1
|
Fiaz M, Elsadek MF, Al-Numair KS, Chaudhry SR, Saleem M, Khan KUR, Yehya AHS, Asif M. Down-regulation of interlinked inflammatory signalling cascades by ethanolic extract of Suaeda fruticosa Forssk. ex J.F. Gmel. attenuated in vivo inflammatory and nociceptive responses. Inflammopharmacology 2025; 33:311-328. [PMID: 39731702 DOI: 10.1007/s10787-024-01624-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/02/2024] [Indexed: 12/30/2024]
Abstract
Juice and decoction of leaves of Suaeda fruticosa, a halophytic medicinal plant of Cholistan desert, is traditionally used to treat rheumatism. The current study was carried out to probe into in vivo anti-nociceptive, anti-inflammatory, and anti-arthritic potential of ethanolic extract of the whole plant of S. fruticosa (Et-SF) and its bioactive molecules. GC-MS screening of Et-SF revealed presence of various bioactive compounds including phytol, thymol, n-hexadecanoic acid, farnesol, and 1-heptacosanol. DPPH in vitro radical scavenging assay demonstrated moderate antioxidant potential of Et-SF. Safety evaluation of Et-SF confirmed no lethal effects in female albino rats up to the single oral dose of 5000 mg/kg. In all in vivo models, Et-SF was administered in three doses (125, 250, and 500 mg/kg) and a single dose of flurbiprofen (FP) (10 mg/kg). Et-SF significantly (p < 0.05) attenuated acute inflammation in carrageenan, histamine, and serotonin-induced rat paw oedema models in a time-dependent manner. Et-SF alleviated oedema, restored haematological parameters, and reduced severe pannus formation, inflammatory cell infiltration, and fibrous tissue proliferation in the paws of CFA-induced arthritic rats. Moreover, treatment with thymol, farnesol and n-hexadecanoic acid alone and in combination also attenuated the arthritic progression in the arthritic rats indicating involvement of these compounds towards anti-arthritic potential of Et-SF. Et-SF and FP significantly (p < 0.05) down-regulated IL-1β, TNF-α, IL-6, NF-κB, and COX-2 mRNA expression, and up-regulated IL-4 and IL-10 mRNA expression in arthritic rats. Hot plate and acetic acid-induced writhing models results indicated the analgesic attributes of Et-SF in mice models. This study suggests that S. fruticosa ethanol extract may regulate the expression of inflammatory markers involved in nociceptive, inflammatory, and arthritic disorders. Its phytochemicals could target multiple phases of these conditions at cellular and subcellular levels. Further research is needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Muhammad Fiaz
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
| | - Mohamed Farouk Elsadek
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Khalid S Al-Numair
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Shafqat Rasul Chaudhry
- II-TECH College of Pharmacy, International Institute of Technology, Culture & Health Sciences (II-TECH), Gujranwala, 52250, Punjab, Pakistan
| | - Mohammad Saleem
- Department of Pharmacology, Punjab University College of Pharmacy, University of the Punjab, Lahore, 54000, Punjab, Pakistan
| | - Kashif Ur Rehman Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
| | - Ashwaq Hamid Salem Yehya
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Muhammad Asif
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan.
| |
Collapse
|
2
|
Shahid M, Subhan F, Ahmad N, Din ZU, Ullah I, Ur Rahman S, Ullah R, Farooq U, Alam J, Nawaz NUA, Abbas S, Sewell RDE. 6-Methoxyflavone antagonizes chronic constriction injury and diabetes associated neuropathic nociception expression. Biochem Biophys Res Commun 2024; 724:150217. [PMID: 38865809 DOI: 10.1016/j.bbrc.2024.150217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/07/2024] [Accepted: 06/02/2024] [Indexed: 06/14/2024]
Abstract
Neuropathy is a disturbance of function or a pathological change in nerves causing poor health and quality of life. A proportion of chronic pain patients in the community suffer persistent neuropathic pain symptoms because current drug therapies may be suboptimal so there is a need for new therapeutic modalities. This study investigated the neuroprotective flavonoid, 6-methoxyflavone (6MF), as a potential therapeutic agent and gabapentin as the standard comparator, against neuropathic models. Thus, neuropathic-like states were induced in Sprague-Dawley rats using sciatic nerve chronic constriction injury (CCI) mononeuropathy and systemic administration of streptozotocin (STZ) to induce polyneuropathy. Subsequent behaviors reflecting allodynia, hyperalgesia, and vulvodynia were assessed and any possible motoric side-effects were evaluated including locomotor activity, as well as rotarod discoordination and gait disruption. 6MF (25-75 mg/kg) antagonized neuropathic-like nociceptive behaviors including static- (pressure) and dynamic- (light brushing) hindpaw allodynia plus heat/cold and pressure hyperalgesia in the CCI and STZ models. 6MF also reduced static and dynamic components of vulvodynia in the STZ induced polyneuropathy model. Additionally, 6MF reversed CCI and STZ suppression of locomotor activity and rotarod discoordination, suggesting a beneficial activity on motor side effects, in contrast to gabapentin. Hence, 6MF possesses anti-neuropathic-like activity not only against different nociceptive modalities but also impairment of motoric side effects.
Collapse
Affiliation(s)
- Muhammad Shahid
- Department of Pharmacy, CECOS University of Information Technology and Emerging Sciences, Peshawar, 25000, Khyber Pakhtunkhwa, Pakistan.
| | - Fazal Subhan
- Department of Pharmacy, CECOS University of Information Technology and Emerging Sciences, Peshawar, 25000, Khyber Pakhtunkhwa, Pakistan
| | - Nisar Ahmad
- School of Pharmacy, Institute of Health Sciences, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Zia Ud Din
- Department of Anatomy, Khyber Medical College, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Ihsan Ullah
- Department of Pharmacy, University of Swabi, Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Shafiq Ur Rahman
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal, Dir, Khyber Pakhtunkhwa, Pakistan
| | - Rahim Ullah
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Umar Farooq
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Javaid Alam
- Drug and Herbal Research Center, Faculty of Pharmacy, University Kebangsang Malaysia, Kuala Lumpur, 50300, Malaysia
| | - Noor Ul Ain Nawaz
- Department of Pharmacy, City University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Sudhair Abbas
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Robert D E Sewell
- Department of Pharmacy, CECOS University of Information Technology and Emerging Sciences, Peshawar, 25000, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
3
|
Hu Y, Li W, Cheng X, Yang H, She ZG, Cai J, Li H, Zhang XJ. Emerging Roles and Therapeutic Applications of Arachidonic Acid Pathways in Cardiometabolic Diseases. Circ Res 2024; 135:222-260. [PMID: 38900855 DOI: 10.1161/circresaha.124.324383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Cardiometabolic disease has become a major health burden worldwide, with sharply increasing prevalence but highly limited therapeutic interventions. Emerging evidence has revealed that arachidonic acid derivatives and pathway factors link metabolic disorders to cardiovascular risks and intimately participate in the progression and severity of cardiometabolic diseases. In this review, we systemically summarized and updated the biological functions of arachidonic acid pathways in cardiometabolic diseases, mainly focusing on heart failure, hypertension, atherosclerosis, nonalcoholic fatty liver disease, obesity, and diabetes. We further discussed the cellular and molecular mechanisms of arachidonic acid pathway-mediated regulation of cardiometabolic diseases and highlighted the emerging clinical advances to improve these pathological conditions by targeting arachidonic acid metabolites and pathway factors.
Collapse
Affiliation(s)
- Yufeng Hu
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Wei Li
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
| | - Xu Cheng
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Hailong Yang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Zhi-Gang She
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
| | - Jingjing Cai
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China (J.C.)
| | - Hongliang Li
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China (H.L.)
| | - Xiao-Jing Zhang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- School of Basic Medical Sciences, Wuhan University, China (X.-J.Z.)
| |
Collapse
|
4
|
Zhao B, Zhang Q, He Y, Cao W, Song W, Liang X. Targeted metabolomics reveals the aberrant energy status in diabetic peripheral neuropathy and the neuroprotective mechanism of traditional Chinese medicine JinMaiTong. J Pharm Anal 2024; 14:225-243. [PMID: 38464790 PMCID: PMC10921333 DOI: 10.1016/j.jpha.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/15/2023] [Accepted: 09/18/2023] [Indexed: 03/12/2024] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a common and devastating complication of diabetes, for which effective therapies are currently lacking. Disturbed energy status plays a crucial role in DPN pathogenesis. However, the integrated profile of energy metabolism, especially the central carbohydrate metabolism, remains unclear in DPN. Here, we developed a metabolomics approach by targeting 56 metabolites using high-performance ion chromatography-tandem mass spectrometry (HPIC-MS/MS) to illustrate the integrative characteristics of central carbohydrate metabolism in patients with DPN and streptozotocin-induced DPN rats. Furthermore, JinMaiTong (JMT), a traditional Chinese medicine (TCM) formula, was found to be effective for DPN, improving the peripheral neurological function and alleviating the neuropathology of DPN rats even after demyelination and axonal degeneration. JMT ameliorated DPN by regulating the aberrant energy balance and mitochondrial functions, including excessive glycolysis restoration, tricarboxylic acid cycle improvement, and increased adenosine triphosphate (ATP) generation. Bioenergetic profile was aberrant in cultured rat Schwann cells under high-glucose conditions, which was remarkably corrected by JMT treatment. In-vivo and in-vitro studies revealed that these effects of JMT were mainly attributed to the activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK) and downstream peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Our results expand the therapeutic framework for DPN and suggest the integrative modulation of energy metabolism using TCMs, such as JMT, as an effective strategy for its treatment.
Collapse
Affiliation(s)
- Bingjia Zhao
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Qian Zhang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yiqian He
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Weifang Cao
- Institute of Basic Medicine Sciences, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Wei Song
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiaochun Liang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| |
Collapse
|
5
|
Sivapalan S, Dharmalingam S, Ashokkumar V, Venkatesan V, Angappan M. Evaluation of the anti-inflammatory and antioxidant properties and isolation and characterization of a new bioactive compound, 3,4,9-trimethyl-7-propyldecanoic acid from Vitex negundo. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117314. [PMID: 37832812 DOI: 10.1016/j.jep.2023.117314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Herbal medicines derived from plant extraction are affordable, more therapeutically effective, and have fewer side effects than contemporary medications. Vitex negundo L. (V. negundo). is a medicinal shrub, which contains numerous phytoconstituents. In ancient medicinal practices, V. negundo was primarily prescribed as an analgesic and anti-inflammatory drug. AIM OF THE STUDY This study aims to evaluate the anti-inflammatory and antioxidant characteristics of crude extracts from V. negundo leaves, including those derived from petroleum ether (P), methanol (M), and aqueous (A) solvents. Additionally, the research seeks to identify the specific bioactive compounds responsible for these observed properties. MATERIALS AND METHODS The nitric oxide scavenging study was performed to evaluate the V. negundo crude extract's ability to function as a nitric oxide scavenger. Protein denaturation and proteinase inhibition experiments were employed to study the ability of extracts to suppress proteolysis and inhibit the enzymes that cause tissue injury. The membrane-stabilizing potency of plant extracts were examined through the process of heat-induced hemolysis. The ability of the extracts to neutralize free radicals showed a dose-dependent response, and the aqueous extract exhibited substantially higher activity in both FRAP and DPPH. The GC-MS analysis of V. negundo extracts revealed a vast array of pharmacologically active metabolites. Based on this Bioassay-guided fractionation approach, the optimal extract was selected for the potent molecule isolation and characterization. RESULTS The findings demonstrated that the aqueous extract of V. negundo exhibited markedly superior radical scavenging and anti-inflammatory capabilities compared to the other two extracts. Furthermore, a new molecule, 3,4,9-trimethyl-7-propyldecanoic acid was isolated from this extract, and its chemical structure was successfully determined. CONCLUSION This study revealed that the aqueous extract of V. negundo demonstrated notably stronger in vitro anti-inflammatory and antioxidant properties in comparison to the methanol and petroleum ether extracts. The identified active compound, 3,4,9-trimethyl-7-propyldecanoic acid is likely responsible for the extract's free radical scavenging and anti-inflammatory effects. Furthermore, conducting both in vitro and in vivo studies is crucial to substantiate the potential of this active constituent for the development of an anti-inflammatory drug derived from V. negundo.
Collapse
Affiliation(s)
- Sreewardhini Sivapalan
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology Kattankulathur, 603 203, Chengalpattu, Tamil Nadu, India
| | - Sankari Dharmalingam
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology Kattankulathur, 603 203, Chengalpattu, Tamil Nadu, India.
| | - Veeramuthu Ashokkumar
- Biorefineries for Biofuels & Bioproducts Laboratory (BBBL), Center for Transdisciplinary Research, Department of Pharmacology, SDC, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India; Center for Global Health Research, Saveetha Medical College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, India
| | - Vijayalakshmi Venkatesan
- Cell and Molecular Biology, ICRM- National Institute of Nutrition, Department of Health Research, Ministry of Health and Family Welfare. Gov of India, India
| | - Mangalagowri Angappan
- Centralized Instrumentation Laboratory, Madras Veterinary College, Tamil Nadu Veterinary and Animal Science University, Chennai, Tamil Nadu, India
| |
Collapse
|
6
|
Ahmadzadeh AM, Pourali G, Mirheidari SB, Shirazinia M, Hamedi M, Mehri A, Amirbeik H, Saghebdoust S, Tayarani-Najaran Z, Sathyapalan T, Forouzanfar F, Sahebkar A. Medicinal Plants for the Treatment of Neuropathic Pain: A Review of Randomized Controlled Trials. Curr Pharm Biotechnol 2024; 25:534-562. [PMID: 37455451 DOI: 10.2174/1389201024666230714143538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 05/21/2023] [Accepted: 06/01/2023] [Indexed: 07/18/2023]
Abstract
Neuropathic pain is a disabling condition caused by various diseases and can profoundly impact the quality of life. Unfortunately, current treatments often do not produce complete amelioration and can be associated with potential side effects. Recently, herbal drugs have garnered more attention as an alternative or a complementary treatment. In this article, we summarized the results of randomized clinical trials to evaluate the effects of various phytomedicines on neuropathic pain. In addition, we discussed their main bioactive components and potential mechanisms of action to provide a better view of the application of herbal drugs for treating neuropathic pain.
Collapse
Affiliation(s)
- Amir Mahmoud Ahmadzadeh
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Radiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Matin Shirazinia
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdieh Hamedi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Mehri
- Endoscopic and Minimally Invasive Surgery Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hesam Amirbeik
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Zahra Tayarani-Najaran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Allam Diabetes Centre Hull Royal Infirmary Anlaby Road HU3 2JZ, Hull, UK.m
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Habib Ullah S, Khan A, Ahsan Halim S, Khan R, Pan XD, Ullah R, Wadood A, Khalid A, Abdalla AN, Khogeer S, Al-Harrasi A. Blocking the major inflammatory pathways by newly synthesized thiadiazine derivatives via in-vivo, in-vitro and in-silico mechanism. Bioorg Chem 2023; 140:106760. [PMID: 37647806 DOI: 10.1016/j.bioorg.2023.106760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/18/2023] [Accepted: 07/30/2023] [Indexed: 09/01/2023]
Abstract
A series of new thiadiazine derivatives including 2-(5-alkyl/aryl-6-thioxo-1,3,5-thiadiazinan-3-yl) propanoic acids (a) and 4-methyl-2-(5-alkyl/aryl-6-thioxo-1,3,5-thiadiazinan-3-yl) pentanoic acids (b) were synthesized by reacting primary alkyl/aryl amines with CS2, followed by reaction with formaldehyde and amino acids. The chemical structures of synthesized compounds were confirmed by 13C- NMR and 1H- NMR techniques. The inhibitory potential of major inflammatory enzymes, COX-2 and 5-LOX was examined. Moreover, anti-nociceptive and anti-inflammatory activities were evaluated in the in vivo thermally induced nociceptive, and carrageenan induced paw edema models in mice. The in-vitro results reflect that these compounds exhibited concentration dependent inhibition of COX-2 and 5-LOX. The tested compounds at 50 mg/kg showed significant effect on thermally induced pain, and reduced latency time (seconds) as compared to the vehicle treated animals. Moreover, tested compounds exhibited percent inhibition of paw edema in the carrageenan induced paw edema model in mice. Furthermore, the binding modes of the most active COX-2 and 5-LOX inhibitors were determined through computational methods. The computational study reflects that the docked compounds have high binding affinities for COX-2 and 5-LOX enzymes, which leads to inhibition of these enzymes.
Collapse
Affiliation(s)
- Syed Habib Ullah
- Institute of Chemical Sciences, University of Peshawar, Peshawar-25120, Pakistan
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Rasool Khan
- Institute of Chemical Sciences, University of Peshawar, Peshawar-25120, Pakistan.
| | - Xian-Dao Pan
- Institute of Material Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Rahim Ullah
- Department of Pharmacy, Faculty of Life Sciences,Sarhad University of Science and Information Technology, Peshawar, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Pakistan
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan 45142, Saudi Arabia
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Soud Khogeer
- Department of Biochemistry, Faculty of Medicine, Umm Alqura University, Makka 21955, Saudi Arabia
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman.
| |
Collapse
|
8
|
Sivapalan S, Dharmalingam S, Venkatesan V, Angappan M, Ashokkumar V. Phytochemical analysis, anti-inflammatory, antioxidant activity of Calotropis gigantea and its therapeutic applications. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115963. [PMID: 36442758 DOI: 10.1016/j.jep.2022.115963] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Herbal remedies can be used to treat a variety of chronic inflammatory illnesses, like rheumatoid arthritis and leprosy. The plant Calotropis gigantea (C. gigantea) belongs to the family Apocynaceae. To treat numerous contagious diseases, C. gigantea is utilized alone or combine with certain medicinal herbs. Traditional Asian and African practitioners employed C. gigantea to treat a variety of inflammatory conditions like boils, rheumatoid arthritis, gout, leprosy and other disorders. AIM OF THE STUDY The goal of this study is to examine the anti-inflammatory and antioxidant activities of C. gigantea leaf extracts extracted using methanol, petroleum ether, and water. MATERIALS AND METHODS The leaf extracts of C. gigantea were obtained using the Soxhlet extraction technique. The phytoconstituents present in all three C. gigantea leaf extracts were confirmed by qualitative analysis, and the amounts of the alkaloids, flavonoids, terpenoids and phenols found in the extracts were quantified. C. gigantea crude extracts were subjected to a nitric oxide scavenging experiment to assess their free radical scavenging activities. Protein denaturation and proteinase inhibition assays were used to investigate the effectiveness of extracts to restrict denaturation of protein and to inhibit key enzymes responsible for tissue damage. Further, the membrane stabilization efficacy of plant extracts were examined by the heat-induced hemolysis method. The DPPH and FRAP experiments were performed to determine the antioxidant effectiveness of phytoconstituents extracted using different solvents. The GC-MS study of plant C. gigantea methanolic, aqueous and petroleum ether extracts displayed a broad range of compounds that possess beneficial therapeutic effects. RESULTS This study reveals that the methanolic extract of C. gigantea provides significantly more anti-inflammatory and antioxidant activity than other extracts. CONCLUSION Compared to the aqueous and petroleum ether extracts, the methanolic leaf extract of C. gigantea demonstrated greater in vitro anti-inflammatory and antioxidant properties.
Collapse
Affiliation(s)
- Sreewardhini Sivapalan
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chengalpattu, Tamil Nadu, India
| | - Sankari Dharmalingam
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chengalpattu, Tamil Nadu, India.
| | - Vijayalakshmi Venkatesan
- Cell and Molecular Biology, ICRM- National Institute of Nutrition, Department of Health Research, Ministry of Health and Family Welfare, Gov of India, India
| | - Mangalagowri Angappan
- Centralized Instrumentation Laboratory, Madras Veterinary College, Tamil Nadu Veterinary and Animal Science University, Chennai, Tamil Nadu, India
| | - Veeramuthu Ashokkumar
- Biorefineries for Biofuels & Bioproducts Laboratory (BBBL), Center for Transdisciplinary Research, Department of Pharmacology, Saveeta Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India; Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok, 10330, Thailand
| |
Collapse
|
9
|
Ullah R, Ali G, Baseer A, Irum Khan S, Akram M, Khan S, Ahmad N, Farooq U, Kanwal Nawaz N, Shaheen S, Kumari G, Ullah I. Tannic acid inhibits lipopolysaccharide-induced cognitive impairment in adult mice by targeting multiple pathological features. Int Immunopharmacol 2022; 110:108970. [DOI: 10.1016/j.intimp.2022.108970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/05/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022]
|
10
|
Shah D, Iqbal A, Alshehri FS, Ullah A, Ali G, Muhammad T, Ullah R, Sewell RDE, Althobaiti YS. The Neuroprotective Propensity of Organic Extracts of Acacia stenophylla Bark and Their Effectiveness Against Scopolamine-/Diazepam-Induced Amnesia in Mice. J Inflamm Res 2022; 15:4785-4802. [PMID: 36032937 PMCID: PMC9416337 DOI: 10.2147/jir.s376242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022] Open
Abstract
Background Alzheimer's disease (AD) is a neurodegenerative disorder that is more prevalent in the elderly. There is extensive literature on using Acacia species against central nervous system disorders, although Acacia stenophylla has not been investigated for any neuroprotective potential. The purpose of the study was to elucidate the ameliorative effect of ethyl acetate (ASEE) and butanol (ASB) extracts from the bark of A. stenophylla on memory deficits and cognitive dysfunction in scopolamine- or diazepam-induced amnesia in mice. Methods The phytochemical constituents of the extracts of A. stenophylla were determined by GC-MS and the in vitro anticholinesterase plus antioxidant activities were also evaluated. Anti-amnesic effects were determined employing the open field test, elevated plus maze (EPM), Morris water maze (MWM), and Y-maze paradigms. Results The in vitro cholinesterase assays disclosed a concentration-dependent inhibition of both AChE and BuChE with IC50 values of 28.48 and 44.86 µg/mL for the ASEE extract and 32.04 and 50.26 µg/mL for the ASB extract against AChE and BuChE respectively. DPPH and H2O2 antioxidant assays revealed respective IC50 values for the ASEE extract of 28.04 and 59.84 µg/mL, plus 32.77 and 64.65 µg/mL for ASB extract. The findings revealed that both extracts possessed substantial antioxidant properties. Furthermore, these fractions restored scopolamine- and diazepam-induced memory deficits in a dose-dependent manner, as observed by a significant decrease in the transfer latency in EPM, reduction in escape latency, added time spent in the target quadrant in the MWM, and elevated spontaneous alternation behavior (SAB) in the Y-maze test. Conclusion The ameliorative effect of A. stenophylla on scopolamine- and diazepam-induced amnesia can be attributed to antioxidant and anticholinesterase activity. Consequently, the use of A. stenophylla might be exploited in the alleviation of oxidative stress and the management of AD.
Collapse
Affiliation(s)
- Dawood Shah
- Department of Botany, Islamia College Peshawar, Peshawar, Pakistan
| | - Arshad Iqbal
- Department of Botany, Islamia College Peshawar, Peshawar, Pakistan
| | - Fahad S Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Aman Ullah
- College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Gowhar Ali
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Tahir Muhammad
- Molecular Neuropsychiatry and Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Rahim Ullah
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan.,Department of Pharmacy, Faculty of Life Sciences, Sarhad University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Robert D E Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, UK
| | - Yusuf S Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif, Saudi Arabia.,Addiction and Neuroscience Research Unit, Taif University, Taif, Saudi Arabia
| |
Collapse
|
11
|
Asghar A, Aamir MN, Sheikh FA, Ahmad N, Elsherif MA, Abbas Bukhari SN. Co-Combination of Pregabalin and Withaniacoagulans-Extract-Loaded Topical Gel Alleviates Allodynia and Hyperalgesia in the Chronic Sciatic Nerve Constriction Injury for Neuropathic Pain in Animal Model. Molecules 2022; 27:4433. [PMID: 35889307 PMCID: PMC9317976 DOI: 10.3390/molecules27144433] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 12/04/2022] Open
Abstract
The current study reports the fabrication of co-combination gel using Pregabalin and Withania coagulans fruit extract to validate its effectiveness for neuropathic pain in chronic constriction injury (CCI) rat models. Three topical gels were prepared using Carbopol 934 through a pseudo-ternary phase diagram incorporating the Pregabalin (2.5%), Withania coagulans extract (2%), and co-combination of both Pregabalin (2.5%) and Withania coagulans extract (2%). Gels were characterized. FTIR showed a successful polymeric network of the gel without any interaction. The drug distribution at the molecular level was confirmed by XRD. The AFM images topographically indicated the rough surface of gels with a size range from 0.25 to 330 nm. DSC showed the disappearance of sharp peaks of the drug and extract, showing successful incorporation into the polymeric network of gels. The in vitro drug release of co-combination gel was 73% over 48 h. The mechanism of drug release by combination gel was Higuchi+ fickian with values of n (0.282) and R2 (0.947). An in vivo study for pain assessment via four methods: (i) heat hyperalgesia, (ii) cold allodynia, (iii) mechano-hyperalgesia, and (iv) dynamic mechano-allodynia, confirmed that topical treatment with co-combination gel reduced the pain significantly as indicated by the p value: R1 (p < 0.001), R2 (p < 0.001), R3 (p < 0.015), and R4 (p < 0.0344). The significance order was R2 (****) > R1 (***) > R3 (**) > R4 (*) > R5 (ns).
Collapse
Affiliation(s)
- Anam Asghar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Punjab 38000, Pakistan;
| | - Muhammad Naeem Aamir
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- School of Pharmacy, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| | | | - Naveed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Al Jouf, Saudi Arabia;
| | - Mervat A. Elsherif
- Chemistry Department, College of Science, Jouf University, Sakaka 72388, Al Jouf, Saudi Arabia;
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72388, Al Jouf, Saudi Arabia;
| |
Collapse
|