1
|
Gallo D, Cavelli M, Castro-Zaballa S, Castro-Nin JP, Pascovich C, Torterolo P, González J. Differential effects of haloperidol on neural oscillations during wakefulness and sleep. Neuroscience 2024; 560:67-76. [PMID: 39270770 DOI: 10.1016/j.neuroscience.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
The electrical activity of the brain, characterized by its frequency components, reflects a complex interplay between periodic (oscillatory) and aperiodic components. These components are associated with various neurophysiological processes, such as the excitation-inhibition balance (aperiodic activity) or interregional communication (oscillatory activity). However, we do not fully understand whether these components are truly independent or if different neuromodulators affect them in different ways. The dopaminergic system has a critical role for cognition and motivation, being a potential modulator of these power spectrum components. To improve our understanding of these questions, we investigated the differential effects of this system on these components using electrocorticogram recordings in cats, which show clear oscillations and aperiodic 1/f activity. Specifically, we focused on the effects of haloperidol (a D2 receptor antagonist) on oscillatory and aperiodic dynamics during wakefulness and sleep. By parameterizing the power spectrum into these two components, our findings reveal a robust modulation of oscillatory activity by the D2 receptor across the brain. Surprisingly, aperiodic activity was not significantly affected and exhibited inconsistent changes across the brain. This suggests a nuanced interplay between neuromodulation and the distinct components of brain oscillations, providing insights into the selective regulation of oscillatory dynamics in awake states.
Collapse
Affiliation(s)
- Diego Gallo
- Unidad Académica de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, 11800, Uruguay
| | - Matias Cavelli
- Unidad Académica de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, 11800, Uruguay; Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
| | - Santiago Castro-Zaballa
- Unidad Académica de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, 11800, Uruguay
| | - Juan Pedro Castro-Nin
- Unidad Académica de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, 11800, Uruguay
| | - Claudia Pascovich
- Unidad Académica de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, 11800, Uruguay; Department of Psychology, King's College, University of Cambridge, Cambridge, CB2 3EB, United Kingdom
| | - Pablo Torterolo
- Unidad Académica de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, 11800, Uruguay.
| | - Joaquín González
- Unidad Académica de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, 11800, Uruguay; Brain Institute, Federal University of Rio Grande do Norte, Natal, RN 59056, Brazil.
| |
Collapse
|
2
|
Wong TS, Li G, Li S, Gao W, Chen G, Gan S, Zhang M, Li H, Wu S, Du Y. G protein-coupled receptors in neurodegenerative diseases and psychiatric disorders. Signal Transduct Target Ther 2023; 8:177. [PMID: 37137892 PMCID: PMC10154768 DOI: 10.1038/s41392-023-01427-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/17/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Neuropsychiatric disorders are multifactorial disorders with diverse aetiological factors. Identifying treatment targets is challenging because the diseases are resulting from heterogeneous biological, genetic, and environmental factors. Nevertheless, the increasing understanding of G protein-coupled receptor (GPCR) opens a new possibility in drug discovery. Harnessing our knowledge of molecular mechanisms and structural information of GPCRs will be advantageous for developing effective drugs. This review provides an overview of the role of GPCRs in various neurodegenerative and psychiatric diseases. Besides, we highlight the emerging opportunities of novel GPCR targets and address recent progress in GPCR drug development.
Collapse
Affiliation(s)
- Thian-Sze Wong
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Guangzhi Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Wei Gao
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Geng Chen
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Shiyi Gan
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Manzhan Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China.
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China.
| | - Song Wu
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China.
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, 518116, Shenzhen, Guangdong, China.
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China.
| |
Collapse
|
3
|
de Bartolomeis A, Vellucci L, Barone A, Manchia M, De Luca V, Iasevoli F, Correll CU. Clozapine's multiple cellular mechanisms: What do we know after more than fifty years? A systematic review and critical assessment of translational mechanisms relevant for innovative strategies in treatment-resistant schizophrenia. Pharmacol Ther 2022; 236:108236. [PMID: 35764175 DOI: 10.1016/j.pharmthera.2022.108236] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 12/21/2022]
Abstract
Almost fifty years after its first introduction into clinical care, clozapine remains the only evidence-based pharmacological option for treatment-resistant schizophrenia (TRS), which affects approximately 30% of patients with schizophrenia. Despite the long-time experience with clozapine, the specific mechanism of action (MOA) responsible for its superior efficacy among antipsychotics is still elusive, both at the receptor and intracellular signaling level. This systematic review is aimed at critically assessing the role and specific relevance of clozapine's multimodal actions, dissecting those mechanisms that under a translational perspective could shed light on molecular targets worth to be considered for further innovative antipsychotic development. In vivo and in vitro preclinical findings, supported by innovative techniques and methods, together with pharmacogenomic and in vivo functional studies, point to multiple and possibly overlapping MOAs. To better explore this crucial issue, the specific affinity for 5-HT2R, D1R, α2c, and muscarinic receptors, the relatively low occupancy at dopamine D2R, the interaction with receptor dimers, as well as the potential confounder effects resulting in biased ligand action, and lastly, the role of the moiety responsible for lipophilic and alkaline features of clozapine are highlighted. Finally, the role of transcription and protein changes at the synaptic level, and the possibility that clozapine can directly impact synaptic architecture are addressed. Although clozapine's exact MOAs that contribute to its unique efficacy and some of its severe adverse effects have not been fully understood, relevant information can be gleaned from recent mechanistic understandings that may help design much needed additional therapeutic strategies for TRS.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy.
| | - Licia Vellucci
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy; Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Felice Iasevoli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Christoph U Correll
- The Zucker Hillside Hospital, Department of Psychiatry, Northwell Health, Glen Oaks, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Department of Psychiatry and Molecular Medicine, Hempstead, NY, USA; Charité Universitätsmedizin Berlin, Department of Child and Adolescent Psychiatry, Berlin, Germany
| |
Collapse
|
4
|
Farhid H, Khodkari V, Nazeri MT, Javanbakht S, Shaabani A. Multicomponent reactions as a potent tool for the synthesis of benzodiazepines. Org Biomol Chem 2021; 19:3318-3358. [PMID: 33899847 DOI: 10.1039/d0ob02600j] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Benzodiazepines (BZDs), a diverse class of benzofused seven-membered N-heterocycles, display essential pharmacological properties and play vital roles in some biochemical processes. They have mainly been prescribed as potential therapeutic agents, which interestingly represent various biological activities such as anticancer, anxiolytic, antipsychotic, anticonvulsant, antituberculosis, muscle relaxant, and antimicrobial activities. The extensive biological activities of BZDs in various fields have encouraged medicinal chemists to discover and design novel BZD-based scaffolds as potential therapeutic candidates with the favorite biological activity through an efficient protocol. Although certainly valuable and important, conventional synthetic routes to these bicyclic benzene compounds contain methodologies often requiring multistep procedures, which suffer from waste materials generation and lack of sustainability. By contrast, multicomponent reactions (MCRs) have recently advanced as a green synthetic strategy for synthesizing BZDs with the desired scope. In this regard, MCRs, especially Ugi and Ugi-type reactions, efficiently and conveniently supply various complex synthons, which can easily be converted to the BZDs via suitable post-transformations. Also, MCRs, especially Mannich-type reactions, provide speedy and economic approaches for the one-pot and one-step synthesis of BZDs. As a result, various functionalized-BZDs have been achieved by developing mild, efficient, and high-yielding MCR protocols. This review covers all aspects of the synthesis of BZDs with a particular focus on the MCRs as well as the mechanism chemistry of synthetic protocols. The present manuscript opens a new avenue for organic, medicinal, and industrial chemists to design safe, environmentally benign, and economical methods for the synthesis of new and known BZDs.
Collapse
Affiliation(s)
- Hassan Farhid
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran.
| | - Vida Khodkari
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran.
| | - Mohammad Taghi Nazeri
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran.
| | - Siamak Javanbakht
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran.
| | - Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran. and Peoples' Friendship University of Russia (RUDN University), 6, Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| |
Collapse
|
5
|
De Deurwaerdère P, Chagraoui A, Di Giovanni G. Serotonin/dopamine interaction: Electrophysiological and neurochemical evidence. PROGRESS IN BRAIN RESEARCH 2021; 261:161-264. [PMID: 33785130 DOI: 10.1016/bs.pbr.2021.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The interaction between serotonin (5-HT) and dopamine (DA) in the central nervous system (CNS) plays an important role in the adaptive properties of living animals to their environment. These are two modulatory, divergent systems shaping and regulating in a widespread manner the activity of neurobiological networks and their interaction. The concept of one interaction linking these two systems is rather elusive when looking at the mechanisms triggered by these two systems across the CNS. The great variety of their interacting mechanisms is in part due to the diversity of their neuronal origin, the density of their fibers in a given CNS region, the distinct expression of their numerous receptors in the CNS, the heterogeneity of their intracellular signaling pathway that depend on the cellular type expressing their receptors, and the state of activity of neurobiological networks, conditioning the outcome of their mutual influences. Thus, originally conceptualized as inhibition of 5-HT on DA neuron activity and DA neurotransmission, this interaction is nowadays considered as a multifaceted, mutual influence of these two systems in the regulation of CNS functions. These new ways of understanding this interaction are of utmost importance to envision the consequences of their dysfunctions underlined in several CNS diseases. It is also essential to conceive the mechanism of action of psychotropic drugs directly acting on their function including antipsychotic, antidepressant, antiparkinsonian, and drug of abuse together with the development of therapeutic strategies of Alzheimer's diseases, epilepsy, obsessional compulsive disorders. The 5-HT/DA interaction has a long history from the serendipitous discovery of antidepressants and antipsychotics to the future, rationalized treatments of CNS disorders.
Collapse
Affiliation(s)
- Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France.
| | - Abdeslam Chagraoui
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Normandie University, UNIROUEN, INSERM U1239, Rouen, France; Department of Medical Biochemistry, Rouen University Hospital, Rouen, France
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
6
|
Li J, Lu C, Gao Z, Feng Y, Luo H, Lu T, Sun X, Hu J, Luo Y. SNRIs achieve faster antidepressant effects than SSRIs by elevating the concentrations of dopamine in the forebrain. Neuropharmacology 2020; 177:108237. [PMID: 32710978 DOI: 10.1016/j.neuropharm.2020.108237] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/29/2020] [Accepted: 07/11/2020] [Indexed: 10/23/2022]
Abstract
Major depressive disorder (MDD) is a severe mental disorder with a high disability rate worldwide. Selective serotonin reuptake inhibitors (SSRIs) and serotonin and norepinephrine reuptake inhibitors (SNRIs) are the most common agents for antidepressant use. SSRIs and SNRIs are believed to achieve antidepressant effects through the activation of serotonergic or noradrenergic systems. However, whether the dopaminergic system is involved remains unclear. In our study, a genetically encoded dopamine sensor and in vivo fiber photometry recordings were used to measure the dopamine concentrations in the medial prefrontal cortex (mPFC) and nucleus accumbens (NAc) after acute intraperitoneal injection of SSRIs or SNRIs. Combined with the behavioral tests, we found that SNRIs increased dopamine concentrations in both the mPFC and the NAc and showed faster antidepressant effects than SSRIs. To verify the enhanced dopamine levels induce the faster antidepressant effects of SNRIs, we employed dopamine receptor antagonists to specifically block the dopaminergic function. The results showed that the faster antidepressant effects of SNRIs were weakened by the dopamine receptor antagonists. Altogether, our study reveals that SNRIs achieve faster antidepressant effects than SSRIs by elevating the dopamine concentrations in the mPFC and the NAc. Our work proposes further mechanisms for the first-line antidepressants, which provides more basis for clinical treatments. This article is part of the special issue on Stress, Addiction and Plasticity.
Collapse
Affiliation(s)
- Jie Li
- Department of Psychological Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Chen Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Zilong Gao
- Chinese Institute for Brain Research, Beijing (CIBR), Beijing, 102206, China
| | - Yifan Feng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Huoqing Luo
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Tangsheng Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Xia Sun
- Department of Psychological Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ji Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Yanli Luo
- Department of Psychological Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
7
|
De Deurwaerdère P, Bharatiya R, Chagraoui A, Di Giovanni G. Constitutive activity of 5-HT receptors: Factual analysis. Neuropharmacology 2020; 168:107967. [DOI: 10.1016/j.neuropharm.2020.107967] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/26/2019] [Accepted: 01/12/2020] [Indexed: 12/16/2022]
|
8
|
Canal CE. Serotonergic Psychedelics: Experimental Approaches for Assessing Mechanisms of Action. Handb Exp Pharmacol 2019; 252:227-260. [PMID: 29532180 PMCID: PMC6136989 DOI: 10.1007/164_2018_107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Recent, well-controlled - albeit small-scale - clinical trials show that serotonergic psychedelics, including psilocybin and lysergic acid diethylamide, possess great promise for treating psychiatric disorders, including treatment-resistant depression. Additionally, fresh results from a deluge of clinical neuroimaging studies are unveiling the dynamic effects of serotonergic psychedelics on functional activity within, and connectivity across, discrete neural systems. These observations have led to testable hypotheses regarding neural processing mechanisms that contribute to psychedelic effects and therapeutic benefits. Despite these advances and a plethora of preclinical and clinical observations supporting a central role for brain serotonin 5-HT2A receptors in producing serotonergic psychedelic effects, lingering and new questions about mechanisms abound. These chiefly pertain to molecular neuropharmacology. This chapter is devoted to illuminating and discussing such questions in the context of preclinical experimental approaches for studying mechanisms of action of serotonergic psychedelics, classic and new.
Collapse
Affiliation(s)
- Clinton E Canal
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA.
| |
Collapse
|
9
|
Aringhieri S, Carli M, Kolachalam S, Verdesca V, Cini E, Rossi M, McCormick PJ, Corsini GU, Maggio R, Scarselli M. Molecular targets of atypical antipsychotics: From mechanism of action to clinical differences. Pharmacol Ther 2018; 192:20-41. [PMID: 29953902 DOI: 10.1016/j.pharmthera.2018.06.012] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The introduction of atypical antipsychotics (AAPs) since the discovery of its prototypical drug clozapine has been a revolutionary pharmacological step for treating psychotic patients as these allow a significant recovery not only in terms of hospitalization and reduction in symptoms severity, but also in terms of safety, socialization and better rehabilitation in the society. Regarding the mechanism of action, AAPs are weak D2 receptor antagonists and they act beyond D2 antagonism, involving other receptor targets which regulate dopamine and other neurotransmitters. Consequently, AAPs present a significant reduction of deleterious side effects like parkinsonism, hyperprolactinemia, apathy and anhedonia, which are all linked to the strong blockade of D2 receptors. This review revisits previous and current findings within the class of AAPs and highlights the differences in terms of receptor properties and clinical activities among them. Furthermore, we propose a continuum spectrum of "atypia" that begins with risperidone (the least atypical) to clozapine (the most atypical), while all the other AAPs fall within the extremes of this spectrum. Clozapine is still considered the gold standard in refractory schizophrenia and in psychoses present in Parkinson's disease, though it has been associated with adverse effects like agranulocytosis (0.7%) and weight gain, pushing the scientific community to find new drugs as effective as clozapine, but devoid of its side effects. To achieve this, it is therefore imperative to characterize and compare in depth the very complex molecular profile of AAPs. We also introduce relatively new concepts like biased agonism, receptor dimerization and neurogenesis to identify better the old and new hallmarks of "atypia". Finally, a detailed confrontation of clinical differences among the AAPs is presented, especially in relation to their molecular targets, and new means like therapeutic drug monitoring are also proposed to improve the effectiveness of AAPs in clinical practice.
Collapse
Affiliation(s)
- Stefano Aringhieri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Marco Carli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Shivakumar Kolachalam
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Valeria Verdesca
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Enrico Cini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Mario Rossi
- Institute of Molecular Cell and Systems Biology, University of Glasgow, UK
| | - Peter J McCormick
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London EC1M 6BQ, UK
| | - Giovanni U Corsini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Roberto Maggio
- Biotechnological and Applied Clinical Sciences Department, University of L'Aquila, Italy
| | - Marco Scarselli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy.
| |
Collapse
|
10
|
Sullivan LC, Clarke WP, Berg KA. Atypical antipsychotics and inverse agonism at 5-HT2 receptors. Curr Pharm Des 2016; 21:3732-8. [PMID: 26044975 DOI: 10.2174/1381612821666150605111236] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/04/2015] [Indexed: 11/22/2022]
Abstract
It is now well accepted that receptors can regulate cellular signaling pathways in the absence of a stimulating ligand, and inverse agonists can reduce this ligand-independent or "constitutive" receptor activity. Both the serotonin 5-HT2A and 5-HT2C receptors have demonstrated constitutive receptor activity in vitro and in vivo. Each has been identified as a target for treatment of schizophrenia. Further, most, if not all, atypical antipsychotic drugs have inverse agonist properties at both 5-HT2A and 5-HT2C receptors. This paper describes our current knowledge of inverse agonism of atypical antipsychotics at 5-HT2A/2C receptor subtypes in vitro and in vivo. Exploiting inverse agonist properties of APDs may provide new avenues for drug development.
Collapse
Affiliation(s)
| | | | - Kelly A Berg
- Department of Pharmacology - MS 7764, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA.
| |
Collapse
|
11
|
Kawano M, Oshibuchi H, Kawano T, Muraoka H, Tsutsumi T, Yamada M, Inada K, Ishigooka J. Dopamine dynamics during emotional cognitive processing: Implications of the specific actions of clozapine compared with haloperidol. Eur J Pharmacol 2016; 781:148-56. [DOI: 10.1016/j.ejphar.2016.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/06/2016] [Accepted: 04/08/2016] [Indexed: 10/21/2022]
|
12
|
Chagraoui A, Thibaut F, Skiba M, Thuillez C, Bourin M. 5-HT2C receptors in psychiatric disorders: A review. Prog Neuropsychopharmacol Biol Psychiatry 2016; 66:120-135. [PMID: 26739950 DOI: 10.1016/j.pnpbp.2015.12.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/25/2015] [Accepted: 12/26/2015] [Indexed: 12/26/2022]
Abstract
5-HT2Rs have a different genomic organization from other 5-HT2Rs. 5HT2CR undergoes post-transcriptional pre-mRNA editing generating diversity among RNA transcripts. Selective post-transcriptional editing could be involved in the pathophysiology of psychiatric disorders through impairment in G-protein interactions. Moreover, it may influence the therapeutic response to agents such as atypical antipsychotic drugs. Additionally, 5-HT2CR exhibits alternative splicing. Central serotonergic and dopaminergic systems interact to modulate normal and abnormal behaviors. Thus, 5HT2CR plays a crucial role in psychiatric disorders. 5HT2CR could be a relevant pharmacological target in the treatment of neuropsychiatric disorders. The development of drugs that specifically target 5-HT2C receptors will allow for better understanding of their involvement in the pathophysiology of psychiatric disorders including schizophrenia, anxiety, and depression. Among therapeutic means currently available, most drugs used to treat highly morbid psychiatric diseases interact at least partly with 5-HT2CRs. Pharmacologically, 5HT2CRs, have the ability to generate differentially distinct response signal transduction pathways depending on the type of 5HT2CR agonist. Although this receptor property has been clearly demonstrated, in vitro, the eventual beneficial impact of this property opens new perspectives in the development of agonists that could activate signal transduction pathways leading to better therapeutic efficiency with fewer adverse effects.
Collapse
Affiliation(s)
- A Chagraoui
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Normandy University, France; Department of Medical Biochemistry, Rouen University Hospital, Rouen, France.
| | - F Thibaut
- Department of Psychiatry, University Hospital Cochin (site Tarnier), University of Paris-Descartes and INSERM U 894 Laboratory of Psychiatry and Neurosciences, Paris, France
| | - M Skiba
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Normandy University, France
| | - C Thuillez
- Department of Pharmacology, Rouen University Hospital, Rouen, France; INSERM U1096, Laboratory of New Pharmacological Targets for Endothelial Protection and Heart Failure, Institute for Research and Innovation in Biomedicine, Normandy University, France
| | - M Bourin
- EA 3256 Neurobiology of Anxiety and Depression, Faculté de Médecine, BP 53508, 1 rue Gaston Veil, F44035 Nantes Cedex 01, France
| |
Collapse
|
13
|
De Deurwaerdère P, Di Giovanni G. Serotonergic modulation of the activity of mesencephalic dopaminergic systems: Therapeutic implications. Prog Neurobiol 2016; 151:175-236. [PMID: 27013075 DOI: 10.1016/j.pneurobio.2016.03.004] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/13/2016] [Accepted: 03/14/2016] [Indexed: 12/14/2022]
Abstract
Since their discovery in the mammalian brain, it has been apparent that serotonin (5-HT) and dopamine (DA) interactions play a key role in normal and abnormal behavior. Therefore, disclosure of this interaction could reveal important insights into the pathogenesis of various neuropsychiatric diseases including schizophrenia, depression and drug addiction or neurological conditions such as Parkinson's disease and Tourette's syndrome. Unfortunately, this interaction remains difficult to study for many reasons, including the rich and widespread innervations of 5-HT and DA in the brain, the plethora of 5-HT receptors and the release of co-transmitters by 5-HT and DA neurons. The purpose of this review is to present electrophysiological and biochemical data showing that endogenous 5-HT and pharmacological 5-HT ligands modify the mesencephalic DA systems' activity. 5-HT receptors may control DA neuron activity in a state-dependent and region-dependent manner. 5-HT controls the activity of DA neurons in a phasic and excitatory manner, except for the control exerted by 5-HT2C receptors which appears to also be tonically and/or constitutively inhibitory. The functional interaction between the two monoamines will also be discussed in view of the mechanism of action of antidepressants, antipsychotics, anti-Parkinsonians and drugs of abuse.
Collapse
Affiliation(s)
- Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5293, 33076 Bordeaux Cedex, France.
| | - Giuseppe Di Giovanni
- Department of Physiology & Biochemistry, Faculty of Medicine and Surgery, University of Malta, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
14
|
Di Giovanni G, De Deurwaerdère P. New therapeutic opportunities for 5-HT2C receptor ligands in neuropsychiatric disorders. Pharmacol Ther 2015; 157:125-62. [PMID: 26617215 DOI: 10.1016/j.pharmthera.2015.11.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The 5-HT2C receptor (R) displays a widespread distribution in the CNS and is involved in the action of 5-HT in all brain areas. Knowledge of its functional role in the CNS pathophysiology has been impaired for many years due to the lack of drugs capable of discriminating among 5-HT2R subtypes, and to a lesser extent to the 5-HT1B, 5-HT5, 5-HT6 and 5-HT7Rs. The situation has changed since the mid-90s due to the increased availability of new and selective synthesized compounds, the creation of 5-HT2C knock out mice, and the progress made in molecular biology. Many pharmacological classes of drugs including antipsychotics, antidepressants and anxiolytics display affinities toward 5-HT2CRs and new 5-HT2C ligands have been developed for various neuropsychiatric disorders. The 5-HT2CR is presumed to mediate tonic/constitutive and phasic controls on the activity of different central neurobiological networks. Preclinical data illustrate this complexity to a point that pharmaceutical companies developed either agonists or antagonists for the same disease. In order to better comprehend this complexity, this review will briefly describe the molecular pharmacology of 5-HT2CRs, as well as their cellular impacts in general, before addressing its central distribution in the mammalian brain. Thereafter, we review the preclinical efficacy of 5-HT2C ligands in numerous behavioral tests modeling human diseases, highlighting the multiple and competing actions of the 5-HT2CRs in neurobiological networks and monoaminergic systems. Notably, we will focus this evidence in the context of the physiopathology of psychiatric and neurological disorders including Parkinson's disease, levodopa-induced dyskinesia, and epilepsy.
Collapse
Affiliation(s)
- Giuseppe Di Giovanni
- Department of Physiology & Biochemistry, Faculty of Medicine and Surgery, University of Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, UK.
| | - Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5293) 33076 Bordeaux Cedex, France.
| |
Collapse
|
15
|
Howell LL, Cunningham KA. Serotonin 5-HT2 receptor interactions with dopamine function: implications for therapeutics in cocaine use disorder. Pharmacol Rev 2015; 67:176-97. [PMID: 25505168 PMCID: PMC4279075 DOI: 10.1124/pr.114.009514] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cocaine exhibits prominent abuse liability, and chronic abuse can result in cocaine use disorder with significant morbidity. Major advances have been made in delineating neurobiological mechanisms of cocaine abuse; however, effective medications to treat cocaine use disorder remain to be discovered. The present review will focus on the role of serotonin (5-HT; 5-hydroxytryptamine) neurotransmission in the neuropharmacology of cocaine and related abused stimulants. Extensive research suggests that the primary contribution of 5-HT to cocaine addiction is a consequence of interactions with dopamine (DA) neurotransmission. The literature on the neurobiological and behavioral effects of cocaine is well developed, so the focus of the review will be on cocaine with inferences made about other monoamine uptake inhibitors and releasers based on mechanistic considerations. 5-HT receptors are widely expressed throughout the brain, and several different 5-HT receptor subtypes have been implicated in mediating the effects of endogenous 5-HT on DA. However, the 5-HT2A and 5-HT2C receptors in particular have been implicated as likely candidates for mediating the influence of 5-HT in cocaine abuse as well as to traits (e.g., impulsivity) that contribute to the development of cocaine use disorder and relapse in humans. Lastly, new approaches are proposed to guide targeted development of serotonergic ligands for the treatment of cocaine use disorder.
Collapse
MESH Headings
- Animals
- Behavior, Addictive/drug therapy
- Behavior, Addictive/metabolism
- Behavior, Addictive/psychology
- Behavior, Animal/drug effects
- Brain/drug effects
- Brain/metabolism
- Brain/physiopathology
- Central Nervous System Stimulants/adverse effects
- Cocaine/adverse effects
- Cocaine-Related Disorders/drug therapy
- Cocaine-Related Disorders/metabolism
- Cocaine-Related Disorders/physiopathology
- Cocaine-Related Disorders/psychology
- Disease Models, Animal
- Dopamine/metabolism
- Drug Design
- Humans
- Molecular Targeted Therapy
- Receptor, Serotonin, 5-HT2A/drug effects
- Receptor, Serotonin, 5-HT2A/metabolism
- Receptor, Serotonin, 5-HT2C/drug effects
- Receptor, Serotonin, 5-HT2C/metabolism
- Serotonin Agents/therapeutic use
- Synaptic Transmission/drug effects
Collapse
Affiliation(s)
- Leonard L Howell
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia (L.L.H.); and Center for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (K.A.C.)
| | - Kathryn A Cunningham
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia (L.L.H.); and Center for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (K.A.C.)
| |
Collapse
|
16
|
D'Amico JM, Condliffe EG, Martins KJB, Bennett DJ, Gorassini MA. Recovery of neuronal and network excitability after spinal cord injury and implications for spasticity. Front Integr Neurosci 2014; 8:36. [PMID: 24860447 PMCID: PMC4026713 DOI: 10.3389/fnint.2014.00036] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 04/17/2014] [Indexed: 01/08/2023] Open
Abstract
The state of areflexia and muscle weakness that immediately follows a spinal cord injury (SCI) is gradually replaced by the recovery of neuronal and network excitability, leading to both improvements in residual motor function and the development of spasticity. In this review we summarize recent animal and human studies that describe how motoneurons and their activation by sensory pathways become hyperexcitable to compensate for the reduction of functional activation of the spinal cord and the eventual impact on the muscle. Specifically, decreases in the inhibitory control of sensory transmission and increases in intrinsic motoneuron excitability are described. We present the idea that replacing lost patterned activation of the spinal cord by activating synaptic inputs via assisted movements, pharmacology or electrical stimulation may help to recover lost spinal inhibition. This may lead to a reduction of uncontrolled activation of the spinal cord and thus, improve its controlled activation by synaptic inputs to ultimately normalize circuit function. Increasing the excitation of the spinal cord with spared descending and/or peripheral inputs by facilitating movement, instead of suppressing it pharmacologically, may provide the best avenue to improve residual motor function and manage spasticity after SCI.
Collapse
Affiliation(s)
- Jessica M D'Amico
- Centre for Neuroscience, University of Alberta Edmonton, AB, Canada ; Faculty of Medicine and Dentistry, University of Alberta Edmonton, AB, Canada
| | - Elizabeth G Condliffe
- Centre for Neuroscience, University of Alberta Edmonton, AB, Canada ; Faculty of Medicine and Dentistry, University of Alberta Edmonton, AB, Canada ; Department of Biomedical Engineering, University of Alberta Edmonton, AB, Canada ; Division of Physical Medicine and Rehabilitation, University of Alberta Edmonton, AB, Canada
| | - Karen J B Martins
- Centre for Neuroscience, University of Alberta Edmonton, AB, Canada ; Faculty of Physical Education and Recreation, University of Alberta Edmonton, AB, Canada
| | - David J Bennett
- Centre for Neuroscience, University of Alberta Edmonton, AB, Canada ; Faculty of Rehabilitation Medicine, University of Alberta Edmonton, AB, Canada
| | - Monica A Gorassini
- Centre for Neuroscience, University of Alberta Edmonton, AB, Canada ; Faculty of Medicine and Dentistry, University of Alberta Edmonton, AB, Canada ; Department of Biomedical Engineering, University of Alberta Edmonton, AB, Canada
| |
Collapse
|
17
|
Serotonin2C receptors and drug addiction: focus on cocaine. Exp Brain Res 2013; 230:537-45. [PMID: 23748692 DOI: 10.1007/s00221-013-3593-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 05/22/2013] [Indexed: 12/20/2022]
Abstract
This review provides an overview of the role of central serotonin2C (5-HT2C) receptors in drug addiction, specifically focusing on their impact on the neurochemical and behavioral effects of cocaine, one of the most worldwide abused drug. First, we described the neurochemical and electrophysiological mechanisms underlying the interaction between 5-HT2C receptors and the mesocorticolimbic dopaminergic network, in keeping with the key role of this system in drug abuse and dependence. Thereafter, we focused on the role of 5-HT2C receptors in the effects of cocaine in various preclinical behavioral models used in drug addiction research, such as locomotor hyperactivity, locomotor sensitization, drug discrimination, and self-administration, to end with an overview of the neurochemical mechanisms underlying the interactions between 5-HT2C receptors, mesocorticolimbic dopamine system, and cocaine. On their whole, the presented data provide compelling preclinical evidence that 5-HT2C receptor agonists may have efficacy in the treatment of cocaine abuse and dependence, thereby underlying the need for additional clinical studies to ascertain whether preclinical data translate to the human.
Collapse
|
18
|
Multiple controls exerted by 5-HT2C receptors upon basal ganglia function: from physiology to pathophysiology. Exp Brain Res 2013; 230:477-511. [PMID: 23615975 DOI: 10.1007/s00221-013-3508-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 03/28/2013] [Indexed: 10/26/2022]
Abstract
Serotonin2C (5-HT2C) receptors are expressed in the basal ganglia, a group of subcortical structures involved in the control of motor behaviour, mood and cognition. These receptors are mediating the effects of 5-HT throughout different brain areas via projections originating from midbrain raphe nuclei. A growing interest has been focusing on the function of 5-HT2C receptors in the basal ganglia because they may be involved in various diseases of basal ganglia function notably those associated with chronic impairment of dopaminergic transmission. 5-HT2C receptors act on numerous types of neurons in the basal ganglia, including dopaminergic, GABAergic, glutamatergic or cholinergic cells. Perhaps inherent to their peculiar molecular properties, the modality of controls exerted by 5-HT2C receptors over these cell populations can be phasic, tonic (dependent on the 5-HT tone) or constitutive (a spontaneous activity without the presence of the ligand). These controls are functionally organized in the basal ganglia: they are mainly localized in the input structures and preferentially distributed in the limbic/associative territories of the basal ganglia. The nature of these controls is modified in neuropsychiatric conditions such as Parkinson's disease, tardive dyskinesia or addiction. Most of the available data indicate that the function of 5-HT2C receptor is enhanced in cases of chronic alterations of dopamine neurotransmission. The review illustrates that 5-HT2C receptors play a role in maintaining continuous controls over the basal ganglia via multiple diverse actions. We will discuss their interest for treatments aimed at ameliorating current pharmacotherapies in schizophrenia, Parkinson's disease or drugs abuse.
Collapse
|
19
|
Pharmacological and genetic interventions in serotonin (5-HT)(2C) receptors to alter drug abuse and dependence processes. Brain Res 2012; 1476:132-53. [PMID: 22494568 DOI: 10.1016/j.brainres.2012.03.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 03/13/2012] [Accepted: 03/15/2012] [Indexed: 11/22/2022]
Abstract
The present review provides an overview on serotonin (5-hydroxytryptamine; 5-HT)(2C) receptors and their relationship to drug dependence. We have focused our discussion on the impact of 5-HT(2C) receptors on the effects of different classes of addictive drugs, illustrated by reference to data using pharmacological and genetic tools. The neurochemical mechanism of the interaction between 5-HT(2C) receptors, with focus on the mesocorticolimbic dopaminergic system, and drugs of abuse (using cocaine as an example) is discussed. Finally, we integrate recent nonclinical and clinical research and information with marketed products possessing 5-HT(2C) receptor binding affinities. Accordingly, available nonclinical data and some clinical observations targeting 5-HT(2C) receptors may offer innovative translational strategies for combating drug dependence.This article is part of a Special Issue entitled: Brain Integration.
Collapse
|
20
|
Clozapine increases reward evaluation but not overall ingestive behaviour in rats licking for sucrose. Psychopharmacology (Berl) 2011; 216:411-20. [PMID: 21360098 DOI: 10.1007/s00213-011-2237-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 02/13/2011] [Indexed: 10/18/2022]
Abstract
RATIONALE Clozapine and the "atypical" antipsychotics are less prone than neuroleptics to induce extrapyramidal motor effects, worsening of the negative symptoms of schizophrenia and dysphoria. This is paralleled by preclinical evidence showing reduced suppression of behaviours aimed at the pursuit of reward, with increased measures of reward efficacy. Serotonin 5-HT2 receptors seem to play a role in determining this profile. OBJECTIVE We investigated the effects of clozapine on the microstructure of ingestive behaviour, which might reveal behavioural dimensions, such as reward evaluation and behavioural activation, which might be relevant in explaining its atypical profile. Moreover, we investigated the possibility that coadministration of the typical antipsychotic haloperidol and the 5-HT2A/2C receptor antagonist ritanserin might mimic clozapine effects. MATERIALS AND METHODS The effects of clozapine (0.5, 1 and 5 mg/kg) and of the coadministration of haloperidol (0.05 mg/kg) and ritanserin (0.5 and 3 mg/kg) have been examined on the microstructure of licking for a 10% sucrose solution in rats. RESULTS Clozapine failed to affect whole ingestion as revealed by the lack of effect on lick number. However, it increased reward evaluation at the dose of 1 mg/kg, as revealed by increased mean bout size. Haloperidol resulted in a decreased bout size. Ritanserin failed to exert any effects either alone or when coadministered with haloperidol. CONCLUSION The ability of clozapine to increase reward evaluation might contribute to explain its atypical profile both in the clinical setting and in preclinical studies. These results suggest that 5-HT2A/2C receptors are not involved in the observed effect.
Collapse
|
21
|
Meltzer HY, Massey BW. The role of serotonin receptors in the action of atypical antipsychotic drugs. Curr Opin Pharmacol 2011; 11:59-67. [PMID: 21420906 DOI: 10.1016/j.coph.2011.02.007] [Citation(s) in RCA: 260] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 02/22/2011] [Indexed: 12/15/2022]
Abstract
The main class of atypical antipsychotic drugs (APDs) in current use includes the protypical atypical APD, clozapine, as well as aripiprazole, asenapine, iloperidone, lurasidone, olanzapine, quetiapine, risperidone, and ziprasidone. At clinically effective doses, these agents produce extensive blockade of serotonin (5-HT)(2A) receptors, direct or indirect stimulation of 5-HT(1A) receptors, and to a lesser extent, reduction in dopamine (DA) D(2) receptor-mediated neurotransmission. This contrasts with typical APDs, for example haloperidol and perphenazine, which are mainly DA D(2/)D(3) receptor antagonists and have weaker, if any, potency as 5-HT(2A) receptor antagonists. Some, but not all, atypical APDs are also effective 5-HT(2C) receptor inverse agonists or neutral antagonists, 5-HT(6) or 5-HT(7) receptor antagonists. This diverse action on 5-HT receptors may contribute to significant differences in efficacy and tolerability among the atypical APDs. There is considerable preclinical and some clinical evidence that effects on 5-HT receptors contribute to the low risk of producing extrapyramidal side effects, which is the defining characteristic of an atypical APD, the lack of elevation in plasma prolactin levels (with risperidone and 9-hydroxyrisperidone being exceptions), antipsychotic action, and ability to improve some domains of cognition in patients with schizophrenia. The serotonergic actions of the atypical APDs, especially 5-HT(2A) receptor antagonism, are particularly important to the differential effects of typical and atypical APDs to overcome the effects of acute or subchronic administration of N-methyl-d-aspartate (NMDA) receptor antagonists, such as phencyclidine, ketamine, and dizocipline (MK-801). 5-HT(1A) receptor stimulation and 5-HT(6) and 5-HT(7) receptor antagonism may contribute to beneficial effects of these agents on cognition. In particular, 5-HT(7) receptor antagonism may be the basis for the pro-cognitive effects of the atypical APD, amisulpride, a D(2)/D(3) receptor antagonist, which has no effect on other 5-HT receptor. 5-HT(2C) receptor antagonism appears to contribute to the weight gain produced by some atypical APDs and may also affect cognition and psychosis via its influence on cortical and limbic dopaminergic activity.
Collapse
Affiliation(s)
- H Y Meltzer
- Vanderbilt University School of Medicine, Department of Psychiatry, 1601 23rd Avenue South, Suite 306, Nashville, TN 37212, USA.
| | | |
Collapse
|
22
|
De Deurwaerdère P, Mignon L, Chesselet MF. Physiological and Pathophysiological Aspects of 5-HT2c Receptors in Basal Ganglia. 5-HT2C RECEPTORS IN THE PATHOPHYSIOLOGY OF CNS DISEASE 2011. [DOI: 10.1007/978-1-60761-941-3_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
|
23
|
The Constitutive Activity of 5-HT2C Receptors as an Additional Modality of Interaction of the Serotonergic System. 5-HT2C RECEPTORS IN THE PATHOPHYSIOLOGY OF CNS DISEASE 2011. [DOI: 10.1007/978-1-60761-941-3_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
24
|
Auclair AL, Cathala A, Sarrazin F, Depoortère R, Piazza PV, Newman-Tancredi A, Spampinato U. The central serotonin 2B receptor: a new pharmacological target to modulate the mesoaccumbens dopaminergic pathway activity. J Neurochem 2010; 114:1323-32. [PMID: 20534001 DOI: 10.1111/j.1471-4159.2010.06848.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The function of the serotonin(2B) receptor (5-HT(2B)R) in the mammalian brain is poorly characterized, especially with regard to its influence on dopamine (DA) neuron activity. Here, we assessed this issue by evaluating effects of 5-HT(2B)Rs ligands in the control of striatal and accumbal DA outflow, using in vivo microdialysis in halothane-anesthetized rats, and amphetamine-induced hyperlocomotion in vigil rats. The selective 5-HT(2B)R antagonist 1-[(2-chloro-3,4-dimethoxyphenyl)methyl]-2,3,4,9-tetrahydro-6-methyl-1H-pyrido[3,4-B]indole (LY 266097; 0.16 mg/kg, i.p.) had no influence on basal accumbal and striatal DA outflow but reduced significantly accumbal DA outflow when injected at 0.63 mg/kg. A significant reduction of basal DA outflow in the nucleus accumbens was also observed after i.p. administration of 0.16 mg/kg 2-amino-4-(4-fluoronaphth-1-yl)-6-isopropylpyrimidine, another selective 5-HT(2B)R antagonist. In contrast, the 5-HT(2B)R agonist alpha-methyl-5-(2-thienylmethoxy)-1H-indole-3-ethanamine (3 mg/kg, s.c.) had no influence on basal DA outflow in either brain region. The increase in striatal and accumbal DA outflow induced by the 5-HT(2C)R inverse agonist 5-methyl-1-(3-pyridylcarbamoyl)-1,2,3,5-tetrahydropyrrolo[2,3-f] indole (5 mg/kg, i.p.) was unaltered by LY 266097 (0.63 mg/kg) pre-treatment. Conversely, LY 266097 (0.63 mg/kg) significantly diminished the increase in DA outflow induced by haloperidol (0.01 mg/kg, s.c.) or amphetamine (0.5 mg/kg, i.p.) in the nucleus accumbens, but not in the striatum. Amphetamine-induced hyperlocomotion (1 mg/kg) was also attenuated by LY 266097 (0.63 mg/kg). These findings demonstrate that 5-HT(2B)Rs exert a facilitatory control on mesoaccumbens DA pathway activity, and suggest that they may constitute a new target for improved treatment of DA-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Agnès L Auclair
- Division of Neurobiology 2, Centre de Recherche Pierre Fabre, Castres, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The interaction between serotonin (5-HT) and dopamine (DA)-containing neurons in the brain is a research topic that has raised the interest of many scientists working in the field of neuroscience since the first demonstration of the presence of monoamine-containing neurons in the mid 1960. The bulk of neuroanatomical data available clearly indicate that DA-containing neurons in the brain receive a prominent innervation from serotonin (5-hydroxytryptamine, 5-HT) originating in the raphe nuclei of the brainstem. Compelling electrophysiological and neurochemical data show that 5-HT can exert complex effects on the activity of midbrain DA neurons mediated by its various receptor subtypes. The main control seems to be inhibitory, this effect being more marked in the mesocorticolimbic DA system as compared to the DA nigrostriatal system. In spite of a direct effect of 5-HT by its receptors located on DA cells, 5-HT can modulate their activity indirectly, modifying gamma-aminobutyric (GABA)-ergic and glutamatergic input to the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc). Although 5-HT/DA interaction in the brain has been extensively studied, much work remains to be done to clarify this issue. The recent development of subtype-selective ligands for 5-HT receptors will not only allow a detailed understanding of this interaction but also will lead to the development of new treatment strategies, appropriate for those neuropsychiatric disorders in which an alteration of the 5-HT/DA balance is supposed.
Collapse
Affiliation(s)
- Giuseppe Di Giovanni
- Department of Physiology and Biochemistry, University of Malta, Msida MSD, Malta
| | - Ennio Esposito
- Istituto di Ricerche Farmacologiche “Mario Negri,” Consorzio Mario Negri Sud, Santa Maria Imbaro, CH, Italy
| | - Vincenzo Di Matteo
- Istituto di Ricerche Farmacologiche “Mario Negri,” Consorzio Mario Negri Sud, Santa Maria Imbaro, CH, Italy
| |
Collapse
|
26
|
Aloyo VJ, Berg KA, Clarke WP, Spampinato U, Harvey JA. Inverse Agonism at Serotonin and Cannabinoid Receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 91:1-40. [DOI: 10.1016/s1877-1173(10)91001-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
27
|
Leggio GM, Cathala A, Neny M, Rouge-Pont F, Drago F, Piazza PV, Spampinato U. In vivo evidence that constitutive activity of serotonin2C receptors in the medial prefrontal cortex participates in the control of dopamine release in the rat nucleus accumbens: differential effects of inverse agonist versus antagonist. J Neurochem 2009; 111:614-23. [PMID: 19702657 DOI: 10.1111/j.1471-4159.2009.06356.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Control of the mesoaccumbens dopamine (DA) pathway by central serotonin(2C) receptors (5-HT(2C)Rs) involves different 5-HT(2C)R populations located within multiple brain areas. Here, using in vivo microdialysis in halothane-anesthetized rats, we assessed the role of medial prefrontal cortex (mPFC) 5-HT(2C)Rs in the control of basal and activated accumbal DA outflow, to identify the modalities of their recruitment and the role of 5-HT(2C)R constitutive activity. Intra-mPFC injection of the 5-HT(2C)R inverse agonist SB 206553 (0.5 microg/0.2 microL), without effect by itself, decreased accumbal DA outflow induced by morphine (2.5-10 mg/kg, s.c.), haloperidol (0.01 mg/kg, s.c.) or GBR 12909 (2.5 mg/kg, i.p.). Conversely, intra-mPFC injection of the 5-HT(2C)R antagonist SB 242084 (0.5 microg/0.2 microL), without effect by itself, decreased the effect of 10 mg/kg morphine, the only drug enhancing basal 5-HT outflow in the mPFC. The inhibitory effect of SB 206553 on 2.5 mg/kg morphine-stimulated DA outflow was suppressed by the concomitant intra-mPFC injection of SB 242084. Finally, changes of basal DA outflow induced by the 5-HT(2C)R agonist Ro 60-0175 (3 mg/kg, i.p.) or SB 206553 (5 mg/kg, i.p.) were unaffected by intra-mPFC injection of SB 242084. These results, showing that 5-HT(2C)R antagonist and inverse agonist behave differently in vivo, demonstrate that mPFC 5-HT(2C)Rs facilitate activated accumbal DA outflow and that 5-HT(2C)R constitutive activity participates in this interaction.
Collapse
Affiliation(s)
- Gian Marco Leggio
- Inserm U862, Neurocentre Magendie, Physiopathology of Addiction group, Bordeaux F-33000, France
| | | | | | | | | | | | | |
Collapse
|
28
|
Grauer SM, Graf R, Navarra R, Sung A, Logue SF, Stack G, Huselton C, Liu Z, Comery TA, Marquis KL, Rosenzweig-Lipson S. WAY-163909, a 5-HT2C agonist, enhances the preclinical potency of current antipsychotics. Psychopharmacology (Berl) 2009; 204:37-48. [PMID: 19107466 DOI: 10.1007/s00213-008-1433-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 12/02/2008] [Indexed: 10/21/2022]
Abstract
INTRODUCTION 5-HT(2C) agonists, by decreasing mesolimbic dopamine without affecting nigrostriatal dopamine, are predicted to have antipsychotic efficacy with low extrapyramidal side effects (EPS). Combining 5-HT(2C) agonists with low doses of existing antipsychotics could increase treatment efficacy while reducing treatment liabilities such as EPS (typical antipsychotics), and the propensity for weight gain (atypical antipsychotics). OBJECTIVES The objectives of these studies were to combine WAY-163909, a selective 5-HT(2C) agonist, with either the typical antipsychotic haloperidol, or the atypical antipsychotic clozapine, at doses that were ineffective on their own, with the expectation that a shift in potency in several rodent behavior models predictive of antipsychotic activity would occur. RESULTS AND DISCUSSION In mice, co-administration of either haloperidol, or clozapine, produced a significant leftward shift in the ability of WAY-163909 to block apomorphine-induced climbing behavior, without any affect on apomorphine-induced stereotypy or an increased propensity for catalepsy. In the rat-conditioned avoidance model, WAY-163909 was combined with either haloperidol or clozapine at doses that individually produced reductions in avoidance response on the order of 10%, while the combination of WAY-163909 and either of the antipsychotics resulted in a greater than 70% reduction in avoidance, with no evidence of response failures, or pharmacokinetic interaction. CONCLUSION Doses of either haloperidol or clozapine, that failed to antagonize an MK-801 induced deficit in prepulse inhibition, significantly attenuated the sensory gating deficit when combined with WAY-163909. Data support the notion that 5-HT(2C) receptor agonists, co-administered with other marketed antipsychotics, allow for dose sparing with a more favorable side-effect profile.
Collapse
Affiliation(s)
- Steven M Grauer
- Discovery Neuroscience, Wyeth Research, CN 8000, Princeton, NJ 08543, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hayes DJ, Clements R, Greenshaw AJ. Effects of systemic and intra-nucleus accumbens 5-HT2C receptor compounds on ventral tegmental area self-stimulation thresholds in rats. Psychopharmacology (Berl) 2009; 203:579-88. [PMID: 19031071 DOI: 10.1007/s00213-008-1404-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Accepted: 10/29/2008] [Indexed: 11/29/2022]
Abstract
RATIONALE Serotonin 2C (5-HT(2C)) receptors may play a role in regulating motivation and reward-related behaviours. To date, no studies have investigated the possible role of 5-HT(2C) receptors in ventral tegmental area (VTA) intracranial self-stimulation (ICSS). OBJECTIVES The current study investigated the hypotheses that 5-HT(2C) receptors play an inhibitory role in VTA ICSS, and that 5-HT(2C) receptors within the nucleus accumbens (NAc) shell may be involved. METHODS Male Sprague-Dawley rats were implanted with a VTA electrode and bilateral NAc shell cannulae for the experiment involving microinjections, and trained to respond for electrical self-stimulation. The systemic effects of the selective 5-HT(2C) receptor agonist WAY 161503 (0-1.0 mg/kg), the 5-HT(1A/1B/2C) receptor agonist TFMPP (0.3 mg/kg) and the selective 5-HT(2C) receptor antagonist SB 242084 (1.0 mg/kg) were compared using rate-frequency threshold analysis. Intra-NAc shell microinjections of WAY 161503 (0-1.5 microg/side) were investigated and compared to amphetamine (1.0 microg/side). RESULTS WAY 161503 (1.0 mg/kg) and TFMPP (0.3 mg/kg) significantly increased rate-frequency thresholds (M50 values) without altering maximal response rates (RMAX values). SB 242084 attenuated the effects of TFMPP; SB 242084 had no affect on M50 or RMAX values. Intra-NAc shell WAY 161503 had no effect on M50 or RMAX values; intra-NAc amphetamine decreased M50 values. CONCLUSIONS These results suggest that 5-HT(2C) receptors play an inhibitory role in regulating reward-related behaviour while 5-HT(2C) receptor activation in the NAc shell did not appear to influence VTA ICSS behaviour under the present experimental conditions.
Collapse
Affiliation(s)
- Dave J Hayes
- Centre for Neuroscience, 513 HMRC, University of Alberta, Edmonton, AB, Canada T6G 2S2
| | | | | |
Collapse
|
30
|
Berg KA, Clarke WP, Cunningham KA, Spampinato U. Fine-tuning serotonin2c receptor function in the brain: molecular and functional implications. Neuropharmacology 2008; 55:969-76. [PMID: 18602407 PMCID: PMC3124806 DOI: 10.1016/j.neuropharm.2008.06.014] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 06/05/2008] [Accepted: 06/09/2008] [Indexed: 10/21/2022]
Abstract
The serotonin(2C) receptor (5-HT(2C)R) is a member of the serotonin(2) family of 7-transmembrane-spanning (7-TMS) receptors, which possesses unique molecular and pharmacological properties such as constitutive activity and RNA editing. The 5-HT(2C)R is widely expressed within the central nervous system, where is thought to play a major role in the regulation of neuronal network excitability. In keeping with its ability to modulate dopamine (DA) neuron function in the brain, the 5-HT(2C)R is currently considered as a major target for improved treatments of neuropsychiatric disorders related to DA neuron dysfunction, such as depression, schizophrenia, Parkinson's disease or drug addiction. The aim of this review is to provide an update of the functional status of the central 5-HT(2C)R, covering molecular, cellular, anatomical, biochemical and behavioral aspects to highlight its distinctive regulatory properties, the emerging functional significance of constitutive activity and RNA editing in vivo, and the therapeutic potential of inverse agonism.
Collapse
Affiliation(s)
- Kelly A. Berg
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, 78229-3900, USA
| | - William P. Clarke
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, 78229-3900, USA
| | - Kathryn A. Cunningham
- Center for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555-1031, USA
| | - Umberto Spampinato
- Centre de Recherche INSERM U862, Institut François Magendie - Université Victor Segalen Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| |
Collapse
|
31
|
Monck NJT, Kennett GA. 5-HT2C ligands: recent progress. PROGRESS IN MEDICINAL CHEMISTRY 2008; 46:281-390. [PMID: 18381128 DOI: 10.1016/s0079-6468(07)00006-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Nathaniel J T Monck
- Vernalis (R&D) Ltd., 613 Reading Road, Winnersh, Wokingham, Berkshire, RG41 5UA, UK
| | | |
Collapse
|
32
|
Navailles S, Moison D, Cunningham KA, Spampinato U. Differential regulation of the mesoaccumbens dopamine circuit by serotonin2C receptors in the ventral tegmental area and the nucleus accumbens: an in vivo microdialysis study with cocaine. Neuropsychopharmacology 2008; 33:237-46. [PMID: 17429406 DOI: 10.1038/sj.npp.1301414] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Stimulation of central serotonin2C receptor (5-HT(2C)R) inhibits dopamine (DA)-dependent neurochemical and behavioral effects of cocaine, while 5-HT(2C)Rs locally expressed into the ventral tegmental area (VTA) and the nucleus accumbens (NAc) exert opposite functional control over cocaine-induced behavioral effects. Using in vivo microdialysis in halothane-anesthetized rats, we tested the hypothesis that this functionally opposite regulation of the mesoaccumbens DA pathway relies on the ability of 5-HT(2C)Rs in the VTA and the NAc to inhibit and enhance respectively cocaine-induced accumbal DA outflow. Intra-VTA injection of the 5-HT(2C)R agonist Ro 60-0175 at 5 microg/0.2 microl, but not 1 microg/0.2 microl, attenuated the increase in accumbal DA outflow induced by the systemic administration of 10 mg/kg of cocaine. Intra-VTA injection of the 5-HT(2C)R antagonist SB 242084 at either dose (0.1 or 0.5 microg/0.2 microl) did not modify the effects of cocaine. Intra-NAc application of Ro 60-0175 dose-dependently excited (0.1 microM) and inhibited (1 microM) cocaine-induced DA outflow. In contrast, intra-NAc application of SB 242084 resulted in diametrically opposite effects when applied at these concentrations. These results further support the idea that the overall action of central 5-HT(2C)Rs on accumbal DA output is dependent, at least in part, on the functional balance between different 5-HT(2C)R populations within the NAc and within the mesoaccumbens DA pathway (VTA vs NAc).
Collapse
Affiliation(s)
- Sylvia Navailles
- Unité Mixte de Recherche-Centre National de la Recherche Scientifique (UMR-CNRS) 5541, Université Victor Segalen Bordeaux 2, Bordeaux Cedex, France
| | | | | | | |
Collapse
|
33
|
Abstract
Serotoninergic neurons in the central nervous system impinge on many other neurons and modulate their neurotransmitter release. This review focuses on 1) the function of presynaptic 5-hydroxytryptamine (5-HT) heteroreceptors on axon terminals of central cholinergic, dopaminergic, noradrenergic, or GABAergic neurons and 2) the role of GABAergic interneurons expressing 5-HT heteroreceptors in the regulation of acetylcholine, dopamine, or noradrenaline release. In vitro studies on slices or synaptosomes and in vivo microdialysis experiments have shown that 5-HT(1A), 5-HT(1B), 5-HT(2A), 5-HT(2C), 5-HT(3), and/or 5-HT(4) heteroreceptors mediate this modulation. 5-HT(1B) receptors on neocortical cholinergic, striatal dopaminergic, or hippocampal GABAergic axon terminals are examples for release-inhibiting 5-HT heteroreceptors; 5-HT(3) receptors on hippocampal GABAergic or 5-HT(4) receptors on hippocampal cholinergic axon terminals are examples for release-facilitating 5-HT heteroreceptors. GABA released from GABAergic interneurons upon activation of facilitatory 5-HT receptors, e.g., 5-HT(2A) or 5-HT(3) receptors, mediates inhibition of the release of other neurotransmitters such as prefrontal neocortical dopamine or neocortical acetylcholine release, respectively. Conversely, attenuated GABA release in response to activation of inhibitory 5-HT heteroreceptors, e.g., 5-HT(1A) or 5-HT(1B) receptors on GABAergic interneurons is involved in paradoxical facilitation of hippocampal acetylcholine and striatal dopamine release, respectively. Such 5-HT heteroreceptors are considered potential targets for appropriate 5-HT receptor ligands which, by enhancing the release of a relevant neurotransmitter, can compensate for its hypothesized deficiency in distinct brain areas. Examples for such deficiencies are the impaired release of hippocampal or neocortical acetylcholine, striatal dopamine, and hippocampal or neocortical noradrenaline in disorders such as Alzheimer's disease, Parkinson's disease, and major depression, respectively.
Collapse
Affiliation(s)
- Klaus B Fink
- Department of Pharmacology, Bonn University Clinic, Reuterstr. 2b, 53113 Bonn, Germany.
| | | |
Collapse
|
34
|
|
35
|
Richtand NM, Welge JA, Logue AD, Keck PE, Strakowski SM, McNamara RK. Dopamine and serotonin receptor binding and antipsychotic efficacy. Neuropsychopharmacology 2007; 32:1715-26. [PMID: 17251913 DOI: 10.1038/sj.npp.1301305] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The relationship between clinically effective antipsychotic drug dosage and binding affinity to cloned dopamine (DA) and serotonin receptor subtypes was analyzed in an effort to elucidate the contribution of individual receptor subtypes to medication response. Clinically effective dose and binding affinity to D(2) DA receptor were modestly correlated for typical antipsychotic medications (r=0.54, p=0.046), but surprisingly were not correlated for atypical antipsychotics (r=0.41, p=0.31). For typical antipsychotics, a more robust inverse relationship was observed between medication dose and 5-HT(2C) affinity (r=-0.68, p=0.021). The strongest correlation for typical antipsychotics was observed between drug dosage and 5-HT(2C)/D(2) binding affinity ratio (r=-0.81, p=0.003). For atypical antipsychotics, no significant correlations were identified between medication dosage and 5-HT(2C), 5-HT(2A), 5-HT(2C)/D(2), or 5-HT(2A)/D(2) receptor-binding affinities. In contrast, atypical antipsychotic medication dosage was highly correlated with the ratios of D(2) (5-HT(2A)/5-HT(1A)) (r=0.80, p=0.031), and D(2) (5-HT(2C)/5-HT(1A)) (r=0.78, p=0.038) binding affinities. These observations demonstrate an interaction between D(2) and 5-HT(2C) receptor effects contributing to positive symptom response for typical antipsychotic medications, suggesting that signaling through 5-HT(2C) receptors interacts with and improves antipsychotic effects achieved via D(2) receptor blockade. This analysis also demonstrates that, in contrast to typical antipsychotics, therapeutic effects of atypical antipsychotic medications are determined by opposing interactions among three different domains: (1) increasing D(2) DA receptor-binding affinity enhances antipsychotic potency. (2) Increasing 5-HT(2C) and 5-HT(2A) receptor-binding affinities also facilitate antipsychotic efficacy. (3) Increasing 5-HT(1A) receptor-binding affinity, in contrast, reduces antipsychotic efficacy.
Collapse
Affiliation(s)
- Neil M Richtand
- Psychiatry Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Compan V. Do Limits of Neuronal Plasticity Represent an Opportunity for Mental Diseases, Such as Addiction to Food and Illegal Drugs? Use and Utilities of Serotonin Receptor Knock-Out Mice. Front Neurosci 2007. [DOI: 10.1201/9781420005752.ch8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
37
|
Navailles S, Moison D, Ryczko D, Spampinato U. Region-dependent regulation of mesoaccumbens dopamine neurons in vivo by the constitutive activity of central serotonin2C receptors. J Neurochem 2006; 99:1311-9. [PMID: 17018023 DOI: 10.1111/j.1471-4159.2006.04188.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Central serotonin2C receptors (5-HT(2C)Rs) control the mesoaccumbens dopamine (DA) pathway. This control involves the constitutive activity (CA) of 5-HT(2C)Rs, and is thought to engage regionally distinct populations of 5-HT(2C)Rs, leading to opposite functional effects. Here, using in vivo microdialysis in halothane-anesthetized rats, we investigated the relative contribution of ventral tegmental area (VTA) and nucleus accumbens shell (NAc) 5-HT(2C)Rs in the phasic/tonic control of accumbal DA release, to specifically identify the nature (inhibition/excitation) of the control, and the role of the 5-HT(2C)R CA. Intra-VTA injections of the selective 5-HT(2C)R antagonists SB 242084 and/or SB 243213 (0.1-0.5 microg/0.2 microL) prevented the decrease in accumbal DA outflow induced by the 5-HT(2C)R agonist Ro 60-0175 (3 mg/kg, i.p), but did not affect the increase in DA outflow induced by the 5-HT(2C)R inverse agonist SB 206553 (5 mg/kg, i.p). Intra-NAc infusions of SB 242084 (0.1-1 microM) blocked Ro 60-0175- and SB 206553-induced changes of DA outflow. Intra-NAc, but not intra-VTA administration of SB 206553 increased basal DA outflow. These findings demonstrate that both VTA and NAc 5-HT(2C)Rs participate in the inhibitory control exerted by 5-HT(2C)Rs on accumbal DA release, and that the NAc shell may represent a primary action site for the CA of 5-HT(2C)Rs.
Collapse
Affiliation(s)
- Sylvia Navailles
- Unité Mixte de Recherche-Centre National de la Recherche Scientifique (UMR-CNRS 5541), Université Victor Segalen Bordeaux 2, 146 rue Léo Saignât, Boîte Postale 31, 33076 Bordeaux Cedex, France
| | | | | | | |
Collapse
|