1
|
Lei Z, Yao L, Tan Y, Lei Z, Sun T. Neuraminidase and nitric oxide dual response via PSA-PLGA nanoparticles: A novel approach for controlling Glaesserella parasuis inflammation and infection. Int J Biol Macromol 2025; 306:141709. [PMID: 40043976 DOI: 10.1016/j.ijbiomac.2025.141709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/20/2025] [Accepted: 03/01/2025] [Indexed: 03/10/2025]
Abstract
The overexpression of virulence factors and the induced inflammatory cytokine storm, resulting in tissue damage, represent significant challenges in treating antibiotic-resistant bacterial infections with conventional antibiotics. Herein, we have developed a bifunctional nanoparticle loaded with antibiotics (PSA@PLGA-TD/SMT) designed for precise response to the virulence proteins of drug-resistant bacteria while protecting the host from excessive inflammatory damage. This is achieved by modifying polylactic-co-glycolic acid (PLGA) nanoparticles with polysialic acid (PSA). Tildipirosin (TD), through hydrophobic interactions, is encapsulated within the core, while S-Methylisothiourea (SMT) is electrostatically adsorbed onto the shell layer. In vitro, the polysialic acid in the nanoparticles interacts with the neuraminidase overexpressed on the surface of Glaesserella parasuis (Gps), triggering disintegration and subsequent release of TD, which effectively kills the bacteria. Additionally, SMT functions to suppress the secretion of inducible nitric oxide synthase (NOS2), promoting the phenotypic transformation of macrophages and reducing the expression of pro-inflammatory factors. Ultimately, PSA@PLGA-TD/SMT achieves an extended drug circulation time through its prolonged retention effect, effectively alleviating discomfort caused by resistant bacteria. Therefore, the construction of nanocarriers for precise targeting of drug-resistant pathogens, delivering antibiotics, and preventing host-induced inflammatory damage presents an effective treatment strategy. This approach not only addresses the direct issue of bacterial eradication but also mitigates the collateral damage typically associated with severe infections, offering a more comprehensive and nuanced approach to managing drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Disease, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China.
| | - Longfukang Yao
- School of Chemistry, Chemical Engineering and Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Disease, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Yuqing Tan
- School of Chemistry, Chemical Engineering and Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Disease, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Zhiqun Lei
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Disease, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| |
Collapse
|
2
|
He W, Li X, Ding Q, Zhang T, Zheng J, Lu X, Li J, Jin C, Xu Y. Fangchinoline alleviates the progression of osteoarthritis through the nuclear factor kappa B signaling pathway. Toxicol Appl Pharmacol 2025; 496:117241. [PMID: 39894170 DOI: 10.1016/j.taap.2025.117241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/11/2025] [Accepted: 01/21/2025] [Indexed: 02/04/2025]
Abstract
Osteoarthritis is a progressive, chronic joint disease characterized by pain, stiffness, and limited mobility, which can lead to physical disability in severe cases. Owing to its complex pathological features, effective treatments for osteoarthritis are lacking. Fangchinoline is a natural alkaloid found in the tuberous roots of plants belonging to the Menispermaceae family. Fangchinoline reportedly possesses anti-inflammatory, antioxidant, and anticancer properties; however, its role in osteoarthritis progression remains unclear. In this study, we investigated the protective effects and potential mechanisms of fangchinoline against osteoarthritis. In vitro, we confirmed that fangchinoline alleviates interleukin-1β-induced cartilage inflammation, reduces the levels of metabolic factors, such as inducible nitric oxide synthase and matrix metalloproteinase-3, and modulates the expression of aggrecan, which enhances extracellular matrix synthesis. In vivo, we demonstrated that fangchinoline can ameliorate articular cartilage degeneration and reduce inflammatory destruction in a destabilization of the medial meniscus mouse model. The nuclear factor kappa B (NF-κB) signaling pathway in osteoarthritis has been a primary target for drug development, and our results suggest that fangchinoline exerts anti-inflammatory effects by inhibiting the activity of IKKα/β. Using an in vitro human cartilage culture model, we further validated that fangchinoline significantly mitigates cartilage degeneration and inflammation by modulating the NF-κB signaling pathway. This evidence highlights its dual action in preserving cartilage integrity and suppressing inflammatory responses. These findings collectively underscore fangchinoline as a potent inhibitor of NF-κB, capable of attenuating key pathological processes associated with osteoarthritis. Therefore, fangchinoline emerges as a promising therapeutic candidate for slowing the progression of osteoarthritis.
Collapse
Affiliation(s)
- Wei He
- Department of Orthopedics, Shaoxing People's Hospital, Shaoxing 312000, Zhejiang, China
| | - Xinhuo Li
- Department of Orthopedics, Shaoxing People's Hospital, Shaoxing 312000, Zhejiang, China
| | - Qiannan Ding
- Medical Research Center, Shaoxing People's Hospital, Shaoxing 312000, Zhejiang, China
| | - Tan Zhang
- Department of Orthopedics, Shaoxing People's Hospital, Shaoxing 312000, Zhejiang, China
| | - Jiewen Zheng
- Department of Orthopaedics, Affiliated Hospital of Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Xuanyuan Lu
- Department of Orthopedics, Shaoxing People's Hospital, Shaoxing 312000, Zhejiang, China
| | - Jianlei Li
- Department of Orthopedics, Shaoxing People's Hospital, Shaoxing 312000, Zhejiang, China
| | - Cong Jin
- Department of Orthopedics, Shaoxing People's Hospital, Shaoxing 312000, Zhejiang, China
| | - Yangjun Xu
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing 312000, Zhejiang, China.
| |
Collapse
|
3
|
Han N, Li J, Li Y, Zhao F, Wang J, Ye P, Zeng Z. Xanthohumol ameliorates dextran sodium sulfate-induced colitis in mice by inhibiting of NF-κB signaling pathways and modulating intestinal microbiota. Eur J Nutr 2024; 64:21. [PMID: 39576384 DOI: 10.1007/s00394-024-03525-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/18/2024] [Indexed: 11/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xanthohumol (XN), an isoprenylated flavonoid natural product found only in hops, possesses a variety of biological activities such as anticancer, anti-inflammatory, hepatoprotective, and anti-obesity. AIM OF THE STUDY The aim of this study was to investigate the effects and mechanisms of XN on the treatment of colitis. MATERIALS AND METHODS First, acute colitis was induced by using distilled water containing 3% DSS for 10 consecutive days. The therapeutic efficacy of XN was assessed by an established DSS-induced mouse colitis model. Subsequently, disease activity index (DAI) and colon length of mice were assessed. The health of the intestines was assessed by histopathological analysis. Inflammatory factors, IL-1β, IL-6, and TNF-α, were detected in colon tissues by ELISA.Finally, mouse intestinal contents were extracted and subjected to 16 S rRNA Sequencing, and the gut microbiota was analysed for Alpha-diversity and Beta-diversity. RESULTS The results showed that XN ameliorated DSS-induced colitis. Furthermore, XN reduced pro-inflammatory cytokine levels such as IL-1β, IL-6, and TNF-α, as well as inhibited the activation of the TLR4/NF-κB pathway, all of which helped to mitigate the inflammatory response. Finally, we also found that XN alleviated intestinal dysbiosis in colitis mice. CONCLUSION In conclusion, our study demonstrated that XN provides protective effects against colitis, and has the potential to be further explored as a lead compound for the treatment of inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Ning Han
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jie Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yangyang Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Feiei Zhao
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jun Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Peiyu Ye
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
4
|
Yu W, Lv Y, Xuan R, Han P, Xu H, Ma X. Human placental mesenchymal stem cells transplantation repairs the alveolar epithelial barrier to alleviate lipopolysaccharides-induced acute lung injury. Biochem Pharmacol 2024; 229:116547. [PMID: 39306309 DOI: 10.1016/j.bcp.2024.116547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/18/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are accompanied by high mortality rates and few effective treatments. Transplantation of human placental mesenchymal stem cells (hPMSCs) may attenuate ALI and the mechanism is still unclear. Our study aimed to elucidate the potential protective effect and therapeutic mechanism of hPMSCs against lipopolysaccharide (LPS)-induced ALI, An ALI model was induced by tracheal instillation of LPS into wild-type (WT) and angiotensin-converting enzyme 2 (ACE2) knockout (KO) male mice, followed by injection of hPMSCs by tail vein. Treatment with hPMSCs improved pulmonary histopathological injury, reduced pulmonary injury scores, decreased leukocyte count and protein levels in bronchoalveolar lavage fluid(BALF), protected the damaged alveolar epithelial barrier, and reversed LPS-induced upregulation of pro-inflammatory factors Interleukin-6 (IL-6) and Tumor necrosis factor-α(TNF-α) and downregulation of anti-inflammatory factor Interleukin-6(IL-10) in BALF. Moreover, administration of hPMSCs inhibited Angiotensin (Ang)II activation and promoted the expression levels of ACE2 and Ang (1-7) in ALI mice. Pathological damage, inflammation levels, and disruption of alveolar epithelial barrier in ALI mice were elevated after the deletion of ACE2 gene, and the Renin angiotensin system (RAS) imbalance was exacerbated. The therapeutic effect of hPMSCs was significantly reduced in ACE2 KO mice. Our findings suggest that ACE2 plays a key role in hPMSCs repairing the alveolar epithelial barrier to protect against ALI, laying a new foundation for the clinical treatment of ALI.
Collapse
Affiliation(s)
- Wenqin Yu
- Clinical Medical College of Ningxia Medical University, Yinchuan Province 750004, China; Ningxia Institute of Human Stem Cells, Yinchuan Province 750004, China; Intensive Care Unit, Cardiocerebral Vascular Disease Hospital of General Hospital of Ningxia Medical University, Yinchuan Province 750002, China
| | - Yuzhen Lv
- Clinical Medical College of Ningxia Medical University, Yinchuan Province 750004, China; Ningxia Institute of Human Stem Cells, Yinchuan Province 750004, China; Intensive Care Unit, Cardiocerebral Vascular Disease Hospital of General Hospital of Ningxia Medical University, Yinchuan Province 750002, China
| | - Ruirui Xuan
- Clinical Medical College of Ningxia Medical University, Yinchuan Province 750004, China; Intensive Care Unit, Cardiocerebral Vascular Disease Hospital of General Hospital of Ningxia Medical University, Yinchuan Province 750002, China
| | - Peipei Han
- Clinical Medical College of Ningxia Medical University, Yinchuan Province 750004, China; Intensive Care Unit, Cardiocerebral Vascular Disease Hospital of General Hospital of Ningxia Medical University, Yinchuan Province 750002, China
| | - Haihuan Xu
- Clinical Medical College of Ningxia Medical University, Yinchuan Province 750004, China; Ningxia Institute of Human Stem Cells, Yinchuan Province 750004, China; Intensive Care Unit, Cardiocerebral Vascular Disease Hospital of General Hospital of Ningxia Medical University, Yinchuan Province 750002, China
| | - Xiaowei Ma
- Clinical Medical College of Ningxia Medical University, Yinchuan Province 750004, China; Intensive Care Unit, Cardiocerebral Vascular Disease Hospital of General Hospital of Ningxia Medical University, Yinchuan Province 750002, China.
| |
Collapse
|
5
|
Khalifa A, Alkuwayti MA, Abdallah BM, Ali EM, Ibrahim HIM. Probiotic and Rice-Derived Compound Combination Mitigates Colitis Severity. Pharmaceuticals (Basel) 2024; 17:1463. [PMID: 39598375 PMCID: PMC11597685 DOI: 10.3390/ph17111463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/07/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND This study investigated the ability of Enterococcus lactis (E. lactis) and Hasawi rice protein lysate (HPL) to suppress colitis induced by dextran sulfate sodium (DSS) in miceColitis is characterized by inflammation of the colon, and exploring potential therapeutic agents could lead to improved management strategies. METHODS Male mice were subjected to DSS treatment to induce colitis, followed by supplementation with E. lactis and/or HPL. The study assessed various parameters, including disease activity index (DAI) scores, gut permeability measured using FITC-dextran, and superoxide dismutase (SOD) activity in excised colon tissues from both treated and untreated control groups. RESULTS E. lactis supplementation significantly alleviated DSS-induced colitis, as evidenced by improved DAI scores and enhanced gut permeability. Notably, E. lactis combined with HPL (0.1 mg/108) exhibited superior tolerance to a 0.5% pancreatin solution compared to E. lactis alone. Both E. lactis and the combination treatment significantly increased SOD activity (5.6 ± 0.23 SOD U/mg protein for E. lactis and 6.7 ± 0.23 SOD U/mg protein for the combination) relative to the Azoxymethane (AOM)/DSS group, suggesting a reduction in oxidative stress. Additionally, pro-inflammatory markers were significantly reduced in the group receiving both E. lactis and HPL compared to the E. lactis-only group. Levels of proteins associated with cell death, such as PCNA, PTEN, VEGF, COX-2, and STAT-3, were significantly decreased by 14.8% to 80% following E. lactis supplementation, with the combination treatment showing the most pronounced effects. CONCLUSIONS These findings suggest E. lactis supplementation may be beneficial for colitis, with HPL potential to enhance its effectiveness.
Collapse
Affiliation(s)
- Ashraf Khalifa
- Biological Science Department, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Mayyadah Abdullah Alkuwayti
- Biological Science Department, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Basem M. Abdallah
- Biological Science Department, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Enas M. Ali
- Biological Science Department, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Hairul Islam M. Ibrahim
- Biological Science Department, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
- Molecular Biology Division, Pondicherry Centre for Biological Sciences and Educational Trust, Pondicherry 605004, India
| |
Collapse
|
6
|
Qiu L, Yan C, Yang Y, Liu K, Yin Y, Zhang Y, Lei Y, Jia X, Li G. Morin alleviates DSS-induced ulcerative colitis in mice via inhibition of inflammation and modulation of intestinal microbiota. Int Immunopharmacol 2024; 140:112846. [PMID: 39121607 DOI: 10.1016/j.intimp.2024.112846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory condition with recurrent and challenging symptoms. Effective treatments are lacking, making UC management a critical research area. Morin (MO), a flavonoid from the Moraceae family, shows potential as an anti-UC agent, but its mechanisms are not fully understood. Using a dextran sulfate sodium (DSS)-induced UC mouse model, we employed network pharmacology to predict MO's therapeutic effects. Assessments included changes in body weight, disease activity index (DAI), and colon length. Immunofluorescence, hematoxylin and eosin (H&E), and PAS staining evaluated colon damage. ELISA and western blot analyzed inflammatory factors, tight junction (TJ)-associated proteins (Claudin-3, Occludin, ZO-1), and Mitogen-Activated Protein Kinase (MAPK)/ Nuclear Factor kappa B (NF-κB) pathways. 16S rRNA sequencing assessed gut microbiota diversity, confirmed by MO's modulation via Fecal Microbial Transplantation (FMT). Early MO intervention reduced UC severity by improving weight, DAI scores, and colon length, increasing goblet cells, enhancing barrier function, and inhibiting MAPK/NF-κB pathways. MO enriched gut microbiota, favoring beneficial bacteria like Muribaculaceae and Erysipelotrichaceae while reducing harmful Erysipelotrichaceae and Muribaculaceae. This study highlights MO's potential in UC management through inflammation control, mucosal integrity maintenance, and gut flora modulation.
Collapse
Affiliation(s)
- Li Qiu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Chengqiu Yan
- Anorectal Department, First Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130021, China
| | - Yue Yang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Kunjian Liu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yu Yin
- Anorectal Department, First Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130021, China
| | - Yiwen Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yuting Lei
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xiangwen Jia
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Guofeng Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; Anorectal Department, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen 518100, China.
| |
Collapse
|
7
|
Wei Y, Bai C, Xu S, Cui M, Wang R, Wu M. Diagnostic and Predictive Value of LncRNA MCM3AP-AS1 in Sepsis and Its Regulatory Role in Sepsis-Induced Myocardial Dysfunction. Cardiovasc Toxicol 2024; 24:1125-1138. [PMID: 39085530 DOI: 10.1007/s12012-024-09903-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
The present study focused on exploring the clinical value and molecular mechanism of LncRNA MCM3AP antisense RNA 1 (MCM3AP-AS1) in sepsis and sepsis-induced myocardial dysfunction (SIMD). 122 sepsis patients and 90 healthy were included. Sepsis patients were categorized into SIMD and non-MD. The expression levels of MCM3AP-AS1 and miRNA were examined using RT-qPCR. Diagnostic value of MCM3AP-AS1 in sepsis assessed by ROC curves. Logistic regression to explore risk factors influencing the occurrence of SIMD. Cardiomyocytes were induced by LPS to construct cell models in vitro. CCK-8, flow cytometry, and ELISA to analyze cell viability, apoptosis, and inflammation levels. Serum MCM3AP-AS1 was upregulated in patients with sepsis. The sensitivity and specificity of MCM3AP-AS1 were 75.41% and 93.33%, for recognizing sepsis from healthy controls. Additionally, elevated MCM3AP-AS1 is a risk factor for SIMD and can predict SIMD development. Compared with the LPS-induced cardiomyocytes, inhibition of MCM3AP-AS1 significantly attenuated LPS-induced apoptosis and inflammation; however, this attenuation was partially reversed by lowered miR-28-5p, but this reversal was partially eliminated by CASP2. MCM3AP-AS1 may be a novel diagnostic biomarker for sepsis and can predict the development of SIMD. MCM3AP-AS1 probably participated in SIMD progression by regulating cardiomyocyte inflammation and apoptosis through the target miR-28-5p/CASP2 axis.
Collapse
Affiliation(s)
- Yunwei Wei
- Department of Anesthesiology, Women's Health Center of Shanxi, Children's Hospital of Shanxi, Taiyuan, Shanxi, China
| | - Cui Bai
- Department of Critical Care Medicine, Chongqing Yubei District People's Hospital, Chongqing, 401120, China
| | - Shuying Xu
- Department of Emergency, Binzhou Medical University Hospital, 661 Huanghe 2nd Road, Bincheng District, Binzhou, 256600, Shandong, China
| | - Mingli Cui
- Department of Cardiovascular Medicine, Binzhou Medical University Hospital, Binzhou, 256600, Shandong, China
| | - Ruixia Wang
- Department of Emergency, Binzhou Medical University Hospital, 661 Huanghe 2nd Road, Bincheng District, Binzhou, 256600, Shandong, China.
| | - Meizhen Wu
- Department of Intensive Care Unit, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, 3 Xincun Road, Xinghualing District, Taiyuan, 030013, Shanxi, China.
| |
Collapse
|
8
|
Khodir SA, Imbaby S, Abdel Allem Amer MS, Atwa MM, Ashour FA, Elbaz AA. Effect of mesenchymal stem cells and melatonin on experimentally induced peripheral nerve injury in rats. Biomed Pharmacother 2024; 177:117015. [PMID: 38936196 DOI: 10.1016/j.biopha.2024.117015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/27/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024] Open
Abstract
Injury of a peripheral nerve (PNI) leads to both ischemic and inflammatory alterations. Sciatic nerve injury (SNI) represents the most widely used model for PNI. Mesenchymal stem cell-based therapy (MSCs) has convenient properties on PNI by stimulating the nerve regeneration. Melatonin has cytoprotective activity. The neuroprotective characteristics of MSCs and melatonin separately or in combination remain a knowledge need. In the rats-challenged SNI, therapeutic roles of intralesional MSCs and intraperitoneal melatonin injections were evaluated by functional assessment of peripheral nerve regeneration by walking track analysis involving sciatic function index (SFI) and two electrophysiological tests, electromyography and nerve conduction velocity, as well as measurement of antioxidant markers in serum, total antioxidant capacity (TAC) and malondialdehyde, and mRNA expression of brain derived neurotrophic factor (BDNF) in nerve tissues in addition to the histopathological evaluation of nerve tissue. Both individual and combination therapy with MSCs and melatonin therapies could effectively ameliorate this SNI and promote its regeneration as evidenced by improving the SFI and two electrophysiological tests and remarkable elevation of TAC with decline in lipid peroxidation and upregulation of BDNF levels. All of these led to functional improvement of the damaged nerve tissues and good recovery of the histopathological sections of sciatic nerve tissues suggesting multifactorial synergistic approach of the concurrent usage of melatonin and MSCs in PNI. The combination regimen has the most synergistic neuro-beneficial effects in PNI that should be used as therapeutic option in patients with PNI to boost their quality of life.
Collapse
Affiliation(s)
- Suzan A Khodir
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Samar Imbaby
- Clinical Pharmacology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| | | | - Maha M Atwa
- Pathology Department, Faculty of Medicine, Suez University, Egypt
| | - Fawzy Ahmed Ashour
- Medical Physiology Department, Faculty of Medicine, Al-Azhar University, Egypt
| | - Amani A Elbaz
- Medical Physiology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
9
|
Lim HJ, Park IS, Seo JW, Ha G, Yang HJ, Jeong DY, Kim SY, Jung CH. Anti-Inflammatory Effect of Korean Soybean Sauce (Ganjang) on Mice with Induced Colitis. J Microbiol Biotechnol 2024; 34:1501-1510. [PMID: 38960873 PMCID: PMC11294641 DOI: 10.4014/jmb.2404.04020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 07/05/2024]
Abstract
Inflammatory bowel disease (IBD), characterized by chronic inflammation of the gut, is caused by several factors. Among these factors, microbial factors are correlated with the gut microbiota, which produces short-chain fatty acids (SCFAs) via anaerobic fermentation. Fermented foods are known to regulate the gut microbiota composition. Ganjang (GJ), a traditional fermented Korean soy sauce consumed worldwide, has been shown to exhibit antioxidant, anticancer, anti-colitis, and antihypertensive activities. However, its effects on the gut microbiota remain unknown. In the present study, we aimed to compare the anti-inflammatory effects of GJ manufactured using different methods and investigate its effect on SCFA production in the gut. To evaluate the anti-inflammatory effects of GJ in the gut, we performed animal experiments using a mouse model of dextran sulfate sodium (DSS)-induced colitis. All GJ samples attenuated DSS-induced colitis symptoms, including reduced colonic length, by suppressing the expression of inflammatory cytokines. In addition, GJ administration modulated SCFA production in the DSS-induced colitis model. Overall, GJ exerted anti-inflammatory effects by reducing DSS-induced symptoms via regulation of inflammation and modulation of SCFA levels in a DSS-induced colitis model. Thus, GJ is a promising fermented food with the potential to prevent IBD.
Collapse
Affiliation(s)
- Hyeon-Ji Lim
- Jeonju AgroBio-Materials Institute, Jeonju-si, Jeollabuk-do 54810, Republic of Korea
| | - In-Sun Park
- Jeonju AgroBio-Materials Institute, Jeonju-si, Jeollabuk-do 54810, Republic of Korea
| | - Ji Won Seo
- Microbial Institute for Fermentation Industry, Sunchang-gun, Jeollabuk-do 56048, Republic of Korea
| | - Gwangsu Ha
- Microbial Institute for Fermentation Industry, Sunchang-gun, Jeollabuk-do 56048, Republic of Korea
| | - Hee-Jong Yang
- Microbial Institute for Fermentation Industry, Sunchang-gun, Jeollabuk-do 56048, Republic of Korea
| | - Do-Youn Jeong
- Microbial Institute for Fermentation Industry, Sunchang-gun, Jeollabuk-do 56048, Republic of Korea
| | - Seon-Young Kim
- Jeonju AgroBio-Materials Institute, Jeonju-si, Jeollabuk-do 54810, Republic of Korea
| | - Chan-Hun Jung
- Jeonju AgroBio-Materials Institute, Jeonju-si, Jeollabuk-do 54810, Republic of Korea
| |
Collapse
|
10
|
Elzaitony AS, Al-Najjar AH, Gomaa AA, Eraque AMS, Sallam AS. Re-positioning of low dose paclitaxel against depressive-like behavior and neuroinflammation induced by lipopolysaccharide in rats: Crosstalk between NLRP3/caspase-1/IL-1β and Sphk1/S1P/ NF-κB signaling pathways. Toxicol Appl Pharmacol 2024; 490:117043. [PMID: 39059506 DOI: 10.1016/j.taap.2024.117043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
AIMS Depression is a potentially fatal illness affecting millions of individuals worldwide, across all age groups. Neuroinflammation is a key factor in depression development. Paclitaxel (PXL), a well-known chemotherapeutic agent has been used as therapy for several types of cancer. This study aims to evaluate the ameliorative effect of low-dose PXL against lipopolysaccharide (LPS)-induced depression in rats. MATERIALS AND METHODS Adult male Sprague-Dawley rats were administrated a single dose of LPS (5 mg/kg, i.p.); 2 h later, rats received PXL (0.3 mg/kg, i.p. three times/week) for one week. KEY FINDINGS Low-dose PXL alleviated LPS-induced depressive-like behavior in rats as evidenced by significantly improving behavioral changes in both forced swim test (FST) and open field test (OFT), successfully mitigated depletion of monoamines (serotonin, norepinephrine, and dopamine), in addition to markedly decreasing lipid peroxidation with antioxidant levels elevation in brain tissues. Low-dose PXL substantially decreased inflammation triggered by LPS in brain tissue via repressing the expression of NLRP3 and its downstream markers level, caspase-1 and IL-1β jointly with a corresponding decrease in proinflammatory cytokine levels (TNF-α). Furthermore, low-dose PXL remarkably down-regulated Sphk1/S1P signaling pathway. Concurrent with these biochemical findings, there was a noticeable improvement in the brain tissue's histological changes. SIGNIFICANCE These findings prove the role of low-dose PXL in treatment of LPS-induced neuroinflammation and depressive-like behavior through their anti-depressant, antioxidant and anti-inflammatory actions. The suggested molecular mechanism may entail focusing the interconnection among Sphk1/S1P, and NLRP3/caspase-1/IL-1β signaling pathways. Hence PXL could be used as a novel treatment against LPS-induced depression.
Collapse
Affiliation(s)
- Asmaa S Elzaitony
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Aya H Al-Najjar
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt.
| | - Asmaa A Gomaa
- Department of pharmacology and Toxicology, Faculty of pharmacy, Ahram Canadian University, Egypt
| | - Ayat M S Eraque
- Biochemistry department, Faculty of Medicine for girls, Al -Azhar University, Cairo, Egypt
| | - Amany Said Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| |
Collapse
|
11
|
Long D, Mao C, Huang Y, Xu Y, Zhu Y. Ferroptosis in ulcerative colitis: Potential mechanisms and promising therapeutic targets. Biomed Pharmacother 2024; 175:116722. [PMID: 38729051 DOI: 10.1016/j.biopha.2024.116722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
Ulcerative colitis (UC) is a complex immune-mediated chronic inflammatory bowel disease. It is mainly characterized by diffuse inflammation of the colonic and rectal mucosa with barrier function impairment. Identifying new biomarkers for the development of more effective UC therapies remains a pressing task for current research. Ferroptosis is a newly identified form of regulated cell death characterized by iron-dependent lipid peroxidation. As research deepens, ferroptosis has been demonstrated to be involved in the pathological processes of numerous diseases. A growing body of evidence suggests that the pathogenesis of UC is associated with ferroptosis, and the regulation of ferroptosis provides new opportunities for UC treatment. However, the specific mechanisms by which ferroptosis participates in the development of UC remain to be more fully and thoroughly investigated. Therefore, in this review, we focus on the research advances in the mechanism of ferroptosis in recent years and describe the potential role of ferroptosis in the pathogenesis of UC. In addition, we explore the underlying role of the crosslinked pathway between ferroptosis and other mechanisms such as macrophages, neutrophils, autophagy, endoplasmic reticulum stress, and gut microbiota in UC. Finally, we also summarize the potential compounds that may act as ferroptosis inhibitors in UC in the future.
Collapse
Affiliation(s)
- Dan Long
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Chenhan Mao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yingtao Huang
- The First Clinical Medical College, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Yin Xu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China.
| | - Ying Zhu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
12
|
Ge R, Song J, Cao Z, Ban S, Tang L, Li QS. Discovery of 6-Acylamino/Sulfonamido Benzoxazolone with IL-6 Inhibitory Activity as Promising Therapeutic Agents for Ulcerative Colitis. Chem Biodivers 2024; 21:e202400031. [PMID: 38448389 DOI: 10.1002/cbdv.202400031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 03/08/2024]
Abstract
Ulcerative colitis has been widely concerned for its persistent upward trend, and the sustained overproduction of pro-inflammatory cytokines such as IL-6 remains a crucial factor in the development of UC. Therefore, the identification of new effective drugs to block inflammatory responses is an urgent and viable therapeutic strategy for UC. In our research, twenty-three 6-acylamino/sulfonamido benzoxazolone derivatives were synthesized, characterized, and evaluated for anti-inflammatory activity against NO and IL-6 production in LPS-induced RAW264.7 cells. The results demonstrated that most of the target compounds were capable of reducing the overexpression of NO and IL-6 to a certain degree. For the most active compounds 3i, 3j and 3 l, the inhibitory activities were superior or equivalent to those of the positive drug celecoxib with a dose-dependent relationship. Furthermore, animal experiments revealed that active derivatives 3i, 3j and 3 l exhibited definitive therapeutical effect on DSS induced ulcerative colitis in mice by mitigating weight loss and DAI score while decreasing levels of pro-inflammatory cytokines such as IL-6 and IFN-γ, simultaneously increasing production of anti-inflammatory cytokines IL-10. In addition, compounds 3i, 3j and 3 l could also inhibit the oxidative stress to alleviate ulcerative colitis by decreasing MDA and MPO levels. These finding demonstrated that compounds 3i, 3j and 3 l hold significant potential as novel therapeutic agents for ulcerative colitis.
Collapse
Affiliation(s)
- Rui Ge
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China
| | - Jiaqi Song
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China
| | - Zhen Cao
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China
| | - Shurong Ban
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, 030001, China
| | - Li Tang
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, 030001, China
| | - Qing-Shan Li
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, Shanxi University of Traditional Chinese Medicine, Shanxi, 030619, PR China
| |
Collapse
|
13
|
Xiang R, Xiao X, Liu J, Guo Z, He H, Wang X, Wen X, Angelo V, Han J. Protective effects of functional Nano-Selenium supplementation on spleen injury through regulation of p38 MAPK and NF-κB protein expression. Int Immunopharmacol 2024; 130:111574. [PMID: 38367461 DOI: 10.1016/j.intimp.2024.111574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 02/19/2024]
Abstract
Selenium (Se) is a trace element necessary for humans to maintain normal physiological activities, and Se deficiency may lead to splenic injury, while Se supplementation can alleviate splenic injury. However, the mechanism is unclear. In this study, we constructed a Se deficiency animal model by feeding Sprague-Dawley (SD) rats with low Se feed. Meanwhile, we observed the repairing effect of Se supplementation on splenic injury with two doses of novel nano-selenium (Nano-Se) supplement by gavage. We measured the Se content in the spleens of the rats by atomic fluorescence spectroscopy (AFS) method and combined the results of hematoxylin-eosin (HE) and Masson staining to observe the splenic injury, comprehensively evaluating the construction of the animal model of low selenium-induced splenic injury. We measured the mRNA and protein expression levels of p38 mitogen-activated protein kinase (p38 MAPK), nuclear factor kappa-B (NF-κB), and interleukin-6 (IL-6) in the spleen by Real-time quantitative polymerase chain reaction (qPCR), western blot (WB), and immunohistochemistry (IHC). We found that the Se deficiency group exhibited lower Se content, splenic fibrosis, and high expression of p38 MAPK, NF-κB, and IL-6 compared to the normal group. The Se supplement groups exhibited higher Se content, attenuated splenic injury, and down-regulated expression of p38 MAPK, NF-κB, and IL-6 relative to the Se deficiency group. This study suggests that Se deficiency leads to splenic injury in rats, and Se supplementation may attenuate splenic injury by inhibiting the expression of p38 MAPK, NF-κB and IL-6.
Collapse
Affiliation(s)
- Rongqi Xiang
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 712000, China; Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Xiang Xiao
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 712000, China; Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Xi'an Gem Flower Chang Qing Hospital, Xi'an 710200, China.
| | - Jiaxin Liu
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 712000, China; Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Xi'an Gem Flower Chang Qing Hospital, Xi'an 710200, China.
| | - Ziwei Guo
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 712000, China; Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Xi'an Gem Flower Chang Qing Hospital, Xi'an 710200, China.
| | - Huifang He
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 712000, China; Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Xining Wang
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 712000, China; Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Xinyue Wen
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 712000, China; Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Viscardi Angelo
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 712000, China; Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Jing Han
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 712000, China; Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
14
|
Ren S, Zhou R, Tang Z, Song Z, Li N, Shi X, Liu Y, Chu Y. Wuling capsule modulates macrophage polarization by inhibiting the TLR4-NF-κB signaling pathway to relieve liver fibrosis. Int Immunopharmacol 2024; 129:111598. [PMID: 38309092 DOI: 10.1016/j.intimp.2024.111598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND AND PURPOSE Wuling capsule (WL) has good efficacy in the clinical treatment of chronic hepatitis B and liver injury. Liver fibrosis is a common pathological feature of chronic liver disease and may progress to irreversible cirrhosis and liver cancer. Accumulating evidence reveals that modulating macrophage polarization contribute to the therapy of liver fibrosis. However, the effects of WL on modulating macrophage polarization to relive liver fibrosis remain unclear. This study investigated the anti-liver fibrosis effects of WL in carbon tetrachloride (CCl4)-induced liver fibrosis in rats, and the modulation effects and underlying molecular mechanism on macrophage polarization. METHODS A rat liver fibrosis model was constructed by intraperitoneal injection of 40 % CCl4 olive oil mixture. At 2, 4, 6, and 8 weeks, the histopathological status of the liver was assessed by hematoxylin-eosin (HE) and Masson staining; the liver biochemical indexes were measured in rat liver tissue. The expression levels of inflammatory cytokines in liver tissue were detected by ELISA. The mRNA levels and proteins expression of macrophage markers of different phenotypes, TLR4-NF-κB signaling pathway indicators were detected independently by ELISA, immunofluorescence, RT-PCR and western blotting. RESULTS In vivo, WL treatment attenuated abnormal changes in weight, organ indices and biochemical indices, alleviated pathological changes, and reduced collagen fiber deposition as well as the expression of α-SMA in liver tissues. Further studies revealed that WL decreased the expression of the macrophage M1 polarization markers inducible nitric oxide synthase (iNOS), TNF-α, IL-6, and CD86, promoted the expression of the M2 macrophage polarization markers IL-10, CD206, and arginase-1 (Arg-1), and inhibited the activation of the TLR4-NF-κB signaling pathway via several key signaling proteins. In vitro, WL significantly suppressed macrophage M1 polarization, and promoted M2 polarization while boosted M1 polarization transform to M2 polarization in LPS-activated RAW264.7 cells. CONCLUSIONS This study demonstrated that WL modulated macrophage polarization against liver fibrosis mainly by inhibiting the activation of the TLR4-NF-κB signaling pathway.
Collapse
Affiliation(s)
- Sujuan Ren
- Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry, Shaanxi Innovative Drug Research Center, State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712000, China
| | - Rui Zhou
- Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry, Shaanxi Innovative Drug Research Center, State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712000, China.
| | - Zhishu Tang
- Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry, Shaanxi Innovative Drug Research Center, State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712000, China; China Academy of Chinese Medical Sciences, Beijing 100029, China.
| | - Zhongxing Song
- Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry, Shaanxi Innovative Drug Research Center, State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712000, China
| | - Nan Li
- Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry, Shaanxi Innovative Drug Research Center, State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712000, China
| | - Xinbo Shi
- Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry, Shaanxi Innovative Drug Research Center, State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712000, China
| | - Yanru Liu
- Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry, Shaanxi Innovative Drug Research Center, State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712000, China
| | - Yajun Chu
- Tsing Hua De Ren Xi'an Happiness Pharmaceutical Co., Ltd., Xi'an 710000, China
| |
Collapse
|
15
|
Xu M, Shi F, Gao Y, Han S, Huang C, Hou Q, Wen X, Wang B, Zhu Z, Zou L, Xiong M, Dong W, Tan J. Arabinose confers protection against intestinal injury by improving integrity of intestinal mucosal barrier. Int Immunopharmacol 2024; 126:111188. [PMID: 37995573 DOI: 10.1016/j.intimp.2023.111188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023]
Abstract
There is a growing amount of research that highlights the significant involvement of metabolic imbalance and the inflammatory response in the advancement of colitis. Arabinose is a naturally occurring bioactive monosaccharide that plays a crucial role in the metabolic processes and synthesis of many compounds in living organisms. However, the more detailed molecular mechanism by which the administration of arabinose alleviates the progression of colitis and its associated carcinogenesis is still not fully understood. In the present study, arabinose is recognized as a significant and inherent protector of the intestinal mucosal barrier through its role in preserving the integrity of tight junctions within the intestines. Also, it is important to note that there is a positive correlation between the severity of inflammatory bowel disease (IBD) and colorectal cancer (CRC), as well as chemically-induced colitis in mice, and lower levels of arabinose in the bloodstream. In two mouse models of colitis, caused by dextran sodium sulfate (DSS) or by spontaneous colitis in IL-10-/- mice, damage to the intestinal mucosa was reduced by giving the mice arabinose. When arabinose is administrated to model with colitis, it sets off a chain of events that help keep the lysosomes together and stop cathepsin B from being released. During the progression of intestinal epithelial injury, this process blocks myosin light chain kinase (MLCK) from damaging tight junctions and causing mitochondrial dysfunction. In summary, the results of the study have provided evidence supporting the beneficial effects of arabinose in mitigating the progression of colitis. This is achieved through its ability to avoid dysregulation of the intestinal barrier. Consequently, arabinose may hold promise as a therapeutic supplementation for the management of colitis.
Collapse
Affiliation(s)
- Minxuan Xu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067 Chongqing, PR China.
| | - Fang Shi
- New Drug Technology R&D Center, Nanjing Biomed Sciences Inc., 210003 Nanjing, PR China
| | - Yongshen Gao
- New Drug Technology R&D Center, Nanjing Biomed Sciences Inc., 210003 Nanjing, PR China
| | - Shumei Han
- New Drug Technology R&D Center, Nanjing Biomed Sciences Inc., 210003 Nanjing, PR China
| | - Chensuo Huang
- New Drug Technology R&D Center, Nanjing Biomed Sciences Inc., 210003 Nanjing, PR China
| | - Qinsheng Hou
- New Drug Technology R&D Center, Nanjing Biomed Sciences Inc., 210003 Nanjing, PR China
| | - Xiaoweng Wen
- New Drug Technology R&D Center, Nanjing Biomed Sciences Inc., 210003 Nanjing, PR China
| | - Bengshi Wang
- New Drug Technology R&D Center, Nanjing Biomed Sciences Inc., 210003 Nanjing, PR China
| | - Zhenyu Zhu
- New Drug Technology R&D Center, Nanjing Biomed Sciences Inc., 210003 Nanjing, PR China
| | - Lei Zou
- New Drug Technology R&D Center, Nanjing Biomed Sciences Inc., 210003 Nanjing, PR China.
| | - Mingxin Xiong
- Technology R&D Center, Chongqing Tianwai TIAN Medical Instrument Co., Ltd., 400067 Chongqing, PR China
| | - Wei Dong
- Department of Gastroenterology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, PR China
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067 Chongqing, PR China.
| |
Collapse
|
16
|
Chen B, Zhou Y, Duan L, Gong X, Liu X, Pan K, Zeng D, Ni X, Zeng Y. Complete genome analysis of Bacillus velezensis TS5 and its potential as a probiotic strain in mice. Front Microbiol 2023; 14:1322910. [PMID: 38125573 PMCID: PMC10731255 DOI: 10.3389/fmicb.2023.1322910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction In recent years, a large number of studies have shown that Bacillus velezensis has the potential as an animal feed additive, and its potential probiotic properties have been gradually explored. Methods In this study, Illumina NovaSeq PE150 and Oxford Nanopore ONT sequencing platforms were used to sequence the genome of Bacillus velezensis TS5, a fiber-degrading strain isolated from Tibetan sheep. To further investigate the potential of B. velezensis TS5 as a probiotic strain, in vivo experiments were conducted using 40 five-week-old male specific pathogen-free C57BL/6J mice. The mice were randomly divided into four groups: high fiber diet control group (H group), high fiber diet probiotics group (HT group), low fiber diet control group (L group), and low fiber diet probiotics group (LT group). The H and HT groups were fed high-fiber diet (30%), while the L and LT groups were fed low-fiber diet (5%). The total bacteria amount in the vegetative forms of B. velezensis TS5 per mouse in the HT and LT groups was 1 × 109 CFU per day, mice in the H and L groups were given the same volume of sterile physiological saline daily by gavage, and the experiment period lasted for 8 weeks. Results The complete genome sequencing results of B. velezensis TS5 showed that it contained 3,929,788 nucleotides with a GC content of 46.50%. The strain encoded 3,873 genes that partially related to stress resistance, adhesion, and antioxidants, as well as the production of secondary metabolites, digestive enzymes, and other beneficial nutrients. The genes of this bacterium were mainly involved in carbohydrate metabolism, amino acid metabolism, vitamin and cofactor metabolism, biological process, and molecular function, as revealed by KEGG and GO databases. The results of mouse tests showed that B. velezensis TS5 could improve intestinal digestive enzyme activity, liver antioxidant capacity, small intestine morphology, and cecum microbiota structure in mice. Conclusion These findings confirmed the probiotic effects of B. velezensis TS5 isolated from Tibetan sheep feces and provided the theoretical basis for the clinical application and development of new feed additives.
Collapse
Affiliation(s)
- Benhao Chen
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Yi Zhou
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Lixiao Duan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Xuemei Gong
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Xingmei Liu
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Kangcheng Pan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Dong Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Yan Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| |
Collapse
|
17
|
Imbaby S, Hattori Y. Stattic ameliorates the cecal ligation and puncture-induced cardiac injury in septic mice via IL-6-gp130-STAT3 signaling pathway. Life Sci 2023; 330:122008. [PMID: 37549828 DOI: 10.1016/j.lfs.2023.122008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
AIM Sepsis-induced cardiac dysfunction is the leading cause of higher morbidity and mortality with poor prognosis in septic patients. Our recent previous investigation provides evidence of the hallmarks of signal transducer and activator of transcription3 (STAT3) activation in sepsis and targeting of STAT3 with Stattic, a small-molecule inhibitor of STAT3, has beneficial effects in various septic tissues. We investigated the possible cardioprotective effects of Stattic on cardiac inflammation and dysfunction in mice with cecal ligation and puncture (CLP)-induced sepsis. MAIN METHODS A polymicrobial sepsis model was induced by CLP in mice and Stattic (25 mg/kg) was intraperitoneally given at one and twelve hours after CLP operation. The cecum was exposed in sham-control mice without CLP. After 18 h of surgery, electrocardiogram (ECG) for anaesthized mice was registered followed by collecting of samples of blood and tissues for bimolecular and histopathological assessments. Myeloperoxidase, a marker of neutrophil infiltration, was assessed immunohistochemically. KEY FINDINGS CLP profoundly impaired cardiac functions as evidenced by ECG changes in septic mice as well as elevation of cardiac enzymes, and inflammatory markers with myocardial histopathological and immunohistochemical alterations. While, Stattic markedly reversed the CLP-induced cardiac abnormalities and restored the cardiac function by its anti-inflammatory activities. SIGNIFICANCE Stattic treatment had potential beneficial effects against sepsis-induced cardiac inflammation, dysfunction and damage. Its cardioprotective effects were possibly attributed to its anti-inflammatory activities by targeting STAT3 and downregulation of IL-6 and gp130. Our investigations suggest that Stattic could be a promising target for management of cardiac sepsis and inflammation-related cardiac damage.
Collapse
Affiliation(s)
- Samar Imbaby
- Clinical Pharmacology Department, Faculty of Medicine, Suez Canal University, 41522 Ismailia, Egypt.
| | - Yuichi Hattori
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Tobetsu, Japan; Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| |
Collapse
|
18
|
Wen X, Xie R, Wang HG, Zhang MN, He L, Zhang MH, Yang XZ. Fecal microbiota transplantation alleviates experimental colitis through the Toll-like receptor 4 signaling pathway. World J Gastroenterol 2023; 29:4657-4670. [PMID: 37662857 PMCID: PMC10472902 DOI: 10.3748/wjg.v29.i30.4657] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Fecal microbiota transplantation (FMT) has shown promising therapeutic effects on mice with experimental colitis and patients with ulcerative colitis (UC). FMT modulates the Toll-like receptor 4 (TLR4) signaling pathway to treat some other diseases. However, it remains unknown whether this modulation is also involved in the treatment of UC. AIM To clarify the necessity of TLR4 signaling pathway in FMT on dextran sodium sulphate (DSS)-induced mice and explain the mechanism of FMT on UC, through association analysis of gut microbiota with colon transcriptome in mice. METHODS A mouse colitis model was constructed with wild-type (WT) and TLR4-knockout (KO) mice. Fecal microbiota was transplanted by gavage. Colon inflammation severity was measured by disease activity index (DAI) scoring and hematoxylin and eosin staining. Gut microbiota structure was analyzed through 16S ribosomal RNA sequencing. Gene expression in the mouse colon was obtained by transcriptome sequencing. RESULTS The KO (DSS + Water) and KO (DSS + FMT) groups displayed indistinguishable body weight loss, colon length, DAI score, and histology score, which showed that FMT could not inhibit the disease in KO mice. In mice treated with FMT, the relative abundance of Akkermansia decreased, and Lactobacillus became dominant. In particular, compared with those in WT mice, the scores of DAI and colon histology were clearly decreased in the KO-DSS group. Microbiota structure showed a significant difference between KO and WT mice. Akkermansia were the dominant genus in healthy KO mice. The ineffectiveness of FMT in KO mice was related to the decreased abundance of Akkermansia. Gene Ontology enrichment analysis showed that differentially expressed genes between each group were mainly involved in cytoplasmic translation and cellular response to DNA damage stimulus. The top nine genes correlating with Akkermansia included Aqp4, Clca4a, Dpm3, Fau, Mcrip1, Meis3, Nupr1 L, Pank3, and Rps13 (|R| > 0.9, P < 0.01). CONCLUSION FMT may ameliorate DSS-induced colitis by regulating the TLR4 signaling pathway. TLR4 modulates the composition of gut microbiota and the expression of related genes to ameliorate colitis and maintain the stability of the intestinal environment. Akkermansia bear great therapeutic potential for colitis.
Collapse
Affiliation(s)
- Xin Wen
- Department of Gastroenterology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an 223300, Jiangsu Province, China
| | - Rui Xie
- Department of Gastroenterology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an 223300, Jiangsu Province, China
| | - Hong-Gang Wang
- Department of Gastroenterology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an 223300, Jiangsu Province, China
| | - Min-Na Zhang
- Department of Gastroenterology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an 223300, Jiangsu Province, China
| | - Le He
- Department of Gastroenterology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an 223300, Jiangsu Province, China
| | - Meng-Hui Zhang
- Department of Gastroenterology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an 223300, Jiangsu Province, China
| | - Xiao-Zhong Yang
- Department of Gastroenterology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an 223300, Jiangsu Province, China
| |
Collapse
|