol on various aspects. These factors include the improvement in fatty liver in HepG2 cells, the differentiation of 3T3-L1 preadipocytes, glucose uptake, and the modulation of key transcriptional pathways associated with PPARγ. The administration of celastrol effectively mitigated lipid accumulation caused by OA in HepG2 cells, thereby ameliorating fatty liver conditions. Furthermore, celastrol suppressed the impacts on adipocyte differentiation in 3T3-L1 adipocytes. Additionally, celastrol exhibited the ability to bind to PPARγ and modulate its transcriptional activity. Notably, the ameliorative effects of celastrol on hepatic steatosis were reversed by rosiglitazone. According to our preliminary findings from in vitro celastrol signaling studies, PPARγ is likely to be the direct target of celastrol in regulating hepatic steatosis in HepG2 cells and adipocyte differentiation in 3T3-L1 cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Changzhen Liu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; (M.L.); (Y.W.); (Y.M.); (J.L.); (J.W.)
| |
Collapse
|
12
|
Zeng Y, Wu Y, Zhang Q, Xiao X. Crosstalk between glucagon-like peptide 1 and gut microbiota in metabolic diseases. mBio 2024; 15:e0203223. [PMID: 38055342 PMCID: PMC10790698 DOI: 10.1128/mbio.02032-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Gut microbiota exert influence on gastrointestinal mucosal permeability, bile acid metabolism, short-chain fatty acid synthesis, dietary fiber fermentation, and farnesoid X receptor/Takeda G protein-coupled receptor 5 (TGR5) signal transduction. The incretin glucagon-like peptide 1 (GLP-1) is mainly produced by L cells in the gut and regulates postprandial blood glucose. Changes in gut microbiota composition and function have been observed in obesity and type 2 diabetes (T2D). Meanwhile, the function and rhythm of GLP-1 have also been affected in subjects with obesity or T2D. Therefore, it is necessary to discuss the link between the gut microbiome and GLP-1. In this review, we describe the interaction between GLP-1 and the gut microbiota in metabolic diseases. On the one hand, gut microbiota metabolites stimulate GLP-1 secretion, and gut microbiota affect GLP-1 function and rhythm. On the other hand, the mechanism of action of GLP-1 on gut microbiota involves the inflammatory response. Additionally, we discuss the effects and mechanism of various interventions, such as prebiotics, probiotics, antidiabetic drugs, and bariatric surgery, on the crosstalk between gut microbiota and GLP-1. Finally, we stress that gut microbiota can be used as a target for metabolic diseases, and the clinical application of GLP-1 receptor agonists should be individualized.
Collapse
Grants
- 81870545, 81870579, 82170854, 81570715, 81170736 MOST | National Natural Science Foundation of China (NSFC)
- 7202163 Natural Science Foundation of Beijing Municipality (Beijing Natural Science Foundation)
- Z201100005520011 Beijing Municipal Science and Technology Commission, Adminitrative Commission of Zhongguancun Science Park
- 2017YFC1309603, 2021YFC2501700, 2016YFA0101002, 2018YFC2001100 MOST | National Key Research and Development Program of China (NKPs)
- 2019DCT-M-05 Beijing Municipal Human Resources and Social Security Bureau (BMHRSSB)
- 2017PT31036, 2018PT31021 Chinese Academy of Medical Sciences (CAMS)
- 2017PT32020, 2018PT32001 Chinese Academy of Medical Sciences (CAMS)
- CIFMS2017-I2M-1-008, CIFMS2021-I2M-1-002 Chinese Academy of Medical Sciences (CAMS)
- 2022-PUMCH- C-019, 2022-PUMCH-B-121 National High Level Hospital Clinical Research Funding
Collapse
Affiliation(s)
- Yuan Zeng
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yifan Wu
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qian Zhang
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinhua Xiao
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Jiang H, Zang L. GLP-1/GLP-1RAs: New Options for the Drug Treatment of NAFLD. Curr Pharm Des 2024; 30:100-114. [PMID: 38532322 DOI: 10.2174/0113816128283153231226103218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/14/2023] [Indexed: 03/28/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has recently emerged as a global public health concern. Currently, the cornerstone of NAFLD treatment is lifestyle modification and, if necessary, weight loss. However, compliance is a challenge, and this approach alone may not be sufficient to halt and treat the more serious disease development, so medication is urgently needed. Nevertheless, no medicines are approved to treat NAFLD. Glucagon-like peptide-1 (GLP-1) is an enteropeptide hormone that inhibits glucagon synthesis, promotes insulin secretion, and delays gastric emptying. GLP-1 has been found in recent studies to be beneficial for the management of NAFLD, and the marketed GLP-1 agonist drugs have different degrees of effectiveness for NAFLD while lowering blood glucose. In this article, we review GLP-1 and its physiological roles, the pathogenesis of NAFLD, the correlation between NAFLD and GLP-1 signaling, and potential strategies for GLP-1 treatment of NAFLD.
Collapse
Affiliation(s)
- Haoran Jiang
- Laboratory of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Linquan Zang
- Laboratory of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
14
|
Menghini R, Casagrande V, Rizza S, Federici M. GLP-1RAs and cardiovascular disease: is the endothelium a relevant platform? Acta Diabetol 2023; 60:1441-1448. [PMID: 37401947 PMCID: PMC10520195 DOI: 10.1007/s00592-023-02124-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/25/2023] [Indexed: 07/05/2023]
Abstract
Hyperglycemia strongly affects endothelial function and activation, which in turn increases the risk of atherosclerotic cardiovascular disease. Among pharmacotherapies aimed at lowering blood glucose levels, glucagon-like peptide 1 receptor agonists (GLP-1RA) represent a class of drugs involved in the improvement of the endothelium damage and the progression of cardiovascular diseases. They show antihypertensive and antiatherosclerotic actions due at least in part to direct favorable actions on the coronary vascular endothelium, such as oxidative stress reduction and nitric oxide increase. However, cumulative peripheral indirect actions could also contribute to the antiatherosclerotic functions of GLP-1/GLP-1R agonists, including metabolism and gut microbiome regulation. Therefore, further research is necessary to clarify the specific role of this drug class in the management of cardiovascular disease and to identify specific cellular targets involved in the protective signal transduction. In the present review, we provide an overview of the effects of GLP-1RAs treatment on cardiovascular disease with particular attention on potential molecular mechanisms involving endothelium function on formation and progression of atherosclerotic plaque.
Collapse
Affiliation(s)
- Rossella Menghini
- Departments of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.
| | - Viviana Casagrande
- Departments of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Stefano Rizza
- Departments of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
- Center for Atherosclerosis, Policlinico Tor Vergata, Rome, Italy
| | - Massimo Federici
- Departments of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.
- Center for Atherosclerosis, Policlinico Tor Vergata, Rome, Italy.
| |
Collapse
|
15
|
Lu F, Li E, Yang X. The association between circulatory, local pancreatic PCSK9 and type 2 diabetes mellitus: The effects of antidiabetic drugs on PCSK9. Heliyon 2023; 9:e19371. [PMID: 37809924 PMCID: PMC10558357 DOI: 10.1016/j.heliyon.2023.e19371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 10/10/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a potent modulator of cholesterol metabolism and plays a crucial role in the normal functioning of pancreatic islets and the progression of diabetes. Islet autocrine PCSK9 deficiency can lead to the enrichment of low-density lipoprotein (LDL) receptor (LDLR) and excessive LDL cholesterol (LDL-C) uptake, subsequently impairing the insulin secretion in β-cells. Circulatory PCSK9 levels are primarily attributed to hepatocyte secretion. Notably, anti-PCSK9 strategies proposed for individuals with hypercholesterolemia chiefly target liver-derived PCSK9; however, these anti-PCSK9 strategies have been associated with the risk of new-onset diabetes mellitus (NODM). In the current review, we highlight a new direction in PCSK9 inhibition therapy strategies: screening candidates for anti-PCSK9 from the drugs used in type 2 diabetes mellitus (T2DM) treatment. We explored the association between circulating, local pancreatic PCSK9 and T2DM, as well as the relationship between PCSK9 monoclonal antibodies and NODM. We discussed the emergence of artificial and natural drugs in recent years, exhibiting dual benefits of antidiabetic activity and PCSK9 reduction, confirming that the diverse effects of these drugs may potentially impact the progression of diabetes and associated disorders, thereby introducing novel avenues and methodologies to enhance disease prognosis.
Collapse
Affiliation(s)
- Fengyuan Lu
- The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, 450014, China
| | - En Li
- The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, 450014, China
| | - Xiaoyu Yang
- The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, 450014, China
- School of Basic Medical Sciences, Zhengzhou University, 450001, China
| |
Collapse
|
16
|
Zhang L, Wu X, Li X, Chang X, Ding X, Wang Q, Jiang T, Wang G, Liu J. Longitudinal changes in serum adropin levels and liver fat content during liraglutide treatment in newly diagnosed patients with type 2 diabetes mellitus and metabolic dysfunction-associated fatty liver disease. Acta Diabetol 2023; 60:971-979. [PMID: 37079136 DOI: 10.1007/s00592-023-02082-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/20/2023] [Indexed: 04/21/2023]
Abstract
AIMS To explore the effect of liraglutide treatment on serum adropin and its relationship to the liver fat content in newly diagnosed patients with type 2 diabetes mellitus (T2DM) and metabolic dysfunction-associated fatty liver disease (MAFLD). METHODS Serum adropin level and liver fat content were assessed in patients with T2DM and MAFLD (n = 22), along with healthy controls (n = 22). Afterward, the patients received liraglutide treatment for 12 weeks. Serum adropin levels were examined by a competitive enzyme-linked immunosorbent assay. Liver fat content was quantified via magnetic resonance imaging-estimated proton density fat fraction (MRI-PDFF). RESULTS We found that patients with newly diagnosed T2DM and MAFLD had lower serum adropin levels [2.79 ± 0.47 vs. 3.27 ± 0.79 ng/mL, P < 0.05] and higher liver fat content [19.12 ± 9.46 vs. 4.67 ± 0.61%, P < 0.001], compared to healthy controls. Following 12-week liraglutide treatment, serum adropin levels increased from 2.83(2.44, 3.24) to 3.65(3.20, 3.85) ng/mL (P < 0.001), and liver fat content decreased from 18.04(11.08, 27.65) to 7.74(6.42, 13.49) % (P < 0.001) in patients with T2DM and MAFLD. Furthermore, increases in serum adropin were strongly associated with decreases in liver fat content (β = - 5.933, P < 0.001), liver enzyme and glucolipid metabolism parameters. CONCLUSION The increase in serum adropin level following liraglutide treatment was strongly correlated with the reduction in liver fat content and glucolipid metabolism. Hence, adropin might be a potential marker for the beneficial effects of liraglutide on treating T2DM and MAFLD.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xiaojuan Wu
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xinyue Li
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xiaona Chang
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xiaoyu Ding
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Qiu Wang
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Tao Jiang
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Guang Wang
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Jia Liu
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
17
|
Han Y, Li L, Wang B. Role of Akkermansia muciniphila in the development of nonalcoholic fatty liver disease: current knowledge and perspectives. Front Med 2022; 16:667-685. [PMID: 36318353 DOI: 10.1007/s11684-022-0960-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/06/2022] [Indexed: 11/19/2022]
|
18
|
Abstract
The increasing prevalence of metabolic diseases has become a severe public health problem. Gut microbiota play important roles in maintaining human health by modulating the host's metabolism. Recent evidences demonstrate that Akkermansia muciniphila is effective in improving metabolic disorders and is thus considered as a promising "next-generation beneficial microbe". In addition to the live A. muciniphila, similar or even stronger beneficial effects have been observed in pasteurized A. muciniphila and its components, including the outer membrane protein Amuc_1100, A. muciniphila-derived extracellular vesicles (AmEVs), and secreted protein P9. Hence, this paper presents a systemic review of recent progress in the effects and mechanisms of A. muciniphila and its components in the treatment of metabolic diseases, including obesity, type 2 diabetes mellitus, cardiovascular disease, and nonalcoholic fatty liver disease, as well as perspectives on its future study.
Collapse
Affiliation(s)
- Juan Yan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Sheng
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Lili Sheng
| | - Houkai Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China,CONTACT Houkai Li Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| |
Collapse
|