1
|
Xue C, Lu M, Qin Y, Zhao X, Yang J, Yuan S, Wang Z, Cho N, Jiang C. Polygonati Rhizoma polysaccharide suppresses microglial activation and promotes functional recovery of spinal cord via improving intestinal microbiota. Int J Biol Macromol 2025; 313:143934. [PMID: 40345303 DOI: 10.1016/j.ijbiomac.2025.143934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 04/16/2025] [Accepted: 05/03/2025] [Indexed: 05/11/2025]
Abstract
Spinal cord injury (SCI) can disrupt the gut microbiome and metabolites, impacting prognosis, substantially impairing quality of life, and leading to high socioeconomic costs (Jing et al., 2021). Recent studies indicate that plant polysaccharides exhibit antimicrobial, anti-inflammatory, and immune-enhancing properties, contributing positively to various neurological disorders; however, their role in SCI remains uncertain (Hou et al., 2020 [2]; Aswini et al., 2021 [3]; Dou et al., 2019 [4]). Polygonati Rhizoma polysaccharide (PRP) has shown anti-inflammatory and immunoregulatory effects, but its role in SCI remains unexplored. This study investigated whether PRP facilitates functional recovery after SCI by modulating the gut microbiota and SCFA levels. PRP was administered to SCI mice, and motor function was assessed using DeepLabCut-based behavioral analysis. Histological evaluations were performed with H&E, Nissl, and immunofluorescence staining. Microglial activation and inflammation were analyzed by Western blot and immunofluorescence. Gut microbiota composition and SCFAs were examined through 16S rRNA sequencing and targeted metabolite profiling. PRP treatment significantly improved motor function, reduced microglial activation, and attenuated neuroinflammation. These effects were associated with restoration of microbial diversity and elevated butyrate levels. This study highlights the role of the gut-brain axis in neural regeneration and suggests PRP as a promising therapeutic candidate for SCI.
Collapse
Affiliation(s)
- Chang Xue
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea; Jiuhuashan Polygonati Rhizoma Research Institute, Chizhou 247100, China
| | - Mengqi Lu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Jiuhuashan Polygonati Rhizoma Research Institute, Chizhou 247100, China.
| | - Yuwen Qin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Jiuhuashan Polygonati Rhizoma Research Institute, Chizhou 247100, China.
| | - Xiaoli Zhao
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jinfeng Yang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Shutong Yuan
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Zhouguang Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Namki Cho
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Chengxi Jiang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Jiuhuashan Polygonati Rhizoma Research Institute, Chizhou 247100, China.
| |
Collapse
|
2
|
Nemati S, Kilcoyne M, Zeugolis D, McMahon SS. The effect of macromolecular crowders on deposition of extracellular matrix in astrocyte cultures. Cell Tissue Res 2025:10.1007/s00441-025-03980-4. [PMID: 40387922 DOI: 10.1007/s00441-025-03980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 05/06/2025] [Indexed: 05/20/2025]
Abstract
Macromolecular crowding (MMC) is a biophysical phenomenon that has proven effective in enhancing extracellular matrix (ECM) deposition in vitro. However, MMCs potential in neuroglial cell cultures remains underexplored. This study investigates the effects of three distinct MMC agents [carrageenan (CR), dextran sulphate (DxS) and FicollⓇ cocktail (FC)] on ECM deposition and cell behaviour of Neu7 and primary astrocytes. While the viability and metabolic activity of Neu7 astrocytes were unaffected by any of the crowding agents, primary astrocytes exhibited a significant decrease in viability and metabolic activity in the presence of CR and DxS. The addition of CR, DxS, and FC resulted in a significant increase in deposition of fibronectin, collagen IV, collagen I, GFAP and CS56 in Neu7 astrocytes. In primary astrocytes, FC significantly enhanced the expression of astrocytic markers and increased the deposition of ECM proteins, including fibronectin and collagen IV. This study highlights the advantages of using FC as a MMC agent for enhancing ECM deposition in astrocytes. The method demonstrates potential for developing fast and more physiologically relevant in vitro models and improving drug screening processes for future studies. The observed benefits underscore the utility of FC in creating advanced cellular models that better mimic the native neural environment.
Collapse
Affiliation(s)
- Sorour Nemati
- Anatomy, School of Medicine, University of Galway, Galway, Ireland
- CÚRAM Research Ireland Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Michelle Kilcoyne
- Carbohydrate Signalling Group, Infectious Disease Section, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Dimitrios Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| | - Siobhan S McMahon
- Anatomy, School of Medicine, University of Galway, Galway, Ireland.
- CÚRAM Research Ireland Centre for Medical Devices, University of Galway, Galway, Ireland.
- Galway Neuroscience Centre, University of Galway, Galway, Ireland.
| |
Collapse
|
3
|
Kabdesh I, Tutova O, Akhmetzyanova E, Timofeeva A, Bilalova A, Mukhamedshina Y, Chelyshev Y. Thoracic Spinal Cord Contusion Impacts on Lumbar Enlargement: Molecular Insights. Mol Neurobiol 2025:10.1007/s12035-025-04794-9. [PMID: 40014268 DOI: 10.1007/s12035-025-04794-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 02/18/2025] [Indexed: 02/28/2025]
Abstract
Spinal cord injury (SCI) is characterized by macrostructural pathological changes in areas significantly distant from the primary injury site. The causes and mechanisms underlying these distant changes are still being explored. Identifying the causes and mechanisms of these changes in the lumbar spinal cord is particularly important for restoring motor function, especially in cases of injury to the proximal thoracic or cervical regions. This is because the lumbar region contains neural networks that play a crucial role in comprehensive locomotor outcomes. In our study, we investigated the changes in the rat lumbar spinal cord following a thoracic contusion injury. We observed an increased expression of osteopontin (OPN) in large neurons and a higher number of interneurons co-expressing parvalbumin and OPN within lamina IX of the ventral horns (VH) in the gray matter of the lumbar spinal cord post-injury. Additionally, here we noted an increased co-localization of the glial fibirillary acidic protein and S100A10 protein, a specific marker of reactive A2 astrocytes. Our findings also include changes in the expression and content of glypicans in the gray matter, a significant rise in neurotoxic M1 microglia/macrophages, alterations in the cytokine profile, and a decreased expression of the extracellular matrix molecules tenascin R and aggrecan. This research highlights the complex pathological processes occurring far from the site of SCI and attempts to provide insights into the mechanisms involving the entire spinal cord in the response to such an injury.
Collapse
Affiliation(s)
- Ilyas Kabdesh
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russia.
| | - Olga Tutova
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russia
| | - Elvira Akhmetzyanova
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russia
| | - Anna Timofeeva
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russia
| | - Aizilya Bilalova
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russia
| | - Yana Mukhamedshina
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russia
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012, Kazan, Russia
| | - Yuri Chelyshev
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012, Kazan, Russia
| |
Collapse
|
4
|
Greșiță A, Hermann DM, Boboc IKS, Doeppner TR, Petcu E, Semida GF, Popa-Wagner A. Glial Cell Reprogramming in Ischemic Stroke: A Review of Recent Advancements and Translational Challenges. Transl Stroke Res 2025:10.1007/s12975-025-01331-7. [PMID: 39904845 DOI: 10.1007/s12975-025-01331-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 02/06/2025]
Abstract
Ischemic stroke, the second leading cause of death worldwide and the leading cause of long-term disabilities, presents a significant global health challenge, particularly in aging populations where the risk and severity of cerebrovascular events are significantly increased. The aftermath of stroke involves neuronal loss in the infarct core and reactive astrocyte proliferation, disrupting the neurovascular unit, especially in aged brains. Restoring the balance between neurons and non-neuronal cells within the perilesional area is crucial for post-stroke recovery. The aged post-stroke brain mounts a fulminant proliferative astroglial response, leading to gliotic scarring that prevents neural regeneration. While countless therapeutic techniques have been attempted for decades with limited success, alternative strategies aim to transform inhibitory gliotic tissue into an environment conducive to neuronal regeneration and axonal growth through genetic conversion of astrocytes into neurons. This concept gained momentum following discoveries that in vivo direct lineage reprogramming in the adult mammalian brain is a feasible strategy for reprogramming non-neuronal cells into neurons, circumventing the need for cell transplantation. Recent advancements in glial cell reprogramming, including transcription factor-based methods with factors like NeuroD1, Ascl1, and Neurogenin2, as well as small molecule-induced reprogramming and chemical induction, show promise in converting glial cells into functional neurons. These approaches leverage the brain's intrinsic plasticity for neuronal replacement and circuit restoration. However, applying these genetic conversion therapies in the aged, post-stroke brain faces significant challenges, such as the hostile inflammatory environment and compromised regenerative capacity. There is a critical need for safe and efficient delivery methods, including viral and non-viral vectors, to ensure targeted and sustained expression of reprogramming factors. Moreover, addressing the translational gap between preclinical successes and clinical applications is essential, emphasizing the necessity for robust stroke models that replicate human pathophysiology. Ethical considerations and biosafety concerns are critically evaluated, particularly regarding the long-term effects and potential risks of genetic reprogramming. By integrating recent research findings, this comprehensive review provides an in-depth understanding of the current landscape and future prospects of genetic conversion therapy for ischemic stroke rehabilitation, highlighting the potential to enhance personalized stroke management and regenerative strategies through innovative approaches.
Collapse
Affiliation(s)
- Andrei Greșiță
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349, Craiova, Romania
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY, 11568, USA
| | - Dirk M Hermann
- Chair of Vascular Neurology and Dementia, Department of Neurology, University Hospital Essen, 45147, Essen, Germany
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349, Craiova, Romania
| | - Ianis Kevyn Stefan Boboc
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349, Craiova, Romania
| | - Thorsten R Doeppner
- Department of Neurology, University Medical Center Göttingen, 37075, Göttingen, Germany
- Department of Neurology, University of Giessen Medical School, 35392, Giessen, Germany
| | - Eugen Petcu
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY, 11568, USA
- Department of Biological & Chemical Sciences, New York Institute of Technology, Old Westbury, NY, 11568, USA
| | - Ghinea Flavia Semida
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349, Craiova, Romania.
| | - Aurel Popa-Wagner
- Chair of Vascular Neurology and Dementia, Department of Neurology, University Hospital Essen, 45147, Essen, Germany.
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349, Craiova, Romania.
| |
Collapse
|
5
|
Sekiya T, Holley MC. The Glial Scar: To Penetrate or Not for Motor Pathway Restoration? Cell Transplant 2025; 34:9636897251315271. [PMID: 40152462 PMCID: PMC11951902 DOI: 10.1177/09636897251315271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/25/2024] [Accepted: 01/08/2025] [Indexed: 03/29/2025] Open
Abstract
Although notable progress has been made, restoring motor function from the brain to the muscles continues to be a substantial clinical challenge in motor neuron diseases/disorders such as spinal cord injury (SCI). While cell transplantation has been widely explored as a potential therapeutic method for reconstructing functional motor pathways, there remains considerable opportunity for enhancing its therapeutic effectiveness. We reviewed studies on motor pathway regeneration to identify molecular and ultrastructural cues that could enhance the efficacy of cell transplantation. While the glial scar is often cited as an intractable barrier to axon regeneration, this mainly applies to axons trying to penetrate its "core" to reach the opposite side. However, the glial scar exhibits a "duality," with an anti-regenerative core and a pro-regenerative "surface." This surface permissiveness is attributed to pro-regenerative molecules, such as laminin in the basement membrane (BM). Transplanting donor cells onto the BM, which forms plastically after injury, may significantly enhance the efficacy of cell transplantation. Specifically, forming detour pathways between transplanted cells and endogenous propriospinal neurons on the pro-regenerative BM may efficiently bypass the intractable scar core and promote motor pathway regeneration. We believe harnessing the tissue's innate repair capacity is crucial, and targeting post-injury plasticity in astrocytes and Schwann cells, especially those associated with the BM that has predominantly been overlooked in the field of SCI research, can advance motor system restoration to a new stage. A shift in cell delivery routes-from the traditional intra-parenchymal (InP) route to the transplantation of donor cells onto the pro-regenerative BM via the extra-parenchymal (ExP) route-may signify a transformative step forward in neuro-regeneration research. Practically, however, the complementary use of both InP and ExP methods may offer the most substantial benefit for restoring motor pathways. We aim for this review to deepen the understanding of cell transplantation and provide a framework for evaluating the efficacy of this therapeutic modality in comparison to others.
Collapse
Affiliation(s)
- Tetsuji Sekiya
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Neurological Surgery, Hikone Chuo Hospital, Hikone, Japan
| | - Matthew C. Holley
- Department of Biomedical Science, University of Sheffield, Sheffield, England
| |
Collapse
|
6
|
Butt AM, Chopra M, Bhagwani A, Pathak Z, Jadhav K, Jadhav R, Tarde P, Teja PK, Kutre S, Hariharan A, Vartak A, Chauthe SK, Kumar H. Imperatorin, a natural furanocoumarin alleviates chronic neuropathic pain by targeting GABAergic tone in an animal model of spinal cord injury. Nat Prod Res 2024:1-8. [PMID: 39676602 DOI: 10.1080/14786419.2024.2440533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 10/17/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
Chronic neuropathic pain (CNP) caused by spinal cord injury (SCI) has long-term implications, that result in functional deficit. In this study, we explored imperatorin, a natural furanocoumarin isolated from the dried pulp of Aegle marmelos L. Imperatorin (10 mg/kg, i.p.) was administered to injured animals for seven consecutive days. It was discovered that imperatorin reduced the CNP by upregulating the expression of anti-inflammatory chemokines and cytokines like IL-10 and IL-12, and increasing the expression of GABA with p-value < 0.001 as compared to vehicle at DPI-28 and DPI-42. Also, GABA receptor expression was increased with p-value < 0.01 as compared to vehicle at DPI-28. Additionally, it downregulated the expression of various proinflammatory mediators like IL-6 (p-value < 0.01), CCL-2 (p-value < 0.01), IL-1β (p-value < 0.01), and CCL-3 (p-value < 0.001) as compared to vehicle at DPI-1. Furthermore, imperatorin reduced scar formation by decreasing fibrosis and gliosis post-SCI and also lessened pain behaviour, suggesting it helps reduce chronic neuropathic pain (CNP).
Collapse
Affiliation(s)
- Ayub Mohammed Butt
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Manjeet Chopra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Ankita Bhagwani
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Zarna Pathak
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Kishori Jadhav
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Rohini Jadhav
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Pooja Tarde
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Parusu Kavya Teja
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Suraj Kutre
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - A Hariharan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Alisha Vartak
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Siddheshwar K Chauthe
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| |
Collapse
|
7
|
Sámano C, Mazzone GL. The role of astrocytes response triggered by hyperglycaemia during spinal cord injury. Arch Physiol Biochem 2024; 130:724-741. [PMID: 37798949 DOI: 10.1080/13813455.2023.2264538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
OBJECTIVE This manuscript aimed to provide a comprehensive overview of the physiological, molecular, and cellular mechanisms triggered by reactive astrocytes (RA) in the context of spinal cord injury (SCI), with a particular focus on cases involving hyperglycaemia. METHODS The compilation of articles related to astrocyte responses in neuropathological conditions, with a specific emphasis on those related to SCI and hyperglycaemia, was conducted by searching through databases including Science Direct, Web of Science, and PubMed. RESULTS AND CONCLUSIONS This article explores the dual role of astrocytes in both neurophysiological and neurodegenerative conditions within the central nervous system (CNS). In the aftermath of SCI and hyperglycaemia, astrocytes undergo a transformation into RA, adopting a distinct phenotype. While there are currently no approved therapies for SCI, various therapeutic strategies have been proposed to alleviate the detrimental effects of RAs following SCI and hyperglycemia. These strategies show promising potential in the treatment of SCI and its likely comorbidities.
Collapse
Affiliation(s)
- C Sámano
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa (UAM-C), Ciudad de México, México
| | - G L Mazzone
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Pilar, Buenos Aires, Argentina
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Buenos Aires, Argentina
| |
Collapse
|
8
|
Wang ZQ, Ran R, Ma CW, Zhao GH, Zhou KS, Zhang HH. Lentivirus-mediated Knockdown of Ski Improves Neurological Function After Spinal Cord Injury in Rats. Neurochem Res 2024; 50:15. [PMID: 39549172 DOI: 10.1007/s11064-024-04261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 11/18/2024]
Abstract
The glial scar that forms at the site of injury after spinal cord injury (SCI) is an important physical and biochemical barrier that prevents axonal regeneration and thus delays functional recovery. Ski is a multifunctional transcriptional co-regulator that is involved in a wide range of physiological and pathological processes in humans. Previous studies by our group found that Ski is significantly upregulated in the spinal cord after in vivo injury and in astrocytes after in vitro activation, suggesting that Ski may be a novel molecule regulating astrocyte activation after spinal cord injury. Further studies revealed that knockdown or overexpression intervention of Ski expression could significantly affect the proliferation and migration of activated astrocytes. To further verify the effect of knockdown of Ski expression in vivo on glial scar formation and neurological function after spinal cord injury, we prepared a rat spinal cord injury model using Allen's percussion method and used lentivirus as a vector to mediate the downregulation of Ski in the injured spinal cord. The results showed that knockdown of Ski expression after spinal cord injury significantly suppressed the expression of glial fibrillary acidic protein (Gfap) and vimentin, hallmark molecules of glial scarring, and increased the expression of neurofilament protein-200 (Nf-200) and growth-associated protein (Gap43), key molecules of axon regeneration, as well as Synaptophysin, a key molecule of synapse formation expression. In addition, knockdown of Ski after spinal cord injury also promoted the recovery of motor function. Taken together, these results suggest that Ski is able to inhibit the expression of key molecules of glial scar formation, and at the same time promotes the expression of molecules that are markers of axonal regeneration and synapse formation after spinal cord injury, making it a potential target for targeted therapy after spinal cord injury.
Collapse
Affiliation(s)
- Zhi-Qiang Wang
- Lanzhou University Second Hospital, LanzhouGansu, 730000, China
- Orthopaedics Key Laboratory of Gansu Province, LanzhouGansu, 730000, China
| | - Rui Ran
- Lanzhou University Second Hospital, LanzhouGansu, 730000, China
- Orthopaedics Key Laboratory of Gansu Province, LanzhouGansu, 730000, China
| | - Chun-Wei Ma
- Lanzhou University Second Hospital, LanzhouGansu, 730000, China
- Orthopaedics Key Laboratory of Gansu Province, LanzhouGansu, 730000, China
| | - Guang-Hai Zhao
- Lanzhou University Second Hospital, LanzhouGansu, 730000, China
- Orthopaedics Key Laboratory of Gansu Province, LanzhouGansu, 730000, China
| | - Kai-Sheng Zhou
- Lanzhou University Second Hospital, LanzhouGansu, 730000, China
- Orthopaedics Key Laboratory of Gansu Province, LanzhouGansu, 730000, China
| | - Hai-Hong Zhang
- Lanzhou University Second Hospital, LanzhouGansu, 730000, China.
- Orthopaedics Key Laboratory of Gansu Province, LanzhouGansu, 730000, China.
| |
Collapse
|
9
|
Li X, Jiao K, Liu C, Li X, Wang S, Tao Y, Cheng Y, Zhou X, Wei X, Li M. Bibliometric analysis of the inflammation expression after spinal cord injury: current research status and emerging frontiers. Spinal Cord 2024; 62:609-618. [PMID: 39363043 PMCID: PMC11549042 DOI: 10.1038/s41393-024-01038-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024]
Abstract
STUDY DESIGN Bibliometric analysis. OBJECTIVE To analyze literature on inflammatory expression following spinal cord injury, highlighting development trends, current research status, and potential emerging frontiers. SETTING Not applicable. METHODS Articles were retrieved using terms related to spinal cord injury and inflammatory responses from the Web of Science Core Collection, covering January 1, 1980, to May 23, 2024. Tools like CiteSpace and VOSviewer assessed the research landscape, evaluating core authors, journals, and contributing countries. Keyword co-occurrence analyses identified research trends. RESULTS A total of 2504 articles were retrieved, showing a consistent increase in publications. The Journal of Neurotrauma had the highest publication volume and influence. The most prolific author was Cuzzocrea S, with Popovich PG having the highest H-index. China led in the number of publications, followed closely by the United States, which had the highest impact and extensive international collaboration. Research mainly focused on nerve function recovery, glial scar formation, and oxidative stress. Future research is expected to investigate cellular autophagy, vesicular transport, and related signaling pathways. CONCLUSION The growing interest in inflammation caused by spinal cord injury is evident, with current research focusing on oxidative stress, glial scar, and neurological recovery. Future directions include exploring autophagy and extracellular vesicles for new therapies. Interdisciplinary research and extensive clinical trials are essential for validating new treatments. Biomarker discovery is crucial for diagnosis and monitoring, while understanding autophagy and signaling pathways is vital for drug development. Global cooperation is needed to accelerate the application of scientific findings, improving spinal cord injury treatment.
Collapse
Affiliation(s)
- Xiaoyu Li
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, China
| | - Kun Jiao
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, China
| | - Chen Liu
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, China
| | - Xiongfei Li
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, China
| | - Shanhe Wang
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, China
| | - Ye Tao
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, China
| | - Yajun Cheng
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, China
| | - Xiaoyi Zhou
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, China.
| | - Xianzhao Wei
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, China.
| | - Ming Li
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, China.
| |
Collapse
|
10
|
Cucarian J, Raposo P, Vavrek R, Nguyen A, Nelson B, Monnier P, Torres-Espin A, Fenrich K, Fouad K. No impact of anti-inflammatory medication on inflammation-driven recovery following cervical spinal cord injury in rats. Exp Neurol 2024; 383:115039. [PMID: 39481514 DOI: 10.1016/j.expneurol.2024.115039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 11/02/2024]
Abstract
Following spinal cord injury (SCI), inflammation is associated with the exacerbation of damage to spinal tissue. Consequently, managing inflammation during the acute and subacute phases is a common target in SCI treatment. However, inflammation may also induce potential benefits, including the stimulation of neuroplasticity and repair. This positive role of inflammation in spinal cord healing and functional recovery is not fully understood. To address this knowledge gap, we examined the effects of two common anti-inflammatory medications, Diphenhydramine and Methylprednisolone, on the efficacy of rehabilitative motor training on recovery from subacute cervical SCI in adult rats. Training depends critically on neuroplasticity thus if inflammation is a key regulator, we propose that anti-inflammatory drugs will reduce subsequent recovery. Both drugs were administered orally over one month, alongside task-specific reaching and grasping training. After treatment, no substantial changes in motor recovery or lesion size between the treated and control groups were observed. Treated animals also did not show any discernible changes in sensory function or anxiety-like behavior. Taken together, our data indicate that the prolonged use of these anti-inflammatory agents at commonly used doses did not profoundly impact recovery following an SCI. Therefore, considering earlier reports of the benefits of pro-inflammatory stimuli on plasticity, further studies in this area are imperative to elucidate the true impact of treating inflammation and its implications for recovery after spinal cord injuries.
Collapse
Affiliation(s)
- Jaison Cucarian
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.
| | - Pamela Raposo
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - Romana Vavrek
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - Antoinette Nguyen
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - Brooklynn Nelson
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Philippe Monnier
- Department of Ophthalmology and Vision Science, University of Toronto, Toronto, ON, Canada; Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Abel Torres-Espin
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada; School of Public Health Sciences, Faculty of Health, University of Waterloo, Waterloo, ON, Canada; Department of Neurological Surgery and Brain and Spinal Injury Center (BASIC), Faculty of Medicine, University of California San Francisco, San Francisco, USA
| | - Keith Fenrich
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada; Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - Karim Fouad
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada; Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| |
Collapse
|
11
|
Peng R, Zhang L, Xie Y, Guo S, Cao X, Yang M. Spatial multi-omics analysis of the microenvironment in traumatic spinal cord injury: a narrative review. Front Immunol 2024; 15:1432841. [PMID: 39267742 PMCID: PMC11390538 DOI: 10.3389/fimmu.2024.1432841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/22/2024] [Indexed: 09/15/2024] Open
Abstract
Traumatic spinal cord injury (tSCI) is a severe injury to the central nervous system that is categorized into primary and secondary injuries. Among them, the local microenvironmental imbalance in the spinal cord caused by secondary spinal cord injury includes accumulation of cytokines and chemokines, reduced angiogenesis, dysregulation of cellular energy metabolism, and dysfunction of immune cells at the site of injury, which severely impedes neurological recovery from spinal cord injury (SCI). In recent years, single-cell techniques have revealed the heterogeneity of multiple immune cells at the genomic, transcriptomic, proteomic, and metabolomic levels after tSCI, further deepening our understanding of the mechanisms underlying tSCI. However, spatial information about the tSCI microenvironment, such as cell location and cell-cell interactions, is lost in these approaches. The application of spatial multi-omics technology can solve this problem by combining the data obtained from immunohistochemistry and multiparametric analysis to reveal the changes in the microenvironment at different times of secondary injury after SCI. In this review, we systematically review the progress of spatial multi-omics techniques in the study of the microenvironment after SCI, including changes in the immune microenvironment and discuss potential future therapeutic strategies.
Collapse
Affiliation(s)
- Run Peng
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Liang Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Yongqi Xie
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Shuang Guo
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Rehabilitation, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xinqi Cao
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Mingliang Yang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation, Research Center, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| |
Collapse
|
12
|
Manrique-Castano D, Bhaskar D, ElAli A. Dissecting glial scar formation by spatial point pattern and topological data analysis. Sci Rep 2024; 14:19035. [PMID: 39152163 PMCID: PMC11329771 DOI: 10.1038/s41598-024-69426-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 08/05/2024] [Indexed: 08/19/2024] Open
Abstract
Glial scar formation represents a fundamental response to central nervous system (CNS) injuries. It is mainly characterized by a well-defined spatial rearrangement of reactive astrocytes and microglia. The mechanisms underlying glial scar formation have been extensively studied, yet quantitative descriptors of the spatial arrangement of reactive glial cells remain limited. Here, we present a novel approach using point pattern analysis (PPA) and topological data analysis (TDA) to quantify spatial patterns of reactive glial cells after experimental ischemic stroke in mice. We provide open and reproducible tools using R and Julia to quantify spatial intensity, cell covariance and conditional distribution, cell-to-cell interactions, and short/long-scale arrangement, which collectively disentangle the arrangement patterns of the glial scar. This approach unravels a substantial divergence in the distribution of GFAP+ and IBA1+ cells after injury that conventional analysis methods cannot fully characterize. PPA and TDA are valuable tools for studying the complex spatial arrangement of reactive glia and other nervous cells following CNS injuries and have potential applications for evaluating glial-targeted restorative therapies.
Collapse
Affiliation(s)
- Daniel Manrique-Castano
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Quebec City, QC, Canada.
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| | | | - Ayman ElAli
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Quebec City, QC, Canada.
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
13
|
Petillo E, Veneruso V, Gragnaniello G, Brochier L, Frigerio E, Perale G, Rossi F, Cardia A, Orro A, Veglianese P. Targeted therapy and deep learning insights into microglia modulation for spinal cord injury. Mater Today Bio 2024; 27:101117. [PMID: 38975239 PMCID: PMC11225820 DOI: 10.1016/j.mtbio.2024.101117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/31/2024] [Accepted: 06/08/2024] [Indexed: 07/09/2024] Open
Abstract
Spinal cord injury (SCI) is a devastating condition that can cause significant motor and sensory impairment. Microglia, the central nervous system's immune sentinels, are known to be promising therapeutic targets in both SCI and neurodegenerative diseases. The most effective way to deliver medications and control microglial inflammation is through nanovectors; however, because of the variability in microglial morphology and the lack of standardized techniques, it is still difficult to precisely measure their activation in preclinical models. This problem is especially important in SCI, where the intricacy of the glia response following traumatic events necessitates the use of a sophisticated method to automatically discern between various microglial cell activation states that vary over time and space as the secondary injury progresses. We address this issue by proposing a deep learning-based technique for quantifying microglial activation following drug-loaded nanovector treatment in a preclinical SCI model. Our method uses a convolutional neural network to segment and classify microglia based on morphological characteristics. Our approach's accuracy and efficiency are demonstrated through evaluation on a collection of histology pictures from injured and intact spinal cords. This robust computational technique has potential for analyzing microglial activation across various neuropathologies and demonstrating the usefulness of nanovectors in modifying microglia in SCI and other neurological disorders. It has the ability to speed development in this crucial sector by providing a standardized and objective way to compare therapeutic options.
Collapse
Affiliation(s)
- Emilia Petillo
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, Milano 20156, Italy
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| | - Valeria Veneruso
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, Milano 20156, Italy
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, via Buffi 13, Lugano 6900, Switzerland
| | - Gianluca Gragnaniello
- Department of Biomedical Sciences, Italian National Research Council, Institute of Biomedical Technologies, Segrate 20054, Italy
| | - Lorenzo Brochier
- Department of Biomedical Sciences, Italian National Research Council, Institute of Biomedical Technologies, Segrate 20054, Italy
| | - Enrico Frigerio
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, Milano 20156, Italy
| | - Giuseppe Perale
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, via Buffi 13, Lugano 6900, Switzerland
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstrasse 13, 1200 Vienna, Austria
- Regenera GmbH, Modecenterstrasse 22/D01, 1030 Vienna, Austria
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| | - Andrea Cardia
- Department of Neurosurgery, Neurocenter of the Southern Switzerland, Regional Hospital of Lugano, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
| | - Alessandro Orro
- Department of Biomedical Sciences, Italian National Research Council, Institute of Biomedical Technologies, Segrate 20054, Italy
| | - Pietro Veglianese
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, Milano 20156, Italy
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, via Buffi 13, Lugano 6900, Switzerland
| |
Collapse
|
14
|
Amlerova Z, Chmelova M, Anderova M, Vargova L. Reactive gliosis in traumatic brain injury: a comprehensive review. Front Cell Neurosci 2024; 18:1335849. [PMID: 38481632 PMCID: PMC10933082 DOI: 10.3389/fncel.2024.1335849] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/01/2024] [Indexed: 01/03/2025] Open
Abstract
Traumatic brain injury (TBI) is one of the most common pathological conditions impacting the central nervous system (CNS). A neurological deficit associated with TBI results from a complex of pathogenetic mechanisms including glutamate excitotoxicity, inflammation, demyelination, programmed cell death, or the development of edema. The critical components contributing to CNS response, damage control, and regeneration after TBI are glial cells-in reaction to tissue damage, their activation, hypertrophy, and proliferation occur, followed by the formation of a glial scar. The glial scar creates a barrier in damaged tissue and helps protect the CNS in the acute phase post-injury. However, this process prevents complete tissue recovery in the late/chronic phase by producing permanent scarring, which significantly impacts brain function. Various glial cell types participate in the scar formation, but this process is mostly attributed to reactive astrocytes and microglia, which play important roles in several brain pathologies. Novel technologies including whole-genome transcriptomic and epigenomic analyses, and unbiased proteomics, show that both astrocytes and microglia represent groups of heterogenic cell subpopulations with different genomic and functional characteristics, that are responsible for their role in neurodegeneration, neuroprotection and regeneration. Depending on the representation of distinct glia subpopulations, the tissue damage as well as the regenerative processes or delayed neurodegeneration after TBI may thus differ in nearby or remote areas or in different brain structures. This review summarizes TBI as a complex process, where the resultant effect is severity-, region- and time-dependent and determined by the model of the CNS injury and the distance of the explored area from the lesion site. Here, we also discuss findings concerning intercellular signaling, long-term impacts of TBI and the possibilities of novel therapeutical approaches. We believe that a comprehensive study with an emphasis on glial cells, involved in tissue post-injury processes, may be helpful for further research of TBI and be the decisive factor when choosing a TBI model.
Collapse
Affiliation(s)
- Zuzana Amlerova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Martina Chmelova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Miroslava Anderova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Lydia Vargova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
15
|
Hong JY, Lee J, Kim H, Yeo C, Jeon WJ, Lee YJ, Ha IH. Shinbaro2 enhances axonal extension beyond the glial scar for functional recovery in rats with contusive spinal cord injury. Biomed Pharmacother 2023; 168:115710. [PMID: 37862963 DOI: 10.1016/j.biopha.2023.115710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating event that often results in the inflammatory condition of glial scar tissue formation, impeding neural regeneration and recovery. Reducing the inflammatory response and inhibiting glial formation are promising strategies for improving SCI outcomes. Here, we introduce a new role for Shinbaro2 (Sh2), known for its anti-inflammatory and pain-reducing effects, in ameliorating glial scars formed in the damaged spinal cord and promoting axon growth after SCI. Sh2 was applied at various concentrations to cultivate primary spinal cord neurons. Concentrations of 1 and 2 mg/mL effectively enhanced cell viability and axonal outgrowth in spinal cord neurons subjected to hydrogen peroxide or laceration injury. Sh2 helped reduce neuroinflammation by increasing anti-inflammatory M2 macrophages (arginase 1) and decreasing inflammatory cells, ultimately reducing lesion size. In scar formation, Sh2 inhibited the expression of β-catenin and nestin in reactive astrocytes in the injured spinal cord. Moreover, Sh2 suppressed the expression of chondroitin sulfate proteoglycans and SOX9, which are involved in scar formation. Furthermore, Sh2 promoted the sprouting of serotonergic axons and the growth of neurofibrillary tangles, enhancing motor function recovery in SCI. These findings highlight the potential of Sh2 as an SCI therapeutic intervention, offering hope for neural and functional restoration in individuals with this debilitating condition.
Collapse
Affiliation(s)
- Jin Young Hong
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea.
| | - Junseon Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea.
| | - Hyun Kim
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea.
| | - Changhwan Yeo
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea.
| | - Wan-Jin Jeon
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea.
| | - Yoon Jae Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea.
| | - In-Hyuk Ha
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea.
| |
Collapse
|
16
|
Han S, Kim J, Kim SH, Youn W, Kim J, Ji GY, Yang S, Park J, Lee GM, Kim Y, Choi IS. In vitro induction of in vivo-relevant stellate astrocytes in 3D brain-derived, decellularized extracellular matrices. Acta Biomater 2023; 172:218-233. [PMID: 37788738 DOI: 10.1016/j.actbio.2023.09.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/05/2023]
Abstract
In vitro fabrication of 3D cell culture systems that could provide in vivo tissue-like, structural, and biochemical environments to neural cells is essential not only for fundamental studies on brain function and behavior, but also for tissue engineering and regenerative medicine applicable to neural injury and neurodegenerative diseases. In particular, for astrocytes-which actively respond to the surroundings and exhibit varied morphologies based on stimuli (e.g., stiffness and chemicals) in vitro, as well as physiological or pathological conditions in vivo-it is crucial to establish an appropriate milieu in in vitro culture platforms. Herein, we report the induction of in vivo-relevant, stellate-shaped astrocytes derived from cortices of Rattus norvegicus by constructing the 3D cell culture systems of brain-derived, decellularized extracellular matrices (bdECMs). The bdECM hydrogels were mechanically stable and soft, and the bdECM-based 3D scaffolds supplied biochemically active environments that astrocytes could interact with, leading to the development of in vivo-like stellate structures. In addition to the distinct morphology with actively elongated endfeet, the astrocytes, cultured in 3D bdECM scaffolds, would have neurosupportive characteristics, indicated by the accelerated neurite outgrowth in the astrocyte-conditioned media. Furthermore, next-generation sequencing showed that the gene expression profiles of astrocytes cultured in bdECMs were significantly different from those cultured on 2D surfaces. The stellate-shaped astrocytes in the bdECMs were analyzed to have reached a more mature state, for instance, with decreased expression of genes for scaffold ECMs, actin filaments, and cell division. The results suggest that the bdECM-based 3D culture system offers an advanced platform for culturing primary cortical astrocytes and their mixtures with other neural cells, providing a brain-like, structural and biochemical milieu that promotes the maturity and in vivo-like characteristics of astrocytes in both form and gene expression. STATEMENT OF SIGNIFICANCE: Decellularized extracellular matrices (dECMs) have emerged as strong candidates for the construction of three-dimensional (3D) cell cultures in vitro, owing to the potential to provide native biochemical and physical environments. In this study, we fabricated hydrogels of brain-derived dECMs (bdECMs) and cultured primary astrocytes within the bdECM hydrogels in a 3D context. The cultured astrocytes exhibited a stellate morphology distinct from conventional 2D cultures, featuring tridimensionally elongated endfeet. qRT-PCR and NGS-based transcriptomic analyses revealed gene expression patterns indicative of a more mature state, compared with the 2D culture. Moreover, astrocytes cultured in bdECMs showed neurosupportive characteristics, as demonstrated by the accelerated neurite outgrowth in astrocyte-conditioned media. We believe that the bdECM hydrogel-based culture system can serve as an in vitro model system for astrocytes and their coculture with other neural cells, holding significant potential for neural engineering and therapeutic applications.
Collapse
Affiliation(s)
- Sol Han
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, South Korea
| | - Jungnam Kim
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, South Korea
| | - Su Hyun Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, South Korea
| | - Wongu Youn
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, South Korea
| | - Jihoo Kim
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, South Korea
| | - Gil Yong Ji
- Cannabis Medical, Inc., Asan 31418, South Korea
| | - Seoin Yang
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, South Korea
| | - Joohyouck Park
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, South Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, Daejeon 34141, South Korea
| | | | - Insung S Choi
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, South Korea; Department of Bio and Brain Engineering, KAIST, Daejeon 34141, South Korea.
| |
Collapse
|
17
|
Merlo B, Iacono E. Beyond Canine Adipose Tissue-Derived Mesenchymal Stem/Stromal Cells Transplantation: An Update on Their Secretome Characterization and Applications. Animals (Basel) 2023; 13:3571. [PMID: 38003188 PMCID: PMC10668816 DOI: 10.3390/ani13223571] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
A dog is a valuable animal model and concomitantly a pet for which advanced therapies are increasingly in demand. The characteristics of mesenchymal stem/stromal cells (MSCs) have made cell therapy more clinically attractive. During the last decade, research on the MSC therapeutic effectiveness has demonstrated that tissue regeneration is primarily mediated by paracrine factors, which are included under the name of secretome. Secretome is a mixture of soluble factors and a variety of extracellular vesicles. The use of secretome for therapeutic purposes could have some advantages compared to cell-based therapies, such as lower immunogenicity and easy manufacturing, manipulation, and storage. The conditioned medium and extracellular vesicles derived from MSCs have the potential to be employed as new treatments in veterinary medicine. This review provides an update on the state-of-the-art characterization and applications of canine adipose tissue-derived MSC secretome.
Collapse
Affiliation(s)
- Barbara Merlo
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy;
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, 40126 Bologna, Italy
| | - Eleonora Iacono
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy;
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
18
|
Lee PH, Hsu HJ, Tien CH, Huang CC, Huang CY, Chen HF, Yeh ML, Lee JS. Characterizing the Impact of Compression Duration and Deformation-Related Loss of Closure Force on Clip-Induced Spinal Cord Injury in Rats. Neurol Int 2023; 15:1383-1392. [PMID: 37987461 PMCID: PMC10661265 DOI: 10.3390/neurolint15040088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023] Open
Abstract
The clip-induced spinal cord injury (SCI) rat model is pivotal in preclinical SCI research. However, the literature exhibits variability in compression duration and limited attention to clip deformation-related loss of closure force. We aimed to investigate the impact of compression duration on SCI severity and the influence of clip deformation on closure force. Rats received T10-level clip-induced SCI with durations of 1, 5, 10, 20, and 30 s, and a separate group underwent T10 transection. Outcomes included functional, histological, electrophysiological assessments, and inflammatory cytokine analysis. A tactile pressure mapping system quantified clip closure force after open-close cycles. Our results showed a positive correlation between compression duration and the severity of functional, histological, and electrophysiological deficits. Remarkably, even a brief 1-s compression caused significant deficits comparable to moderate-to-severe SCI. SSEP waveforms were abolished with durations over 20 s. Decreased clip closure force appeared after five open-close cycles. This study offers critical insights into regulating SCI severity in rat models, aiding researchers. Understanding compression duration and clip fatigue is essential for experiment design and interpretation using the clip-induced SCI model.
Collapse
Affiliation(s)
- Po-Hsuan Lee
- Division of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, Tainan 701, Taiwan; (P.-H.L.); (C.-H.T.); (C.-C.H.); (C.-Y.H.)
| | - Heng-Juei Hsu
- Department of Neurosurgery, Tainan Municipal Hospital, Tainan 701, Taiwan;
| | - Chih-Hao Tien
- Division of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, Tainan 701, Taiwan; (P.-H.L.); (C.-H.T.); (C.-C.H.); (C.-Y.H.)
| | - Chi-Chen Huang
- Division of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, Tainan 701, Taiwan; (P.-H.L.); (C.-H.T.); (C.-C.H.); (C.-Y.H.)
| | - Chih-Yuan Huang
- Division of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, Tainan 701, Taiwan; (P.-H.L.); (C.-H.T.); (C.-C.H.); (C.-Y.H.)
| | - Hui-Fang Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
| | - Ming-Long Yeh
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan;
- Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Jung-Shun Lee
- Division of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, Tainan 701, Taiwan; (P.-H.L.); (C.-H.T.); (C.-C.H.); (C.-Y.H.)
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
19
|
Shen W, Liu Q, Li C, Abula M, Yang Z, Wang Z, Cai J, Kong X. Exploration of the effect and potential mechanism of quercetin in repairing spinal cord injury based on network pharmacology and in vivo experimental verification. Heliyon 2023; 9:e20024. [PMID: 37809922 PMCID: PMC10559748 DOI: 10.1016/j.heliyon.2023.e20024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/19/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Spinal cord injury (SCI) is a highly complex neurological disease, but there is no effective repair method. Quercetin is a flavonol drug and has a variety of biological activities, such as scavenging oxygen free radicals in the body to resist oxidation, inhibiting inflammation, and so on. In this study, quercetin was firstly demonstrated to reduce tissue damage, promote neuron survival and repair motor function after SCI in rats through in vivo experiments. Then, 293 potential targets of quercetin repair for SCI were predicted by network pharmacology. GO analysis revealed that the biological processes of potential targets focused mainly on signal transduction, negative regulation of the apoptotic process, protein phosphorylation, drug response, and so on. Similarly, KEGG analysis suggested that these potential targets were involved in cell growth regulation, differentiation, apoptosis, and a few metabolic pathways. PPI network analysis predicted that the key genes were EP300, CREBBP, SRC, HSP90AA1, TP53, PIK3R1, EGFR, ESR1, and CBL. Further, the molecular docking showed that quercetin binds well with these proteins. Finally, RT-qPCR and Western blotting experiments verified that quercetin downregulated the expression levels of PIK3R1 and EGFR. It is suggested that quercetin can repair SCI in rats through PI3K-AKT signaling pathway and EGFR/MAPK pathway, which may provide a new theoretical basis for the repair of spinal cord injury.
Collapse
Affiliation(s)
- Wenyuan Shen
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Department of Orthopedics, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Street, Jinan, Shandong, China
- Orthopedic Research Center of Shandong University &Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Quan Liu
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Chuanhao Li
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Muhetidier Abula
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Department of Orthopedics, Hotan Prefecture People's Hospital, Hotan, Xinjiang, 848000, China
| | - Zibo Yang
- Tianjin Medicine and Health Research Center, Tianjin Institute of Medical & Pharmaceutical Sciences, Tianjin, 300020, China
| | - Zhishuo Wang
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Jun Cai
- Tianjin Medicine and Health Research Center, Tianjin Institute of Medical & Pharmaceutical Sciences, Tianjin, 300020, China
| | - Xiaohong Kong
- Orthopedic Research Center of Shandong University &Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
20
|
Sun Z, Zhu D, Zhao H, Liu J, He P, Luan X, Hu H, Zhang X, Wei G, Xi Y. Recent advance in bioactive hydrogels for repairing spinal cord injury: material design, biofunctional regulation, and applications. J Nanobiotechnology 2023; 21:238. [PMID: 37488557 PMCID: PMC10364437 DOI: 10.1186/s12951-023-01996-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
Functional hydrogels show potential application in repairing spinal cord injury (SCI) due to their unique chemical, physical, and biological properties and functions. In this comprehensive review, we present recent advance in the material design, functional regulation, and SCI repair applications of bioactive hydrogels. Different from previously released reviews on hydrogels and three-dimensional scaffolds for the SCI repair, this work focuses on the strategies for material design and biologically functional regulation of hydrogels, specifically aiming to show how these significant efforts can promoting the repairing performance of SCI. We demonstrate various methods and techniques for the fabrication of bioactive hydrogels with the biological components such as DNA, proteins, peptides, biomass polysaccharides, and biopolymers to obtain unique biological properties of hydrogels, including the cell biocompatibility, self-healing, anti-bacterial activity, injectability, bio-adhesion, bio-degradation, and other multi-functions for repairing SCI. The functional regulation of bioactive hydrogels with drugs/growth factors, polymers, nanoparticles, one-dimensional materials, and two-dimensional materials for highly effective treating SCI are introduced and discussed in detail. This work shows new viewpoints and ideas on the design and synthesis of bioactive hydrogels with the state-of-the-art knowledges of materials science and nanotechnology, and will bridge the connection of materials science and biomedicine, and further inspire clinical potential of bioactive hydrogels in biomedical fields.
Collapse
Affiliation(s)
- Zhengang Sun
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266071, People's Republic of China
- Department of Spinal Surgery, Huangdao Central Hospital, Affiliated Hospital of Qingdao University, Qingdao, 266071, China
- The Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, People's Republic of China
| | - Danzhu Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Hong Zhao
- Department of Spinal Surgery, Huangdao Central Hospital, Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Jia Liu
- Department of Spinal Surgery, Huangdao Central Hospital, Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Peng He
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Xin Luan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Huiqiang Hu
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266071, People's Republic of China
| | - Xuanfen Zhang
- The Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, People's Republic of China.
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China.
| | - Yongming Xi
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266071, People's Republic of China.
| |
Collapse
|