1
|
Liu Z, Hou J, Tian M, Zhang Y, Huang D, Zhao N, Ma Y, Cui S. Hypoxia ameliorates high-fat-diet-induced hepatic lipid accumulation by modulating the HIF2α/PP4C signaling. Cell Signal 2025; 131:111751. [PMID: 40112904 DOI: 10.1016/j.cellsig.2025.111751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/03/2025] [Accepted: 03/15/2025] [Indexed: 03/22/2025]
Abstract
Hepatic lipid accumulation is a hallmark of metabolically associated fatty liver disease (MAFLD), which contributes to the progression of cirrhosis and even hepatoma. However, the underlying mechanisms remain poorly understood. Protein phosphatase 4C (PP4C) is an important enzyme that exists widely in the body and participates in cell metabolism. Hypoxia can affect the development of metabolic diseases. In this study, we investigated the role of PP4C in hepatic lipid metabolism under hypoxia in vivo and in vitro. Hypoxia-inducible factor 2α (HIF2α), PP4C, phosphorylated AU-rich element RNA-binding factor 1(pAUF1), acetyl-CoA carboxylase 1 (ACC1), and carnitine palmitoyl transferase-1 (CPT1) were analyzed via western blotting and immunofluorescence. The mechanism by which PP4C affects hepatic lipid accumulation under hypoxia was evaluated in stable transfected cell lines. Compared with those in the 2200 m HFD group, body weight, triglyceride (TG), total cholesterol (TC), amino alanine transferase (ALT), aspartate transaminase (AST), and lipid accumulation were lower in the 4500 m HFD group (P < 0.05). Compared with those in the 4500 m ND group, ACC1 and PP4C levels were lower than in the 4500 m HFD group, but HIF2α, pAUF1, and CPT1 levels were greater (P < 0.05). Knockdown of HIF2α prevented the hypoxia-induced reduction of PP4C, confirming the regulatory role of the HIF2α-PP4C axis in hepatic lipid metabolism. PP4C could affect the phosphorylation and expression localization of AU-rich element RNA-binding factor 1 (AUF1). PP4C enhanced lipid accumulation by reducing pAUF1, while the knockdown of PP4C had the opposite effect; pAUF1 had no change. Compared with those in the control group, ACC1 levels were decreased and CPT1 levels were increased in the AUF1 overexpression group, whereas ACC1 and CPT1 levels were not altered in the AUF1 knockdown group (P < 0.05). In conclusion, hypoxia might improve lipid accumulation by downregulating PP4C via HIF2a. PP4C is involved in hepatic lipid metabolism by regulating AUF1 phosphorylation under different oxygen concentrations. PP4C might be a promising target for treating hepatic lipid accumulation.
Collapse
Affiliation(s)
- Zhe Liu
- Research Center for High Altitude Medicine, Qinghai University, Xining 810000, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining 810000, China; Department of Gynecology, Affiliated Hospital of Qinghai University, Xining 810000, China
| | - Jing Hou
- Central Laboratory/Research Key Laboratory for Echinococcosis, Affiliated Hospital of Qinghai University, Xining 810000, China
| | - MeiYuan Tian
- Central Laboratory/Research Key Laboratory for Echinococcosis, Affiliated Hospital of Qinghai University, Xining 810000, China
| | - YaoGang Zhang
- Central Laboratory/Research Key Laboratory for Echinococcosis, Affiliated Hospital of Qinghai University, Xining 810000, China
| | - DengLiang Huang
- Central Laboratory/Research Key Laboratory for Echinococcosis, Affiliated Hospital of Qinghai University, Xining 810000, China
| | - Na Zhao
- Graduate School of Qinghai University, Qinghai University, Xining 810000, China
| | - Yanyan Ma
- Central Laboratory/Research Key Laboratory for Echinococcosis, Affiliated Hospital of Qinghai University, Xining 810000, China; Department of Scientific Research Office, Affiliated Hospital of Qinghai University, Xining 810000, China.
| | - Sen Cui
- Department of Hematology, Affiliated Hospital of Qinghai University, Xining 810000, China.
| |
Collapse
|
2
|
Aboueldis GR, Abdelazeez WM, Suliman AA, Mohammed DM. Therapeutic efficacy of secondary metabolites produced from cell suspension culture of Vaccinium corymbosum L. mitigates high-fat-diet-induced metabolic syndrome in rat model. FOOD BIOSCI 2025; 68:106795. [DOI: 10.1016/j.fbio.2025.106795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2025]
|
3
|
Kavya P, Gayathri M. Bioactive fraction isolated from Curcuma angustifolia rhizome exerts anti-diabetic effects in vitro, in silico and in vivo by regulating AMPK/PKA signaling pathway. Front Pharmacol 2025; 16:1570533. [PMID: 40438603 PMCID: PMC12116452 DOI: 10.3389/fphar.2025.1570533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 04/25/2025] [Indexed: 06/01/2025] Open
Abstract
Curcuma angustifolia Roxb. is a therapeutic herb and a member of the Zingiberaceae family. A potential bioactive fraction was isolated from the methanolic extract of Curcuma angustifolia rhizome using column chromatography, and it was characterised using 1H-NMR, GCMS and FTIR analyses. The bioactive fraction showed no toxic effects on the HepG2 cell line and it demonstrated inhibition of α-amylase and α-glucosidase enzymes in vitro with IC50 values of 2.75 ± 0.09 and 4.9 ± 0.07 µM, respectively. Molecular docking analysis also showed that nerolidol, the major constituent of the bioacive fraction inhibits α-amylase and α-glucosidase enzymes competitively, supporting in vitro antihyperglycemic activity. ADMET analysis showed that nerolidol has the necessary physicochemical parameters for drug-likeness. It also complies with Lipinski's rule, indicating that its chemical structure is appropriate for designing safe and bioavailable oral drug. The antidiabetic efficacy of the isolated bioactive fraction was validated in type 2 diabetic albino wistar rats induced with a high-fat diet and a low dose (35 mg/kg bw) of streptozotocin. After 28 days of intervention, the lower and higher doses of the bioactive fraction (100 and 200 mg/kg BW) substantially decreased fasting blood glucose levels and ameliorated hyperglycemia, glucose intolerance, insulin resistance, and hyperlipidemia. The higher dose of bioactive fraction significantly ameliorated liver, kidney, and lipid profiles compared to the standard drug metformin and exhibited lower toxicity in the liver, kidney, pancreas, and epididymal adipose tissue than the lower dose of the bioactive fraction. Gene expression studies revealed that the bioactive fraction upregulated AMPK through downregulating PKA, a mechanism similar to the action of metformin. The results indicate that the isolated bioactive fraction could be a natural alternative to synthetic antidiabetic medications.
Collapse
Affiliation(s)
| | - M. Gayathri
- Department of Bio Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
4
|
Chu Y, Yang S, Chen X. Fibroblast growth factor receptor signaling in metabolic dysfunction-associated fatty liver disease: Pathogenesis and therapeutic targets. Pharmacol Ther 2025; 269:108844. [PMID: 40113178 DOI: 10.1016/j.pharmthera.2025.108844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/08/2025] [Accepted: 02/20/2025] [Indexed: 03/22/2025]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) has emerged as a significant hepatic manifestation of metabolic syndrome, with its prevalence increasing globally alongside the epidemics of obesity and diabetes. MAFLD represents a continuum of liver damage, spanning from uncomplicated steatosis to metabolic dysfunction-associated steatohepatitis (MASH). This condition can advance to more severe outcomes, including fibrosis and cirrhosis. Fibroblast growth factor receptors (FGFRs) are a family of four receptor tyrosine kinases (FGFR1-4) that interact with both paracrine and endocrine fibroblast growth factors (FGFs). This interaction activates the phosphorylation of tyrosine kinase residues, thereby triggering downstream signaling pathways, including RAS-MAPK, JAK-STAT, PI3K-AKT, and PLCγ. In the context of MAFLD, paracrine FGF-FGFR signaling is predominantly biased toward the development of liver fibrosis and carcinogenesis. In contrast, endocrine FGF-FGFR signaling is primarily biased toward regulating the metabolism of bile acids, carbohydrates, lipids, and phosphate, as well as maintaining the overall balance of energy metabolism in the body. The interplay between these biased signaling pathways significantly influences the progression of MAFLD. This review explores the critical functions of FGFR signaling in MAFLD from three perspectives: first, it examines the primary roles of FGFRs relative to their structure; second, it summarizes FGFR signaling in hepatic lipid metabolism, elucidating mechanisms underlying the occurrence and progression of MAFLD; finally, it highlights recent advancements in drug development aimed at targeting FGFR signaling for the treatment of MAFLD and its associated diseases.
Collapse
Affiliation(s)
- Yi Chu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Su Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaodong Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
5
|
Li W, Zhang W, Liu Z, Song H, Wang S, Zhang Y, Zhan C, Liu D, Tian Y, Tang M, Wen M, Qiao J. Review of Recent Advances in Microbial Production and Applications of Nerolidol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5724-5747. [PMID: 40013722 DOI: 10.1021/acs.jafc.4c12579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Nerolidol, an oxygenated sesquiterpene (C15H26O) that occurs in plants, exhibits significant bioactivities such as antioxidant, anti-inflammatory, antimicrobial, and neuroprotective activities. It is a U.S. Food and Drug Administration-approved flavoring agent and a common ingredient in several commercial products such as toiletries and detergents. In addition, the potential applications of nerolidol that may prove beneficial for human health, agriculture, and the food industry have garnered increasing attention from researchers in these fields. Recent years have witnessed the application of metabolic engineering and synthetic biology strategies for constructing microbial cell factories that can produce nerolidol, which is considered a sustainable and economical approach. This review summarizes recent research on the biological activities and applications of nerolidol as well as nerolidol production using microbial cell factories. In addition, the synthesis of bioactive derivatives of nerolidol is addressed. In summary, this review provides readers with an updated understanding of the potential applications and green production prospects of nerolidol.
Collapse
Affiliation(s)
- Weiguo Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, 312300, China
| | - Wanze Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, 312300, China
| | - Ziming Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, 312300, China
| | - Hongjian Song
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, 312300, China
| | - Shengli Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, 312300, China
| | - Yi Zhang
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, 312300, China
| | - Chuanling Zhan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, 312300, China
| | - Damiao Liu
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, 312300, China
| | - Yanjie Tian
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, 312300, China
| | - Min Tang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, 312300, China
| | - Mingzhang Wen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, 312300, China
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, 312300, China
| |
Collapse
|
6
|
Guo J, Kang SG, Huang K, Tong T. Targeting Odorant Receptors in Adipose Tissue with Food-Derived Odorants: A Novel Approach to Obesity Treatment. Foods 2024; 13:3938. [PMID: 39683011 DOI: 10.3390/foods13233938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/22/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Odorant receptors (ORs) have long been thought to serve as chemosensors located on the cilia of olfactory sensory neurons (OSNs) in the olfactory epithelium, where they recognize odorant molecules and comprise the largest family of seven transmembrane-domain G protein-coupled receptors (GPCRs). Over the last three decades, accumulating evidence has suggested that ORs are distributed in a variety of peripheral tissues beyond their supposed typical tissue expression in the olfactory epithelium. These ectopic ORs play a role in regulating various cellular, physiological, and pathophysiological phenomena in the body, such as regulation of hypertension, hepatic glucose production, cancer development, and chronic skin disease. Adipose tissue, the key organ in regulating obesity and energy metabolism, has been reported to take advantage of ectopic OR-mediated signaling. In this review, we summarize and provide an in-depth analysis of the current research on the key biological functions of adipose tissue ORs in response to food-derived odorants, as well as the molecular mechanisms underlying their activity.
Collapse
Affiliation(s)
- Jingya Guo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Seong-Gook Kang
- Department of Food Engineering and Solar Salt Research Center, Mokpo National University, Muangun 58554, Republic of Korea
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
- Beijing Laboratory for Food Quality and Safety, Beijing 100083, China
| | - Tao Tong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
- Beijing Laboratory for Food Quality and Safety, Beijing 100083, China
| |
Collapse
|
7
|
Wu J, Guan F, Huang H, Chen H, Liu Y, Zhang S, Li M, Chen J. Tetrahydrocurcumin ameliorates hepatic steatosis by restoring hepatocytes lipophagy through mTORC1-TFEB pathway in nonalcoholic steatohepatitis. Biomed Pharmacother 2024; 178:117297. [PMID: 39137653 DOI: 10.1016/j.biopha.2024.117297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024] Open
Abstract
PURPOSE To investigate the therapeutic effect and underlying mechanism of tetrahydrocurcumin (THC) on nonalcoholic steatohepatitis (NASH) induced by high-fat diet (HFD). METHODS NASH rat model was established through long-term feeding HFD, and the steatosis cell model was stimulated via palmitate acid (PA). The therapeutic effect of THC was evaluated in terms of liver function, lipid metabolism, liver pathophysiology, inflammation and oxidative stress in vivo, and lipid accumulation in vitro. The alteration in lipophagy was identified by using western blot and immunofluorescence. mTORC1-TFEB signaling pathway was measured by qRT-PCR, western blot and protein-ligand docking. In addition, chloroquine and MHY1485 were further introduced to validate the effect of THC on lipophagy and mTORC1-TFEB signaling pathway, respectively. RESULTS THC effectively improved hepatic steatosis, inflammation and oxidative stress in NASH rats, and reduced lipid accumulation in steatosis L02 cells and Hep G2 cells. THC promoted lipophagy with increasing LC3B-II as well as decreasing P62 expression via lysosomal biogenesis upregulation, which was greatly weakened after chloroquine intervention. mTORC1-TFEB is a critical pathway for regulating lysosome in autophagy, THC treatment induced TFEB nucleus translocation via inhibiting mTORC1 to upregulate lysosomal biogenesis. However, these effects were partly eliminated by mTORC1 activator MHY1485. CONCLUSION THC restored lipophagy to reduce lipid accumulation by regulating mTORC1-TFEB pathway in NASH rats and steatosis hepatocytes. These findings suggested that THC represents a therapeutic candidate for NASH treatment.
Collapse
Affiliation(s)
- Jiazhen Wu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, PR China
| | - Fengkun Guan
- Maoming Hospital of Guangzhou University of Chinese Medicine, Maoming 525022, PR China
| | - Haipiao Huang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, PR China
| | - Hanbin Chen
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Shangbin Zhang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, PR China
| | - Muxia Li
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, PR China.
| | - Jianping Chen
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, PR China.
| |
Collapse
|
8
|
Mahmoudi SK, Tarzemani S, Aghajanzadeh T, Kasravi M, Hatami B, Zali MR, Baghaei K. Exploring the role of genetic variations in NAFLD: implications for disease pathogenesis and precision medicine approaches. Eur J Med Res 2024; 29:190. [PMID: 38504356 PMCID: PMC10953212 DOI: 10.1186/s40001-024-01708-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 02/01/2024] [Indexed: 03/21/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the leading causes of chronic liver diseases, affecting more than one-quarter of people worldwide. Hepatic steatosis can progress to more severe forms of NAFLD, including NASH and cirrhosis. It also may develop secondary diseases such as diabetes and cardiovascular disease. Genetic and environmental factors regulate NAFLD incidence and progression, making it a complex disease. The contribution of various environmental risk factors, such as type 2 diabetes, obesity, hyperlipidemia, diet, and sedentary lifestyle, to the exacerbation of liver injury is highly understood. Nevertheless, the underlying mechanisms of genetic variations in the NAFLD occurrence or its deterioration still need to be clarified. Hence, understanding the genetic susceptibility to NAFLD is essential for controlling the course of the disease. The current review discusses genetics' role in the pathological pathways of NAFLD, including lipid and glucose metabolism, insulin resistance, cellular stresses, and immune responses. Additionally, it explains the role of the genetic components in the induction and progression of NAFLD in lean individuals. Finally, it highlights the utility of genetic knowledge in precision medicine for the early diagnosis and treatment of NAFLD patients.
Collapse
Affiliation(s)
- Seyedeh Kosar Mahmoudi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran
| | - Shadi Tarzemani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran
| | - Taha Aghajanzadeh
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran.
| | - Mohammadreza Kasravi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran
| | - Behzad Hatami
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran.
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran.
| |
Collapse
|
9
|
Mustika S, Santosaningsih D, Handayani D, Rudijanto A. Impact of multiple different high-fat diets on metabolism, inflammatory markers, dysbiosis, and liver histology: study on NASH rat model induced diet. F1000Res 2023; 12:180. [PMID: 39229607 PMCID: PMC11369591 DOI: 10.12688/f1000research.129645.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 09/05/2024] Open
Abstract
Background The spectrum of non-alcoholic fatty liver disease (NAFLD), known as non-alcoholic steatohepatitis (NASH), can lead to advanced liver disease. It is known that a variety of diets play a significant role in the development of NAFLD/NASH. The goal of this study was to determine the most appropriate composition of diet to induce NASH in an animal model. Methods This research used Rattus norvegicus strain Wistar (n=27), which were divided into four groups and given each diet for 12 weeks: normal diet (ND, n=7), high-fat diet (HFD, n=6), western diet (WD, n=7), and high-fat-high-fructose diet (HFHFD, n=7). Subjects were monitored for changes in body weight. Blood samples were collected for biochemical analysis, including low-density lipoprotein (LDL), triglyceride, alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), hepatic lipase, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and lipopolysaccharide (LPS). Fecal samples were taken for short-chain fatty acid (SCFA) analysis. Liver histology was assessed using NAS (NAFLD activity score). A statistical comparison test was carried out using the one-way ANOVA or Kruskal-Wallis test. Results The highest average body weight was observed in the WD group (346.14 g). Liver enzymes, LDL, triglyceride, propionic acid, and acetic acid did not show significantly differences among the groups. TNF-α, IL-6, and hepatic lipase were significant (p = 0.000; p = 0.000; p = 0.004) and the highest level recorded in the HFD group. Butyrate acid level also showed significances (p = 0.021) with the lowest concentration seen in the HFHFD group (4.77 mMol/g). Only WD and HFHFD had a NAS ≥ 5 (14% and 14%). The highest percentage of borderline NAS was found in WD (57%). Conclusions WD feeding is the most appropriate diet type to induce NASH in rats as it influences metabolic, inflammatory, dysbiosis, and liver histology of rats.
Collapse
Affiliation(s)
- Syifa Mustika
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Brawijaya, Malang, Jl. Veteran, 65145, Indonesia
| | - Dewi Santosaningsih
- Department of Clinical Microbiology, Faculty of Medicine, Universitas Brawijaya, Malang, Jl. Veteran, 65145, Indonesia
| | - Dian Handayani
- Department of Nutrition, Faculty of Health Science, Universitas Brawijaya, Malang, Jl. Veteran, 65145, Indonesia
| | - Achmad Rudijanto
- Endocrine Metabolic & Diabetes Division, Department of Internal Medicine, Faculty of Medicine, Universitas Brawijaya - Dr Saiful Anwar Hospital, Malang, Jl. Veteran, 65145, Indonesia
| |
Collapse
|
10
|
Raus de Baviera D, Ruiz-Canales A, Barrajón-Catalán E. Cistus albidus L.-Review of a Traditional Mediterranean Medicinal Plant with Pharmacological Potential. PLANTS (BASEL, SWITZERLAND) 2023; 12:2988. [PMID: 37631199 PMCID: PMC10458491 DOI: 10.3390/plants12162988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023]
Abstract
Cistus albidus L. (Cistaceae) is a medicinal plant that has been used therapeutically since ancient times in the Mediterranean basin for its important pharmacological properties. The ability of C. albidus to produce large quantities of a wide range of natural metabolites makes it an attractive source of raw material. The main constituents with bioactive functions that exert pharmacological effects are terpenes and polyphenols, with more than 200 identified compounds. The purpose of this review is to offer a detailed account of the botanical, ethnological, phytochemical, and pharmacological characteristics of C. albidus with the aim of encouraging additional pharmaceutical investigations into the potential therapeutic benefits of this medicinal plant. This review was carried out using organized searches of the available literature up to July 2023. A detailed analysis of C. albidus confirms its traditional use as a medicinal plant. The outcome of several studies suggests a deeper involvement of certain polyphenols and terpenes in multiple mechanisms such as inflammation and pain, with a potential application focus on neurodegenerative diseases and disorders. Other diseases such as prostate cancer and leukemia have already been researched with promising results for this plant, for which no intoxication has been reported in humans.
Collapse
Affiliation(s)
- Daniel Raus de Baviera
- Department of Engineering, Area of Agroforestry, Miguel Hernández University, 03312 Orihuela, Spain; (D.R.d.B.); (A.R.-C.)
| | - Antonio Ruiz-Canales
- Department of Engineering, Area of Agroforestry, Miguel Hernández University, 03312 Orihuela, Spain; (D.R.d.B.); (A.R.-C.)
| | - Enrique Barrajón-Catalán
- Institute for Research, Development and Innovation in Health Biotechnology, Miguel Hernández University, 03202 Elche, Spain
- Department of Pharmacy, Elche University Hospital-FISABIO, 03203 Elche, Spain
| |
Collapse
|
11
|
What do we know about nutrient-based strategies targeting molecular mechanisms associated with obesity-related fatty liver disease? Ann Hepatol 2023; 28:100874. [PMID: 36371078 DOI: 10.1016/j.aohep.2022.100874] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022]
Abstract
Obesity is a risk factor for developing nonalcoholic fatty liver disease (NAFLD), and the associated molecular mechanisms could be targeted with nutrient-based strategies. Therefore, it is necessary to review the current mechanisms to propose further treatments. Obesity facilitates the onset of insulin resistance, lipidic abnormalities, hepatic fat accumulation, lipid peroxidation, mitochondrial dysfunction, excessive reactive oxygen species (ROS) production, and inflammation, all related to further steatosis progression and fibrosis. Microbiota alterations can also influence liver disease by the translocation of pathogenic bacteria, energy extraction from short chain fatty acids (SCFAs), intestinal suppression of the expression of fasting-induced adipose factor (FIAF), reduction of bile acids, and altered choline metabolism. There are also genetic polymorphisms in metabolic proteins that predispose to a higher risk of liver diseases, such as those found in the patatin-like phospholipase domain-containing 3 (PNPLA3), transmembrane 6 superfamily member 2 (TM6SF2), membrane-bound O-acyltransferase domain-containing 7 (MBOAT7) or also known as lysophosphatidylinositol acyltransferase 1 (LPIAT1), transmembrane channel-like 4 genes (TMC4), fat mass and obesity-associated protein (FTO), the b Klotho (KLB) and carboxylesterase (CES1). No clear dietary guidelines target all mechanisms related to NAFLD development and progression. However, energy and carbohydrate intake restriction, regular physical exercise, supplementation of antioxidants, and restoration of gut microbiota seem to have beneficial effects on the new proposed features of NAFLD.
Collapse
|
12
|
Zeng C, Chen M. Progress in Nonalcoholic Fatty Liver Disease: SIRT Family Regulates Mitochondrial Biogenesis. Biomolecules 2022; 12:1079. [PMID: 36008973 PMCID: PMC9405760 DOI: 10.3390/biom12081079] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic steatosis, insulin resistance, mitochondrial dysfunction, inflammation, and oxidative stress. As a group of NAD+-dependent III deacetylases, the sirtuin (SIRT1-7) family plays a very important role in regulating mitochondrial biogenesis and participates in the progress of NAFLD. SIRT family members are distributed in the nucleus, cytoplasm, and mitochondria; regulate hepatic fatty acid oxidation metabolism through different metabolic pathways and mechanisms; and participate in the regulation of mitochondrial energy metabolism. SIRT1 may improve NAFLD by regulating ROS, PGC-1α, SREBP-1c, FoxO1/3, STAT3, and AMPK to restore mitochondrial function and reduce steatosis of the liver. Other SIRT family members also play a role in regulating mitochondrial biogenesis, fatty acid oxidative metabolism, inflammation, and insulin resistance. Therefore, this paper comprehensively introduces the role of SIRT family in regulating mitochondrial biogenesis in the liver in NAFLD, aiming to further explain the importance of SIRT family in regulating mitochondrial function in the occurrence and development of NAFLD, and to provide ideas for the research and development of targeted drugs. Relatively speaking, the role of some SIRT family members in NAFLD is still insufficiently clear, and further research is needed.
Collapse
Affiliation(s)
| | - Mingkai Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan 430060, China
| |
Collapse
|
13
|
Yu S, Long Y, Li D, Shi A, Deng J, Ma Y, Wen J, Li X, Zhang Y, Liu S, Wan J, Li N, Guo J. Natural essential oils efficacious in internal organs fibrosis treatment: mechanisms of action and application perspectives. Pharmacol Res 2022; 182:106339. [DOI: 10.1016/j.phrs.2022.106339] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 02/07/2023]
|