1
|
Syahputra EW, Lee H, Cho H, Park HJ, Park KS, Hwang D. PROTAC Delivery Strategies for Overcoming Physicochemical Properties and Physiological Barriers in Targeted Protein Degradation. Pharmaceutics 2025; 17:501. [PMID: 40284496 PMCID: PMC12030311 DOI: 10.3390/pharmaceutics17040501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/28/2025] [Accepted: 04/06/2025] [Indexed: 04/29/2025] Open
Abstract
Proteolysis targeting chimeras (PROTACs), heterobifunctional molecules that hijack the ubiquitin-proteasome system (UPS) to degrade specific proteins, hold great promise in treating diseases driven by traditionally "undruggable" targets. However, their large molecular weight, high hydrophobicity, and other physicochemical hurdles contribute to their limited bioavailability, suboptimal pharmacokinetics, and attenuated therapeutic efficacy. Consequently, diverse formulation innovations have been investigated to optimize PROTAC delivery. This review examines current challenges and advances in specialized drug delivery approaches designed to bolster PROTAC pharmacological performance. We first outline the fundamental limitations of PROTACs-their low aqueous solubility, poor cell permeability, rapid clearance, and concentration-dependent "hook effect". We then discuss how various enabling formulations address these issues, including polymeric micelles, emulsions, amorphous solid dispersions, lipid-based nanoparticles, liposomes, and exosomes. Collectively, these delivery technologies substantially improve the therapeutic outcomes of PROTACs in preclinical cancer models. Future applications may extend beyond oncology to address other complex diseases using newly emerging heterobifunctional molecules. By integrating advanced formulation science with innovative degrader design, the field stands poised to unlock the clinical potential of PROTACs for protein degradation therapies.
Collapse
Affiliation(s)
- Endry Wahyu Syahputra
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea; (E.W.S.); (H.C.); (H.J.P.)
| | - Hyunji Lee
- College of Pharmacy, Kyungsung University, Busan 48434, Republic of Korea;
| | - Hyukjun Cho
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea; (E.W.S.); (H.C.); (H.J.P.)
| | - Hyun Jin Park
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea; (E.W.S.); (H.C.); (H.J.P.)
| | - Kwang-Su Park
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea; (E.W.S.); (H.C.); (H.J.P.)
| | - Duhyeong Hwang
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea; (E.W.S.); (H.C.); (H.J.P.)
| |
Collapse
|
2
|
Bhole RP, Labhade S, Gurav SS. Conquering PROTAC molecular design and drugability. Bioanalysis 2025; 17:455-470. [PMID: 40114295 PMCID: PMC12026086 DOI: 10.1080/17576180.2025.2481021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/12/2025] [Indexed: 03/22/2025] Open
Abstract
PROTACs are reshaping drug discovery by enabling targeted protein degradation, overcoming the limitations of traditional inhibitors, and addressing previously "undruggable" proteins. The present perspective explores advancements in PROTAC molecular design, focusing on ligand discovery, E3 ligase recruitment, and ternary complex optimization. Integrating AI-driven modeling, FBDD, and SBDD accelerates PROTAC development. In contrast, emerging innovations, such as PHOTACs, hypoxia-responsive systems, and Ab-PROTACs, enhance precision and reduce systemic toxicity. Clinical successes, including ARV-110 for castration-resistant prostate cancer and ARV-471 for breast cancer, exemplify their ability to overcome resistance and provide durable effects. PROTACs are expanding into neurodegenerative diseases and rare conditions, highlighting their versatility. By addressing challenges in pharmacokinetics, safety, and scalability, PROTACs are poised to revolutionize precision medicine. This article presents a forward-looking perspective on conquering the molecular design and drugability of PROTACs, paving the path for transformative therapies.
Collapse
Affiliation(s)
- Ritesh P. Bhole
- Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India
- Dr. D. Y. Patil Vidyapeeth, Dr. D. Y. Patil Dental College Hospital and Research Centre, Pimpri, Pune, India
| | - Sonali Labhade
- Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India
| | - Shilendra S. Gurav
- Department of Pharmacognosy, Goa College of Pharmacy, Goa University, Panaji, India
| |
Collapse
|
3
|
Liu S, Yuan F, Dong H, Zhang J, Mao X, Liu Y, Li H. PTGES3 proteolysis using the liposomal peptide-PROTAC approach. Biol Direct 2024; 19:144. [PMID: 39726032 DOI: 10.1186/s13062-024-00580-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the leading cause of cancer-related deaths worldwide, and the lack of effective biomarkers for early detection leads to poor therapeutic outcomes. Prostaglandin E Synthase 3 (PTGES3) is a putative prognostic marker in many solid tumors; however, its expression and biological functions in HCC have not been determined. The proteolysis-targeting chimera (PROTAC) is an established technology for targeted protein degradation. Compared to the small-molecule PROTAC, the peptide PROTAC (p-PROTAC) utilizes peptides bound to target proteins to mediate the ubiquitination and degradation of undruggable proteins. This study aimed to use the PROTAC technology to develop a PTGES3 degrader liposome complex containing a PTGES3-binding peptide and the E3 ubiquitin ligase ligand pomalidomide for regulating cell function and provide a novel pathway for treating HCC. RESULTS In this study, we demonstrated that PTGES3 is highly expressed in HCC at the transcriptional and protein levels; furthermore, PTGES3 was identified as a novel drug target that could potentially treat HCC. Hence, we developed PTGES3-PROTACs by adjusting the ligand ratio to optimize the efficacy of degradation agents. The results revealed that PTGES3-PROTAC effectively degraded PTGES3 protein and strongly weakened the HCC malignant phenotype in vitro and in vivo. CONCLUSIONS Our findings revealed that the highly selective PTGES3 proteolysis is a potential therapeutic strategy for HCC, and PTGES3 degraders PTGES3-PROTACs can be developed as safe and effective drugs for HCC treatment.
Collapse
Affiliation(s)
- Shiwei Liu
- School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Fukang Yuan
- Department of General Surgery, Xuzhou Central Hospital, Xuzhou, Jiangsu, 221009, China
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Hui Dong
- Fenyang College of Shanxi Medical University, Fenyang, Shanxi, 032200, China
| | - Jiaqi Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Xinyu Mao
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Yangsui Liu
- Center of Hepatobiliary Pancreatic Disease, Xuzhou Central Hospital, Xuzhou, Jiangsu, 221009, China.
- Xuzhou Central Hospital Affiliated to Medical School of Southeast University, Xuzhou, Jiangsu, 221009, China.
| | - Huansong Li
- Center of Hepatobiliary Pancreatic Disease, Xuzhou Central Hospital, Xuzhou, Jiangsu, 221009, China.
- Xuzhou Central Hospital Affiliated to Medical School of Southeast University, Xuzhou, Jiangsu, 221009, China.
| |
Collapse
|
4
|
Zhang SH, Zeng N, Xu JZ, Liu CQ, Xu MY, Sun JX, An Y, Zhong XY, Miao LT, Wang SG, Xia QD. Recent breakthroughs in innovative elements, multidimensional enhancements, derived technologies, and novel applications of PROTACs. Biomed Pharmacother 2024; 180:117584. [PMID: 39427546 DOI: 10.1016/j.biopha.2024.117584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024] Open
Abstract
Proteolysis Targeting Chimera (PROTAC) is an emerging and evolving technology based on targeted protein degradation (TPD). Small molecule PROTACs have shown great efficacy in degrading disease-specific proteins in preclinical and clinical studies, but also showed various limitations. In recent years, new technologies and advances in TPD have provided additional optimized strategies based on conventional PROTACs that can overcome the shortcomings of conventional PROTACs in terms of undruggable targets, bioavailability, tissue-specificity, spatiotemporal control, and degradation scope. In addition, some designs of special targeting chimeras and applications based on multidisciplinary science have shed light on novel therapeutic modalities and drug design. However, each improvement has its own advantages, disadvantages and application conditions. In this review, we summarize the exploration of PROTAC elements, depict a landscape of improvements and derived concepts of PROTACs, and expect to provide perspectives for technological innovations, combinations and applications in future targeting chimera design.
Collapse
Affiliation(s)
- Si-Han Zhang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Na Zeng
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Jin-Zhou Xu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Chen-Qian Liu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Meng-Yao Xu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Jian-Xuan Sun
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Ye An
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Xing-Yu Zhong
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Lin-Tao Miao
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Shao-Gang Wang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Qi-Dong Xia
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| |
Collapse
|
5
|
Vartak R, Patel K. Targeted nanoliposomes of oncogenic protein degraders: Significant inhibition of tumor in lung-cancer bearing mice. J Control Release 2024; 376:502-517. [PMID: 39406280 DOI: 10.1016/j.jconrel.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/29/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
With 60 % of non-small cell lung cancer (NSCLC) expressing epidermal growth factor receptor (EGFR), it has been explored as an important therapeutic target for lung tumors. However, even the well-established EGFR inhibitors tend to promptly develop resistance over time. Moreover, strategies that could impede resistance development and be advantageous for both EGFR-Tyrosine kinase inhibitor (TKI)-sensitive and mutant NSCLC patients are constrained. Based on the critical relationship between EGFR, c-MYC, and Kirsten rat sarcoma virus (K-Ras), simultaneous degradation of EGFR and Bromodomain-containing protein 4 (BRD4) using "Proteolysis Targeting Chimeras (PROTACs)" could be a promising approach. PROTACs are emerging class of oncoprotein degraders but very challanging to deliver in vivo. Compared to individual IC50s, strong synergism was observed at 1:1 ratio of BPRO and EPRO in NSCLC cell lines with diverse mutation. Significant inhibition of cell growth with higher cellular apoptosis was observed in 2D and 3D-based cell assays in nanomolar concentrations. EGFR activation assay revealed 47.60 % EGFR non-expressing cells confirming EGFR-degrading potential of EPRO. A lung cancer specific nanoliposomal formulation of EGFR and BRD4-degrading PROTACs (EPRO and BPRO) was prepared and characetrized. Successful encapsulation of the two highly lipophilic molecules was achieved in EGFR-targeting nanoliposomal carriers (T-BEPRO) using a modified hydration technique. T-BEPRO revealed a particle size of 109.22 ± 0.266 nm with enhanced cellular uptake and activity. Remarkably, parenterally delivered T-BEPRO in tumor-bearing mice showed a substantially higher % tumor growth inhibition (TGI) of 77.6 % with long-lasting tumor inhibitory potential as opposed to individual drugs.
Collapse
Affiliation(s)
- Richa Vartak
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Ketan Patel
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
6
|
Misra C, Kaur J, Kumar M, Kaushik L, Chitkara D, Preet S, Wahajuddin M, Raza K. Docetaxel-tethered di-Carboxylic Acid Derivatised Fullerenes: A Promising Drug Delivery Approach for Breast Cancer. AAPS PharmSciTech 2024; 25:233. [PMID: 39358486 DOI: 10.1208/s12249-024-02955-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
Docetaxel (DTX) has become widely accepted as a first-line treatment for metastatic breast cancer; however, the frequent development of resistance provides challenges in treating the disease.C60 fullerene introduces a unique molecular form of carbon, exhibiting attractive chemical and physical properties. Our study aimed to develop dicarboxylic acid-derivatized C60 fullerenes as a novel DTX delivery carrier. This study investigated the potential of water-soluble fullerenes to deliver the anti-cancer drug DTX through a hydrophilic linker. The synthesis was carried out using the Prato reaction. The spectroscopic analysis confirmed the successful conjugation of DTX molecules over fullerenes. The particle size of nanoconjugate was reported to be 122.13 ± 1.63 nm with a conjugation efficiency of 76.7 ± 0.14%. The designed conjugate offers pH-dependent release with significantly less plasma pH, ensuring maximum release at the target site. In-vitro cell viability studies demonstrated the enhanced cytotoxic nature of the developed nanoconjugate compared to DTX. These synthesized nanoscaffolds were highly compatible with erythrocytes, indicating the safer intravenous route administration. Pharmacokinetic studies confirmed the higher bioavailability (~ 6 times) and decreased drug clearance from the system vis-à-vis plain drug. The histological studies reveal that nanoconjugate-treated tumour cells exhibit similar morphology to normal cells. Therefore, it was concluded that this developed formulation would be a valuable option for clinical use.
Collapse
Affiliation(s)
- Charu Misra
- Department of Pharmacy, School of Chemical Science and Pharmacy, Central University of Rajasthan, Bandarsindri, Distt. Ajmer, Rajasthan, 305817, India
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Richmond Road, Bradford, BD7 1DP, UK
| | - Jasleen Kaur
- Department of Biophysics, Panjab University, Chandigarh, 160 014, India
| | - Manish Kumar
- Department of Pharmacy, School of Chemical Science and Pharmacy, Central University of Rajasthan, Bandarsindri, Distt. Ajmer, Rajasthan, 305817, India
| | - Lokesh Kaushik
- Department of Pharmacy, School of Chemical Science and Pharmacy, Central University of Rajasthan, Bandarsindri, Distt. Ajmer, Rajasthan, 305817, India
- ICFAI School of Pharmaceutical Sciences, The ICFAI University, Jaipur, Rajasthan, 302031, India
| | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan, 33031, India
| | - Simran Preet
- Department of Biophysics, Panjab University, Chandigarh, 160 014, India
| | - Muhammad Wahajuddin
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Richmond Road, Bradford, BD7 1DP, UK
| | - Kaisar Raza
- Department of Pharmacy, School of Chemical Science and Pharmacy, Central University of Rajasthan, Bandarsindri, Distt. Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
7
|
Tassone G, Maramai S, Paolino M, Lamponi S, Poggialini F, Dreassi E, Petricci E, Alcaro S, Pozzi C, Romeo I. Exploiting the bile acid binding protein as transporter of a Cholic Acid/Mirin bioconjugate for potential applications in liver cancer therapy. Sci Rep 2024; 14:22514. [PMID: 39341955 PMCID: PMC11439058 DOI: 10.1038/s41598-024-73636-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
Bioconjugation is one of the most promising strategies to improve drug delivery, especially in cancer therapy. Biomolecules such as bile acids (BAs) have been intensively explored as carriers, due to their peculiar physicochemical properties and biocompatibility. BAs trafficking is regulated by intracellular lipid-binding proteins and their transport in the liver can be studied using chicken liver Bile Acid-Binding Proteins (cL-BABPs) as a reference model. Therefore, we conceived the idea of developing a BA-conjugate with Mirin, an exonuclease inhibitor of Mre11 endowed with different anticancer activities, to direct its transport to the liver. Following computational analysis of various BAs in complex with cL-BABP, we identified cholic acid (CA) as the most promising candidate as carrier, leading to the synthesis of a novel bioconjugate named CA-M11. As predicted by computational data and confirmed by X-ray crystallographic studies, CA-M11 was able to accommodate into the binding pocket of BABP. Hence, it can enter BAs trafficking in the hepatic compartment and here release Mirin. The effect of CA-M11, evaluated in combination with varying concentrations of Doxorubicin on HepG2 cell line, demonstrated a significant increase in cell mortality compared to the use of the cytotoxic drug or Mirin alone, thus highlighting chemo-sensitizing properties. The promising results regarding plasma stability for CA-M11 validate its potential as a valuable agent or adjuvant for hepatic cancer therapy.
Collapse
Affiliation(s)
- Giusy Tassone
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Samuele Maramai
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy.
| | - Marco Paolino
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Stefania Lamponi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Federica Poggialini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Elena Dreassi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Elena Petricci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Stefano Alcaro
- Department of Health Science, Università "Magna Graecia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100, Catanzaro, Italy
- Net4Science Academic Spin-Off, Università "Magna Graecia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100, Catanzaro, Italy
| | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy.
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Via Sacconi 6, 50019, Sesto Fiorentino (FI), Italy.
| | - Isabella Romeo
- Department of Health Science, Università "Magna Graecia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100, Catanzaro, Italy
- Net4Science Academic Spin-Off, Università "Magna Graecia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100, Catanzaro, Italy
| |
Collapse
|
8
|
Ahmadi SM, Seyedabadi M, Ebrahimnejad P, Abasi M, Nokhodchi A. Efficient Delivery of Gold Nanoparticles and miRNA-33a Via Cationic PEGylated Niosomal Formulation to MCF-7 Breast Cancer Cells. AAPS PharmSciTech 2024; 25:213. [PMID: 39266895 DOI: 10.1208/s12249-024-02906-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/30/2024] [Indexed: 09/14/2024] Open
Abstract
To overcome the challenges associated with the co-delivery of AuNPs (gold nanoparticles) and miRNA as an anti-breast cancer combination therapy, niosomal systems were developed using Span 60, cholesterol, and a cationic lipid (CTAB), and the formulations were optimized using Box-Behnken experimental design. The niosomal formulations with the smallest size were selected for further optimization of size, surface charge, entrapment efficiency, and stability. To achieve this, AuNPs and DSPE-PEG2000 (2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000)were added to the formulation. The optimized niosomal formulation could effectively encapsulate AuNPs with an entrapment efficiency of 34.49% ± 0.84 and a spherical particle size of 153.6 ± 4.62 nm. The incorporation of PEG and CTAB led to notable enhancements in the overall characteristics of the delivery system. To evaluate the effectiveness of the combination therapy, various assessments such as cytotoxicity, apoptosis, and gene expression properties were conducted. The results demonstrated that the combination delivery using the new C-PEG-Nio-AuNPs (cationic pegylated niosomal gold nanoparticles) system and miRNA had the lowest IC50, the highest apoptosis rate, and the most significant upregulation of miRNA and BAX/BCL2 expression in MCF-7 cell growth. In conclusion, this innovative co-delivery approach represents a promising breakthrough in the development of therapeutic agents for breast cancer treatment. By combining multiple therapeutic agents within a single delivery system, this method has the potential to enhance treatment efficacy, reduce side effects, and improve patient outcomes.
Collapse
Affiliation(s)
- Seyedeh Melika Ahmadi
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Seyedabadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Pedram Ebrahimnejad
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mozhgan Abasi
- Immunogenetics Research Center, Departmant of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Nokhodchi
- School of Life Sciences, University of Sussex, Brighton, UK.
- Lupin Research Inc., Coral Springs, Florida, USA.
| |
Collapse
|
9
|
Saraswat A, Vemana HP, Dukhande V, Patel K. Novel gene therapy for drug-resistant melanoma: Synergistic combination of PTEN plasmid and BRD4 PROTAC-loaded lipid nanocarriers. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102292. [PMID: 39238805 PMCID: PMC11374965 DOI: 10.1016/j.omtn.2024.102292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 07/29/2024] [Indexed: 09/07/2024]
Abstract
Patients suffering from BRAF mutant melanoma have tumor recurrence within merely 7 months of treatment with a potent BRAF inhibitor (BRAFi) like vemurafenib. It has been proven that diverse molecular pathways driving BRAFi resistance converge to activation of c-Myc in melanoma. Therefore, we identified a novel combinatorial therapeutic strategy by targeting loss of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) tumor suppressor gene and upregulated BRD4 oncoprotein as Myc-dependent vulnerabilities of drug-resistant melanoma. Being promising therapeutic targets, we decided to concomitantly deliver PTEN plasmid and BRD4 targeted PROteolysis-TArgeting Chimera (ARV) to drug the "undruggable" c-Myc in BRAFi-resistant melanoma. Since PTEN plasmid and ARV are distinct in their physicochemical properties, we fabricated PTEN-plasmid loaded lipid nanoparticles (PL-NANO) and ARV-825-loaded nanoliposomes (AL-NANO) to yield a mean particle size of less than 100 nm and greater than 99% encapsulation efficiency for each therapeutic payload. Combination of PL-NANO and AL-NANO displayed synergistic tumor growth inhibition and substantial apoptosis in in vitro two-dimensional and three-dimensional models. Importantly, simultaneous delivery of PL-NANO and AL-NANO achieved significant upregulation of PTEN expression levels and degradation of BRD4 protein to ultimately downregulate c-Myc levels in BRAFi-resistant melanoma cells. Altogether, lipid nanocarriers delivering this novel lethal cocktail stands as one-of-a-kind gene therapy to target undruggable c-Myc oncogene in BRAFi-resistant melanoma.
Collapse
Affiliation(s)
- Aishwarya Saraswat
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Hari Priya Vemana
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Vikas Dukhande
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Ketan Patel
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| |
Collapse
|
10
|
Zhang J, Zhao Q, Du Y, Wang W, Liu C. Pan-cancer analysis identifies venous thromboembolism-related genes F3, PLAT, and C1S as potential prognostic biomarkers for glioblastoma and lower grade glioma. MOLECULAR BIOMEDICINE 2024; 5:34. [PMID: 39179711 PMCID: PMC11343955 DOI: 10.1186/s43556-024-00197-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/16/2024] [Indexed: 08/26/2024] Open
Abstract
Venous thromboembolism (VTE) is a prevalent complication among patients with cancer, contributing significantly to morbidity and mortality. However, the relationship between VTE-related genes (VRGs) and their potential impact on prognosis, immune response, and therapeutic targets in various cancer types remains unclear. Based on the coagulation and complement pathways, we identified hub VRGs that play a role in regulating the immune response in cancer. Specifically, coagulation factor III (F3), plasminogen activator (PLAT) and complement C1s (C1S) were identified as genes that exhibit high expression levels, positively correlating with tumor stemness and copy number variations, while inversely correlating with methylation levels, in particular cancer types. Pan-cancer survival analysis revealed detrimental effects of these VRGs in several cancer types, notably in glioblastoma and lower grade glioma (GMBLGG). Further analysis using receiver operating characteristic (ROC) curves demonstrated a high accuracy of F3, PLAT and C1S in predicting outcomes in GBMLGG, with area under the curve (AUC) values ranging from 0.78 to 0.9. Validation of the prognostic value of these three genes in GMBLGG was conducted using an independent Gene Expression Omnibus (GEO) dataset. Additionally, gene-drug association analysis identified ciclosporin, ouabain and 6- mercaptopurine, which all exhibit immunosuppressive properties, as potential therapeutic options for tumor patients exhibiting high F3, PLAT or C1S expression, respectively. In summary, our findings provide a bioinformatics perspective on VRGs in pan-cancer, highlighting the pivotal roles of F3, PLAT and C1S, which could potentially be therapeutically exploited and targeted in several cancers, especially in GBMLGG.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, 510630, Guangzhou, China.
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, College of Life Science and Technology, Institute of Life and Health Engineering, Jinan University, 510632, Guangzhou, China.
| | - Qian Zhao
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, College of Life Science and Technology, Institute of Life and Health Engineering, Jinan University, 510632, Guangzhou, China
| | - Yun Du
- Department of Nursing, The First Affiliated Hospital of Jinan University, 510630, Guangzhou, China
| | - Wannan Wang
- Department of Radiology, The First Affiliated Hospital of Jinan University, 510630, Guangzhou, China
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, College of Life Science and Technology, Institute of Life and Health Engineering, Jinan University, 510632, Guangzhou, China
| | - Cuiqing Liu
- Department of Surgery, The First Affiliated Hospital of Jinan University, 510630, Guangzhou, China.
| |
Collapse
|
11
|
Huang F, Ren Y, Hua Y, Wang Y, Li R, Ji N, Zeng X, Bai D, Chen Q, Zhou X, Wu J, Li J. m6A-dependent mature miR-151-5p accelerates the malignant process of HNSCC by targeting LYPD3. MOLECULAR BIOMEDICINE 2024; 5:27. [PMID: 39009906 PMCID: PMC11250566 DOI: 10.1186/s43556-024-00189-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/03/2024] [Indexed: 07/17/2024] Open
Abstract
miRNA has emerged as a crucial regulator in various of pathological and physiological processes, yet its precise mechanism of action the detailed mechanism of their action in Head and neck squamous cell carcinoma (HNSCC) remains incompletely understood. This study sheds light on the role of mi-151-5p, revealing its significantly elevated expression in tumor cells, which notably enhances the invasion and migration of HNSCC cells. This effect is achieved through directly targeting LY6/PLAUR Domain Containing 3 (LYPD3) by miR-151-5p, involving complementary binding to the 3'-untranslated regions (3'-UTR) in the mRNA of LYPD3. Consequently, this interaction accelerates the metastasis of HNSCC. Notably, clinical observations indicate a correlation between high expression of miR-151-5p and low levels of LYPD3 in clinical settings are correlated with poor prognosis of HNSCC patients. Furthermore, our investigation demonstrates that glycosylation of LYPD3 modulates its subcellular localization and reinforces its role in suppressing HNSCC metastasis. Additionally, we uncover a potential regulatory mechanism involving the facilitation of miR-151-5p maturation and accumulation through N6-methyladenosine (m6A) modification. This process is orchestrated by methyltransferase-like 3 (METTL3) and mediated by a newly identified reader, heterogeneous nuclear ribonucleoprotein U (hnRNP U). These findings collectively underscore the significance of the METTL3/miR-151-5p/LYPD3 axis serves as a prominent driver in the malignant progression of HNSCC.
Collapse
Affiliation(s)
- Fei Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuan Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yufei Hua
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ying Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ruomeng Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ding Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xikun Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Junjie Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Shaanxi Key Laboratory of Stomatology, Department of Orthodontics, School of Stomatology, National Clinical Research Center for Oral Diseases, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
12
|
Li D, Deng Y, Wen G, Wang L, Shi X, Chen S, Chen R. Targeting BRD4 with PROTAC degrader ameliorates LPS-induced acute lung injury by inhibiting M1 alveolar macrophage polarization. Int Immunopharmacol 2024; 132:111991. [PMID: 38581996 DOI: 10.1016/j.intimp.2024.111991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/06/2024] [Accepted: 03/29/2024] [Indexed: 04/08/2024]
Abstract
OBJECTIVES Acute lung injury (ALI) is a highly inflammatory condition with the involvement of M1 alveolar macrophages (AMs) polarization, eventually leading to the development of non-cardiogenic edema in alveolar and interstitial regions, accompanied by persistent hypoxemia. Given the significant mortality rate associated with ALI, it is imperative to investigate the underlying mechanisms of this condition so as to identify potential therapeutic targets. The therapeutic effects of the inhibition of bromodomain containing protein 4 (BRD4), an epigenetic reader, has been proven with high efficacy in ameliorating various inflammatory diseases through mediating immune cell activation. However, little is known about the therapeutic potential of BRD4 degradation in acute lung injury. METHODS This study aimed to assess the protective efficacy of ARV-825, a novel BRD4-targeted proteolysis targeting chimera (PROTAC), against ALI through histopathological examination in lung tissues and biochemical analysis in bronchoalveolar lavage fluid (BALF). Additionally, the underlying mechanism by which BRD4 regulated M1 AMs was elucidated by using CUT & Tag assay. RESULTS In this study, we found the upregulation of BRD4 in a lipopolysaccharide (LPS)-induced ALI model. Furthermore, we observed that intraperitoneal administration of ARV-825, significantly alleviated LPS-induced pulmonary pathological changes and inflammatory responses. These effects were accompanied by the suppression of M1 AMs. In addition, our findings revealed that the administration of ARV-825 effectively suppressed M1 AMs by inhibiting the expression of IRF7, a crucial transcriptional factor involved in M1 macrophages. CONCLUSION Our study suggested that targeting BRD4 using ARV-825 is a potential therapeutic approach for ALI.
Collapse
Affiliation(s)
- Difei Li
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yao Deng
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guanxi Wen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lingwei Wang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xing Shi
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Shanze Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Rongchang Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
13
|
Wu Y, Zhang J, Zhao J, Wang B. Folate-modified liposomes mediate the co-delivery of cisplatin with miR-219a-5p for the targeted treatment of cisplatin-resistant lung cancer. BMC Pulm Med 2024; 24:159. [PMID: 38561695 PMCID: PMC10986081 DOI: 10.1186/s12890-024-02938-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Cisplatin (DDP) resistance, often leading to first-line chemotherapy failure in non-small cell lung cancer (NSCLC), poses a significant challenge. MiR-219a-5p has been reported to enhance the sensitivity of human NSCLC to DDP. However, free miR-219a-5p is prone to degradation by nucleases in the bloodstream, rendering it unstable. In light of this, our study developed an efficient nanodrug delivery system that achieved targeted delivery of DDP and miR-219a-5p by modifying liposomes with folate (FA). Based on the results of material characterization, we successfully constructed a well-dispersed and uniformly sized (approximately 135.8 nm) Lipo@DDP@miR-219a-5p@FA nanodrug. Agarose gel electrophoresis experiments demonstrated that Lipo@DDP@miR-219a-5p@FA exhibited good stability in serum, effectively protecting miR-219a-5p from degradation. Immunofluorescence and flow cytometry experiments revealed that, due to FA modification, Lipo@DDP@miR-219a-5p@FA could specifically bind to FA receptors on the surface of tumor cells (A549), thus enhancing drug internalization efficiency. Safety evaluations conducted in vitro demonstrated that Lipo@DDP@miR-219a-5p@FA exhibited no significant toxicity to non-cancer cells (BEAS-2B) and displayed excellent blood compatibility. Cellular functional experiments, apoptosis assays, and western blot demonstrated that Lipo@DDP@miR-219a-5p@FA effectively reversed DDP resistance in A549 cells, inhibited cell proliferation and migration, and further promoted apoptosis. In summary, the Lipo@DDP@miR-219a-5p@FA nanodrug, through specific targeting of cancer cells and reducing their resistance to DDP, significantly enhanced the anti-NSCLC effects of DDP in vitro, providing a promising therapeutic option for the clinical treatment of NSCLC.
Collapse
Affiliation(s)
- Yuanlin Wu
- Department of Thoracic Surgery, Shaoxing People's Hospital, No.568 Zhongxing North Road, 312000, Shaoxing, Zhejiang, China
| | - Jiandong Zhang
- Department of Thoracic Surgery, Shaoxing People's Hospital, No.568 Zhongxing North Road, 312000, Shaoxing, Zhejiang, China
| | - Junjun Zhao
- Department of Thoracic Surgery, Shaoxing People's Hospital, No.568 Zhongxing North Road, 312000, Shaoxing, Zhejiang, China
| | - Bin Wang
- Department of Thoracic Surgery, Shaoxing People's Hospital, No.568 Zhongxing North Road, 312000, Shaoxing, Zhejiang, China.
| |
Collapse
|