1
|
Reiter RJ, Sharma R, Bai Y, Chuffa LGDA, Loh D, Fan L, Cardinali DP. Function of intramitochondrial melatonin and its association with Warburg metabolism. Cell Signal 2025; 131:111754. [PMID: 40122433 DOI: 10.1016/j.cellsig.2025.111754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
Warburg metabolism (aerobic glycolysis) is accompanied by high mitochondrial reactive oxygen species (ROS) generation from the electron transport chain; this is a "Hallmark of Cancer". The elevated ROS sustain the growth and proliferation of the cancer cells. Melatonin is a potent and functionally diverse free radical scavenger and antioxidant that is synthesized in the mitochondria of non-pathological cells and normally aids in keeping mitochondrial ROS levels low and in maintaining redox homeostasis. Because the glucose metabolite, pyruvate, does not enter mitochondria of Warburg metabolizing cells due to the inhibition of pyruvate dehydrogenase complex (PDH), acetyl coenzyme A production is diminished. Acetyl coenzyme A is a necessary co-substrate with serotonin for melatonin synthesis; thus, intramitochondrial melatonin levels become reduced in cancer cells. The hypothesis is that the depressed melatonin levels initiate aerobic glycolysis and allow the exaggerated ROS concentrations to go uncontested; the authors speculate that the elevated mtROS upregulates hypoxia inducible factor 1α (HIF-1α)/pyruvate dehydrogenase kinase (PDK) axis which inhibits PDH, thereby supporting cancer cell proliferation and stimulating cancer biomass. Exposing Warburg metabolizing cancer cells to melatonin elevates intramitochondrial melatonin, thereby reducing mtROS and concurrently interrupting aerobic glycolysis and inhibiting tumor cell proliferation. Mechanistically, higher mitochondrial melatonin levels by supplementation directly upregulates the sirtuin 3 (SIRT3)/FOXO/PDH axis, allowing pyruvate entry into mitochondria and enhancing intrinsic mitochondrial melatonin production as in non-pathological cells. Additionally, melatonin inhibits HIF1α, thereby decreasing PDK activity and disinhibiting PDH, so pyruvate enters mitochondria and is metabolized to acetyl coenzyme A, resulting in reversal of Warburg metabolism.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA..
| | - Ramaswamy Sharma
- Applied Biomedical Sciences, University of the Incarnate Word, School of Osteopathic Medicine, San Antonio, TX, USA..
| | - Yidong Bai
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA..
| | - Luiz Gustavo de Almeida Chuffa
- Department of Structural and Functional Biology, UNESP - Saõ Paulo State University, Institute of Biosciences, Botucatu 18618-689, Sao Paulo, Brazil..
| | - Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA..
| | - Lihong Fan
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Daniel P Cardinali
- CENECON, Faculty of Medical Sciences, Universidad de Buenos Aires, and, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Ning Q, Liu J, Liu S, Zou Q, Li K, Li Z. TRx0237 induces apoptosis and enhances anti-PD-1 immunotherapeutic efficacy in anaplastic thyroid Cancer. Int Immunopharmacol 2025; 155:114610. [PMID: 40203792 DOI: 10.1016/j.intimp.2025.114610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/29/2025] [Accepted: 03/30/2025] [Indexed: 04/11/2025]
Abstract
Anaplastic thyroid cancer (ATC) is a highly malignant and lethal tumor with poor prognosis, but there is a lack of effective treatment strategies. In our study, we screened a drug library and identified that TRx0237, a tau protein inhibitor, showed inhibitory effect on ATC cells. Further research demonstrated that the inhibitory effect of TRx0237 was mainly through the induction of apoptosis via reactive oxygen species (ROS)-mediated endoplasmic reticulum stress pathway. Meanwhile, the pro-apoptosis effect and mechanism of TRx0237 on ATC were verified in xenograft and ATC patient-derived organoids. In addition, TRx0237 significantly upregulated the expression of PD-L1 in ATC, and synergistically enhanced the effect of anti-PD-1 therapy in xenograft and organoids model. Therefore, our study suggests that TRx0237 showed anticancer effects by inducing apoptosis and improving the efficacy of anti-PD-1 immunotherapy. TRx0237 is a potential agent for the treatment of ATC.
Collapse
Affiliation(s)
- Qingyang Ning
- Division of Thyroid Surgery, Department of General Surgery; Laboratory of Thyroid and Parathyroid Diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610000, China; Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610000, China; Department of Breast Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, No. 6 Taoyuan Road, Qingxiu District, Nanning 530021, China
| | - Jiaye Liu
- Division of Thyroid Surgery, Department of General Surgery; Laboratory of Thyroid and Parathyroid Diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610000, China; Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Shijing Liu
- Department of Ethnomedicine, Liuzhou Traditional Chinese Medicine Hospital, Guangxi University of Chinese Medicine, China
| | - Quanqing Zou
- Department of Breast Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, No. 6 Taoyuan Road, Qingxiu District, Nanning 530021, China
| | - Kewei Li
- Department of Pediatric Department, West China Hospital, Sichuan University, Chengdu 610000, China.
| | - Zhihui Li
- Division of Thyroid Surgery, Department of General Surgery; Laboratory of Thyroid and Parathyroid Diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610000, China; Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610000, China.
| |
Collapse
|
3
|
Rodella G, Préat V, Gallez B, Malfanti A. Design strategies for hyaluronic acid-based drug delivery systems in cancer immunotherapy. J Control Release 2025:113784. [PMID: 40294800 DOI: 10.1016/j.jconrel.2025.113784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 04/30/2025]
Abstract
Despite its robust therapeutic potential, cancer immunotherapy has provided little progress towards improved survival rates for patients bearing immunologically refractory tumors. The implementation of advanced drug delivery systems represents a powerful means of improving cancer immunotherapy by relieving immunosuppression and promoting immune response; however, the overall impact of these systems on immunotherapy currently remains modest. Hyaluronic acid represents a widely used polymer in drug delivery; meanwhile, recent studies linking hyaluronic acid to the immune system make this polymer an attractive component in the design of next-generation cancer immunotherapies. Herein, we review our current understanding of the immunological properties of hyaluronic acid and discuss them in the context of bioactive functions and immune-related interactions with receptors, immune, and cancer cells. We analyze the potential of hyaluronic acid as a component in advanced drug delivery systems, highlighting strategies for the design of more effective vaccines and cancer chemo-immunotherapies. Finally, we discuss critical considerations to facilitate design and clinical translation to overcome existing challenges and maximize therapeutic potential.
Collapse
Affiliation(s)
- Giulia Rodella
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium; UCLouvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance, Avenue Mounier 73 B1.73.08, 1200 Brussels, Belgium
| | - Véronique Préat
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium
| | - Bernard Gallez
- UCLouvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance, Avenue Mounier 73 B1.73.08, 1200 Brussels, Belgium.
| | - Alessio Malfanti
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium; Departement of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo, 5, 35131 Padova, Italy.
| |
Collapse
|
4
|
Xi J, Liu Y, Zhang L, Zhang B, Zhao J, Fang J. Redox dyshomeostasis-driven prodrug strategy for enhancing camptothecin-based chemotherapy: Selenization of SN38 as a case study. Bioorg Chem 2025; 160:108468. [PMID: 40245475 DOI: 10.1016/j.bioorg.2025.108468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/01/2025] [Accepted: 04/10/2025] [Indexed: 04/19/2025]
Abstract
Harnessing the modulation of redox homeostasis represents a promising anticancer strategy. Here, we design and evaluate Se-SN38, a prodrug of the camptothecin (CPT) derivative 7-ethyl-10-hydroxycamptothecin (SN38) with a cyclic five-membered diselenide moiety for redox-triggered activation. We demonstrate that Se-SN38 exhibits superior cytotoxicity in various cancer cell lines over the parent drug SN38 or the control prodrug S-SN38, a sulfur analogue of Se-SN38. This increased potency is attributed to the efficient release of SN38 and induction of oxidative stress, as demonstrated by a significant rise in reactive oxygen species production, along with a marked depletion of cellular total thiols and a decreased GSH/GSSG ratio. Furthermore, Se-SN38 treatment leads to inhibition of thioredoxin reductase activity, disruption of mitochondrial membrane potential, and induction of DNA damage, culminating in apoptosis. These findings suggest that Se-SN38 represents a promising strategy to enhance the therapeutic efficacy of CPT derivatives by exploiting the unique redox-active properties of cyclic five-membered diselenide to induce oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Junmin Xi
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, China
| | - Yu Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, China
| | - Linjie Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jintao Zhao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Jianguo Fang
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, China.
| |
Collapse
|
5
|
Li L, An Z, Lin C, Xu Q, Tang C. An update on regulation and function of G protein-coupled receptors in cancer: A promising strategy for cancer therapy. Biochim Biophys Acta Rev Cancer 2025; 1880:189266. [PMID: 39864470 DOI: 10.1016/j.bbcan.2025.189266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/28/2025]
Abstract
G protein-coupled receptors (GPCRs) are a large family of cell surface receptors that play a crucial role in signal transduction and cellular communication. GPCR proteins are involved in a wide range of physiological processes, including cell growth, migration, and survival. Dysregulation of GPCR protein expression has been implicated in the pathogenesis of various diseases, including cancer, and GPCR proteins have been shown to modulate these processes in various types of cancer, highlighting their importance as potential therapeutic targets. In this review, we summarize the expression regulation of GPCRs in cancer cells, update the various ways by which the abnormal expression of GPCR protein affects the behavior of tumor cells, and discuss the current research directions and potentially facing problems of strategies on GPCR-targeting therapy.
Collapse
Affiliation(s)
- Lin Li
- National Clinical Research Center for Child Health of Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China; Department of Urology, Third Affiliated Hospital of Naval Medical University, Shanghai 201805, China
| | - Zihao An
- National Clinical Research Center for Child Health of Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Chao Lin
- Department of Neurosurgery, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Xu
- National Clinical Research Center for Child Health of Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Chao Tang
- National Clinical Research Center for Child Health of Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China.
| |
Collapse
|
6
|
Oršolić N, Jembrek MJ. Targeting Oxidative Stress for Disease. Int J Mol Sci 2025; 26:2692. [PMID: 40141334 PMCID: PMC11942285 DOI: 10.3390/ijms26062692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Oxidative stress (OS) refers to a metabolic imbalance caused by the excessive production of reactive oxygen species (ROS) and an insufficient antioxidant defense [...].
Collapse
Affiliation(s)
- Nada Oršolić
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10000 Zagreb, Croatia
| | - Maja Jazvinšćak Jembrek
- Croatia Division of Molecular Medicine, Laboratory for Protein Dynamics, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia;
- School of Medicine, Catholic University of Croatia, Ilica 244, HR-10000 Zagreb, Croatia
| |
Collapse
|
7
|
Wang YW, Chen X. Editorial: Molecular mechanisms and therapeutic targets of cancer metastasis and therapy resistance. Front Oncol 2025; 15:1571403. [PMID: 40110198 PMCID: PMC11919681 DOI: 10.3389/fonc.2025.1571403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 02/21/2025] [Indexed: 03/22/2025] Open
Affiliation(s)
- Ya-Wen Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xu Chen
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
8
|
Mesuraca M, Quaresima B, Scicchitano S, Faniello MC. Special Issue "Molecular Advances in Cancer and Cell Metabolism". Int J Mol Sci 2025; 26:1876. [PMID: 40076503 PMCID: PMC11899288 DOI: 10.3390/ijms26051876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Mammalian cells can obtain energy by taking up different macromolecules, depending on their availability in the external environment [...].
Collapse
Affiliation(s)
- Maria Mesuraca
- Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy; (B.Q.); (S.S.)
| | - Barbara Quaresima
- Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy; (B.Q.); (S.S.)
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Stefania Scicchitano
- Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy; (B.Q.); (S.S.)
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Maria Concetta Faniello
- Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy; (B.Q.); (S.S.)
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
9
|
Dong R, Wang J, Guan R, Sun J, Jin P, Shen J. Role of Oxidative Stress in the Occurrence, Development, and Treatment of Breast Cancer. Antioxidants (Basel) 2025; 14:104. [PMID: 39857438 PMCID: PMC11760893 DOI: 10.3390/antiox14010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Breast cancer is one of the most prevalent cancers worldwide. Recent studies have increasingly emphasized the role of oxidative stress in the initiation and progression of breast cancer. This article reviews how oxidative stress imbalance influences the occurrence and advancement of breast cancer, elucidating the intricate mechanisms through which reactive oxygen species (ROS) operate in this context and their potential therapeutic applications. By highlighting these critical insights, this review aims to enhance our understanding of oxidative stress as a potential target for innovative therapeutic strategies in the management of breast cancer.
Collapse
Affiliation(s)
- Rui Dong
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China; (R.D.); (J.W.); (R.G.); (J.S.)
| | - Jing Wang
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China; (R.D.); (J.W.); (R.G.); (J.S.)
| | - Ruiqi Guan
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China; (R.D.); (J.W.); (R.G.); (J.S.)
| | - Jianwei Sun
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China; (R.D.); (J.W.); (R.G.); (J.S.)
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Ping Jin
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China; (R.D.); (J.W.); (R.G.); (J.S.)
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Junling Shen
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China; (R.D.); (J.W.); (R.G.); (J.S.)
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, China
| |
Collapse
|
10
|
Bharathiraja P, Baskar S, Prasad NR. Solasodine Downregulates ABCB1 Overexpression in Multidrug Resistant Cancer Cells Via Inhibiting Nrf2/Keap1 Signaling Pathway. J Cell Biochem 2025; 126:e30674. [PMID: 39535293 DOI: 10.1002/jcb.30674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/19/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Multidrug-resistant (MDR) cancer cells maintain redox homeostasis to eliminate oxidative stress-mediated cell death. This study explores the effects of solasodine on regulating P-glycoprotein (P-gp) expression through the Nrf2/Keap1 signaling pathway and oxidative stress-induced sensitization of drug-resistant cancer cells to chemotherapeutics. Initially, the oxidative stress indicators such as intracellular ROS generation, the levels of 8-hydroxy-2-deoxyguanosine (8-OHdG) and gamma-H2AX (γ-H2AX) in the KBChR-8-5 drug-resistant cells were measured. Additionally, the protein expression levels of Nuclear factor erythroid 2-related factor 2 (Nrf-2), Kelch-like ECH-associated protein 1 (Keap1), and ATP Binding Cassette Subfamily B Member 1 (ABCB1)/P-gp were measured at various concentrations of solasodine (1, 5, & 10 µM) through immunofluorescence and western blot analysis. The antioxidant activities in the KBChR-8-5 cells were assessed using established protocols. In this investigation, the treatment with solasodine and doxorubicin combination showed a notable increase in intracellular ROS generation in KBChR-8-5 cells. Furthermore, this combination treatment led to enhanced nuclear condensation, elevated levels of 8-OHdG, and increased γ-H2AX foci formation in the KBChR-8-5 cells. Solasodine treatment effectively inhibited the nuclear translocation of Nrf2 and activation of the ABCB1 gene, consequently preventing overexpression of P-gp in KBChR-8-5 cells. Additionally, the combination therapy increased the lipid peroxidation levels while simultaneously reducing the activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and the levels of glutathione (GSH). These results demonstrated that solasodine disrupts redox balance, and overcomes drug resistance by downregulating P-gp via regulating Nrf2/Keap1 signaling pathway in MDR cancer cells.
Collapse
Affiliation(s)
- Pradhapsingh Bharathiraja
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - Sugumar Baskar
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - N Rajendra Prasad
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
| |
Collapse
|
11
|
Papavassiliou KA, Sofianidi AA, Gogou VA, Papavassiliou AG. Leveraging the ROS-TME Axis for Cancer Treatment. Antioxidants (Basel) 2024; 13:1365. [PMID: 39594507 PMCID: PMC11591396 DOI: 10.3390/antiox13111365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
The discovery of reactive oxygen species (ROS) dates back to the early 20th century [...].
Collapse
Affiliation(s)
- Kostas A. Papavassiliou
- First University Department of Respiratory Medicine, ‘Sotiria’ Chest Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (V.A.G.)
| | - Amalia A. Sofianidi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Vassiliki A. Gogou
- First University Department of Respiratory Medicine, ‘Sotiria’ Chest Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (V.A.G.)
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
12
|
Luo R, Zhao H, Deng S, Wu J, Wang H, Guo X, Han C, Ren W, Han Y, Zhou J, Lin Y, Bu M. Discovery and Optimization of Ergosterol Peroxide Derivatives as Novel Glutaminase 1 Inhibitors for the Treatment of Triple-Negative Breast Cancer. Molecules 2024; 29:4375. [PMID: 39339370 PMCID: PMC11434480 DOI: 10.3390/molecules29184375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
In this study, novel ergosterol peroxide (EP) derivatives were synthesized and evaluated to assess their antiproliferative activity against four human cancer cell lines (A549, HepG2, MCF-7, and MDA-MB-231). Compound 3g exhibited the most potent antiproliferative activity, with an IC50 value of 3.20 µM against MDA-MB-231. This value was 5.4-fold higher than that of the parental EP. Bioassay optimization further identified 3g as a novel glutaminase 1 (GLS1) inhibitor (IC50 = 3.77 µM). In MDA-MB-231 cells, 3g reduced the cellular glutamate levels by blocking the glutamine hydrolysis pathway, which triggered reactive oxygen species production and induced caspase-dependent apoptosis. Molecular docking indicated that 3g interacts with the reaction site of the variable binding pocket by forming multiple interactions with GLS1. In a mouse model of breast cancer, 3g showed remarkable therapeutic effects at a dose of 50 mg/kg, with no apparent toxicity. Based on these results, 3g could be further evaluated as a novel GLS1 inhibitor for triple-negative breast cancer (TNBC) therapy.
Collapse
Affiliation(s)
- Ran Luo
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (R.L.); (H.Z.); (S.D.); (H.W.); (X.G.); (C.H.); (W.R.); (Y.H.)
| | - Haoyi Zhao
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (R.L.); (H.Z.); (S.D.); (H.W.); (X.G.); (C.H.); (W.R.); (Y.H.)
| | - Siqi Deng
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (R.L.); (H.Z.); (S.D.); (H.W.); (X.G.); (C.H.); (W.R.); (Y.H.)
| | - Jiale Wu
- College of Pharmacy, Hainan University, Haikou 570228, China;
| | - Haijun Wang
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (R.L.); (H.Z.); (S.D.); (H.W.); (X.G.); (C.H.); (W.R.); (Y.H.)
| | - Xiaoshan Guo
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (R.L.); (H.Z.); (S.D.); (H.W.); (X.G.); (C.H.); (W.R.); (Y.H.)
| | - Cuicui Han
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (R.L.); (H.Z.); (S.D.); (H.W.); (X.G.); (C.H.); (W.R.); (Y.H.)
| | - Wenkang Ren
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (R.L.); (H.Z.); (S.D.); (H.W.); (X.G.); (C.H.); (W.R.); (Y.H.)
| | - Yinglong Han
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (R.L.); (H.Z.); (S.D.); (H.W.); (X.G.); (C.H.); (W.R.); (Y.H.)
| | - Jianwen Zhou
- Research Institute of Medicine & Pharmacy, Qiqihar Medical University, Qiqihar 161006, China;
| | - Yu Lin
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (R.L.); (H.Z.); (S.D.); (H.W.); (X.G.); (C.H.); (W.R.); (Y.H.)
| | - Ming Bu
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (R.L.); (H.Z.); (S.D.); (H.W.); (X.G.); (C.H.); (W.R.); (Y.H.)
| |
Collapse
|
13
|
Tian Y, Tang L, Wang X, Ji Y, Tu Y. Nrf2 in human cancers: biological significance and therapeutic potential. Am J Cancer Res 2024; 14:3935-3961. [PMID: 39267682 PMCID: PMC11387866 DOI: 10.62347/lzvo6743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/07/2024] [Indexed: 09/15/2024] Open
Abstract
The nuclear factor-erythroid 2-related factor 2 (Nrf2) is able to control the redox balance in the cells responding to oxidative damage and other stress signals. The Nrf2 upregulation can elevate the levels of antioxidant enzymes to support against damage and death. In spite of protective function of Nrf2 in the physiological conditions, the stimulation of Nrf2 in the cancer has been in favour of tumorigenesis. Since the dysregulation of molecular pathways and mutations/deletions are common in tumors, Nrf2 can be a promising therapeutic target. The Nrf2 overexpression can prevent cell death in tumor and by increasing the survival rate of cancer cells, ensures the carcinogenesis. Moreover, the induction of Nrf2 can promote the invasion and metastasis of tumor cells. The Nrf2 upregulation stimulates EMT to increase cancer metastasis. Furthermore, regarding the protective function of Nrf2, its stimulation triggers chemoresistance. The natural products can regulate Nrf2 in the cancer therapy and reverse drug resistance. Moreover, nanostructures can specifically target Nrf2 signaling in cancer therapy. The current review discusses the potential function of Nrf2 in the proliferation, metastasis and drug resistance. Then, the capacity of natural products and nanostructures for suppressing Nrf2-mediated cancer progression is discussed.
Collapse
Affiliation(s)
- Yu Tian
- Research Center, Huizhou Central People's Hospital, Guangdong Medical University Huizhou, Guangdong, China
- School of Public Health, Benedictine University Lisle, Illinois, USA
| | - Lixin Tang
- Department of Respiratory, Chongqing Public Health Medical Center Chongqing, China
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School Boston, Massachusetts, USA
| | - Yanqin Ji
- Department of Administration, Huizhou Central People's Hospital, Guangdong Medical University Huizhou, Guangdong, China
| | - Yanyang Tu
- Research Center, Huizhou Central People's Hospital, Guangdong Medical University Huizhou, Guangdong, China
| |
Collapse
|
14
|
Li J, Lim JYS, Eu JQ, Chan AKMH, Goh BC, Wang L, Wong ALA. Reactive Oxygen Species Modulation in the Current Landscape of Anticancer Therapies. Antioxid Redox Signal 2024; 41:322-341. [PMID: 38445392 DOI: 10.1089/ars.2023.0445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Significance: Reactive oxygen species (ROS) are generated during mitochondrial oxidative metabolism, and are tightly controlled through homeostatic mechanisms to maintain intracellular redox, regulating growth and proliferation in healthy cells. However, ROS production is perturbed in cancers where abnormal accumulation of ROS leads to oxidative stress and genomic instability, triggering oncogenic signaling pathways on one hand, while increasing oxidative damage and triggering ROS-dependent death signaling on the other. Recent Advances: Our review illuminates how critical interactions between ROS and oncogenic signaling, the tumor microenvironment, and DNA damage response (DDR) pathways have led to interest in ROS modulation as a means of enhancing existing anticancer strategies and developing new therapeutic opportunities. Critical Issues: ROS equilibrium exists via a delicate balance of pro-oxidant and antioxidant species within cells. "Antioxidant" approaches have been explored mainly in the form of chemoprevention, but there is insufficient evidence to advocate its routine application. More progress has been made via the "pro-oxidant" approach of targeting cancer vulnerabilities and inducing oxidative stress. Various therapeutic modalities have employed this approach, including direct ROS-inducing agents, chemotherapy, targeted therapies, DDR therapies, radiotherapy, and immunotherapy. Finally, emerging delivery systems such as "nanosensitizers" as radiotherapy enhancers are currently in development. Future Directions: While approaches designed to induce ROS have shown considerable promise in selectively targeting cancer cells and dealing with resistance to conventional therapies, most are still in early phases of development and challenges remain. Further research should endeavor to refine treatment strategies, optimize drug combinations, and identify predictive biomarkers of ROS-based cancer therapies.
Collapse
Affiliation(s)
- Jiaqi Li
- Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | | | - Jie Qing Eu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | | | - Boon Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Andrea Li-Ann Wong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
| |
Collapse
|
15
|
Gu X, Mu C, Zheng R, Zhang Z, Zhang Q, Liang T. The Cancer Antioxidant Regulation System in Therapeutic Resistance. Antioxidants (Basel) 2024; 13:778. [PMID: 39061847 PMCID: PMC11274344 DOI: 10.3390/antiox13070778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/15/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Antioxidants play a pivotal role in neutralizing reactive oxygen species (ROS), which are known to induce oxidative stress. In the context of cancer development, cancer cells adeptly maintain elevated levels of both ROS and antioxidants through a process termed "redox reprogramming". This balance optimizes the proliferative influence of ROS while simultaneously reducing the potential for ROS to cause damage to the cell. In some cases, the adapted antioxidant machinery can hamper the efficacy of treatments for neoplastic diseases, representing a significant facet of the resistance mechanisms observed in cancer therapy. In this review, we outline the contribution of antioxidant systems to therapeutic resistance. We detail the fundamental constituents of these systems, encompassing the central regulatory mechanisms involving transcription factors (of particular importance is the KEAP1/NRF2 signaling axis), the molecular effectors of antioxidants, and the auxiliary systems responsible for NADPH generation. Furthermore, we present recent clinical trials based on targeted antioxidant systems for the treatment of cancer, assessing the potential as well as challenges of this strategy in cancer therapy. Additionally, we summarize the pressing issues in the field, with the aim of illuminating a path toward the emergence of novel anticancer therapeutic approaches by orchestrating redox signaling.
Collapse
Affiliation(s)
- Xuanhao Gu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (X.G.); (C.M.); (Z.Z.)
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
| | - Chunyang Mu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (X.G.); (C.M.); (Z.Z.)
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
| | - Rujia Zheng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
| | - Zhe Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (X.G.); (C.M.); (Z.Z.)
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou 310003, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou 310003, China
- Zhejiang University Cancer Center, Hangzhou 310003, China
- MOE Joint International Research Laboratory of Pancreatic Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (X.G.); (C.M.); (Z.Z.)
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou 310003, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou 310003, China
- Zhejiang University Cancer Center, Hangzhou 310003, China
- MOE Joint International Research Laboratory of Pancreatic Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (X.G.); (C.M.); (Z.Z.)
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou 310003, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou 310003, China
- Zhejiang University Cancer Center, Hangzhou 310003, China
- MOE Joint International Research Laboratory of Pancreatic Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
16
|
Wen W, Ertas YN, Erdem A, Zhang Y. Dysregulation of autophagy in gastric carcinoma: Pathways to tumor progression and resistance to therapy. Cancer Lett 2024; 591:216857. [PMID: 38583648 DOI: 10.1016/j.canlet.2024.216857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
The considerable death rates and lack of symptoms in early stages of gastric cancer (GC) make it a major health problem worldwide. One of the most prominent risk factors is infection with Helicobacter pylori. Many biological processes, including those linked with cell death, are disrupted in GC. The cellular "self-digestion" mechanism necessary for regular balance maintenance, autophagy, is at the center of this disturbance. Misregulation of autophagy, however, plays a role in the development of GC. In this review, we will examine how autophagy interacts with other cell death processes, such as apoptosis and ferroptosis, and how it affects the progression of GC. In addition to wonderful its role in the epithelial-mesenchymal transition, it is engaged in GC metastasis. The role of autophagy in GC in promoting drug resistance stands out. There is growing interest in modulating autophagy for GC treatment, with research focusing on natural compounds, small-molecule inhibitors, and nanoparticles. These approaches could lead to breakthroughs in GC therapy, offering new hope in the fight against this challenging disease.
Collapse
Affiliation(s)
- Wen Wen
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey.
| | - Ahmet Erdem
- Institute for Quantitative Health Science and Engineering (IQ), Department of Biomedical Engineering, College of Engineering and Human Medicine, Michigan State University, East Lansing, MI, 48824, USA; Department of Biomedical Engineering, Kocaeli University, Umuttepe Campus, Kocaeli, 41001 Turkey.
| | - Yao Zhang
- Department of Gynaecology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
17
|
Li YS, Xia J, Chen CY, Ren SH, He MR. Upregulated dual oxidase 1-induced oxidative stress and caspase-1-dependent pyroptosis reflect the etiologies of heart failure. BMC Mol Cell Biol 2024; 25:16. [PMID: 38750444 PMCID: PMC11094974 DOI: 10.1186/s12860-024-00506-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 03/08/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Oxidative stress is implicated in the pathogenesis of heart failure. Dual oxidase 1 (DUOX1) might be important in heart failure development through its mediating role in oxidative stress. This study was designed to evaluate the potential role of DUOX1 in heart failure. MATERIALS AND METHODS AC16 cells were treated with 2 µmol/L of doxorubicin (DOX) for 12, 24, and 48 h to construct a heart failure model. DUOX1 overexpression and silencing in AC16 cell were established. DUOX1 expression was detected by Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. Pyroptosis and reactive oxygen species (ROS) production were measured by flow cytometry. RESULTS Increased DUOX1 expression levels were observed after DOX treatment for 24 h in AC16 cells. DUOX1 silencing inhibited DOX-induced pyroptosis and ROS production. The release of IL-1β, IL-18, and lactate dehydrogenase (LDH), and expression levels of pyroptosis-related proteins were also decreased. DUOX1 overexpression increased pyroptosis, ROS production, IL-1β, IL-18, and LDH release, and pyroptosis-related protein expression. N-acetyl-cysteine (NAC) significantly reversed DUOX1-induced pyroptosis, ROS, and related factors. CONCLUSION These results suggest that DUOX1-derived genotoxicity could promote heart failure development. In the process, oxidative stress and pyroptosis may be involved in the regulation of DUOX1 in heart failure.
Collapse
Affiliation(s)
- Yan Song Li
- Department of Cardiovasology, Shanghai Songjiang District Center Hospital, NO.748, Zhongshan Middle Road, Songjiang District, Shanghai, 201600, China.
- Department of Cardiovasology, Shanghai Baoshan District Luodian Hospital, No. 88 Yongshun Road, Baoshan District, Shanghai, 201908, China.
| | - Jingwen Xia
- Department of Cardiovasology, Shanghai Songjiang District Center Hospital, NO.748, Zhongshan Middle Road, Songjiang District, Shanghai, 201600, China
| | - Chang Yuan Chen
- Department of Cardiovasology, Shanghai Songjiang District Center Hospital, NO.748, Zhongshan Middle Road, Songjiang District, Shanghai, 201600, China
| | - Shu Hong Ren
- Department of Cardiovasology, Shanghai Songjiang District Center Hospital, NO.748, Zhongshan Middle Road, Songjiang District, Shanghai, 201600, China
| | - Mao Rong He
- Department of Cardiovasology, Shanghai Songjiang District Center Hospital, NO.748, Zhongshan Middle Road, Songjiang District, Shanghai, 201600, China
| |
Collapse
|
18
|
Li K, Fan C, Chen J, Xu X, Lu C, Shao H, Xi Y. Role of oxidative stress-induced ferroptosis in cancer therapy. J Cell Mol Med 2024; 28:e18399. [PMID: 38757920 PMCID: PMC11100387 DOI: 10.1111/jcmm.18399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/06/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024] Open
Abstract
Ferroptosis is a distinct mode of cell death, distinguishing itself from typical apoptosis by its reliance on the accumulation of iron ions and lipid peroxides. Cells manifest an imbalance between oxidative stress and antioxidant equilibrium during certain pathological contexts, such as tumours, resulting in oxidative stress. Notably, recent investigations propose that heightened intracellular reactive oxygen species (ROS) due to oxidative stress can heighten cellular susceptibility to ferroptosis inducers or expedite the onset of ferroptosis. Consequently, comprehending role of ROS in the initiation of ferroptosis has significance in elucidating disorders related to oxidative stress. Moreover, an exhaustive exploration into the mechanism and control of ferroptosis might offer novel targets for addressing specific tumour types. Within this context, our review delves into recent fundamental pathways and the molecular foundation of ferroptosis. Four classical ferroptotic molecular pathways are well characterized, namely, glutathione peroxidase 4-centred molecular pathway, nuclear factor erythroid 2-related factor 2 molecular pathway, mitochondrial molecular pathway, and mTOR-dependent autophagy pathway. Furthermore, we seek to elucidate the regulatory contributions enacted by ROS. Additionally, we provide an overview of targeted medications targeting four molecular pathways implicated in ferroptosis and their potential clinical applications. Here, we review the role of ROS and oxidative stress in ferroptosis, and we discuss opportunities to use ferroptosis as a new strategy for cancer therapy and point out the current challenges persisting within the domain of ROS-regulated anticancer drug research and development.
Collapse
Affiliation(s)
- Keqing Li
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science CenterNingbo UniversityNingboChina
| | - Chengjiang Fan
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science CenterNingbo UniversityNingboChina
| | - Jianing Chen
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science CenterNingbo UniversityNingboChina
| | - Xin Xu
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science CenterNingbo UniversityNingboChina
| | - Chuwei Lu
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science CenterNingbo UniversityNingboChina
| | - Hanjie Shao
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science CenterNingbo UniversityNingboChina
| | - Yang Xi
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science CenterNingbo UniversityNingboChina
| |
Collapse
|
19
|
Li P, Wang W, Zhu B, Wang Y, Li J, Wang C, Wang C, Li Q. PRDX2 regulates stemness contributing to cisplatin resistance and metastasis in bladder cancer. ENVIRONMENTAL TOXICOLOGY 2024; 39:2869-2880. [PMID: 38294069 DOI: 10.1002/tox.24153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND Cisplatin (CDDP)-based chemotherapy has emerged as the primary treatment for muscle-invasive bladder cancer and metastatic bladder cancer. Nevertheless, a significant proportion of patients experience rapidly developed chemoresistance, leading to treatment ineffectiveness. Existing evidence suggests that chemoresistance is governed by various factors, including tumor stem cells, epithelial mesenchymal transition, and reactive oxygen species (ROS). However, limited research has been conducted on the role of PRDX2, a crucial ROS scavenger, in the modulation of chemoresistance in bladder cancer. METHODS Cisplatin-resistant cell lines were established using the concentration gradient overlay method, and differentially expressed genes in resistant cells were screened through RNA sequencing. The expression of PRDX2 in cells and tissues was assessed using RT-qPCR, Western Blot, and immunohistochemistry. The expression of PRDX2 in bladder cancer and adjacent tissues was evaluated using a bladder cancer tissue microarray. Furthermore, the impact of PRDX2 knockdown on tumor formation and metastasis was investigated in vivo by applying subcutaneous tumor xenografts tail vein metastasis assays. RESULTS We demonstrated that PRDX2 is significantly upregulated in bladder tumors and cisplatin-resistant bladder tumor cell lines. Overexpression of PRDX2 can promote tumor proliferation, migration, and invasion both in vitro and in vivo. We have found that knockdown of PRDX2 expression can effectively reverse cell resistance to cisplatin. Mechanistically, our findings suggest that PRDX2 is involved in regulating tumor stemness and epithelial-mesenchymal transition (EMT). Knockdown of PRDX2 affects the PI3K-AKT and mTOR signaling pathways, thereby influencing tumor stemness and EMT, ultimately impacting the chemotherapy resistance of the tumor. CONCLUSIONS This study provides a new insight into the regulation of chemotherapy resistance in bladder cancer by PRDX2. Targeting PRDX2 can serve as a potent therapeutic target for chemotherapy resistance.
Collapse
Affiliation(s)
- Peng Li
- Department of Urology, Yantaishan Hospital, Binzhou Medical University, Yantai, Shandong, China
| | - Weihua Wang
- Department of Clinical Laboratory, Yuhuangding Hospital, Qingdao University School of Medicine, Yantai, Shandong, China
| | - Baowei Zhu
- Yantai Cellzone Biotechnology Company Limited, Yantai, Shandong, China
| | - Yangui Wang
- Department of Clinical Laboratory, Yantaishan Hospital, Binzhou Medical University, Yantai, Shandong, China
| | - Jixia Li
- Department of Clinical Laboratory, Yantaishan Hospital, Binzhou Medical University, Yantai, Shandong, China
| | - Chenghong Wang
- Department of Clinical Laboratory, Yantaishan Hospital, Binzhou Medical University, Yantai, Shandong, China
| | - Chenyu Wang
- Department of Clinical Laboratory, Yuhuangding Hospital, Qingdao University School of Medicine, Yantai, Shandong, China
| | - Qin Li
- Department of Clinical Laboratory, Yuhuangding Hospital, Qingdao University School of Medicine, Yantai, Shandong, China
| |
Collapse
|
20
|
Ma L, Chen C, Zhao C, Li T, Ma L, Jiang J, Duan Z, Si Q, Chuang TH, Xiang R, Luo Y. Targeting carnitine palmitoyl transferase 1A (CPT1A) induces ferroptosis and synergizes with immunotherapy in lung cancer. Signal Transduct Target Ther 2024; 9:64. [PMID: 38453925 PMCID: PMC10920667 DOI: 10.1038/s41392-024-01772-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/26/2023] [Accepted: 02/08/2024] [Indexed: 03/09/2024] Open
Abstract
Despite the successful application of immune checkpoint therapy, no response or recurrence is typical in lung cancer. Cancer stem cells (CSCs) have been identified as a crucial player in immunotherapy-related resistance. Ferroptosis, a form of cell death driven by iron-dependent lipid peroxidation, is highly regulated by cellular metabolism remolding and has been shown to have synergistic effects when combined with immunotherapy. Metabolic adaption of CSCs drives tumor resistance, yet the mechanisms of their ferroptosis defense in tumor immune evasion remain elusive. Here, through metabolomics, transcriptomics, a lung epithelial-specific Cpt1a-knockout mouse model, and clinical analysis, we demonstrate that CPT1A, a key rate-limiting enzyme of fatty acid oxidation, acts with L-carnitine, derived from tumor-associated macrophages to drive ferroptosis-resistance and CD8+ T cells inactivation in lung cancer. Mechanistically, CPT1A restrains ubiquitination and degradation of c-Myc, while c-Myc transcriptionally activates CPT1A expression. The CPT1A/c-Myc positive feedback loop further enhances the cellular antioxidant capacity by activating the NRF2/GPX4 system and reduces the amount of phospholipid polyunsaturated fatty acids through ACSL4 downregulating, thereby suppressing ferroptosis in CSCs. Significantly, targeting CPT1A enhances immune checkpoint blockade-induced anti-tumor immunity and tumoral ferroptosis in tumor-bearing mice. The results illustrate the potential of a mechanism-guided therapeutic strategy by targeting a metabolic vulnerability in the ferroptosis of CSCs to improve the efficacy of lung cancer immunotherapy.
Collapse
Affiliation(s)
- Lei Ma
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
- Collaborative Innovation Center for Biotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Chong Chen
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
- Collaborative Innovation Center for Biotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Chunxing Zhao
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
- Collaborative Innovation Center for Biotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Tong Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, Taiwan, ROC
| | - Lingyu Ma
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
- Collaborative Innovation Center for Biotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Jiayu Jiang
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
- Collaborative Innovation Center for Biotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Zhaojun Duan
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
- Collaborative Innovation Center for Biotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Qin Si
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
- Collaborative Innovation Center for Biotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, Taiwan, ROC
| | - Rong Xiang
- Department of Immunology, Nankai University, Tianjin, 300071, China
| | - Yunping Luo
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
- Collaborative Innovation Center for Biotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
21
|
Lakra DS, Bharathiraja P, Dhanalakshmi T, Prasad NR. Andrographolide reverts multidrug resistance in KBCh R 8-5 cells through AKT signaling pathway. Cell Biochem Funct 2024; 42:e3948. [PMID: 38379216 DOI: 10.1002/cbf.3948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/22/2024]
Abstract
Multidrug resistance (MDR) is a major obstacle in cancer chemotherapy. P-glycoprotein (P-gp) one of the ATP-binding cassette (ABC) transporters plays an important role in MDR. In this study, we examined the sensitizing property of andrographolide (Andro) to reverse MDR in the drug-resistant KBChR 8-5 cells. Andro exhibited increased cytotoxicity in a concentration-dependent manner in the P-gp overexpressing KBChR 8-5 cells. Furthermore, Andro showed synergistic interactions with PTX and DOX in this drug-resistant cells. Andro co-administration enhanced PTX- and DOX-induced cytotoxicity and reduced cell proliferation in the MDR cancer cells. Moreover, reactive oxygen species (ROS) were elevated with a decrease in the mitochondrial membrane potential (MMP) during Andro and chemotherapeutic drugs combination treatment in the drug-resistant cells. Furthermore, Andro and PTX-induced cell cycle arrest was observed in the drug-resistant cell. We also noticed that the expression of ABCB1 and AKT were downregulated during Andro (4 µM) treatment. Furthermore, Andro treatment enhanced the expression of caspase 3 and caspase 9 in the combinational groups that support the enhanced apoptotic cell death in drug-resistant cancer cells. Therefore, the results reveal that Andro plays a role in the reversal of P-gp-mediated MDR in KBChR 8-5 cells which might be due to regulating ABCB1/AKT signaling pathway.
Collapse
Affiliation(s)
- Deepa S Lakra
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - Pradhapsingh Bharathiraja
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - T Dhanalakshmi
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
- Department of Biochemistry, Dharmapuram Gnanambigai Government Arts College for Women, Mayiladuthurai, Tamil Nadu, India
| | - N Rajendra Prasad
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
| |
Collapse
|
22
|
Sun H, Ge Y, Liu J, Li Z, Li H, Zhao T, Wang X, Feng Y, Wang H, Gao S, Shi L, Yang S, Sun P, Chang A, Hao J, Huang C. Tumor-derived interleukin 35 mediates the dissemination of gemcitabine resistance in pancreatic adenocarcinoma. Oncogene 2024; 43:776-788. [PMID: 38243080 DOI: 10.1038/s41388-024-02938-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/21/2024]
Abstract
Rapid development of drug resistance after chemotherapy is a major cause of treatment failure in individuals with pancreatic ductal adenocarcinoma (PDAC). In this study, we illustrate that tumor-derived interleukin 35 (IL-35) mediates the accelerated resistance of PDAC to gemcitabine (GEM). We observe that GEM resistance can spread from GEM-resistant PDAC cells to GEM-sensitive cells, and that IL-35 is responsible for the propagation of chemoresistance, which is supported by sequencing and experimental data. Additionally, we discover that GEM-resistant cells have significantly higher levels of IL-35 expression. Mechanistically, aberrantly expressed IL-35 triggers transcriptional activation of SOD2 expression via GP130-STAT1 signaling, scavenging reactive oxygen species (ROS) and leading to GEM resistance. Furthermore, GEM treatment stimulates IL-35 expression through activation of the NF-κB pathway, resulting in acquired chemoresistance. In the mouse model, a neutralizing antibody against IL-35 enhances the tumor suppressive effect of GEM. Collectively, our data suggests that IL-35 is critical in mediating GEM resistance in pancreatic cancer, and therefore could be a valuable therapeutic target in overcoming PDAC chemoresistance.
Collapse
Affiliation(s)
- Huizhi Sun
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yi Ge
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Jing Liu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Zengxun Li
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Hui Li
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Tiansuo Zhao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Xiuchao Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yukuan Feng
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Hongwei Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Song Gao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Lei Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shengyu Yang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Peiqing Sun
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Antao Chang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
| | - Jihui Hao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
| | - Chongbiao Huang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
| |
Collapse
|
23
|
Zhong C, Wang G, Guo M, Zhu N, Chen X, Yan Y, Li N, Yu W. The Role of Tumor Stem Cells in Colorectal Cancer Drug Resistance. Cancer Control 2024; 31:10732748241274196. [PMID: 39215442 PMCID: PMC11367616 DOI: 10.1177/10732748241274196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/09/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Background: Colorectal cancer is a major cause of mortality among the prevalent malignant tumors of the gastrointestinal tract. Although chemotherapy is a standard treatment for colorectal cancer, its efficacy is limited by chemoresistance. Recent studies have investigated targeting tumor stem cells as a potential new therapeutic approach for addressing chemoresistance in colorectal cancer. Colorectal cancer frequently relapses, with tumor stem cells often representing one of the leading causes of treatment failure. Purpose: Understanding drug resistance in colorectal cancer stem cells is crucial for improving treatment outcomes. By focusing on developing targeted therapies that specifically address drug resistance in colorectal cancer stem cells, there is potential to make significant advancements in the treatment of colorectal cancer.This approach may lead to more effective and lasting outcomes in patients battling colorectal cancer. Research Design: In this review, a comprehensive overview of recent research on colorectal cancer stem cell treatment resistance is presented.Results: Elucidating the key underlying mechanisms. This review also highlights the potential benefits of targeted therapies in overcoming colorectal cancer resistance to treatment. Conclusions: CCSCs are key players in drug resistance of CRC, indicating their potential as targets for effective therapy. Elucidating their role in this process could aid in discovering tailored treatment strategies.The significance of signaling pathways, TME, and miRNA in regulating drug resistance in CCSCs is been highlighted.
Collapse
Affiliation(s)
- Chen Zhong
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Guojuan Wang
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Min Guo
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Naicheng Zhu
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xiudan Chen
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yuwei Yan
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Nanxin Li
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Wenyan Yu
- Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
24
|
Di Liberto D, Iacuzzi N, Pratelli G, Porrello A, Maggio A, La Bella S, De Blasio A, Notaro A, D’Anneo A, Emanuele S, Affranchi F, Giuliano M, Lauricella M, Carlisi D. Cytotoxic Effect Induced by Sicilian Oregano Essential Oil in Human Breast Cancer Cells. Cells 2023; 12:2733. [PMID: 38067161 PMCID: PMC10706043 DOI: 10.3390/cells12232733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/18/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Origanum vulgare L. is an aromatic plant that exerts antibacterial, antioxidant, anti-inflammatory, and antitumor activities, mainly due to its essential oil (EO) content. In this study, we investigated the possible mechanism underlying the in vitro antitumor activity of EO extracted by hydrodistillation of dried flowers and leaves of Origanum vulgare L. grown in Sicily (Italy) in MDA-MB-231 and MCF-7 breast cancer cell lines. Gas chromatography-mass spectrometry analysis of Oregano essential oil (OEO) composition highlighted the presence of twenty-six major phytocompounds, such as p-cymene, γ-terpinene, and thymoquinone p-acetanisole. OEO possesses strong antioxidant capacity, as demonstrated by the DPPH test. Our studies provided evidence that OEO reduces the viability of both MCF-7 and MDA-MB-231 cells. The cytotoxic effect of OEO on breast cancer cells was partially counteracted by the addition of z-VAD-fmk, a general caspase inhibitor. Caspases and mitochondrial dysfunction appeared to be involved in the OEO-induced death mechanism. Western blotting analysis showed that OEO-induced activation of pro-caspases-9 and -3 and fragmentation of PARP decreased the levels of Bcl-2 and Bcl-xL while increasing those of Bax and VDAC. In addition, fluorescence microscopy and cytofluorimetric analysis showed that OEO induces a loss of mitochondrial membrane potential in both cell lines. Furthermore, we tested the effects of p-cymene, γ-terpinene, thymoquinone, and p-acetanisole, which are the main components of OEO. Our findings highlighted that the effect of OEO on MDA-MB-231 and MCF-7 cells appears to be mainly due to the combination of different constituents of OEO, providing evidence of the potential use of OEO for breast cancer treatment.
Collapse
Affiliation(s)
- Diana Di Liberto
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Biochemistry, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (D.D.L.); (S.E.)
| | - Nicolò Iacuzzi
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (N.I.); (S.L.B.)
| | - Giovanni Pratelli
- Department of Physics and Chemistry (DiFC)-Emilio Segrè, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy;
| | - Antonella Porrello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Section of Chemistry, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (A.P.); (A.M.)
| | - Antonella Maggio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Section of Chemistry, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (A.P.); (A.M.)
| | - Salvatore La Bella
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (N.I.); (S.L.B.)
| | - Anna De Blasio
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (A.D.B.); (A.N.); (A.D.); (F.A.); (M.G.)
| | - Antonietta Notaro
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (A.D.B.); (A.N.); (A.D.); (F.A.); (M.G.)
| | - Antonella D’Anneo
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (A.D.B.); (A.N.); (A.D.); (F.A.); (M.G.)
| | - Sonia Emanuele
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Biochemistry, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (D.D.L.); (S.E.)
| | - Federica Affranchi
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (A.D.B.); (A.N.); (A.D.); (F.A.); (M.G.)
| | - Michela Giuliano
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (A.D.B.); (A.N.); (A.D.); (F.A.); (M.G.)
| | - Marianna Lauricella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Biochemistry, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (D.D.L.); (S.E.)
| | - Daniela Carlisi
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Biochemistry, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (D.D.L.); (S.E.)
| |
Collapse
|
25
|
Kim HS, Bae S, Lim YJ, So KA, Kim TJ, Bae S, Lee JH. Tephrosin Suppresses the Chemoresistance of Paclitaxel-Resistant Ovarian Cancer via Inhibition of FGFR1 Signaling Pathway. Biomedicines 2023; 11:3155. [PMID: 38137377 PMCID: PMC10740824 DOI: 10.3390/biomedicines11123155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/21/2023] [Accepted: 11/26/2023] [Indexed: 12/24/2023] Open
Abstract
Ovarian cancer is the leading cause of death among gynecologic cancers. Paclitaxel is used as a standard first-line therapeutic agent for ovarian cancer. However, chemotherapeutic resistance and high recurrence rates are major obstacles to treating ovarian cancer. We have found that tephrosin, a natural rotenoid isoflavonoid, can resensitize paclitaxel-resistant ovarian cancer cells to paclitaxel. Cell viability, immunoblotting, and a flow cytometric analysis showed that a combination treatment made up of paclitaxel and tephrosin induced apoptotic death. Tephrosin inhibited the phosphorylation of AKT, STAT3, ERK, and p38 MAPK, all of which simultaneously play important roles in survival signaling pathways. Notably, tephrosin downregulated the phosphorylation of FGFR1 and its specific adapter protein FRS2, but it had no effect on the phosphorylation of the EGFR. Immunoblotting and a fluo-3 acetoxymethyl assay showed that tephrosin did not affect the expression or function of P-glycoprotein. Additionally, treatment with N-acetylcysteine did not restore cell cytotoxicity caused by a treatment combination made up of paclitaxel and tephrosin, showing that tephrosin did not affect the reactive oxygen species scavenging pathway. Interestingly, tephrosin reduced the expression of the anti-apoptotic factor XIAP. This study demonstrates that tephrosin is a potent antitumor agent that can be used in the treatment of paclitaxel-resistant ovarian cancer via the inhibition of the FGFR1 signaling pathway.
Collapse
Affiliation(s)
- Hee Su Kim
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (H.S.K.); (S.B.); (Y.J.L.); (S.B.)
| | - Sowon Bae
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (H.S.K.); (S.B.); (Y.J.L.); (S.B.)
| | - Ye Jin Lim
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (H.S.K.); (S.B.); (Y.J.L.); (S.B.)
| | - Kyeong A So
- Department of Obstetrics and Gynecology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05030, Republic of Korea; (K.A.S.); (T.J.K.)
| | - Tae Jin Kim
- Department of Obstetrics and Gynecology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05030, Republic of Korea; (K.A.S.); (T.J.K.)
| | - Seunghee Bae
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (H.S.K.); (S.B.); (Y.J.L.); (S.B.)
| | - Jae Ho Lee
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (H.S.K.); (S.B.); (Y.J.L.); (S.B.)
| |
Collapse
|
26
|
Zhang R, Yu J, Guo Z, Jiang H, Wang C. Camptothecin-based prodrug nanomedicines for cancer therapy. NANOSCALE 2023; 15:17658-17697. [PMID: 37909755 DOI: 10.1039/d3nr04147f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Camptothecin (CPT) is a cytotoxic alkaloid that attenuates the replication of cancer cells via blocking DNA topoisomerase 1. Despite its encouraging and wide-spectrum antitumour activity, its application is significantly restricted owing to its instability, low solubility, significant toxicity, and acquired tumour cell resistance. This has resulted in the development of many CPT-based therapeutic agents, especially CPT-based nanomedicines, with improved pharmacokinetic and pharmacodynamic profiles. Specifically, smart CPT-based prodrug nanomedicines with stimuli-responsive release capacity have been extensively explored owing to the advantages such as high drug loading, improved stability, and decreased potential toxicity caused by the carrier materials in comparison with normal nanodrugs and traditional delivery systems. In this review, the potential strategies and applications of CPT-based nanoprodrugs for enhanced CPT delivery toward cancer cells are summarized. We appraise in detail the chemical structures and release mechanisms of these nanoprodrugs and guide materials chemists to develop more powerful nanomedicines that have real clinical therapeutic capacities.
Collapse
Affiliation(s)
- Renshuai Zhang
- Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266061, China.
| | - Jing Yu
- Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao Municipal Hospital, Qingdao, 266071, China
| | - Zhu Guo
- Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266061, China.
- The Affiliated Hospital of Qingdao University, Qingdao 266061, China
| | - Hongfei Jiang
- Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266061, China.
| | - Chao Wang
- Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266061, China.
| |
Collapse
|