1
|
Alanazi M, Al-Kuraishy HM, Albuhadily AK, Al-Gareeb AI, Abdelaziz AM, Alexiou A, Papadakis M, Batiha GES. The protective effect of amylin in type 2 diabetes: Yes or no. Eur J Pharmacol 2025; 996:177593. [PMID: 40187597 DOI: 10.1016/j.ejphar.2025.177593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/26/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Amylin, which is also called a human islet amyloid polypeptide, is a peptide hormone made up of 37 amino acids that is released from pancreatic β cells. It helps keep blood sugar levels stable by controlling the release of insulin and glucagon. Various studies have indicated its involvement in the pathogenesis of type 2 diabetes (T2D) through the induction of apoptosis in pancreatic cells. Conversely, other studies found that amylin plays a critical role in the pathogenesis of T2D by affecting the release of insulin and glucagon. Therefore, amylin has protective and detrimental effects on the pathogenesis of T2D. Consequently, this review aims to discuss the beneficial and detrimental roles of amylin in T2D.
Collapse
Affiliation(s)
- Mansour Alanazi
- Department of Internal Medicine, College of Medicine, Northern Border University, Arar, Saudi Arabia.
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, 14132, Baghdad, Iraq.
| | - Ali K Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, 14132, Baghdad, Iraq.
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, 14132, Baghdad, Iraq; Jabir ibn Hayyan Medical University, Al-Ameer Qu, PO. Box13 Kufa, Najaf, Iraq.
| | - Ahmed M Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University-Arish Branch, Arish, 45511, Egypt.
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India; Department of Research & Development, Funogen, Athens, 11741, Greece.
| | - Marios Papadakis
- University Hospital Witten-Herdecke, University of Witten, Herdecke, Heusnerstrasse 40, Wuppertal, 42283, Germany.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
2
|
Tasma Z, Garelja ML, Jamaluddin A, Alexander TI, Rees TA. Where are we now? Biased signalling of Class B G protein-coupled receptor-targeted therapeutics. Pharmacol Ther 2025; 270:108846. [PMID: 40216261 DOI: 10.1016/j.pharmthera.2025.108846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/07/2025] [Accepted: 03/24/2025] [Indexed: 04/19/2025]
Abstract
Class B G protein-coupled receptors (GPCRs) are a subfamily of 15 peptide hormone receptors with diverse roles in physiological functions and disease pathogenesis. Over the past decade, several novel therapeutics targeting these receptors have been approved for conditions like migraine, diabetes, and obesity, many of which are ground-breaking and first-in-class. Most of these therapeutics are agonist analogues with modified endogenous peptide sequences to enhance receptor activation or stability. Several small molecule and monoclonal antibody antagonists have also been approved or are in late-stage development. Differences in the sequence and structure of these therapeutic ligands lead to distinct signalling profiles, including biased behaviour or inhibition of specific pathways. Understanding this biased pharmacology offers unique development opportunities for improving therapeutic efficacy and reducing adverse effects. This review summarises current knowledge on the ligand bias of approved class B GPCR drugs, highlights strategies to refine and exploit their pharmacological profiles, and discusses key considerations related to receptor structure, localisation, and regulation for developing new therapies.
Collapse
Affiliation(s)
- Zoe Tasma
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Michael L Garelja
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Aqfan Jamaluddin
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
| | - Tyla I Alexander
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Tayla A Rees
- Headache Group, Wolfson Sensory Pain and Regeneration Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
3
|
Volčanšek Š, Koceva A, Jensterle M, Janež A, Muzurović E. Amylin: From Mode of Action to Future Clinical Potential in Diabetes and Obesity. Diabetes Ther 2025; 16:1207-1227. [PMID: 40332747 DOI: 10.1007/s13300-025-01733-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 03/19/2025] [Indexed: 05/08/2025] Open
Abstract
Precision diabetology is increasingly becoming diabetes phenotype-driven, whereby the specific hormonal imbalances involved are taken into consideration. Concomitantly, body weight-favorable therapeutic approaches are being dictated by the obesity pandemic, which extends to all diabetes subpopulations. Amylin, an anorexic neuroendocrine hormone co-secreted with insulin, is deficient in individuals with diabetes and plays an important role in postprandial glucose homeostasis, with additional potential cardiovascular and neuroprotective functions. Its actions include suppressing glucagon secretion, delaying gastric emptying, increasing energy expenditure and promoting satiety. While amylin holds promise as a therapeutic agent, its translation into clinical practice is hampered by complex receptor biology, the limitations of animal models, its amyloidogenic properties and pharmacokinetic challenges. In individuals with advanced β-cell dysfunction, supplementing insulin therapy with pramlintide, the first and currently only approved injectable short-acting selective analog of amylin, has demonstrated efficacy in enhancing both postprandial and overall glycemic control in both type 2 diabetes (T2D) and type 1 diabetes (T1D) without increasing the risk of hypoglycemia or weight gain. Current research focuses on several key strategies, from enhancing amylin stability by attaching polyethylene glycol or carbohydrate molecules to amylin, to developing oral amylin formulations to improve patients' convenience, as well as developing various combination therapies to enhance weight loss and glucose regulation by targeting multiple receptors in metabolic pathways. The novel synergistically acting glucagon-like peptide-1 (GLP-1) receptor agonist combined with the amylin agonist, CagriSema, shows promising results in both glucose regulation and weight management. As such, amylin agonists (combined with other members of the incretin class) could represent the elusive drug candidate to address the multi-hormonal dysregulations of diabetes subtypes and qualify as a precision medicine approach that surpasses the long overdue division into T1DM and T2DM. Further development of amylin-based therapies or delivery systems is crucial to fully unlock the therapeutic potential of this intriguing hormone.Graphical abstract available for this article.
Collapse
Affiliation(s)
- Špela Volčanšek
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Andrijana Koceva
- Department of Endocrinology and Diabetology, University Medical Centre Maribor, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Mojca Jensterle
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Andrej Janež
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Emir Muzurović
- Endocrinology Section, Department of Internal Medicine, Clinical Centre of Montenegro, Podgorica, Montenegro.
- Faculty of Medicine, University of Montenegro, Podgorica, Montenegro.
| |
Collapse
|
4
|
Walker CS, Aitken JF, Vazhoor Amarsingh G, Zhang S, Cooper GJS. Amylin: emergent therapeutic opportunities in overweight, obesity and diabetes mellitus. Nat Rev Endocrinol 2025:10.1038/s41574-025-01125-9. [PMID: 40360789 DOI: 10.1038/s41574-025-01125-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2025] [Indexed: 05/15/2025]
Abstract
The identification of amylin as a glucoregulatory peptide hormone with roles in meal-ending satiation sparked a surge of experimental development, which culminated in the amylin mimetic drug pramlintide. Pramlintide was approved by the FDA in 2005 for the treatment of type 1 diabetes mellitus and insulin-requiring type 2 diabetes, and was also explored as a novel anti-obesity treatment. Despite this exciting potential, efforts to develop an amylin-based anti-obesity therapeutic stalled owing to challenges around dosage frequency, safety and formulation. Generally, anti-obesity therapies have displayed modest efficacy and mixed safety profiles, leaving a clear unmet clinical need that requires addressing. Advances in peptide chemistry have reinvigorated the amylin field by enabling the manufacture of effective new amylin-based molecules, resulting in therapeutics that are now on the cusp of approval. At present, there are growing concerns around GLP1 receptor agonist-based therapeutics, in particular their association with loss of lean body mass. Additionally, treatment of patients with overweight or obesity without associated comorbidities is increasingly common. The widespread pharmacotherapy of otherwise healthy populations with overweight or obesity with the goal of improving future health requires further regulatory and ethical consideration. This Review describes how amylin controls energy homeostasis and provides a current overview of amylin-based therapeutic development.
Collapse
Affiliation(s)
| | - Jacqueline F Aitken
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | - Shaoping Zhang
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Garth J S Cooper
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.
- Department of Pharmacology, Medical Sciences Division, University of Oxford, Oxford, UK.
- School of Medical Sciences, Division of Cardiovascular Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
5
|
Cao J, Belousoff MJ, Johnson RM, Keov P, Mariam Z, Deganutti G, Christopoulos G, Hick CA, Reedtz-Runge S, Glendorf T, Ballarín-González B, Raun K, Bayly-Jones C, Wootten D, Sexton PM. Structural and dynamic features of cagrilintide binding to calcitonin and amylin receptors. Nat Commun 2025; 16:3389. [PMID: 40204768 PMCID: PMC11982234 DOI: 10.1038/s41467-025-58680-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 03/28/2025] [Indexed: 04/11/2025] Open
Abstract
Obesity is a major and increasingly prevalent chronic metabolic disease with numerous comorbidities. While recent incretin-based therapies have provided pharmaceutical inroads into treatment of obesity, there remains an ongoing need for additional medicines with distinct modes of action as independent or complementary therapeutics. Among the most promising candidates, supported by phase 1 and 2 clinical trials, is cagrilintide, a long-acting amylin and calcitonin receptor agonist. As such, understanding how cagrilintide functionally engages target receptors is critical for future development of this target class. Here, we determine structures of cagrilintide bound to Gs-coupled, active, amylin receptors (AMY1R, AMY2R, AMY3R) and calcitonin receptor (CTR) and compare cagrilintide interactions and the dynamics of receptor complexes with previously reported structures of receptors bound to rat amylin, salmon calcitonin or recently developed amylin-based peptides. These data reveal that cagrilintide has an amylin-like binding mode but, compared to other peptides, induces distinct conformational dynamics at calcitonin-family receptors that could contribute to its clinical efficacy.
Collapse
Affiliation(s)
- Jianjun Cao
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Matthew J Belousoff
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Rachel M Johnson
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Peak Proteins, Birchwood House, Larkwood Way, Macclesfield, Cheshire, UK
| | - Peter Keov
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Zamara Mariam
- Centre for Health and Life Sciences, Coventry University, Coventry, UK
| | | | - George Christopoulos
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Caroline A Hick
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | | | - Tine Glendorf
- Research & Early Development, Novo Nordisk, Maaloev, Denmark
| | | | - Kirsten Raun
- Research & Early Development, Novo Nordisk, Maaloev, Denmark
| | - Charles Bayly-Jones
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Denise Wootten
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
| | - Patrick M Sexton
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
| |
Collapse
|
6
|
Gostynska SE, Karim JA, Ford BE, Gordon PH, Babin KM, Inoue A, Lambert NA, Pioszak AA. Amylin receptor subunit interactions are modulated by agonists and determine signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617487. [PMID: 39416010 PMCID: PMC11482831 DOI: 10.1101/2024.10.09.617487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Three amylin receptors (AMYRs) mediate the metabolic actions of the peptide hormone amylin and are drug targets for diabetes and obesity. AMY1R, AMY2R, and AMY3R are heterodimers consisting of the G protein-coupled calcitonin receptor (CTR) paired with a RAMP1, -2, or -3 accessory subunit, respectively, which increases amylin potency. Little is known about AMYR subunit interactions and their role in signaling. Here, we show that the AMYRs have distinct basal subunit equilibriums that are modulated by peptide agonists and determine the cAMP signaling phenotype. Using a novel biochemical assay that resolves the AMYR heterodimers and free subunits, we found that the AMY1/2R subunit equilibriums favored free CTR and RAMP1/2, and rat amylin and αCGRP agonists promoted subunit association. A stronger CTR-RAMP3 transmembrane domain interface yielded a more stable AMY3R, and human and salmon calcitonin agonists promoted AMY3R dissociation. Similar changes in subunit association-dissociation were observed in live cell membranes, and G protein coupling and cAMP signaling assays showed how these altered signaling. Our findings reveal regulation of heteromeric GPCR signaling through subunit interaction dynamics.
Collapse
Affiliation(s)
- Sandra E. Gostynska
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK. 73104. USA
| | - Jordan A. Karim
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK. 73104. USA
| | - Bailee E. Ford
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK. 73104. USA
| | - Peyton H. Gordon
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK. 73104. USA
| | - Katie M. Babin
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK. 73104. USA
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578. Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501. Japan
| | - Nevin A. Lambert
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA. 30912. USA
| | - Augen A. Pioszak
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK. 73104. USA
| |
Collapse
|
7
|
Petersen EA, Blom I, Melander SA, Al-Rubai M, Vidotto M, Dalgaard LT, Karsdal MA, Henriksen K, Larsen S, Larsen AT. DACRA induces profound weight loss, satiety control, and increased mitochondrial respiratory capacity in adipose tissue. Int J Obes (Lond) 2024; 48:1421-1429. [PMID: 38879729 DOI: 10.1038/s41366-024-01564-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND AND OBJECTIVES Dual amylin and calcitonin receptor agonists (DACRAs) are therapeutic candidates in the treatment of obesity with beneficial effects on weight loss superior to suppression of food intake. Hence, suggesting effects on energy expenditure by possibly targeting mitochondria in metabolically active tissue. METHODS Male rats with HFD-induced obesity received a DACRA, KBP-336, every third day for 8 weeks. Upon study end, mitochondrial respiratory capacity (MRC), - enzyme activity, - transcriptional factors, and -content were measured in perirenal (pAT) and inguinal adipose tissue. A pair-fed group was included to examine food intake-independent effects of KBP-336. RESULTS A vehicle-corrected weight loss (23.4 ± 2.8%) was achieved with KBP-336, which was not observed to the same extent with the food-restricted weight loss (12.4 ± 2.8%) (P < 0.001). Maximal coupled respiration supported by carbohydrate and lipid-linked substrates was increased after KBP-336 treatment independent of food intake in pAT (P < 0.01). Moreover, oligomycin-induced leak respiration and the activity of citrate synthase and β-hydroxyacetyl-CoA-dehydrogenase were increased with KBP-336 treatment (P < 0.05). These effects occurred without changes in mitochondrial content in pAT. CONCLUSIONS These findings demonstrate favorable effects of KBP-336 on MRC in adipose tissue, indicating an increased energy expenditure and capacity to utilize fatty acids. Thus, providing more mechanistic insight into the DACRA-induced weight loss.
Collapse
Affiliation(s)
- Emilie A Petersen
- Nordic Bioscience, Herlev, Denmark.
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Ida Blom
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Mays Al-Rubai
- Nordic Bioscience, Herlev, Denmark
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | | | - Louise T Dalgaard
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Morten A Karsdal
- Nordic Bioscience, Herlev, Denmark
- KeyBioscience AG, Stans, Switzerland
| | - Kim Henriksen
- Nordic Bioscience, Herlev, Denmark
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
- KeyBioscience AG, Stans, Switzerland
| | - Steen Larsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | | |
Collapse
|
8
|
Larsen AT, Mohamed KE, Melander SA, Karsdal MA, Henriksen K. The enduring metabolic improvement of combining dual amylin and calcitonin receptor agonist and semaglutide treatments in a rat model of obesity and diabetes. Am J Physiol Endocrinol Metab 2024; 327:E145-E154. [PMID: 38864815 DOI: 10.1152/ajpendo.00092.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
Long-acting dual amylin and calcitonin receptor agonists (DACRAs) are novel candidates for the treatment of type 2 diabetes and obesity due to their beneficial effects on body weight, glucose control, and insulin action. However, how the metabolic benefits are maintained after long-lasting treatment is unknown. This study investigates the long-term anti-obesity and anti-diabetic treatment efficacy of the DACRA KBP-336 alone and combined with the GLP-1 analog semaglutide. Zucker diabetic Sprague Dawley (ZDSD) rats with obesity and diabetes received KBP-336 (4.5 nmol/kg Q3D), semaglutide (50 nmol/kg Q3D), or the combination for 7 mo, and the treatment impact on body weight, food intake, glucose control, and insulin action was evaluated. Furthermore, serum levels of the cardiac fibrosis biomarker endotrophin were evaluated. KBP-336, semaglutide, and the combination lowered body weight significantly compared with the vehicle, with the combination inducing a larger and more sustained weight loss than either monotherapy. All treatments resulted in reduced fasting blood glucose levels and HbA1c levels and improved glucose tolerance compared with vehicle-treated rats. Furthermore, all treatments protected against lost insulin secretory capacity and improved insulin action. Serum levels of endotrophin were significantly lowered by KBP-336 compared with vehicle. This study shows the benefit of combining KBP-336 and semaglutide to obtain significant and sustained weight loss, as well as improved glucose control. Furthermore, KBP-336-driven reductions in circulating endotrophin indicate a clear reduction in the risk of complications. Altogether, KBP-336 is a promising candidate for the treatment of obesity and type 2 diabetes both alone and in combination with GLP-1 analogs.NEW & NOTEWORTHY These studies describe the benefit of combining dual amylin and calcitonin receptor agonists (DACRA) with semaglutide for long-term treatment of obesity and type 2 diabetes. Combination treatment induced sustained weight loss and improved glucose control. A DACRA-driven reduction in a serological biomarker of cardiac fibrosis indicated a reduced risk of complications. These results highlight DACRAs as a promising candidate for combination treatment of obesity and type 2 diabetes and related long-term complications.
Collapse
Affiliation(s)
| | | | | | | | - Kim Henriksen
- Nordic Bioscience, Herlev, Denmark
- KeyBioscience AG, Stans, Switzerland
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
9
|
Mohamed KE, Larsen AT, Melander S, Andersen F, Kerrn EB, Karsdal MA, Henriksen K. The dual amylin and calcitonin receptor agonist KBP-336 elicits a unique combination of weight loss, antinociception and bone protection - a novel disease-modifying osteoarthritis drug. Arthritis Res Ther 2024; 26:129. [PMID: 38997785 PMCID: PMC11241783 DOI: 10.1186/s13075-024-03361-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/30/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Despite the extensive research to provide a disease-modifying osteoarthritis drug (DMOAD), there is still no approved DMOAD. Dual amylin and calcitonin receptor agonists (DACRA) can provide metabolic benefits along with antinociceptive and potential structural preserving effects. In these studies, we tested a DACRA named KBP-336 on a metabolic model of OA in meniscectomised (MNX) rats. METHODS We evaluated KBP-336's effect on pain-like symptoms in Sprague Dawley (SD) rats on high-fat diet (HFD) that underwent meniscectomy using the von Frey test to measure the 50% paw withdrawal threshold (PWT) and analyzed using one-way ANOVA. Short in vivo studies and in vitro cell receptor expression systems were used to illustrate receptor pharmacology. RESULTS After 30 weeks on HFD, including an 8-week treatment, female MNX animals receiving KBP-336 4.5 nmol/Kg/72 h had lower body weight and smaller adipose tissues than their vehicle-treated counterparts. After 20 weeks on HFD, including an 8-week treatment, male rats receiving KBP-336 had lower body weight than the vehicle group. In both the female and male rats, the MNX groups on KBP-336 treatment had a higher PWT than the vehicle-treated MNX group. Aiming to identify the receptor influencing pain alleviation, KBP-336 was compared to the long-acting human calcitonin (hCTA). Single-dose studies on 12-week-old male rats showed that hCTA lowers CTX-I without affecting food intake, confirming its calcitonin receptor selectivity. On the metabolic OA model with 18 weeks of HFD, including 6-week treatment, hCTA at 100 nmol/Kg/24 h and KBP-336 at 0.5, 1.5, and 4.5 nmol/Kg/72 h produced significantly higher PWT in MNX animals compared to MNX animals on vehicle treatment. hCTA and KBP-336 at 0.5 nmol/Kg did not affect body weight and fat tissues. CONCLUSION Overall, KBP-336 improved the pain observed in the metabolic OA model. Calcitonin receptor activation proved to be essential in this antinociceptive effect.
Collapse
Affiliation(s)
- Khaled Elhady Mohamed
- Nordic Bioscience Biomarkers and Research, Herlev Hovedgade 207, Herlev, DK-2730, Denmark.
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - Anna Thorsø Larsen
- Nordic Bioscience Biomarkers and Research, Herlev Hovedgade 207, Herlev, DK-2730, Denmark
| | - Simone Melander
- Nordic Bioscience Biomarkers and Research, Herlev Hovedgade 207, Herlev, DK-2730, Denmark
| | - Frederik Andersen
- Nordic Bioscience Biomarkers and Research, Herlev Hovedgade 207, Herlev, DK-2730, Denmark
| | - Ellen Barendorff Kerrn
- Nordic Bioscience Biomarkers and Research, Herlev Hovedgade 207, Herlev, DK-2730, Denmark
| | - Morten Asser Karsdal
- Nordic Bioscience Biomarkers and Research, Herlev Hovedgade 207, Herlev, DK-2730, Denmark
- KeyBioscience AG, Stans, Switzerland
| | - Kim Henriksen
- Nordic Bioscience Biomarkers and Research, Herlev Hovedgade 207, Herlev, DK-2730, Denmark
- KeyBioscience AG, Stans, Switzerland
- Department of Molecular and Medical Biology, Roskilde University Center, Roskilde, Denmark
| |
Collapse
|
10
|
Melander SA, Larsen AT, Karsdal MA, Henriksen K. Are insulin sensitizers the new strategy to treat Type 1 diabetes? A long-acting dual amylin and calcitonin receptor agonist improves insulin-mediated glycaemic control and controls body weight. Br J Pharmacol 2024; 181:1829-1842. [PMID: 38378168 DOI: 10.1111/bph.16329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND AND PURPOSE Insulin therapies for Type 1 diabetes (T1D) have limitations, such as glucose fluctuations, hypoglycaemia, and weight gain. Only pramlintide is approved with insulin. However, its short half-life limits efficacy, requiring multiple daily injections and increasing hypoglycaemia risk. New strategies are needed to improve glycaemic control. Dual amylin and calcitonin receptor agonists are potent insulin sensitizers developed for Type 2 diabetes (T2D) as they improve glucose control, reduce body weight, and attenuate hyperglucagonemia. However, it is uncertain if they could be used to treat T1D. EXPERIMENTAL APPROACH Sprague Dawley rats received a single intravenous injection of streptozotocin (STZ) (50 mg·kg-1) to induce T1D. Humulin (1 U/200 g·day-1 or 2 U/200 g·day-1) was continuously infused, while half of the rats received additional KBP-336 (4.5 nmol·kg-1 Q3D) treatment. Bodyweight, food intake, and blood glucose were monitored throughout the study. An oral glucose tolerance test was performed during the study. KEY RESULTS Treatment with Humulin or Humulin + KBP-336 improved the health of STZ rats. Humulin increased body weight in STZ rats, but KBP-336 attenuated these increases and maintained a significant weight loss. The combination exhibited greater blood glucose reductions than Humulin-treated rats alone, reflected by improved HbA1c levels and glucose control. The combination prevented hyperglucagonemia, reduced amylin levels, and increased pancreatic insulin content, indicating improved insulin sensitivity and beta-cell preservation. CONCLUSION AND IMPLICATIONS The insulin sensitizer KBP-336 lowered glucagon secretion while attenuating insulin-induced weight gain. Additionally, KBP-336 may prevent hypoglycaemia and improve insulin resistance, which could be a significant advantage for individuals with T1D seeking therapeutic benefits.
Collapse
Affiliation(s)
| | | | | | - Kim Henriksen
- Nordic Bioscience, Herlev, Denmark
- KeyBioscience AG, Stans, Switzerland
| |
Collapse
|
11
|
Keov P, Christopoulos G, Hick CA, Glendorf T, Ballarín-González B, Wootten D, Sexton PM. Development of a Novel Assay for Direct Assessment of Selective Amylin Receptor Activation Reveals Novel Differences in Behavior of Selective and Nonselective Peptide Agonists. Mol Pharmacol 2024; 105:359-373. [PMID: 38458773 DOI: 10.1124/molpharm.123.000865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/10/2024] Open
Abstract
Dual amylin and calcitonin receptor agonists (DACRAs) show promise as efficacious therapeutics for treatment of metabolic disease, including obesity. However, differences in efficacy in vivo have been observed for individual DACRAs, indicating that detailed understanding of the pharmacology of these agents across target receptors is required for rational drug development. To date, such understanding has been hampered by lack of direct, subtype-selective, functional assays for the amylin receptors (AMYRs). Here, we describe the generation of receptor-specific assays for recruitment of Venus-tagged Gs protein through fusion of luciferase to either the human calcitonin receptor (CTR), human receptor activity-modifying protein (RAMP)-1, RAMP1 (AMY1R), human RAMP2 (AMY2R), or human RAMP3 (AMY3R). These assays revealed a complex pattern of receptor activation by calcitonin, amylin, or DACRA peptides that was distinct at each receptor subtype. Of particular note, although both of the CT-based DACRAs, sCT and AM1784, displayed relatively similar behaviors at CTR and AMY1R, they generated distinct responses at AMY2R and AMY3R. These data aid the rationalization of in vivo differences in response to DACRA peptides in rodent models of obesity. Direct assessment of the pharmacology of novel DACRAs at AMYR subtypes is likely to be important for development of optimized therapeutics for treatment of metabolic diseases. SIGNIFICANCE STATEMENT: Amylin receptors (AMYRs) are important obesity targets. Here we describe a novel assay that allows selective functional assessment of individual amylin receptor subtypes that provides unique insight into the pharmacology of potential therapeutic ligands. Direct assessment of the pharmacology of novel agonists at AMYR subtypes is likely to be important for development of optimized therapeutics for treatment of metabolic diseases.
Collapse
Affiliation(s)
- Peter Keov
- Drug Discovery Biology Theme (P.K., G.C., C.A.H., D.W., P.M.S.) and ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (P.K., D.W., P.M.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Research & Early Development, Novo Nordisk, Novo Nordisk Park, Maaloev, Denmark (T.G., B.B.-G.)
| | - George Christopoulos
- Drug Discovery Biology Theme (P.K., G.C., C.A.H., D.W., P.M.S.) and ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (P.K., D.W., P.M.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Research & Early Development, Novo Nordisk, Novo Nordisk Park, Maaloev, Denmark (T.G., B.B.-G.)
| | - Caroline A Hick
- Drug Discovery Biology Theme (P.K., G.C., C.A.H., D.W., P.M.S.) and ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (P.K., D.W., P.M.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Research & Early Development, Novo Nordisk, Novo Nordisk Park, Maaloev, Denmark (T.G., B.B.-G.)
| | - Tine Glendorf
- Drug Discovery Biology Theme (P.K., G.C., C.A.H., D.W., P.M.S.) and ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (P.K., D.W., P.M.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Research & Early Development, Novo Nordisk, Novo Nordisk Park, Maaloev, Denmark (T.G., B.B.-G.)
| | - Borja Ballarín-González
- Drug Discovery Biology Theme (P.K., G.C., C.A.H., D.W., P.M.S.) and ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (P.K., D.W., P.M.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Research & Early Development, Novo Nordisk, Novo Nordisk Park, Maaloev, Denmark (T.G., B.B.-G.)
| | - Denise Wootten
- Drug Discovery Biology Theme (P.K., G.C., C.A.H., D.W., P.M.S.) and ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (P.K., D.W., P.M.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Research & Early Development, Novo Nordisk, Novo Nordisk Park, Maaloev, Denmark (T.G., B.B.-G.)
| | - Patrick M Sexton
- Drug Discovery Biology Theme (P.K., G.C., C.A.H., D.W., P.M.S.) and ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (P.K., D.W., P.M.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Research & Early Development, Novo Nordisk, Novo Nordisk Park, Maaloev, Denmark (T.G., B.B.-G.)
| |
Collapse
|
12
|
Eržen S, Tonin G, Jurišić Eržen D, Klen J. Amylin, Another Important Neuroendocrine Hormone for the Treatment of Diabesity. Int J Mol Sci 2024; 25:1517. [PMID: 38338796 PMCID: PMC10855385 DOI: 10.3390/ijms25031517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Diabetes mellitus is a devastating chronic metabolic disease. Since the majority of type 2 diabetes mellitus patients are overweight or obese, a novel term-diabesity-has emerged. The gut-brain axis plays a critical function in maintaining glucose and energy homeostasis and involves a variety of peptides. Amylin is a neuroendocrine anorexigenic polypeptide hormone, which is co-secreted with insulin from β-cells of the pancreas in response to food consumption. Aside from its effect on glucose homeostasis, amylin inhibits homeostatic and hedonic feeding, induces satiety, and decreases body weight. In this narrative review, we summarized the current evidence and ongoing studies on the mechanism of action, clinical pharmacology, and applications of amylin and its analogs, pramlintide and cagrilintide, in the field of diabetology, endocrinology, and metabolism disorders, such as obesity.
Collapse
Affiliation(s)
- Stjepan Eržen
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Gašper Tonin
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Arts, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Dubravka Jurišić Eržen
- Department of Endocrinology and Diabetology, University Hospital Centre, 51000 Rijeka, Croatia
- Department of Internal Medicine, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Jasna Klen
- Division of Surgery, Department of Abdominal Surgery, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
13
|
Melander SA, Møller AL, Mohamed KE, Rasmussen DGK, Genovese F, Karsdal MA, Henriksen K, Larsen AT. Dual amylin and calcitonin receptor agonist treatment reduces biomarkers associated with kidney fibrosis in diabetic rats. Am J Physiol Endocrinol Metab 2023; 325:E529-E539. [PMID: 37792041 DOI: 10.1152/ajpendo.00245.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023]
Abstract
Dual amylin and calcitonin receptor agonists (DACRAs) are effective treatments for obesity and type 2 diabetes (T2D). They provide beneficial effects on body weight, glucose control, and insulin action. However, whether DACRAs protect against diabetes-related kidney damage remains unknown. We characterize the potential of long-acting DACRAs (KBP-A, Key Bioscience Peptide-A) as a treatment for T2D-related pathological alterations of the kidney extracellular matrix (ECM) in Zucker diabetic fatty rats (ZDF). We examined levels of endotrophin (profibrotic signaling molecule reflecting collagen type VI formation) and tumstatin (matrikine derived from collagen type IVα3) in serum and evaluated kidney morphology and collagen deposition in the kidneys. We included a study in obese Sprague-Dawley rats to further investigate the impact of KBP-A on ECM biomarkers. In ZDF vehicles, levels of endotrophin and tumstatin increased, suggesting disease progression along with an increase in blood glucose levels. These rats also displayed damage to their kidneys, which was evident from the presence of collagen formation in the medullary region of the kidney. Interestingly, KBP-A treatment attenuated these increases, resulting in significantly lower levels of endotrophin and tumstatin than the vehicle. Levels of endotrophin and tumstatin were unchanged in obese Sprague-Dawley rats, supporting the relation to diabetes-related kidney complications. Furthermore, KBP-A treatment normalized collagen deposition in the kidney while improving glucose control. These studies confirm the beneficial effects of DACRAs on biomarkers associated with kidney fibrosis. Moreover, these antifibrotic effects are likely associated with improved glucose control, highlighting KBP-A as a promising treatment of T2D and its related late complications.NEW & NOTEWORTHY These studies describe the beneficial effects of using a dual amylin and calcitonin receptor agonist (DACRA) for diabetes-related kidney complications. DACRA treatment reduced levels of serological biomarkers associated with kidney fibrosis. These reductions were further reflected by reduced collagen expression in diabetic kidneys. In general, these results validate the use of serological biomarkers while demonstrating the potential effect of DACRAs in treating diabetes-related long-term complications.
Collapse
Affiliation(s)
- Simone Anna Melander
- Nordic Bioscience, Herlev, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alexandra Louise Møller
- Nordic Bioscience, Herlev, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | - Kim Henriksen
- Nordic Bioscience, Herlev, Denmark
- KeyBioscience AG, Stans, Switzerland
| | | |
Collapse
|
14
|
Thorsø Larsen A, Karsdal MA, Henriksen K. Treatment sequencing using the dual amylin and calcitonin receptor agonist KBP-336 and semaglutide results in durable weight loss. Eur J Pharmacol 2023:175837. [PMID: 37329973 DOI: 10.1016/j.ejphar.2023.175837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/19/2023]
Abstract
OBJECTIVE Long-acting dual amylin and calcitonin receptor agonists (DACRAs) hold great promise as potential treatments for obesity and its associated comorbidities. These agents have demonstrated beneficial effects on body weight, glucose control, and insulin action mirroring the effects observed with glucagon-like peptide-1 (GLP-1) agonist treatment. Strategies aimed at enhancing and prolonging treatment efficacy include treatment sequencing and combination therapy. Here, we sought to investigate the impact of switching between or combining treatment with the DACRA KBP-336 and the GLP-1 analog semaglutide in fed rats with obesity induced by a high-fat diet (HFD). METHODS Two studies were performed in which HFD-induced obese Sprague Dawley rats were switched between treatment with KBP-336 (4.5 nmol/kg, Q3D) and semaglutide (50 nmol/kg, Q3D) or a combination of the two. Treatment efficacy on weight loss and food intake was evaluated, and glucose tolerance was assessed by oral glucose tolerance tests. RESULTS KBP-336 and semaglutide monotherapy resulted in a similar reduction in body weight and food intake. Treatment sequencing resulted in continuous weight loss and all monotherapies resulted in similar weight loss independent of the treatment regimen (P < 0.001 compared to vehicle). The combination of KBP-336 and semaglutide significantly improved the weight loss compared to either monotherapy alone (P < 0.001), which was evident in the adiposity at the study end. All treatments improved glucose tolerance, with the KBP-effect on insulin sensitivity as the dominant response. CONCLUSIONS These findings highlight KBP-336 as a promising anti-obesity therapy both alone, in treatment sequencing, and in combination with semaglutide or other incretin-based therapies.
Collapse
Affiliation(s)
| | - Morten A Karsdal
- Nordic Bioscience, 2730 Herlev, Denmark; KeyBioscience AG, Stans, Switzerland
| | - Kim Henriksen
- Nordic Bioscience, 2730 Herlev, Denmark; KeyBioscience AG, Stans, Switzerland
| |
Collapse
|
15
|
Larsen AT, Melander SA, Sonne N, Bredtoft E, Al-Rubai M, Karsdal MA, Henriksen K. Dual amylin and calcitonin receptor agonist treatment improves insulin sensitivity and increases muscle-specific glucose uptake independent of weight loss. Biomed Pharmacother 2023; 164:114969. [PMID: 37269811 DOI: 10.1016/j.biopha.2023.114969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/05/2023] Open
Abstract
Dual amylin and calcitonin receptor agonists (DACRAs) are known to induce significant weight loss as well as improve glucose tolerance, glucose control, and insulin action in rats. However, to what extent DACRAs affect insulin sensitivity beyond that induced by weight loss and if DACRAs affect glucose turnover including tissue-specific glucose uptake is still unknown. Hyperinsulinemic glucose clamp studies were carried out in pre-diabetic ZDSD and diabetic ZDF rats treated with either the DACRA KBP or the long-acting DACRA KBP-A for 12 days. The glucose rate of disappearance was assessed using 3-3H glucose and tissue-specific glucose uptake was evaluated using 14C-2-deoxy-D-glucose (14C-2DG). In diabetic ZDF rats, KBP treatment significantly reduced fasting blood glucose and improved insulin sensitivity independent of weight loss. Furthermore, KBP increased the rate of glucose clearance, likely by increasing glucose storage, but without altering the endogenous glucose production. This was confirmed in pre-diabetic ZDSD rats. Direct assessment of tissue-specific glucose uptake showed, that both KBP and KBP-A significantly increased glucose uptake in muscles. In summary, KBP treatment significantly improved insulin sensitivity in diabetic rats and markedly increased glucose uptake in muscles. Importantly, in addition to their well-established weight loss potential, the KBPs have an insulin-sensitizing effect independent of weight loss, highlighting DACRAs as promising agents for the treatment of type 2 diabetes and obesity.
Collapse
Affiliation(s)
| | | | | | | | | | - Morten A Karsdal
- Nordic Bioscience, 2730 Herlev, Denmark; KeyBioscience AG, Stans, Switzerland
| | - Kim Henriksen
- Nordic Bioscience, 2730 Herlev, Denmark; KeyBioscience AG, Stans, Switzerland
| |
Collapse
|
16
|
Melander SA, Katri A, Karsdal MA, Henriksen K. Improved metabolic efficacy of a dual amylin and calcitonin receptor agonist when combined with semaglutide or empagliflozin. Eur J Pharmacol 2022; 938:175397. [PMID: 36414113 DOI: 10.1016/j.ejphar.2022.175397] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Pharmacotherapies for obesity and type 2 diabetes (T2D) are thought to bridge the gap between lifestyle modification and the weight loss obtained with bariatric surgery. Although the effect of monotherapies, namely amylin and glucagon-like peptide-1 receptor (GLP-1R) agonists, has shown great potential, combination therapy is now becoming a strategy to optimize efficacy for weight management while minimizing adverse effects. This study investigated a dual amylin and calcitonin receptor agonist (DACRA); KBP-066A in combination with the GLP-1R agonist semaglutide or the sodium-glucose co transporter-2 inhibitor (SGLT2i) empagliflozin for anti-obesity and anti-diabetic treatment. The effect of KBP-066A, semaglutide, and empagliflozin alone and in combination was studied with respect to their impact on body weight, food intake, and glucose metabolism in high-fat diet (HFD) and Zucker diabetic fatty (fa/fa) (ZDF) rats. Treatment with KBP-066A and semaglutide lowered body weight by 13% and 9.7%. In contrast, a combination of both KBP-066A + semaglutide reduced body weight by 21% in HFD rats demonstrating superiority compared to monotherapies alone. A combination of KBP-066A with semaglutide or empagliflozin significantly lowered fasting blood glucose, and HbA1C (%) levels in ZDF rats. The complementary action by KBP-066A to GLP-1R agonist and SGLT2i on BW, food intake and glucose control endorsed the potential of DACRAs as an add-on therapy to therapeutic options for T2D and obesity.
Collapse
Affiliation(s)
| | - Anna Katri
- Nordic Bioscience, 2730, Herlev, Denmark
| | - Morten A Karsdal
- Nordic Bioscience, 2730, Herlev, Denmark; KeyBioscience AG, Stans, Switzerland
| | - Kim Henriksen
- Nordic Bioscience, 2730, Herlev, Denmark; KeyBioscience AG, Stans, Switzerland
| |
Collapse
|