1
|
Wang S, Lv S, Hu J, Shi Y, Li Y, Zhang J, Tan X, Chen R, Hong Y. Conditional Overexpression of Neuritin in Supporting Cell Protects Cochlear Hair Cell and Delays Age-Related Hearing Loss by Enhancing Autophagy. Int J Mol Sci 2025; 26:3709. [PMID: 40332354 PMCID: PMC12027747 DOI: 10.3390/ijms26083709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/03/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
Age-related hearing loss (ARHL) is a highly prevalent, burdensome sensorineural hearing loss closely associated with impaired autophagic influx. Our previous studies revealed that neuritin, a neurotrophic factor primarily expressed in the central nervous system, could alleviate drug-induced damages in hair cells (HCs) and spiral ganglion neurons. However, its effects on ARHL and whether these effects are closely related to autophagy remain unclear. Using the Nrn1 knock-in mice and cultured cochlear basilar membrane (CBM) of the neonatal mouse, we show that neuritin could restore aging-associated hearing loss and alleviate senescence-associated damage in the cochlea. Overexpression of neuritin in support cells (SCs) alleviates the loss of cochlear HCs and nerve fibers, reducing the damage to spiral ganglion neurons and the shifts in ABR's high-frequency threshold. Furthermore, conditional overexpression of neuritin in SCs improves autophagic influx by upregulating the expression of microtubule-associated protein 1 light chain 3 type B (LCB3) protein and downregulating the expression of p21 protein. In cultured neonatal mouse CBM, neuritin administration significantly inhibits D-galactose-induced HC loss, cellular apoptosis, and ROS production and promotes autophagic influx. These effects were weakened when the autophagy inhibitor 3-MA was added. In summary, our results confirm the therapeutic potential of neuritin treatment for ARHL.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rong Chen
- School of Public Health, Hangzhou Normal University, Hangzhou 311121, China; (S.W.); (S.L.); (J.H.); (Y.S.); (Y.L.); (J.Z.); (X.T.)
| | - Yu Hong
- School of Public Health, Hangzhou Normal University, Hangzhou 311121, China; (S.W.); (S.L.); (J.H.); (Y.S.); (Y.L.); (J.Z.); (X.T.)
| |
Collapse
|
2
|
Miwa T, Tarui A, Kouga T, Asai Y, Ogita H, Fujikawa T, Hakuba N. N 1-methylnicotinamide promotes age-related cochlear damage via the overexpression of SIRT1. Front Cell Neurosci 2025; 19:1542164. [PMID: 39959464 PMCID: PMC11825784 DOI: 10.3389/fncel.2025.1542164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/16/2025] [Indexed: 02/18/2025] Open
Abstract
Age-related hearing loss (ARHL) is a complex condition with genetic, aging, and environmental influences. Sirtuins, particularly SIRT1, are NAD-dependent protein deacetylases critical to aging and stress responses. SIRT1 is modulated by nicotinamide N-methyltransferase (NNMT) and its product, N1-methylnicotinamide (MNAM), which influence ARHL progression. While SIRT1 is protective under certain conditions, its overexpression may paradoxically exacerbate hearing loss. This study examines MNAM supplementation's impact on SIRT1 expression and ARHL in low-fat diet (LFD)-fed B6 and CBA mice. Mice were divided into LFD and LFD + MNAM groups and evaluated for auditory function, cochlear morphology, metabolic profiles, and SIRT1 expression at 3, 6, and 12 months of age. MNAM supplementation accelerated ARHL in both strains, with B6 mice showing more pronounced and earlier disease progression. Auditory brainstem response (ABR) thresholds were significantly elevated, and distortion-product otoacoustic emissions (DPOAE) indicated outer hair cell dysfunction. Cochlear histology revealed reduced hair cell and spiral ganglion cell counts, as well as decreased Na+/K+-ATPase α1 expression and endocochlear potential. MNAM increased SIRT1 protein levels in the cochlea without altering Sirt1 mRNA, suggesting post-transcriptional regulation. Metabolomic analysis revealed disrupted mitochondrial and oxidative pathways, including fatty acid oxidation and gluconeogenesis. Tricarboxylic acid (TCA) cycle dysregulation was evident, particularly in B6 mice, with elevated pyruvate, fumarate, and lactate levels. Despite similar metabolic trends in CBA mice, their slower aging profiles mitigated ARHL progression. These results suggest that while moderate SIRT1 expression protects against ARHL, overexpression disrupts metabolic homeostasis, accelerating cochlear aging and dysfunction. The dual role of SIRT1 emphasizes the need for precise modulation of its expression for effective therapeutic interventions. Future research should explore mechanisms underlying SIRT1-induced cochlear damage and strategies to maintain balanced SIRT1 expression. This study highlights MNAM's detrimental effects on ARHL, underscoring its significance for developing targeted approaches to delay ARHL onset and preserve auditory function.
Collapse
Affiliation(s)
- Toru Miwa
- Department of Otolaryngology, Teikyo University Hospital, Mizonokuchi, Kawasaki, Japan
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akihito Tarui
- Department of Otolaryngology, Teikyo University Hospital, Mizonokuchi, Kawasaki, Japan
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Teppei Kouga
- Department of Otolaryngology, Osaka Metropolitan University, Osaka, Japan
| | - Yasunori Asai
- Department of Otolaryngology, Teikyo University Hospital, Mizonokuchi, Kawasaki, Japan
- Department of Otolaryngology-Head and Neck Surgery, Fujita Health University, Toyoake, Japan
| | - Hideaki Ogita
- Department of Otolaryngology, Teikyo University Hospital, Mizonokuchi, Kawasaki, Japan
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Taro Fujikawa
- Department of Otolaryngology, Teikyo University Hospital, Mizonokuchi, Kawasaki, Japan
| | - Nobuhiro Hakuba
- Department of Otolaryngology, Teikyo University Hospital, Mizonokuchi, Kawasaki, Japan
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Lin X, Xu Y, Fan C, Zhang G. Novel insights into mechanisms and therapeutics for presbycusis. Heliyon 2025; 11:e41203. [PMID: 39807511 PMCID: PMC11728942 DOI: 10.1016/j.heliyon.2024.e41203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/24/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
Presbycusis, also referred to as age-related hearing loss, poses a substantial burden on both individuals and society. The hallmark of presbycusis is a progressive decrease in auditory sensitivity. Irreversible hearing loss occurs due to the limited regenerative capacity of spiral neurons and peripheral cochlear hair cells (HCs). Although hearing aids and cochlear implantations (CIs) are established approaches for alleviating symptoms of presbycusis, there are currently no preventive or curative measures available. This article provides a comprehensive discussion on the research progress pertaining to the classification, molecular mechanism, genetic susceptibility, as well as the applications and prospects of diverse therapeutic interventions of presbycusis. Building upon these discussions, promising interventions like gene therapy and stem cell (SC) therapy are proposed for their potential value in restoring cochlear function; thus aiming to pave new avenues for prevention and cure of presbycusis.
Collapse
Affiliation(s)
- Xiaoying Lin
- Department of Research and Development, Fujian CapitalBio Medical Laboratory, Fuzhou, 350100, China
| | - Yiyuan Xu
- Department of Research and Development, Fujian CapitalBio Medical Laboratory, Fuzhou, 350100, China
| | - Chunmei Fan
- Clinical Lab and Medical Diagnostics Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Guanbin Zhang
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, 350122, China
- Department of Laboratory Medicine, Mianyang People's Hospital, Mianyang, 621000, China
| |
Collapse
|
4
|
Koo C, Richter CP, Tan X. Roles of Sirtuins in Hearing Protection. Pharmaceuticals (Basel) 2024; 17:998. [PMID: 39204103 PMCID: PMC11357115 DOI: 10.3390/ph17080998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/20/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
Hearing loss is a health crisis that affects more than 60 million Americans. Currently, sodium thiosulfate is the only drug approved by the Food and Drug Administration (FDA) to counter hearing loss. Sirtuins were proposed as therapeutic targets in the search for new compounds or drugs to prevent or cure age-, noise-, or drug-induced hearing loss. Sirtuins are proteins involved in metabolic regulation with the potential to ameliorate sensorineural hearing loss. The mammalian sirtuin family includes seven members, SIRT1-7. This paper is a literature review on the sirtuins and their protective roles in sensorineural hearing loss. Literature search on the NCBI PubMed database and NUsearch included the keywords 'sirtuin' and 'hearing'. Studies on sirtuins without relevance to hearing and studies on hearing without relevance to sirtuins were excluded. Only primary research articles with data on sirtuin expression and physiologic auditory tests were considered. The literature review identified 183 records on sirtuins and hearing. After removing duplicates, eighty-one records remained. After screening for eligibility criteria, there were forty-eight primary research articles with statistically significant data relevant to sirtuins and hearing. Overall, SIRT1 (n = 29) was the most studied sirtuin paralog. Over the last two decades, research on sirtuins and hearing has largely focused on age-, noise-, and drug-induced hearing loss. Past and current studies highlight the role of sirtuins as a mediator of redox homeostasis. However, more studies need to be conducted on the involvement of SIRT2 and SIRT4-7 in hearing protection.
Collapse
Affiliation(s)
- Chail Koo
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (C.K.); (C.-P.R.)
| | - Claus-Peter Richter
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (C.K.); (C.-P.R.)
- Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA
| | - Xiaodong Tan
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (C.K.); (C.-P.R.)
- Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
5
|
Luo X, Hu Y, Zhou X, Zhang C, Feng M, Yang T, Yuan W. Potential roles for lncRNA Mirg/Foxp1 in an ARHL model created using C57BL/6J mice. Hear Res 2023; 438:108859. [PMID: 37579646 DOI: 10.1016/j.heares.2023.108859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 07/21/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
Age-related hearing loss (ARHL) is associated with hair cell apoptosis, but the underlying mechanism of hair cell apoptosis remains unclear. Here, we investigated the expression profiles of long noncoding RNAs (lncRNAs) and mRNAs in an ARHL model created with C57BL/6 J mice using RNA sequencing and found that the expression of several lncRNAs was significantly correlated with apoptosis-associated mRNAs in the cochlear tissues of old mice compared to young mice. We found that lncRNA Mirg was upregulated in the cochlear tissues of old mice compared to young mice and its overexpression promoted apoptosis in House Ear Institute-Organ of Corti 1 (HEI-OC1). H2O2-induced oxidative stress increased HEI-OC1 cell apoptosis by upregulating lncRNA Mirg. Furthermore, the expression of lncRNA Mirg and Foxp1 showed the highest correlation coefficient in the cochlear tissues of old mice, and lncRNA Mirg promoted HEI-OC1 cell apoptosis by increasing Foxp1 expression. In conclusion, our findings suggest that lncRNA Mirg expression correlates with cell apoptosis-associated mRNAs in the ARHL model created using C57BL/6 J mice and that oxidative stress-induced lncRNA Mirg promotes HEI-OC1 cell apoptosis by increasing Foxp1 expression. These data suggest the potential therapeutic significance of targeting lncRNA Mirg/Foxp1 signaling in ARHL.
Collapse
Affiliation(s)
- Xiaoqin Luo
- Department of Otolaryngology, Chongqing Medical University, Chongqing, 400042, China; Chongqing Institute of Green and Intelligent Technology, University of Chinese Academy of Sciences, Chongqing 400714, China; Department of Otolaryngology, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China; Department of Otolaryngology, Chongqing General Hospital, Chongqing 400014, China
| | - Yaqin Hu
- Department of Otolaryngology, Chongqing Medical University, Chongqing, 400042, China; Chongqing Institute of Green and Intelligent Technology, University of Chinese Academy of Sciences, Chongqing 400714, China; Department of Otolaryngology, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China; Department of Otolaryngology, Chongqing General Hospital, Chongqing 400014, China
| | - Xiaoqing Zhou
- Department of Otolaryngology, Chongqing Medical University, Chongqing, 400042, China; Chongqing Institute of Green and Intelligent Technology, University of Chinese Academy of Sciences, Chongqing 400714, China; Department of Otolaryngology, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China; Department of Otolaryngology, Chongqing General Hospital, Chongqing 400014, China
| | - Chanyuan Zhang
- Department of Otolaryngology, Chongqing Medical University, Chongqing, 400042, China; Chongqing Institute of Green and Intelligent Technology, University of Chinese Academy of Sciences, Chongqing 400714, China; Department of Otolaryngology, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China; Department of Otolaryngology, Chongqing General Hospital, Chongqing 400014, China
| | - Menglong Feng
- Department of Otolaryngology, Chongqing Medical University, Chongqing, 400042, China; Chongqing Institute of Green and Intelligent Technology, University of Chinese Academy of Sciences, Chongqing 400714, China; Department of Otolaryngology, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China; Department of Otolaryngology, Chongqing General Hospital, Chongqing 400014, China
| | - Ting Yang
- Department of Otolaryngology, Chongqing Medical University, Chongqing, 400042, China; Chongqing Institute of Green and Intelligent Technology, University of Chinese Academy of Sciences, Chongqing 400714, China; Department of Otolaryngology, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China; Department of Otolaryngology, Chongqing General Hospital, Chongqing 400014, China
| | - Wei Yuan
- Department of Otolaryngology, Chongqing Medical University, Chongqing, 400042, China; Chongqing Institute of Green and Intelligent Technology, University of Chinese Academy of Sciences, Chongqing 400714, China; Department of Otolaryngology, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China; Department of Otolaryngology, Chongqing General Hospital, Chongqing 400014, China.
| |
Collapse
|
6
|
Wang E, Li Y, Li H, Liu Y, Ming R, Wei J, Du P, Li X, Zong S, Xiao H. METTL3 Reduces Oxidative Stress-induced Apoptosis in Presbycusis by Regulating the N6-methyladenosine Level of SIRT1 mRNA. Neuroscience 2023; 521:110-122. [PMID: 37087022 DOI: 10.1016/j.neuroscience.2023.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 04/24/2023]
Abstract
N6-methyl adenosine (m6A) modification is known to play a crucial role in various aging-related diseases. However, its involvement in presbycusis, a type of age-related hearing loss, is not yet clear. We examined the changes in oxidative stress levels in both plasma of presbycusis patients and mice. To determine the expression of m6A and its functional enzymes, we used liquid chromatography tandem-mass spectrometry (LC-MS/MS), enzyme-linked immunosorbent assay (ELISA), and RT-PCR to analyze the total RNA of presbycusis patients blood cells (n = 8). Additionally, we detected the expression of m6A functional enzymes in the cochlea of presbycusis mice using immunohistochemistry. We assessed the effects of m6A methyltransferase METTL3 on SIRT1 protein expression, reactive oxygen species (ROS) levels, and apoptosis in an oxidative stress model of organ of Corti 1 (OC1) cells. To observe the effect on SIRT1 protein expression, we interfered with the m6A recognition protein IGF2BP3 using siRNA. In both presbycusis patients and mice, there was an increased level of oxidative stress in plasma.There was a decrease in the expression of m6A, METTL3, and IGF2BP3 in presbycusis patients blood cells. The expression of METTL3 and IGF2BP3 was also reduced in the cochlea of presbycusis mice. In OC1 cells, METTL3 positively regulated SIRT1 protein levels, while reversely regulated the level of ROS and apoptosis. IGF2BP3 was found to be involved in the regulation of SIRT1 protein expression. In addition, METTL3 may play a protective role in oxidative stress-induced injury of OC1 cells, while both METTL3 and IGF2BP3 cooperatively regulate the level of m6A and the fate of SIRT1 mRNA in OC1 cells.
Collapse
Affiliation(s)
- Enhao Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Hejie Li
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingzhao Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruijie Ming
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Wei
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peiyu Du
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangrui Li
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shimin Zong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Hongjun Xiao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Zhao T, Tian G. Potential therapeutic role of SIRT1 in age- related hearing loss. Front Mol Neurosci 2022; 15:984292. [PMID: 36204138 PMCID: PMC9530142 DOI: 10.3389/fnmol.2022.984292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/30/2022] [Indexed: 01/11/2023] Open
Abstract
Age-related hearing loss (ARHL) is a major public health burden worldwide that profoundly affects the daily life of elderly people. Silent information regulator 1 (SIRT1 or Sirtuin1), known as a regulator of the cell cycle, the balance of oxidation/antioxidant and mitochondrial function, has been proven to have anti-aging and life-extending effects, and its possible connection with ARHL has received increasing attention in recent years. This paper provides an overview of research on the connection between SIRT1 and ARHL. Topics cover both the functions of SIRT1 and its important role in ARHL. This review concludes with a look at possible research directions for ARHL in the future.
Collapse
Affiliation(s)
- Tingting Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Guangyong Tian
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| |
Collapse
|
8
|
A reduced form of nicotinamide riboside protects the cochlea against aminoglycoside-induced ototoxicity by SIRT1 activation. Biomed Pharmacother 2022; 150:113071. [PMID: 35658237 DOI: 10.1016/j.biopha.2022.113071] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Nicotinamide adenine dinucleotide (NAD+), a coenzyme that plays crucial roles in many cellular processes, is a potential therapeutic target for various diseases. Dihydronicotinamide riboside (NRH), a novel reduced form of nicotinamide riboside, has emerged as a potent NAD+ precursor. Here, we studied the protective effects and underlying mechanism of NRH on aminoglycoside-induced ototoxicity. METHODS Auditory function and hair-cell (HC) morphology were examined to assess the effects of NRH on kanamycin-induced hearing loss. The pharmacokinetic parameters of NRH were measured in plasma and the cochlea using liquid chromatography tandem mass spectrometry. NAD+ levels in organ explant cultures were assessed to compare NRH with known NAD+ precursors. Immunofluorescence analysis was performed to detect reactive oxygen species (ROS) and apoptosis. We analyzed SIRT1 and 14-3-3 protein expression. EX527 and resveratrol were used to investigate the role of SIRT1 in the protective effect of NRH against kanamycin-induced ototoxicity. RESULTS NRH alleviated kanamycin-induced HC damage and attenuated hearing loss in mice. NRH reduced gentamicin-induced vestibular HC loss. Compared with NAD and NR, NRH produced more NAD+ in cochlear HCs and significantly ameliorated kanamycin-induced oxidative stress and apoptosis. NRH rescued the aminoglycoside-induced decreases in SIRT1 and 14-3-3 protein expression. Moreover, EX527 antagonized the protective effect of NRH on kanamycin-induced HC loss by inhibition of SIRT1, while resveratrol alleviated HC damage caused by EX527. CONCLUSIONS NRH ameliorates aminoglycoside-induced ototoxicity by inhibiting HC apoptosis by activating SIRT1 and decreasing ROS. NRH is an effective therapeutic option for aminoglycoside-induced ototoxicity.
Collapse
|
9
|
McCarty MF, Lewis Lujan L, Iloki Assanga S. Targeting Sirt1, AMPK, Nrf2, CK2, and Soluble Guanylate Cyclase with Nutraceuticals: A Practical Strategy for Preserving Bone Mass. Int J Mol Sci 2022; 23:4776. [PMID: 35563167 PMCID: PMC9104509 DOI: 10.3390/ijms23094776] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 12/15/2022] Open
Abstract
There is a vast pre-clinical literature suggesting that certain nutraceuticals have the potential to aid the preservation of bone mass in the context of estrogen withdrawal, glucocorticoid treatment, chronic inflammation, or aging. In an effort to bring some logical clarity to these findings, the signaling pathways regulating osteoblast, osteocyte, and osteoclast induction, activity, and survival are briefly reviewed in the present study. The focus is placed on the following factors: the mechanisms that induce and activate the RUNX2 transcription factor, a key driver of osteoblast differentiation and function; the promotion of autophagy and prevention of apoptosis in osteoblasts/osteoclasts; and the induction and activation of NFATc1, which promotes the expression of many proteins required for osteoclast-mediated osteolysis. This analysis suggests that the activation of sirtuin 1 (Sirt1), AMP-activated protein kinase (AMPK), the Nrf2 transcription factor, and soluble guanylate cyclase (sGC) can be expected to aid the maintenance of bone mass, whereas the inhibition of the serine kinase CK2 should also be protective in this regard. Fortuitously, nutraceuticals are available to address each of these targets. Sirt1 activation can be promoted with ferulic acid, N1-methylnicotinamide, melatonin, nicotinamide riboside, glucosamine, and thymoquinone. Berberine, such as the drug metformin, is a clinically useful activator of AMPK. Many agents, including lipoic acid, melatonin, thymoquinone, astaxanthin, and crucifera-derived sulforaphane, can promote Nrf2 activity. Pharmacological doses of biotin can directly stimulate sGC. Additionally, certain flavonols, notably quercetin, can inhibit CK2 in high nanomolar concentrations that may be clinically relevant. Many, though not all, of these agents have shown favorable effects on bone density and structure in rodent models of bone loss. Complex nutraceutical regimens providing a selection of these nutraceuticals in clinically meaningful doses may have an important potential for preserving bone health. Concurrent supplementation with taurine, N-acetylcysteine, vitamins D and K2, and minerals, including magnesium, zinc, and manganese, plus a diet naturally high in potassium, may also be helpful in this regard.
Collapse
Affiliation(s)
| | - Lidianys Lewis Lujan
- Department of Research and Postgraduate in Food Science, Sonoran University, Hermosillo 83200, Mexico;
| | - Simon Iloki Assanga
- Department of Biological Chemical Sciences, Sonoran University, Hermosillo 83200, Mexico;
| |
Collapse
|