1
|
Saito A, Esaki H, Murata H, Ni X, Nishitani N, Deyama S, Kaneda K. Dopamine D 1 receptors in the medial prefrontal cortex and basolateral amygdala cooperatively contribute to social defeat stress-induced augmentation of cocaine reward in mice. Neuropharmacology 2025:110524. [PMID: 40398733 DOI: 10.1016/j.neuropharm.2025.110524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 05/01/2025] [Accepted: 05/16/2025] [Indexed: 05/23/2025]
Abstract
Stress potentiates the rewarding effects of cocaine; however, its underlying mechanism remains unclear. Here, we investigated the role of dopaminergic transmission in the medial prefrontal cortex (mPFC) and basolateral amygdala (BLA), key brain regions implicated in addiction and stress responses, using the cocaine conditioned place preference (CPP) paradigm combined with acute social defeat (SD) stress in male mice. SD stress exposed immediately before the posttest augmented cocaine CPP, which was significantly reduced by systemic injection of SCH23390, a dopamine D1 receptor antagonist. Fiber photometry recordings using a GRABDA sensor revealed SD stress-induced elevations in extracellular dopamine levels in both the mPFC and BLA. Accordingly, bilateral intra-mPFC or bilateral intra-BLA injections of SCH23390 suppressed the stress-induced augmentation of cocaine CPP. Additionally, functional disconnection, achieved via unilateral intra-mPFC SCH23390 injection combined with contralateral intra-BLA SCH23390 injection, suppressed stress-induced CPP augmentation. Moreover, unilateral intra-mPFC SCH23390 injection combined with contralateral intra-BLA injection of NBQX, an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonist, inhibited the augmented CPP. Furthermore, selective chemogenetic silencing of glutamatergic projections from the mPFC to the BLA suppressed augmented cocaine CPP. These findings suggest that bilateral and simultaneous D1 receptor-mediated dopaminergic inputs to the mPFC and BLA, as well as the subsequent facilitation of glutamatergic transmission from the mPFC to the BLA, play a crucial role in the SD stress-induced potentiation of the rewarding effects of cocaine.
Collapse
Affiliation(s)
- Atsushi Saito
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Hirohito Esaki
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Haruka Murata
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Xiyan Ni
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Naoya Nishitani
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan.
| |
Collapse
|
2
|
Kim J, Michael S, Pokharel K, Kim CS. Hyperpolarization-activated channel 1 modulates resilience and susceptibility to social avoidance induced by witnessing social defeat stress. Biol Psychiatry 2025:S0006-3223(25)01113-8. [PMID: 40210080 DOI: 10.1016/j.biopsych.2025.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/20/2025] [Accepted: 03/31/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND Physical social defeat stress models are widely used to study chronic stress. In contrast, witnessing social defeat, observing aggression without direct involvement, is less studied but has growing relevance to disorders such as post-traumatic stress disorder (PTSD). The role of hyperpolarization-activated cation channel 1 (HCN1) in stress responses to witnessing social defeat is unclear, and the effects of prolonged exposure (PE) therapy, commonly used in PTSD treatment, have not been tested in this context. METHODS Male mice were either subjected to chronic physical or witnessing social defeat stress. Behavioral assessments included measures of social avoidance, stress reactivity, fear memory, and spatial working memory. Neuronal excitability, h current (Ih), and synaptic transmission in dorsal hippocampal CA1 neurons were measured using whole-cell patch-clamp recordings. Conditional overexpression or deletion of HCN1 was employed to further examine its role. Witnessing-defeated mice underwent 12 days of PE treatment. RESULTS Mice that witnessed social defeat exhibited behavioral impairments like physically defeated mice, showing changes in social behavior, fear memory, spatial working memory, and stress responses. These impairments were linked to increased HCN1 expression, elevated Ih, and reduced neuronal excitability. Overexpression of HCN1 induced susceptibility-like behaviors, while HCN1 deletion promoted resilience-like behaviors. Impaired AMPA receptor transmission at distal dendrites in witness-susceptible mice was replicated by HCN1 overexpression and reversed by ZD7288, an HCN channel blocker. PE-resistant mice displayed reduced excitability, while PE-responsive mice exhibited normal-like excitability. CONCLUSIONS HCN1 channels play a key role in regulating stress responses and contribute to resilience or susceptibility following social defeat.
Collapse
Affiliation(s)
- Jiwon Kim
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Sandali Michael
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Kritika Pokharel
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Chung Sub Kim
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
3
|
Canto-de-Souza L, Baptista-de-Souza D, Thiele M, Garcia VG, Silva KC, de Souza FV, Crestani CC, Nunes-de-Souza RL. Sex differences in behavioral and neural responses induced by witnessing social defeat stress during adolescence or adulthood in mice. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111313. [PMID: 40049344 DOI: 10.1016/j.pnpbp.2025.111313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/11/2025] [Accepted: 03/02/2025] [Indexed: 05/02/2025]
Abstract
Psychosocial stress can lead to emotional disorders and memory-related cognitive impairments. Evidence suggests that stress effects vary with age and sex, involving brain structures such as the medial prefrontal cortex (mPFC), amygdala, and hippocampus. This study hypothesized that witnessing social defeat stress (WSDS) during adolescence or adulthood would produce anxiety- and depression-like behaviors and cognitive deficits in adulthood, with outcomes affected by sex. We examined WSDS effects on male and female mice exposed during adolescence or adulthood, assessing: (i) social avoidance in the social interaction test, (ii) anxiety in the elevated plus-maze (EPM) and open field tests, (iii) cognition in the object recognition test, (iv) depression-like behaviors in the sucrose splash test, and (v) ΔFosB expression in neurons within the mPFC, basolateral amygdala (BLA) and dorsal hippocampus (DH). WSDS during adolescence resulted in reduced EPM open-arm exploration in both sexes and impaired novel object discrimination in males. In adulthood, WSDS reduced open-arm entries only in females and impaired novel object discrimination in both sexes. Female mice showed higher mPFC ΔFosB labeling than males, while control males exhibited higher labeling in the BLA and DH, which was not observed in WSDS mice. In conclusion, this study shows that WSDS during adolescence or adulthood induces anxiety-like behavior in both sexes, cognitive impairments in males, and sex-specific patterns of neuronal activation.
Collapse
Affiliation(s)
- Lucas Canto-de-Souza
- Pharmacology Lab., School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, SP 14800-903, Brazil; Joint Graduate Program in Physiological Sciences (PIPGCF) UFSCar-UNESP, São Carlos, SP 13565-905, Brazil
| | - Daniela Baptista-de-Souza
- Pharmacology Lab., School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, SP 14800-903, Brazil; Joint Graduate Program in Physiological Sciences (PIPGCF) UFSCar-UNESP, São Carlos, SP 13565-905, Brazil
| | - Mariana Thiele
- Pharmacology Lab., School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, SP 14800-903, Brazil; Graduate Program in Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, SP 14800-903, Brazil
| | - Vitor Gonçalves Garcia
- Pharmacology Lab., School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, SP 14800-903, Brazil; Joint Graduate Program in Physiological Sciences (PIPGCF) UFSCar-UNESP, São Carlos, SP 13565-905, Brazil
| | - Katellyn Costa Silva
- Pharmacology Lab., School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, SP 14800-903, Brazil
| | - Fernanda Victorino de Souza
- Pharmacology Lab., School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, SP 14800-903, Brazil; Graduate Program in Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, SP 14800-903, Brazil
| | - Carlos C Crestani
- Pharmacology Lab., School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, SP 14800-903, Brazil; Graduate Program in Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, SP 14800-903, Brazil; Joint Graduate Program in Physiological Sciences (PIPGCF) UFSCar-UNESP, São Carlos, SP 13565-905, Brazil
| | - Ricardo Luiz Nunes-de-Souza
- Pharmacology Lab., School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, SP 14800-903, Brazil; Graduate Program in Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, SP 14800-903, Brazil; Joint Graduate Program in Physiological Sciences (PIPGCF) UFSCar-UNESP, São Carlos, SP 13565-905, Brazil..
| |
Collapse
|
4
|
Liu Y, Gao Y, Ma Z, Zhang Q, Sun R, Wang L, Zhao S, Li C, Lian B, Sun H, Sun L. Low emotional contagious behavior induces PTSD susceptibility in observers and is related to the regulation of oxytocin receptor in mice. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2025; 25:515-530. [PMID: 39843825 DOI: 10.3758/s13415-024-01244-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/04/2024] [Indexed: 01/24/2025]
Abstract
BACKGROUND Post-traumatic stress disorder (PTSD) is a serious psychiatric disorder that occurs after an individual has witnessed or experienced a major traumatic event. Emotional contagion seems to play an important role in witnessing trauma, highlighting the importance of understanding the neurobiological consequences of psychological or emotional stress and its impact on the individual's mental health. Therefore, understanding the relationship between emotional contagion and PTSD susceptibility and the abnormal neurobiological and behavioral changes behind it could help find effective molecular treatment targets. METHODS The formalin pain test was used to distinguish the level of emotional contagion in observer mice, dividing them into quartiles according to their pain response. The upper and lower quartiles were the emotional contagion-prone (ECP) and -resistant (ECR) groups, respectively. The vicarious social defeat stress (VSDS) procedure was used to establish PTSD models in mice with various emotional contagion levels when witnessing stress. Open field, elevated plus maze, social interaction test, and forced swimming test were used to examine PTSD-like symptoms. Changes in the medial prefrontal cortex (mPFC) mRNA expression of brain-derived neurotrophic factor (BDNF) and oxytocin receptor (OTR) were detected by qPCR, and their protein levels were analyzed by Western blot and immunofluorescence staining. RESULTS The formalin pain test induced emotional contagion behaviors in mice between the ECP and ECR levels. The VSDS procedure resulted in PTSD symptoms in mice; mice in the lowest quartile were characterized by high levels of anxiety, depression, and social avoidance behaviors, such as decreased autonomous activity and residence time in the open field test or open arms position and increased immobility time and social avoidance behavior. These were accompanied by reduced OTR and BDNF protein expression levels and fluorescence intensity, as well as reduced OTR and BDNF mRNA levels in the mPFC. CONCLUSIONS Emotional contagion can induce PTSD-like behavior in mice that witnessed stress. Low emotional contagion behavior increased PTSD susceptibility in the observer mice and might be related to the regulation of their oxytocin receptors.
Collapse
Affiliation(s)
- Yang Liu
- School of Psychology, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, P. R. China
| | - Yuan Gao
- School of Psychology, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, P. R. China
| | - Zhidong Ma
- School of Clinical Medicine, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, P. R. China
| | - Qingge Zhang
- School of Psychology, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, P. R. China
| | - Ruiqiang Sun
- School of Clinical Medicine, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, P. R. China
| | - Ling Wang
- Clinical Competency Training Center, Medical Experiment and Training Center, Shandong Second Medical University, 7166# Baotong West Street, Weifang, 261053, Shandong, China
| | - Sishun Zhao
- Department of Spinal Surgery, Affiliated Hospital, Shandong Second Medical University, 7166# Baotong West Street, Weifang, 261053, Shandong, China
| | - Changjiang Li
- School of Psychology, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, P. R. China
| | - Bo Lian
- Department of Bioscience and Technology, Shandong Second Medical University, 7166# Baotong West Street, Weifang, 261053, Shandong, China
| | - Hongwei Sun
- School of Psychology, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, P. R. China.
| | - Lin Sun
- School of Psychology, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, P. R. China.
| |
Collapse
|
5
|
Siemsen BM, Franco D, Lobo MK. Corticostriatal contributions to dysregulated motivated behaviors in stress, depression, and substance use disorders. Neurosci Res 2025; 211:37-48. [PMID: 36565858 DOI: 10.1016/j.neures.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Coordinated network activity, particularly in circuits arising from the prefrontal cortex innervating the ventral striatum, is crucial for normal processing of reward-related information which is perturbed in several psychiatric disorders characterized by dysregulated reward-related behaviors. Stress-induced depression and substance use disorders (SUDs) both share this common underlying pathology, manifested as deficits in perceived reward in depression, and increased attribution of positive valence to drug-predictive stimuli and dysfunctional cognition in SUDs. Here we review preclinical and clinical data that support dysregulation of motivated and reward-related behaviors as a core phenotype shared between these two disorders. We posit that altered processing of reward-related stimuli arises from dysregulated control of subcortical circuits by upstream regions implicated in executive control. Although multiple circuits are directly involved in reward processing, here we focus specifically on the role of corticostriatal circuit dysregulation. Moreover, we highlight the growing body of evidence indicating that such abnormalities may be due to heightened neuroimmune signaling by microglia, and that targeting the neuroimmune system may be a viable approach to treating this shared symptom.
Collapse
Affiliation(s)
| | - Daniela Franco
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mary Kay Lobo
- University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Schuler H, Eid RS, Wu S, Tse YC, Cvetkovska V, Lopez J, Quinn R, Zhou D, Meccia J, Dion-Albert L, Bennett SN, Newman EL, Trainor BC, Peña CJ, Menard C, Bagot RC. Data-Driven Analysis Identifies Novel Modulation of Social Behavior in Female Mice Witnessing Chronic Social Defeat Stress. Biol Psychiatry 2024:S0006-3223(24)01786-4. [PMID: 39638223 DOI: 10.1016/j.biopsych.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 11/04/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Chronic social defeat stress is a widely used depression model in male mice. Several proposed adaptations extend this model to females with variable, often marginal effects. We examined if the widely used male-defined metrics of stress are suboptimal in females witnessing defeat. METHODS Using a data-driven method, we comprehensively classified social interaction behavior in 761 male and female mice after chronic social witness/defeat stress, examining social modulation of behavior and associations with conventional metrics (i.e., social interaction ratio). RESULTS Social stress induced distinct behavioral adaptation patterns in defeated males and witness females. Social interaction ratio led to underpowered analyses in witness females with limited utility to differentiate susceptibility/resilience. Data-driven analyses revealed changes in social adaptation in witness females that were captured in attenuated velocity change from no target to target trials. We explored the utility of this metric in 4 female social stress models and in male witnesses. Combining social interaction ratio and velocity change optimally differentiated susceptibility/resilience in witness females and revealed resilient-specific adaptation in a resilience-associated neural circuit in female mice. CONCLUSIONS Chronic witness stress induced behavioral changes in females that were qualitatively distinct from those observed in defeated males and not adequately sampled by standard male-defined metrics. Modulation of locomotion is a robust and easily implementable metric for rigorous research in witness female mice. Overall, our findings highlight the need to critically evaluate sex differences in behavior and implement sex-based considerations in preclinical model design.
Collapse
Affiliation(s)
- Heike Schuler
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - Rand S Eid
- Department of Psychology, McGill University, Montréal, Québec, Canada
| | - Serena Wu
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - Yiu-Chung Tse
- Department of Psychology, McGill University, Montréal, Québec, Canada
| | | | - Joëlle Lopez
- Department of Psychology, McGill University, Montréal, Québec, Canada
| | - Rosalie Quinn
- Department of Psychology, McGill University, Montréal, Québec, Canada
| | - Delong Zhou
- Department of Psychology, McGill University, Montréal, Québec, Canada
| | - Juliet Meccia
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - Laurence Dion-Albert
- Department of Psychiatry and Neuroscience, Université Laval and CERVO Brain Research Centre, Québec City, Québec, Canada
| | - Shannon N Bennett
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
| | - Emily L Newman
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Division of Depression and Anxiety Disorders, Neurobiology of Fear Laboratory, McLean Hospital, Belmont, Massachusetts
| | - Brian C Trainor
- Department of Psychology, University of California, Davis, Davis, California
| | - Catherine J Peña
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
| | - Caroline Menard
- Department of Psychiatry and Neuroscience, Université Laval and CERVO Brain Research Centre, Québec City, Québec, Canada
| | - Rosemary C Bagot
- Department of Psychology, McGill University, Montréal, Québec, Canada; Ludmer Centre for Neuroinformatics and Mental Health, Montréal, Québec, Canada.
| |
Collapse
|
7
|
Barbetti M, Sgoifo A, Carnevali L. Sex-specific behavioral, cardiac, and neuroendocrine responses to repeated witness social stress in adult rats. Physiol Behav 2024; 287:114702. [PMID: 39332593 DOI: 10.1016/j.physbeh.2024.114702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/26/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
In humans, sex disparities exist in the prevalence of social stress-related disorders, yet our understanding of the predisposing factors and underlying mechanisms is still elusive. Also at the preclinical level, the investigation of sex differences in social stress responses is limited. In this study, adult male and female wild-type Groningen rats were repeatedly exposed to witness social defeat stress (WS) to assess sex-specific behavioral, neuroendocrine, and cardiac responses to the same social stress paradigm. Male and female rats bore witness to an aggressive social defeat episode between two males for nine consecutive days or were exposed to a control (CTR) procedure. Stress-related parameters were assessed in correspondence to the first and last WS/CTR exposure and also during subsequent exposure to the stress context alone in the absence of social defeat. During WS, rats of both sexes displayed larger amounts of burying behavior and smaller amounts of rearing and grooming behaviors, but with a greater extent in female witnesses. Cardiac autonomic responses to WS were similar between the sexes, yet only females displayed higher plasma corticosterone levels after the first WS exposure compared to CTRs, and had a larger corticosterone increase than male witnesses upon repeated WS. Exposure to the stress context alone (i.e., without the presence of the aggressive resident rat) elicited greater amount of burying behavior and more pronounced and persistent tachycardic responses in females than males with a history of WS. Our findings suggest sex-disparities in the response of adult rats to WS at multiple behavioral, cardiac, and neuroendocrine levels, highlighting the utility of this social stress paradigm for investigating predisposing factors and pathophysiological mechanisms underlying sex-specific vulnerabilities to stress-related pathologies.
Collapse
Affiliation(s)
- Margherita Barbetti
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Andrea Sgoifo
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Luca Carnevali
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.
| |
Collapse
|
8
|
Liu X, Liu R, Sun YX, Wang HL, Wang H, Wang T, Ma YN, Li XX, Wang Q, Su YA, Li JT, Si TM. Dorsal CA3 overactivation mediates witnessing stress-induced recognition memory deficits in adolescent male mice. Neuropsychopharmacology 2024; 49:1666-1677. [PMID: 38504012 PMCID: PMC11399124 DOI: 10.1038/s41386-024-01848-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/18/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
Witnessing violent or traumatic events is common during childhood and adolescence and could cause detrimental effects such as increased risks of psychiatric disorders. This stressor could be modeled in adolescent laboratory animals using the chronic witnessing social defeat (CWSD) paradigm, but the behavioral consequences of CWSD in adolescent animals remain to be validated for cognitive, anxiety-like, and depression-like behaviors and, more importantly, the underlying neural mechanisms remain to be uncovered. In this study, we first established the CWSD model in adolescent male mice and found that CWSD impaired cognitive function and increased anxiety levels and that these behavioral deficits persisted into adulthood. Based on the dorsal-ventral functional division in hippocampus, we employed immediate early gene c-fos immunostaining after behavioral tasks and found that CWSD-induced cognition deficits were associated with dorsal CA3 overactivation and anxiety-like behaviors were associated with ventral CA3 activity reduction. Indeed, chemogenetic activation and inhibition of dorsal CA3 neurons mimicked and reversed CWSD-induced recognition memory deficits (not anxiety-like behaviors), respectively, whereas both inhibition and activation of ventral CA3 neurons increased anxiety-like behaviors in adolescent mice. Finally, chronic administration of vortioxetine (a novel multimodal antidepressant) successfully restored the overactivation of dorsal CA3 neurons and the cognitive deficits in CWSD mice. Together, our findings suggest that dorsal CA3 overactivation mediates CWSD-induced recognition memory deficits in adolescent male mice, shedding light on the pathophysiology of adolescent CWSD-induced adverse effects and providing preclinical evidence for early treatment of stress-induced cognitive deficits.
Collapse
Affiliation(s)
- Xiao Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Rui Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Ya-Xin Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Hong-Li Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Han Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Ting Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Yu-Nu Ma
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Xue-Xin Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Qi Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Yun-Ai Su
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Ji-Tao Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| | - Tian-Mei Si
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| |
Collapse
|
9
|
Huang CW, Hu T, Zheng H, Wu YL, Li JM, Wang YM, Su WJ, Wang W, Liu YZ, Jiang CL. Contagion of depression: a double-edged sword. Transl Psychiatry 2024; 14:396. [PMID: 39349463 PMCID: PMC11443097 DOI: 10.1038/s41398-024-03124-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024] Open
Abstract
Depression is a significant mental health issue with extensive economic implications, and recent studies suggest it may be transmitted between individuals. However, the mechanisms of this contagion remain unclear, and the social buffering effect has been understudied. This research employs three rodent models, including stress crossover, cohabitation-induced, and non-contact induced depression contagion models, to explore these mechanisms. Here, we report that that naive mice cohabiting with depressed mice showed increased corticosterone levels and depressive behaviors, unlike those with stressed mice, who did not exhibit these changes and even mitigated desperation in stressed mice. Non-contact cohabitation did not produce significant behavioral differences, but exposure to bedding from depressed mice reduced sucrose preference in naive mice. This study introduces reliable models of depression contagion, suggesting it operates independently of stress transmission. The interplay between depression contagion and social buffering may vary in different contexts. These findings provide new insights into the mechanisms of depression contagion and potential strategies for preventing depressive disorders.
Collapse
Affiliation(s)
- Chen-Wei Huang
- Department of Stress Medicine, Faculty of Psychology, Naval Medical University, Shanghai, 200433, China
| | - Ting Hu
- Department of Stress Medicine, Faculty of Psychology, Naval Medical University, Shanghai, 200433, China
| | - Hong Zheng
- Department of Stress Medicine, Faculty of Psychology, Naval Medical University, Shanghai, 200433, China
| | - Yi-Lin Wu
- Department of Stress Medicine, Faculty of Psychology, Naval Medical University, Shanghai, 200433, China
| | - Jia-Mei Li
- Department of Neurology, The 971st Hospital of PLA, Qingdao, 266071, China
| | - Yi-Ming Wang
- School of Basic Medicine, Naval Medical University, Shanghai, 200433, China
| | - Wen-Jun Su
- Department of Stress Medicine, Faculty of Psychology, Naval Medical University, Shanghai, 200433, China
| | - Wei Wang
- Department of Stress Medicine, Faculty of Psychology, Naval Medical University, Shanghai, 200433, China
| | - Yun-Zi Liu
- Department of Stress Medicine, Faculty of Psychology, Naval Medical University, Shanghai, 200433, China.
| | - Chun-Lei Jiang
- Department of Stress Medicine, Faculty of Psychology, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
10
|
Ritger AC, Rasheed NM, Padival M, Ferrara NC, Rosenkranz JA. Prior Negative Experience Biases Activity of Medial Amygdala during Interstrain Social Engagement in Male Rats. eNeuro 2024; 11:ENEURO.0288-24.2024. [PMID: 39260890 PMCID: PMC11419602 DOI: 10.1523/eneuro.0288-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/13/2024] Open
Abstract
Social recognition is an essential part of social function and often promotes specific social behaviors based on prior experience. Social and defensive behaviors in particular often emerge with prior experiences of familiarity or novelty/stress, respectively. This is also commonly seen in rodents toward same-strain and interstrain conspecifics. Medial amygdala (MeA) activity guides social choice based on age and sex recognition and is sensitive to social experiences. However, little is known about whether the MeA exhibits differential responses based on strain or how this is impacted by experience. Social stress impacts posterior MeA (MeAp) function and can shift measures of social engagement. However, it is unclear how stress impacts MeAp activity and contributes to altered social behavior. The primary goal of this study in adult male Sprague Dawley rats was to determine whether prior stress experience with a different-strain (Long-Evans) rat impacts MeAp responses to same-strain and different-strain conspecifics in parallel with a change in behavior using in vivo fiber photometry. We found that MeAp activity was uniformly activated during social contact with a novel same-strain rat during a three-chamber social preference test following control handling but became biased toward a novel different-strain rat following social stress. Socially stressed rats also showed initially heightened social interaction with novel same-strain rats but showed social avoidance and fragmented social behavior with novel different-strain rats relative to controls. These results indicate that heightened MeAp activity may guide social responses to novel, threatening, rather than non-threatening, social stimuli after stress.
Collapse
Affiliation(s)
- Alexandra C Ritger
- Department of Foundational Sciences and Humanities, Discipline of Neuroscience, Rosalind Franklin University, North Chicago, Illinois 60064
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University, North Chicago, Illinois 60064
| | - Nimah M Rasheed
- Department of Foundational Sciences and Humanities, Discipline of Cellular & Molecular Pharmacology, Rosalind Franklin University, North Chicago, Illinois 60064
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University, North Chicago, Illinois 60064
| | - Mallika Padival
- Department of Foundational Sciences and Humanities, Discipline of Cellular & Molecular Pharmacology, Rosalind Franklin University, North Chicago, Illinois 60064
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University, North Chicago, Illinois 60064
| | - Nicole C Ferrara
- Department of Foundational Sciences and Humanities, Discipline of Cellular & Molecular Pharmacology, Rosalind Franklin University, North Chicago, Illinois 60064
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University, North Chicago, Illinois 60064
| | - J Amiel Rosenkranz
- Department of Foundational Sciences and Humanities, Discipline of Cellular & Molecular Pharmacology, Rosalind Franklin University, North Chicago, Illinois 60064
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University, North Chicago, Illinois 60064
| |
Collapse
|
11
|
Navarrete J, Schneider KN, Smith BM, Goodwin NL, Zhang YY, Salazar AS, Gonzalez YE, Anumolu P, Gross E, Tsai VS, Heshmati M, Golden SA. Individual Differences in Volitional Social Self-Administration and Motivation in Male and Female Mice Following Social Stress. Biol Psychiatry 2024; 96:309-321. [PMID: 38244753 PMCID: PMC11255129 DOI: 10.1016/j.biopsych.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/18/2023] [Accepted: 01/06/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND A key challenge in developing treatments for neuropsychiatric illness is the disconnect between preclinical models and the complexity of human social behavior. We integrate voluntary social self-administration into a rodent model of social stress as a platform for the identification of fundamental brain and behavior mechanisms underlying stress-induced individual differences in social motivation. METHODS Here, we introduced an operant social stress procedure in male and female mice composed of 3 phases: 1) social self-administration training, 2) social stress exposure concurrent with reinforced self-administration testing, and 3) poststress operant testing under nonreinforced and reinforced conditions. We used social-defeat and witness-defeat stress in male and female mice. RESULTS Social defeat attenuated social reward seeking in males but not females, whereas witness defeat had no effect in males but promoted seeking behavior in females. We resolved social stress-induced changes to social motivation by aggregating z-scored operant metrics into a cumulative social index score to describe the spectrum of individual differences exhibited during operant social stress. Clustering does not adequately describe the relative distributions of social motivation following stress and is better described as a nonbinary behavioral distribution defined by the social index score, capturing a dynamic range of stress-related alterations in social motivation inclusive of sex as a biological variable. CONCLUSIONS We demonstrated that operant social stress can detect stable individual differences in stress-induced changes to social motivation. The inclusion of volitional behavior in social procedures may enhance the understanding of behavioral adaptations that promote stress resiliency and their mechanisms under more naturalistic conditions.
Collapse
Affiliation(s)
- Jovana Navarrete
- Department of Biological Structure, University of Washington, Seattle, Washington; Graduate Program in Neuroscience, University of Washington, Seattle, Washington; Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, Washington
| | - Kevin N Schneider
- Department of Biological Structure, University of Washington, Seattle, Washington; Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, Washington
| | - Briana M Smith
- Department of Biological Structure, University of Washington, Seattle, Washington
| | - Nastacia L Goodwin
- Department of Biological Structure, University of Washington, Seattle, Washington; Graduate Program in Neuroscience, University of Washington, Seattle, Washington; Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, Washington
| | - Yizhe Y Zhang
- Department of Biological Structure, University of Washington, Seattle, Washington; Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, Washington
| | - Axelle S Salazar
- Department of Biological Structure, University of Washington, Seattle, Washington
| | - Yahir E Gonzalez
- Department of Biological Structure, University of Washington, Seattle, Washington; Undergraduate Neuroscience Program, University of Washington, Seattle, Washington
| | - Pranav Anumolu
- Department of Biological Structure, University of Washington, Seattle, Washington; Undergraduate Neuroscience Program, University of Washington, Seattle, Washington
| | - Ethan Gross
- Department of Biological Structure, University of Washington, Seattle, Washington
| | - Valerie S Tsai
- Department of Biological Structure, University of Washington, Seattle, Washington; Undergraduate Neuroscience Program, University of Washington, Seattle, Washington
| | - Mitra Heshmati
- Department of Biological Structure, University of Washington, Seattle, Washington; Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, Washington; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington
| | - Sam A Golden
- Department of Biological Structure, University of Washington, Seattle, Washington; Graduate Program in Neuroscience, University of Washington, Seattle, Washington; Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, Washington.
| |
Collapse
|
12
|
Zhao M, Xu X, Xu H, Yang S, Li M, Wang W. The regulation of social factors on anxiety and microglial activity in nucleus accumbens of adolescent male mice: Influence of social interaction strategy. J Affect Disord 2024; 352:525-535. [PMID: 38403135 DOI: 10.1016/j.jad.2024.02.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND Adolescence is a period characterized by a high vulnerability to emotional disorders, which are modulated by biological, psychological, and social factors. However, the underlying mechanisms remain poorly understood. METHODS Combining physical or emotional social defeat stress (PS and ES) and pair or isolation rearing conditions, we investigated the effects of stress type and social support on emotional behavior and central immune molecules in adolescent mice, including anxiety, social fear, and social interaction strategies, as well as changes in microglia-specific molecules (ionized calcium-binding adaptor molecule 1 (Iba1) and a cluster of differentiation molecule 11b (CD11b)) in the medial prefrontal cortex (mPFC), hippocampus (HIP), amygdala (AMY), and nucleus accumbens (NAc). RESULTS Mice exposed to both physical stress and isolated rearing condition exhibited the highest levels of anxiety, social fear, and microglial CD11b expression in the NAc. In terms of social support, pair-housing with siblings ameliorated social fear and NAc molecular changes in ES mice, but not in PS mice. The reason for the differential benefit from social support was attributed to the fact that ES mice exhibited more active and less passive social strategies in social environment compared to PS mice. Further, the levels of stress-induced social fear were positively associated with the expression of microglial CD11b in the NAc. CONCLUSION These findings offer extensive evidence regarding the intricate effects of multiple social factors on social anxiety and immune alteration in the NAc of adolescent mice. Additionally, they suggest potential behavioral and immune intervention strategies for anxiety-related disorders in adolescents.
Collapse
Affiliation(s)
- Mingyue Zhao
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xueping Xu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Beijing Key Laboratory of Learning and Cognition, College of Psychology, Capital Normal University, Beijing, China
| | - Hang Xu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Shuming Yang
- Division of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510062, China
| | - Man Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Faculty of Psychology, Tianjin Normal University, Tianjin, China.
| | - Weiwen Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
13
|
Rodriguez M, Themann A, Garcia-Carachure I, Lira O, Robison AJ, Cushing BS, Iñiguez SD. Chronic social defeat stress in prairie voles (Microtus ochrogaster): A preclinical model for the study of depression-related phenotypes. J Affect Disord 2024; 351:833-842. [PMID: 38341153 DOI: 10.1016/j.jad.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Stress-induced illnesses, like major depression, are among the leading causes of disability across the world. Consequently, there is a dire need for the validation of translationally-suited animal models incorporating social stress to uncover the etiology of depression. Prairie voles (Microtus ochrogaster) are more translationally relevant than many other rodent models as they display monogamous social and bi-parental behaviors. Therefore, we evaluated whether a novel social defeat stress (SDS) model in male prairie voles induces depression-relevant behavioral outcomes. METHODS Adult sexually-naïve male prairie voles experienced SDS bouts from a conspecific pair-bonded male aggressor, 10 min per day for 10 consecutive days. Non-stressed controls (same-sex siblings) were housed in similar conditions but never experienced physical stress. Twenty-four h later, voles were evaluated in social interaction, sucrose preference, and Morris water maze tests - behavioral endpoints validated to assess social withdrawal, anhedonia-related behavior, and spatial memory performance, respectively. RESULTS SDS-exposed voles displayed lower sociability and body weight, decreased preference for a sucrose solution, and impairment of spatial memory retrieval. Importantly, no differences in general locomotor activity were observed as a function of SDS exposure. LIMITATIONS This study does not include female voles in the experimental design. CONCLUSIONS We found that repeated SDS exposure, in male prairie voles, results in a depression-relevant phenotype resembling an anhedonia-like outcome (per reductions in sucrose preference) along with social withdrawal and spatial memory impairment - highlighting that the prairie vole is a valuable model with potential to study the neurobiology of social stress-induced depression-related outcomes.
Collapse
Affiliation(s)
- Minerva Rodriguez
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, United States
| | - Anapaula Themann
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, United States
| | | | - Omar Lira
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, United States
| | - Alfred J Robison
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Bruce S Cushing
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, United States
| | - Sergio D Iñiguez
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, United States.
| |
Collapse
|
14
|
Evans-Strong A, Walton N, Blandino K, Roper ATC, Donaldson ST, Lewis M, Maguire J. Witnessed trauma exposure induces fear in mice through a reduction in endogenous neurosteroid synthesis. J Neuroendocrinol 2024; 36:e13378. [PMID: 38482748 PMCID: PMC11091913 DOI: 10.1111/jne.13378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 03/27/2024]
Abstract
Neurosteroids have been implicated in the pathophysiology of post-traumatic stress disorder (PTSD). Allopregnanolone is reduced in subsets of individuals with PTSD and has been explored as a novel treatment strategy. Both direct trauma exposure and witnessed trauma are risk factors for PTSD; however, the role of neurosteroids in the behavioral outcomes of these unique experiences has not been explored. Here, we investigate whether observational fear is associated with a reduced capacity for endogenous neurosteroidogenesis and the relationship with behavioral outcomes. We demonstrated that mice directly subjected to a threat (foot shocks) and those witnessing the threat have decreased plasma levels of allopregnanolone. The expression of a key enzyme involved in endogenous neurosteroid synthesis, 5α-reductase type 2, is decreased in the basolateral amygdala, which is a major emotional processing hub implicated in PTSD. We demonstrated that genetic knockdown or pharmacological inhibition of 5α-reductase type 2 exaggerates the behavioral expression of fear in response to witnessed trauma, whereas oral treatment with an exogenous, synthetic neuroactive steroid gamma-aminobutyric acid-A receptor positive allosteric modulator with molecular pharmacology similar to allopregnanolone (SGE-516 [tool compound]) decreased the behavioral response to observational fear. These data implicate impaired endogenous neurosteroidogenesis in the pathophysiology of threat exposure, both direct and witnessed. Further, these data suggest that treatment with exogenous 5α-reduced neurosteroids or targeting endogenous neurosteroidogenesis may be beneficial for the treatment of individuals with PTSD, whether resulting from direct or witnessed trauma.
Collapse
Affiliation(s)
- Aidan Evans-Strong
- Neuroscience Department, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Najah Walton
- Neuroscience Department, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Katrina Blandino
- Neuroscience Department, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Abigail T C Roper
- Developmental and Brain Sciences Program, Department of Psychology, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - S Tiffany Donaldson
- Developmental and Brain Sciences Program, Department of Psychology, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Mike Lewis
- Sage Therapeutics, Inc, Cambridge, Massachusetts, USA
| | - Jamie Maguire
- Neuroscience Department, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Grippo AJ, Akinbo OI, Amidei A, Wardwell J, Normann MC, Ciosek S, Kovalev D. Maladaptive cardiac and behavioral reactivity to repeated vicarious stress exposure in socially bonded male prairie vole siblings. Auton Neurosci 2024; 251:103145. [PMID: 38194740 PMCID: PMC10843770 DOI: 10.1016/j.autneu.2023.103145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/11/2024]
Abstract
Behaviors, emotions, and cardiovascular functions are influenced by stress. But these detrimental effects are not exclusive to an individual that directly experiences stress. Stress is also experienced vicariously through observation of another individual undergoing stress. The current study used the strong social bonds in socially monogamous prairie voles to determine effects of repeated vicarious stress on cardiac and behavioral outcomes. Male prairie voles were exposed to either a 5-minute open field chamber alone [separate (control)] or while concurrently witnessing their sibling undergo a tail-suspension stressor [concurrent (experimental)], repeated across 4 sessions. Cardiac responses in animals in the open field were evaluated for heart rate and heart rate variability prior to, during, and after each test session, and behaviors were evaluated for motion, exploration, stress reactivity, and anxiety-relevant behaviors during each test session. The concurrent condition (versus separate) displayed increased heart rate and reduced heart rate variability during repeated test sessions, and impaired recovery of these parameters following the test sessions. The pattern of disturbances suggests that both increased sympathetic and reduced parasympathetic influence contributed to the cardiac responses. Animals in the concurrent condition (versus separate) displayed disrupted rearing, grooming, and motion; reduced duration of center section exploration; and increased freezing responses across repeated test sessions. Collectively, cardiac and behavioral stress reactivity are increased as a function of vicarious stress in prairie voles, which are evident across repeated experiences of stress. These results inform our understanding of the experience of vicarious stress in social species, including humans.
Collapse
Affiliation(s)
- Angela J Grippo
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA.
| | - Oreoluwa I Akinbo
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Alex Amidei
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Joshua Wardwell
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Marigny C Normann
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Sarah Ciosek
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Dmitry Kovalev
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| |
Collapse
|
16
|
Breton JM, Cort Z, Demaestri C, Critz M, Nevins S, Downend K, Ofray D, Romeo RD, Bath KG. Early life adversity reduces affiliative behavior with a stressed cagemate and leads to sex-specific alterations in corticosterone responses in adult mice. Horm Behav 2024; 158:105464. [PMID: 38070354 PMCID: PMC10872397 DOI: 10.1016/j.yhbeh.2023.105464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023]
Abstract
Experiencing early life adversity (ELA) alters stress physiology and increases the risk for developing psychiatric disorders. The social environment can influence dynamics of stress responding and buffer and/or transfer stress across individuals. Yet, the impact of ELA on sensitivity to the stress of others and social behavior following stress is unknown. Here, to test the impact of ELA on social and physiological responses to stress, circulating blood corticosterone (CORT) and social behaviors were assessed in adult male and female mice reared under limited bedding and nesting (LBN) or control conditions. To induce stress, one cagemate of a pair-housed cage underwent a footshock paradigm and was then returned to their unshocked partner. CORT was measured in both groups of mice 20 or 90 min after stress exposure, and social behaviors were recorded and analyzed. ELA rearing influenced the CORT response to stress in a sex-specific manner. In males, both control and ELA-reared mice exhibited similar stress transfer to unshocked cagemates and similar CORT dynamics. In contrast, ELA females showed a heightened stress transfer to unshocked cagemates, and sustained elevation of CORT relative to controls, indicating enhanced stress contagion and a failure to terminate the stress response. Behaviorally, ELA females displayed decreased allogrooming and increased investigative behaviors, while ELA males showed reduced huddling. Together, these findings demonstrate that ELA influenced HPA axis dynamics, social stress contagion and social behavior. Further research is needed to unravel the underlying mechanisms and long-term consequences of ELA on stress systems and their impact on behavioral outcomes.
Collapse
Affiliation(s)
- Jocelyn M Breton
- Columbia University, Department of Psychiatry, New York, NY, USA; New York State Psychiatric Institute, Division of Developmental Neuroscience, New York, NY, 10032, USA
| | - Zoey Cort
- Barnard College of Columbia University, Department of Neuroscience and Behavior, New York, NY, USA
| | - Camila Demaestri
- Columbia University, Department of Psychiatry, New York, NY, USA
| | - Madalyn Critz
- Columbia University, Department of Psychiatry, New York, NY, USA; New York State Psychiatric Institute, Division of Developmental Neuroscience, New York, NY, 10032, USA
| | - Samuel Nevins
- Brown University, Department of Cognitive, Linguistic and Psychological Sciences, Providence, RI, USA
| | - Kendall Downend
- Barnard College of Columbia University, Department of Neuroscience and Behavior, New York, NY, USA
| | - Dayshalis Ofray
- Columbia University, Department of Psychiatry, New York, NY, USA; New York State Psychiatric Institute, Division of Developmental Neuroscience, New York, NY, 10032, USA
| | - Russell D Romeo
- Barnard College of Columbia University, Department of Neuroscience and Behavior, New York, NY, USA
| | - Kevin G Bath
- Columbia University, Department of Psychiatry, New York, NY, USA; New York State Psychiatric Institute, Division of Developmental Neuroscience, New York, NY, 10032, USA.
| |
Collapse
|
17
|
Garcia-Carachure I, Lira O, Themann A, Rodriguez M, Flores-Ramirez FJ, Lobo MK, Iñiguez SD. Sex-Specific Alterations in Spatial Memory and Hippocampal AKT-mTOR Signaling in Adult Mice Pre-exposed to Ketamine and/or Psychological Stress During Adolescence. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:240-251. [PMID: 38298791 PMCID: PMC10829642 DOI: 10.1016/j.bpsgos.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/24/2023] [Accepted: 07/29/2023] [Indexed: 02/02/2024] Open
Abstract
Background Ketamine (KET) is administered to manage major depression in adolescent patients. However, the long-term effects of juvenile KET exposure on memory-related tasks have not been thoroughly assessed. We examined whether exposure to KET, psychological stress, or both results in long-lasting alterations in spatial memory in C57BL/6 mice. Furthermore, we evaluated how KET and/or psychological stress history influenced hippocampal protein kinase B-mechanistic target of rapamycin (AKT-mTOR)-related signaling. Methods On postnatal day 35, male and female mice underwent vicarious defeat stress (VDS), a form of psychological stress that reduces sociability in both sexes, with or without KET exposure (20 mg/kg/day, postnatal days 35-44). In adulthood (postnatal day 70), mice were assessed for spatial memory performance on a water maze task or euthanized for hippocampal tissue collection. Results Juvenile pre-exposure to KET or VDS individually increased the latency (seconds) to locate the escape platform in adult male, but not female, mice. However, juvenile history of concomitant KET and VDS prevented memory impairment. Furthermore, individual KET or VDS pre-exposure, unlike their combined history, decreased hippocampal AKT-mTOR signaling in adult male mice. Conversely, KET pre-exposure alone increased AKT-mTOR in the hippocampus of adult female mice. Lastly, rapamycin-induced decreases of mTOR in naïve adult female mice induced spatial memory retrieval deficits, mimicking adult male mice with a history of exposure to VDS or KET. Conclusions Our preclinical model shows how KET treatment for the management of adolescent psychological stress-induced sequelae does not impair spatial memory later in life. However, juvenile recreational KET misuse, like psychological stress history, results in long-term spatial memory deficits and hippocampal AKT-mTOR signaling changes in a sex-specific manner.
Collapse
Affiliation(s)
| | - Omar Lira
- Department of Psychology, The University of Texas at El Paso, El Paso, Texas
| | - Anapaula Themann
- Department of Psychology, The University of Texas at El Paso, El Paso, Texas
| | - Minerva Rodriguez
- Department of Psychology, The University of Texas at El Paso, El Paso, Texas
| | | | - Mary Kay Lobo
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Sergio D. Iñiguez
- Department of Psychology, The University of Texas at El Paso, El Paso, Texas
| |
Collapse
|
18
|
Decker Ramirez EB, Arnold ME, Schank JR. Vicarious defeat stress induces increased alcohol consumption in female mice: Role of neurokinin-1 receptor and interleukin-6. Addict Biol 2024; 29:e13357. [PMID: 38221805 PMCID: PMC10794032 DOI: 10.1111/adb.13357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 01/16/2024]
Abstract
There is a high frequency of comorbidity of alcohol use disorder (AUD) and depression in human populations. We have studied this relationship in our lab using the social defeat stress (SDS) model, which results in both depression-like behaviours and increased alcohol consumption in male mice. However, standard SDS procedures are difficult to use in female mice due to a lack of territorial aggression. In the experiments presented here, we used vicarious defeat stress (VDS) to assess social withdrawal and alcohol consumption in female C57BL6/J mice. We also assessed the expression of interleukin-6 (IL6), which is a proinflammatory cytokine that is associated with depression in humans and sensitivity to SDS in mice. In these experiments, C57BL/6 female mice underwent 10 days of VDS where they witnessed the physical defeat of a male conspecific by an aggressive CD1 mouse. After the end of VDS, mice were either given access to alcohol or sacrificed for the measurement of IL6 expression. We found that VDS increased alcohol consumption and IL6 expression in the frontal cortex and hippocampus. Given that the neurokinin-1 receptor (NK1R) can mediate both stress-induced alcohol consumption and IL6 expression, we tested the ability of NK1R antagonism to reduce VDS-induced alcohol consumption and found that this treatment reduced alcohol intake in both VDS-exposed mice and in unstressed controls. The observed increase in alcohol consumption suggests that VDS is a model that can be utilized to study stress-induced alcohol consumption in female mice, and that this is sensitive to NK1R antagonism.
Collapse
Affiliation(s)
- Ellie B. Decker Ramirez
- Department of Physiology and Pharmacology, College of Veterinary MedicineUniversity of GeorgiaAthensGeorgiaUSA
| | - Miranda E. Arnold
- Department of Physiology and Pharmacology, College of Veterinary MedicineUniversity of GeorgiaAthensGeorgiaUSA
| | - Jesse R. Schank
- Department of Physiology and Pharmacology, College of Veterinary MedicineUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
19
|
Gyles TM, Nestler EJ, Parise EM. Advancing preclinical chronic stress models to promote therapeutic discovery for human stress disorders. Neuropsychopharmacology 2024; 49:215-226. [PMID: 37349475 PMCID: PMC10700361 DOI: 10.1038/s41386-023-01625-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/08/2023] [Accepted: 05/19/2023] [Indexed: 06/24/2023]
Abstract
There is an urgent need to develop more effective treatments for stress-related illnesses, which include depression, post-traumatic stress disorder, and anxiety. We view animal models as playing an essential role in this effort, but to date, such approaches have generally not succeeded in developing therapeutics with new mechanisms of action. This is partly due to the complexity of the brain and its disorders, but also to inherent difficulties in modeling human disorders in rodents and to the incorrect use of animal models: namely, trying to recapitulate a human syndrome in a rodent which is likely not possible as opposed to using animals to understand underlying mechanisms and evaluating potential therapeutic paths. Recent transcriptomic research has established the ability of several different chronic stress procedures in rodents to recapitulate large portions of the molecular pathology seen in postmortem brain tissue of individuals with depression. These findings provide crucial validation for the clear relevance of rodent stress models to better understand the pathophysiology of human stress disorders and help guide therapeutic discovery. In this review, we first discuss the current limitations of preclinical chronic stress models as well as traditional behavioral phenotyping approaches. We then explore opportunities to dramatically enhance the translational use of rodent stress models through the application of new experimental technologies. The goal of this review is to promote the synthesis of these novel approaches in rodents with human cell-based approaches and ultimately with early-phase proof-of-concept studies in humans to develop more effective treatments for human stress disorders.
Collapse
Affiliation(s)
- Trevonn M Gyles
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric M Parise
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
20
|
Guerrin CG, Prasad K, Vazquez-Matias DA, Zheng J, Franquesa-Mullerat M, Barazzuol L, Doorduin J, de Vries EF. Prenatal infection and adolescent social adversity affect microglia, synaptic density, and behavior in male rats. Neurobiol Stress 2023; 27:100580. [PMID: 37920548 PMCID: PMC10618826 DOI: 10.1016/j.ynstr.2023.100580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/27/2023] [Accepted: 10/12/2023] [Indexed: 11/04/2023] Open
Abstract
Maternal infection during pregnancy and childhood social trauma have been associated with neurodevelopmental and affective disorders, such as schizophrenia, autism spectrum disorders, bipolar disorder and depression. These disorders are characterized by changes in microglial cells, which play a notable role in synaptic pruning, and synaptic deficits. Here, we investigated the effect of prenatal infection and social adversity during adolescence - either alone or in combination - on behavior, microglia, and synaptic density. Male offspring of pregnant rats injected with poly I:C, mimicking prenatal infection, were exposed to repeated social defeat during adolescence. We found that maternal infection during pregnancy prevented the reduction in social behavior and increase in anxiety induced by social adversity during adolescence. Furthermore, maternal infection and social adversity, alone or in combination, induced hyperlocomotion in adulthood. Longitudinal in vivo imaging with [11C]PBR28 positron emission tomography revealed that prenatal infection alone and social adversity during adolescence alone induced a transient increase in translocator protein TSPO density, an indicator of glial reactivity, whereas their combination induced a long-lasting increase that remained until adulthood. Furthermore, only the combination of prenatal infection and social adversity during adolescence induced an increase in microglial cell density in the frontal cortex. Prenatal infection increased proinflammatory cytokine IL-1β protein levels in hippocampus and social adversity reduced anti-inflammatory cytokine IL-10 protein levels in hippocampus during adulthood. This reduction in IL-10 was prevented if rats were previously exposed to prenatal infection. Adult offspring exposed to prenatal infection or adolescent social adversity had a higher synaptic density in the frontal cortex, but not hippocampus, as evaluated by synaptophysin density. Interestingly, such an increase in synaptic density was not observed in rats exposed to the combination of prenatal infection and social adversity, perhaps due to the long-lasting increase in microglial density, which may lead to an increase in microglial synaptic pruning. These findings suggest that changes in microglia activity and cytokine release induced by prenatal infection and social adversity during adolescence may be related to a reduced synaptic pruning, resulting in a higher synaptic density and behavioral changes in adulthood.
Collapse
Affiliation(s)
- Cyprien G.J. Guerrin
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Kavya Prasad
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Daniel A. Vazquez-Matias
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Jing Zheng
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Maria Franquesa-Mullerat
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Lara Barazzuol
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Erik F.J. de Vries
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| |
Collapse
|
21
|
Parise LF, Iñiguez SD, Warren BL, Parise EM, Bachtell RK, Dietz D, Nestler EJ, Bolaños-Guzmán CA. Viral-mediated expression of Erk2 in the nucleus accumbens regulates responses to rewarding and aversive stimuli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.560689. [PMID: 37873069 PMCID: PMC10592906 DOI: 10.1101/2023.10.03.560689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Second-messenger signaling within the mesolimbic reward circuit is involved in both the long-lived effects of stress and in the underlying mechanisms that promote drug abuse liability. To determine the direct role of kinase signaling within the nucleus accumbens, specifically mitogen-activated protein kinase 1 (ERK2), in mood- and drug-related behavior, we used a herpes-simplex virus to up- or down-regulate ERK2 in adult male rats. We then exposed rats to a battery of behavioral tasks including the elevated plus-maze, open field test, forced-swim test, conditioned place preference, and finally cocaine self-administration. Herein, we show that viral overexpression or knockdown of ERK2 in the nucleus accumbens induces distinct behavioral phenotypes. Specifically, over expression of ERK2 facilitated depression- and anxiety-like behavior while also increasing sensitivity to cocaine. Conversely, down-regulation of ERK2 attenuated behavioral deficits, while blunting sensitivity to cocaine. Taken together, these data implicate ERK2 signaling, within the nucleus accumbens, in the regulation of affective behaviors and modulating sensitivity to the rewarding properties of cocaine.
Collapse
|
22
|
Giovanniello J, Bravo-Rivera C, Rosenkranz A, Matthew Lattal K. Stress, associative learning, and decision-making. Neurobiol Learn Mem 2023; 204:107812. [PMID: 37598745 DOI: 10.1016/j.nlm.2023.107812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/02/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Exposure to acute and chronic stress has significant effects on the basic mechanisms of associative learning and memory. Stress can both impair and enhance associative learning depending on type, intensity, and persistence of the stressor, the subject's sex, the context that the stress and behavior is experienced in, and the type of associative learning taking place. In some cases, stress can cause or exacerbate the maladaptive behavior that underlies numerous psychiatric conditions including anxiety disorders, obsessive-compulsive disorder, post-traumatic stress disorder, substance use disorder, and others. Therefore, it is critical to understand how the varied effects of stress, which may normally facilitate adaptive behavior, can also become maladaptive and even harmful. In this review, we highlight several findings of associative learning and decision-making processes that are affected by stress in both human and non-human subjects and how they are related to one another. An emerging theme from this work is that stress biases behavior towards less flexible strategies that may reflect a cautious insensitivity to changing contingencies. We consider how this inflexibility has been observed in different associative learning procedures and suggest that a goal for the field should be to clarify how factors such as sex and previous experience influence this inflexibility.
Collapse
Affiliation(s)
| | - Christian Bravo-Rivera
- Departments of Psychiatry and Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, PR 00935, United States.
| | - Amiel Rosenkranz
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Chicago Medical School, Rosalind Franklin University of Medicine and Science, United States.
| | - K Matthew Lattal
- Department of Behavioral Neuroscience, Oregon Health & Science University, United States.
| |
Collapse
|
23
|
Boyle CC, Bower JE, Eisenberger NI, Irwin MR. Stress to inflammation and anhedonia: Mechanistic insights from preclinical and clinical models. Neurosci Biobehav Rev 2023; 152:105307. [PMID: 37419230 DOI: 10.1016/j.neubiorev.2023.105307] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Anhedonia, as evidenced by impaired pleasurable response to reward, reduced reward motivation, and/or deficits in reward-related learning, is a common feature of depression. Such deficits in reward processing are also an important clinical target as a risk factor for depression onset. Unfortunately, reward-related deficits remain difficult to treat. To address this gap and inform the development of effective prevention and treatment strategies, it is critical to understand the mechanisms that drive impairments in reward function. Stress-induced inflammation is a plausible mechanism of reward deficits. The purpose of this paper is to review evidence for two components of this psychobiological pathway: 1) the effects of stress on reward function; and 2) the effects of inflammation on reward function. Within these two areas, we draw upon preclinical and clinical models, distinguish between acute and chronic effects of stress and inflammation, and address specific domains of reward dysregulation. By addressing these contextual factors, the review reveals a nuanced literature which might be targeted for additional scientific inquiry to inform the development of precise interventions.
Collapse
Affiliation(s)
- Chloe C Boyle
- Norman Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, UCLA, USA.
| | - Julienne E Bower
- Norman Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, UCLA, USA; Department of Psychology, UCLA, Los Angeles, CA, USA
| | | | - Michael R Irwin
- Norman Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, UCLA, USA
| |
Collapse
|
24
|
Tran I, Gellner AK. Long-term effects of chronic stress models in adult mice. J Neural Transm (Vienna) 2023; 130:1133-1151. [PMID: 36786896 PMCID: PMC10460743 DOI: 10.1007/s00702-023-02598-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/28/2023] [Indexed: 02/15/2023]
Abstract
Neuropsychiatric disorders, such as major depression, anxiety disorders, and post-traumatic stress disorder, tend to be long-term conditions in whose development and maintenance stress are central pathogenic factors. Translational mouse models are widely used in neuropsychiatric research, exploiting social and non-social stressors to investigate the mechanisms underlying their detrimental effects. However, most studies focus on the short-term consequences of chronic stress, whereas only a few are interested in the long-term course. This is counterintuitive given the human conditions that preclinical models are designed to mimic. In this review, we have summarized the limited work to date on long-term effects of chronic stress in mice models. First, the different models are presented and a definition of short- vs. long-term sequelae is proposed. On this basis, behavioral, endocrine, and vegetative effects are addressed before examining data on cellular and molecular alterations in the brain. Finally, future directions for research on the long-term effects of stress are discussed.
Collapse
Affiliation(s)
- Inès Tran
- Institute of Physiology II, Medical Faculty, University of Bonn, Bonn, Germany
| | - Anne-Kathrin Gellner
- Institute of Physiology II, Medical Faculty, University of Bonn, Bonn, Germany.
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
25
|
Cardona-Acosta AM, Sial OK, Parise LF, Gnecco T, Enriquez Marti G, Bolaños-Guzmán CA. Alprazolam exposure during adolescence induces long-lasting dysregulation in reward sensitivity to morphine and second messenger signaling in the VTA-NAc pathway. Sci Rep 2023; 13:10872. [PMID: 37407659 DOI: 10.1038/s41598-023-37696-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023] Open
Abstract
Increased use of benzodiazepines in adolescents have been reported, with alprazolam (ALP) being the most abused. Drug abuse during adolescence can induce changes with lasting consequences. This study investigated the neurobiological consequences of ALP exposure during adolescence in C57BL/6J male mice. Mice received ALP (0, 0.5, 1.0 mg/kg) once/daily (postnatal day 35-49). Changes in responsiveness to morphine (2.5, 5.0 mg/kg), using the conditioned place preference paradigm, were assessed 24-h and 1-month after ALP exposure. In a separate experiment, mice received ALP (0, 0.5 mg/kg) and then sacrificed 24-h or 1-month after treatment to assess levels of extracellular signal regulated kinase 1/2 (ERK1/2) gene expression, protein phosphorylation, and downstream targets (CREB, AKT) within the ventral tegmental area (VTA) and nucleus accumbens (NAc). ALP-pretreated mice developed a strong preference to the compartment(s) paired with a subthreshold dose (2.5 mg/kg) of MOR short-term, and this effect was also present in the 1-month group. Adolescent ALP exposure resulted in dysregulation of ERK-signaling within the VTA-NAc pathway 24-h and 1-month after ALP exposure. Results indicate ALP exposure during adolescence potentiates the rewarding properties of MOR and induces persistent changes in ERK-signaling within the VTA-NAc pathway, a brain circuit highly implicated in the regulation of both drug reward and mood- related behaviors.
Collapse
Affiliation(s)
- Astrid M Cardona-Acosta
- Department of Psychological and Brain Sciences and Program in Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Omar K Sial
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Lyonna F Parise
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tamara Gnecco
- Department of Psychological and Brain Sciences and Program in Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Giselle Enriquez Marti
- Department of Psychological and Brain Sciences and Program in Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Carlos A Bolaños-Guzmán
- Department of Psychological and Brain Sciences and Program in Neuroscience, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
26
|
Cai H, Zhang P, Li T, Li M, Zhang L, Cui C, Lei J, Yang J, Ren K, Ming J, Tian B. Amygdalo-nigral circuit mediates stress-induced vulnerability to the parkinsonian toxin MPTP. CNS Neurosci Ther 2023. [PMID: 36914579 DOI: 10.1111/cns.14151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 03/16/2023] Open
Abstract
AIMS The aim was to investigate the effect of mood disorders on parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced motor disability, substantia nigra pars compacta (SNc) dopaminergic (DA) neurons loss. Also, the neural circuit mechanism was elucidated. METHODS The depression-like (physical stress, PS) and anxiety-like (emotional stress, ES) mouse models were established by the three-chamber social defeat stress (SDS). The features of Parkinson's disease were reproduced by MPTP injection. Viral-based whole-brain mapping was utilized to resolve the stress-induced global changes in direct inputs onto SNc DA neurons. Calcium imaging and chemogenetic techniques were applied to verify the function of the related neural pathway. RESULTS We found that PS mice, but not ES mice, showed worse movement performance and more SNc DA neuronal loss than control mice after MPTP administration. The projection from the central amygdala (CeA) to the SNcDA was significantly increased in PS mice. The activity of SNc-projected CeA neurons was enhanced in PS mice. Activating or inhibiting the CeA-SNcDA pathway could mimic or block PS-induced vulnerability to MPTP. CONCLUSIONS These results indicated that projections from CeA to SNc DA neurons contribute to SDS-induced vulnerability to MPTP in mice.
Collapse
Affiliation(s)
- Hongwei Cai
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Pei Zhang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei, China
| | - Tongxia Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ming Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lijun Zhang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chi Cui
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Lei
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jian Yang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kun Ren
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Ming
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bo Tian
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei, China
| |
Collapse
|
27
|
Chronic stress and stressful emotional contagion affect the empathy-like behavior of rats. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023:10.3758/s13415-023-01081-9. [PMID: 36899132 DOI: 10.3758/s13415-023-01081-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/15/2023] [Indexed: 03/12/2023]
Abstract
Empathy is a potential motivation for prosocial behaviors that is related to many psychiatric diseases, such as major depressive disorder; however, its neural mechanisms remain unclear. To elucidate the relationship between empathy and stress, we established a chronic stress contagion (SC) procedure combined with chronic unpredictable mild stress (CUMS) to investigate (1) whether depressive rats show impaired empathy-like behavior toward fearful conspecifics, (2) whether frequent social contact with normal familiar conspecifics (social support) alleviates the negative effects of CUMS, and (3) the effect of long-term exposure to a depressed partner on emotional and empathic responses in normal rats. We found that the CUMS group showed less empathy-like behavior in the social transfer of fear model (STFM), as indicated by less social interaction with the demonstrator and reduced freezing behavior in the fear-expression test. Social contact partially alleviated depression-like behaviors and the negative effect of CUMS in the fear-transfer test. The normal rats who experienced stress contagion from daily exposure to a depressed partner for 3 weeks showed lower anxiety and increased social response in the fear-transfer test than the control group. We concluded that chronic stress impairs empathy-like behaviors, while social contact partially buffers the effect of CUMS. Thus, social contact or contagion of stress is mutually beneficial to both stressed individuals and nonstressed partners. Higher dopamine and lower norepinephrine levels in the basolateral amygdala probably contributed to these beneficial effects.
Collapse
|
28
|
Hou W, Huang S, Li L, Guo X, He Z, Shang S, Jia Z, Zhang L, Qu Y, Huang C, Li Y, Li Y, Lv Z, Tai F. Oxytocin treatments or activation of the paraventricular nucleus-the shell of nucleus accumbens pathway reduce adverse effects of chronic social defeat stress on emotional and social behaviors in Mandarin voles. Neuropharmacology 2023; 230:109482. [PMID: 36893984 DOI: 10.1016/j.neuropharm.2023.109482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 02/12/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Chronic social stress can cause psychological disease. Although oxytocin (OT) has been showed to modulate effects of chronic social defeat stress (CSDS) on emotional and social behaviors, however, how OT circuits mediate effects of CSDS on emotional and social abnormalities remains unclear. Here, we found that repeated intraperitoneal OT administration in the process of CSDS buffered adverse effects of CSDS on emotional and social behaviors in mandarin voles (Microtus mandarinus) of both sexes except no effect on depression-like behavior of males. Repeated OT treatments during CSDS prevented decrease of oxytocin receptors in nucleus accumbens (NAc) in females, but produced no effects on males. Furthermore, using designer receptors exclusively activated by designer drugs (DREADDs)-based chemogenetic tools, we determined that the activation of the paraventricular nucleus (PVN)-the shell of NAc (NAcs) projections before social defeat during CSDS process significantly prevented the increase of the anxiety-like behaviors and social avoidance induced by CSDS in both sexes, and reversed the depressive-like behaviors induced by CSDS only in females. Besides, optogenetic activation of PVN-NAcs projections after CSDS reduced anxiety-like behaviors and increased levels of sociality. Collectively, we suggest that PVN-NAcs projections modulate emotional and social behaviors during or after the process of CSDS sex-specifically, although AAV viruses did not specifically infect OT neurons. These findings offer potential targets for preventing or treating emotional and social disorders induced by chronic stress.
Collapse
Affiliation(s)
- Wenjuan Hou
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Shuying Huang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Lu Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Xing Guo
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Zhixiong He
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Shufeng Shang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China; College of Bioscience and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China
| | - Ziyan Jia
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Lizi Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Yishan Qu
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Caihong Huang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Yin Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Yitong Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Zijian Lv
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Fadao Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China.
| |
Collapse
|
29
|
Yoshioka T, Yamada D, Segi-Nishida E, Nagase H, Saitoh A. KNT-127, a selective delta opioid receptor agonist, shows beneficial effects in the hippocampal dentate gyrus of a chronic vicarious social defeat stress mouse model. Neuropharmacology 2023; 232:109511. [PMID: 37001727 DOI: 10.1016/j.neuropharm.2023.109511] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/11/2023] [Accepted: 03/18/2023] [Indexed: 03/31/2023]
Abstract
Delta opioid receptors (DOPs) play an important role in depression and other mood disorders. However, little is known about the underlying physiological mechanisms. The hypothalamic-pituitary-adrenal axis, adult hippocampal neurogenesis, and neuroinflammation are regarded as key pathophysiological factors in depression. In this study, we investigated the influence of DOP activation on those factors in a valid animal model of depression, chronic vicarious social defeat stress (cVSDS) mice. cVSDS mice (male C57BL/6J mice) were produced following a 10-day exposure to witness of social defeat stress, and each evaluation was performed more than 28 days after the stress period. Repeated administrations to cVSDS mice with a selective DOP agonist, KNT-127, both during (10 days) and after (28 days) the stress period respectively improved their decreased social interaction behaviors and increased serum corticosterone levels. When administered during the stress period, KNT-127 suppressed decreases in the hippocampal newborn neuron survival rate in cVSDS mice. Moreover, in both administration paradigms, KNT-127 reduced the number of Iba-1- and CD11b-positive cells in the subgranular zone and the granule cell layer of the hippocampal dentate gyrus, indicating a suppression of cVSDS-induced microglial overactivation. These results suggest that KNT-127 acts over the hypothalamic-pituitary-adrenal axis and regulates neurogenesis and neuroinflammation resulting in anti-stress effects, and the antidepressant-like effects of the DOP agonist are implicated in the suppression of the neuroinflammation. This study presents a new finding on the effects of repeated DOP activations on the pathophysiological states of depression.
Collapse
|
30
|
Ródenas-González F, Arenas MC, Blanco-Gandía MC, Manzanedo C, Rodríguez-Arias M. Vicarious Social Defeat Increases Conditioned Rewarding Effects of Cocaine and Ethanol Intake in Female Mice. Biomedicines 2023; 11:biomedicines11020502. [PMID: 36831038 PMCID: PMC9953170 DOI: 10.3390/biomedicines11020502] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/29/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Stress is a critical factor in the development of mood and drug use disorders. The social defeat model is not appropriate for female rodents due to their low level of aggression. Therefore, a robust female model of social stress needs to be developed and validated. The aim of the present study was to unravel the long-lasting effects of vicarious social defeat (VSD) on the conditioned rewarding effects of cocaine and ethanol intake in female mice. Although VSD seems to be a good model for inducing behavioral and physiologic endophenotypes induced by stress, there are no studies to date that characterize the effect of VSD on cocaine or alcohol use. The results confirm that VSD females showed an increase in corticosterone levels after a vicarious experience while also displaying an increase in anxiety- and anhedonic-like behaviors. Three weeks after the last VSD, vicariously defeated female mice showed an increased developed preference for a non-effective dose of cocaine in the conditioned place preference (CPP) paradigm and showed an increase in ethanol intake. Our results suggest that female mice vicariously experience a state of distress through the social observation of others suffering from adverse events, confirming the use of VSD as a valid model to study the response to social stress in females. The fact that VSD in females induced a comparable behavioral phenotype to that observed in physically defeated males could indicate a relationship with the higher rate of psychopathologies observed in women. Notwithstanding, more studies are needed to dissect the neurobiological and behavioral peculiarities of the female response to social stress.
Collapse
Affiliation(s)
- Francisco Ródenas-González
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de Valencia, 46010 Valencia, Spain
| | - María Carmen Arenas
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de Valencia, 46010 Valencia, Spain
| | - María Carmen Blanco-Gandía
- Departamento de Psicología y Sociología, Facultad de Ciencias Sociales y Humanas, Universidad de Zaragoza, 44003 Teruel, Spain
| | - Carmen Manzanedo
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de Valencia, 46010 Valencia, Spain
| | - Marta Rodríguez-Arias
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de Valencia, 46010 Valencia, Spain
- Correspondence:
| |
Collapse
|
31
|
Ecological validity of social defeat stressors in mouse models of vulnerability and resilience. Neurosci Biobehav Rev 2023; 145:105032. [PMID: 36608919 DOI: 10.1016/j.neubiorev.2023.105032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/23/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
Laboratory mouse models offer opportunities to bridge the gap between basic neuroscience and applied stress research. Here we consider the ecological validity of social defeat stressors in mouse models of emotional vulnerability and resilience. Reports identified in PubMed from 1980 to 2020 are reviewed for the ecological validity of social defeat stressors, sex of subjects, and whether results are discussed in terms of vulnerability alone, resilience alone, or both vulnerability and resilience. Most of the 318 reviewed reports (95%) focus on males, and many reports (71%) discuss vulnerability and resilience. Limited ecological validity is associated with increased vulnerability and decreased resilience. Elements of limited ecological validity include frequent and repeated exposure to defeat stressors without opportunities to avoid or escape from unfamiliar conspecifics that are pre-screened and selected for aggressive behavior. These elements ensure defeat and may be required to induce vulnerability, but they are not representative of naturalistic conditions. Research aimed at establishing causality is needed to determine whether ecologically valid stressors build resilience in both sexes of mice.
Collapse
|
32
|
Silveira LM, Tavares LRR, Baptista-de-Souza D, Carmona IM, Carneiro de Oliveira PE, Nunes-de-Souza RL, Canto-de-Souza A. Anterior cingulate cortex, but not amygdala, modulates the anxiogenesis induced by living with conspecifics subjected to chronic restraint stress in male mice. Front Behav Neurosci 2023; 16:1077368. [PMID: 36688134 PMCID: PMC9853544 DOI: 10.3389/fnbeh.2022.1077368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/16/2022] [Indexed: 01/07/2023] Open
Abstract
Cohabitation with a partner undergoing chronic restraint stress (CRE) induces anxiogenic-like behaviors through emotional contagion. We hypothesized that the anterior cingulate cortex (ACC) and the amygdala would be involved in the modulation of this emotional process. This study investigated the role of the ACC and amygdala in empathy-like behavior (e.g., anxiety-like responses) induced by living with a mouse subjected to CRE. Male Swiss mice were housed in pairs for 14 days and then allocated into two groups: cagemate stress (one animal of the pair was subjected to 14 days of restraint stress) and cagemate control (no animal experienced stress). Twenty-four hours after the last stress session, cagemates had their brains removed for recording FosB labeling in the ACC and amygdala (Exp.1). In experiments 2 and 3, 24 h after the last stress session, the cagemates received 0.1 μL of saline or cobalt chloride (CoCl2 1 mM) into the ACC or amygdala, and then exposed to the elevated plus-maze (EPM) for recording anxiety. Results showed a decrease of FosB labeling in the ACC without changing immunofluorescence in the amygdala of stress cagemate mice. Cohabitation with mice subjected to CRE provoked anxiogenic-like behaviors. Local inactivation of ACC (but not the amygdala) reversed the anxiogenic-like effects induced by cohabitation with a partner undergoing CRE. These results suggest the involvement of ACC, but not the amygdala, in anxiety induced by emotional contagion.
Collapse
Affiliation(s)
- Lara Maria Silveira
- Psychobiology Group, Department of Psychology/Centro de Educação e Ciências Humanas (CECH), Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil,Graduate Program in Psychology, Centro de Educação e Ciências Humanas (CECH)-Universidade Federal de São Carlos, São Paulo, Brazil
| | - Ligia Renata Rodrigues Tavares
- Psychobiology Group, Department of Psychology/Centro de Educação e Ciências Humanas (CECH), Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil,Joint Graduate Program in Physiological Sciences, Universidade Federal de São Carlos (UFSCar)/Universidade Estadual Paulista (UNESP), São Carlos, São Paulo, Brazil
| | - Daniela Baptista-de-Souza
- Psychobiology Group, Department of Psychology/Centro de Educação e Ciências Humanas (CECH), Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil,Laboratory of Pharmacology, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, São Paulo, Brazil,Institute of Neuroscience and Behaviour, Ribeirão Preto, São Paulo, Brazil
| | - Isabela Miranda Carmona
- Psychobiology Group, Department of Psychology/Centro de Educação e Ciências Humanas (CECH), Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil,Joint Graduate Program in Physiological Sciences, Universidade Federal de São Carlos (UFSCar)/Universidade Estadual Paulista (UNESP), São Carlos, São Paulo, Brazil
| | - Paulo Eduardo Carneiro de Oliveira
- Psychobiology Group, Department of Psychology/Centro de Educação e Ciências Humanas (CECH), Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil,Graduate Program in Psychology, Centro de Educação e Ciências Humanas (CECH)-Universidade Federal de São Carlos, São Paulo, Brazil
| | - Ricardo Luiz Nunes-de-Souza
- Joint Graduate Program in Physiological Sciences, Universidade Federal de São Carlos (UFSCar)/Universidade Estadual Paulista (UNESP), São Carlos, São Paulo, Brazil,Laboratory of Pharmacology, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, São Paulo, Brazil,Institute of Neuroscience and Behaviour, Ribeirão Preto, São Paulo, Brazil
| | - Azair Canto-de-Souza
- Psychobiology Group, Department of Psychology/Centro de Educação e Ciências Humanas (CECH), Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil,Graduate Program in Psychology, Centro de Educação e Ciências Humanas (CECH)-Universidade Federal de São Carlos, São Paulo, Brazil,Joint Graduate Program in Physiological Sciences, Universidade Federal de São Carlos (UFSCar)/Universidade Estadual Paulista (UNESP), São Carlos, São Paulo, Brazil,Institute of Neuroscience and Behaviour, Ribeirão Preto, São Paulo, Brazil,*Correspondence: Azair Canto-de-Souza, ;
| |
Collapse
|
33
|
Walsh JJ, Christoffel DJ, Malenka RC. Neural circuits regulating prosocial behaviors. Neuropsychopharmacology 2023; 48:79-89. [PMID: 35701550 PMCID: PMC9700801 DOI: 10.1038/s41386-022-01348-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 11/09/2022]
Abstract
Positive, prosocial interactions are essential for survival, development, and well-being. These intricate and complex behaviors are mediated by an amalgamation of neural circuit mechanisms working in concert. Impairments in prosocial behaviors, which occur in a large number of neuropsychiatric disorders, result from disruption of the coordinated activity of these neural circuits. In this review, we focus our discussion on recent findings that utilize modern approaches in rodents to map, monitor, and manipulate neural circuits implicated in a variety of prosocial behaviors. We highlight how modulation by oxytocin, serotonin, and dopamine of excitatory and inhibitory synaptic transmission in specific brain regions is critical for regulation of adaptive prosocial interactions. We then describe how recent findings have helped elucidate pathophysiological mechanisms underlying the social deficits that accompany neuropsychiatric disorders. We conclude by discussing approaches for the development of more efficacious and targeted therapeutic interventions to ameliorate aberrant prosocial behaviors.
Collapse
Affiliation(s)
- Jessica J Walsh
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, 27514, USA.
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA.
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, 27514, USA.
| | - Daniel J Christoffel
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, 27514, USA
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Robert C Malenka
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305-5453, USA.
| |
Collapse
|
34
|
Stankiewicz AM, Jaszczyk A, Goscik J, Juszczak GR. Stress and the brain transcriptome: Identifying commonalities and clusters in standardized data from published experiments. Prog Neuropsychopharmacol Biol Psychiatry 2022; 119:110558. [PMID: 35405299 DOI: 10.1016/j.pnpbp.2022.110558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 03/17/2022] [Accepted: 04/04/2022] [Indexed: 12/28/2022]
Abstract
Interpretation of transcriptomic experiments is hindered by many problems including false positives/negatives inherent to big-data methods and changes in gene nomenclature. To find the most consistent effect of stress on brain transcriptome, we retrieved data from 79 studies applying animal models and 3 human studies investigating post-traumatic stress disorder (PTSD). The analyzed data were obtained either with microarrays or RNA sequencing applied to samples collected from more than 1887 laboratory animals and from 121 human subjects. Based on the initial database containing a quarter million differential expression effect sizes representing transcripts in three species, we identified the most frequently reported genes in 223 stress-control comparisons. Additionally, the analysis considers sex, individual vulnerability and contribution of glucocorticoids. We also found an overlap between gene expression in PTSD patients and animals which indicates relevance of laboratory models for human stress response. Our analysis points to genes that, as far as we know, were not specifically tested for their role in stress response (Pllp, Arrdc2, Midn, Mfsd2a, Ccn1, Htra1, Csrnp1, Tenm4, Tnfrsf25, Sema3b, Fmo2, Adamts4, Gjb1, Errfi1, Fgf18, Galnt6, Slc25a42, Ifi30, Slc4a1, Cemip, Klf10, Tom1, Dcdc2c, Fancd2, Luzp2, Trpm1, Abcc12, Osbpl1a, Ptp4a2). Provided transcriptomic resource will be useful for guiding the new research.
Collapse
Affiliation(s)
- Adrian M Stankiewicz
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzebiec, Poland
| | - Aneta Jaszczyk
- Department of Animal Behavior and Welfare, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzebiec, Poland
| | - Joanna Goscik
- Faculty of Computer Science, Bialystok University of Technology, Bialystok, Poland
| | - Grzegorz R Juszczak
- Department of Animal Behavior and Welfare, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzebiec, Poland.
| |
Collapse
|
35
|
Wang Y, Bai Y, Xiao X, Wang L, Wei G, Guo M, Song X, Tian Y, Ming D, Yang J, Zheng C. Low-intensity focused ultrasound stimulation reverses social avoidance behavior in mice experiencing social defeat stress. Cereb Cortex 2022; 32:5580-5596. [PMID: 35188969 DOI: 10.1093/cercor/bhac037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 01/25/2023] Open
Abstract
The excitatory neurons of the medial prefrontal cortex (mPFC) respond to social stimuli. However, little is known about how the neural activity is altered during social avoidance, and whether it could act as a target of low-intensity focused ultrasound stimulation (LIFUS) to rescue social deficits. The present study aimed to investigate the mechanisms of neuronal activities and inflammatory responses underlying the effect of LIFUS on social avoidance. We found that chronic LIFUS stimulation can effectively improve social avoidance in the defeated mice. Calcium imaging recordings by fiber photometry in the defeated mice showed inhibited ensemble activity during social behaviors. LIFUS instantaneously triggered the mPFC neuronal activities, and chronic LIFUS significantly enhanced their neuronal excitation related to social interactions. We further found that the excessive activation of microglial cells and the overexpression of the inflammation signaling, i.e. Toll-like receptors(TLR4)/nuclear factor-kappaB(NF-КB), in mPFC were significantly inhibited by LIFUS. These results suggest that the LIFUS may inhibit social avoidance behavior by reducing activation of the inflammatory response, increasing neuronal excitation, and protecting the integrity of the neuronal structure in the mPFC. Our findings raised the possibility of LIFUS being applied as novel neuromodulation for social avoidance treatment in neuropsychiatric diseases.
Collapse
Affiliation(s)
- Yimeng Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, #92 Weijin Road, Tianjin 300072, China
| | - Yang Bai
- Academy of Medical Engineering and Translational Medicine, Tianjin University, #92 Weijin Road, Tianjin 300072, China
| | - Xi Xiao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, #92 Weijin Road, Tianjin 300072, China.,Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin 300072, China
| | - Ling Wang
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin 300072, China.,School of Precision Instruments and Optoelectronics Engineering, Department of Biomedical Engineering, Tianjin University, #92 Weijin Road, Tianjin 300072, China
| | - Ganjiang Wei
- Academy of Medical Engineering and Translational Medicine, Tianjin University, #92 Weijin Road, Tianjin 300072, China
| | - Mingkun Guo
- Academy of Medical Engineering and Translational Medicine, Tianjin University, #92 Weijin Road, Tianjin 300072, China
| | - Xizi Song
- Academy of Medical Engineering and Translational Medicine, Tianjin University, #92 Weijin Road, Tianjin 300072, China.,Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin 300072, China
| | - Yutao Tian
- Academy of Medical Engineering and Translational Medicine, Tianjin University, #92 Weijin Road, Tianjin 300072, China.,Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin 300072, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, #92 Weijin Road, Tianjin 300072, China.,Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin 300072, China.,School of Precision Instruments and Optoelectronics Engineering, Department of Biomedical Engineering, Tianjin University, #92 Weijin Road, Tianjin 300072, China
| | - Jiajia Yang
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin 300072, China.,School of Precision Instruments and Optoelectronics Engineering, Department of Biomedical Engineering, Tianjin University, #92 Weijin Road, Tianjin 300072, China
| | - Chenguang Zheng
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin 300072, China.,School of Precision Instruments and Optoelectronics Engineering, Department of Biomedical Engineering, Tianjin University, #92 Weijin Road, Tianjin 300072, China
| |
Collapse
|
36
|
Serotonin 5-HT 1B receptors mediate the antidepressant- and anxiolytic-like effects of ventromedial prefrontal cortex deep brain stimulation in a mouse model of social defeat. Psychopharmacology (Berl) 2022; 239:3875-3892. [PMID: 36282287 DOI: 10.1007/s00213-022-06259-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/28/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) delivered to the ventromedial prefrontal cortex (vmPFC) induces antidepressant- and anxiolytic-like responses in various animal models. Electrophysiology and neurochemical studies suggest that these effects may be dependent, at least in part, on the serotonergic system. In rodents, vmPFC DBS reduces raphe cell firing and increases serotonin (5-HT) release and the expression of serotonergic receptors in different brain regions. METHODS We examined whether the behavioural responses of chronic vmPFC DBS are mediated by 5-HT1A or 5-HT1B receptors through a series of experiments. First, we delivered stimulation to mice undergoing chronic social defeat stress (CSDS), followed by a battery of behavioural tests. Second, we measured the expression of 5-HT1A and 5-HT1B receptors in different brain regions with western blot. Finally, we conducted pharmacological experiments to mitigate the behavioural effects of DBS using the 5-HT1A antagonist, WAY-100635, or the 5-HT1B antagonist, GR-127935. RESULTS We found that chronic DBS delivered to stressed animals reduced the latency to feed in the novelty suppressed feeding test (NSF) and immobility in the forced swim test (FST). Though no significant changes were observed in receptor expression, 5-HT1B levels in DBS-treated animals were found to be non-significantly increased in the vmPFC, hippocampus, and nucleus accumbens and reduced in the raphe compared to non-stimulated controls. Finally, while animals given vmPFC stimulation along with WAY-100635 still presented significant responses in the NSF and FST, these were mitigated following GR-127935 administration. CONCLUSIONS The antidepressant- and anxiolytic-like effects of DBS in rodents may be partially mediated by 5-HT1B receptors.
Collapse
|
37
|
Markov DD, Novosadova EV. Chronic Unpredictable Mild Stress Model of Depression: Possible Sources of Poor Reproducibility and Latent Variables. BIOLOGY 2022; 11:1621. [PMID: 36358321 PMCID: PMC9687170 DOI: 10.3390/biology11111621] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/29/2022] [Accepted: 11/04/2022] [Indexed: 08/10/2023]
Abstract
Major depressive disorder (MDD) is one of the most common mood disorders worldwide. A lack of understanding of the exact neurobiological mechanisms of depression complicates the search for new effective drugs. Animal models are an important tool in the search for new approaches to the treatment of this disorder. All animal models of depression have certain advantages and disadvantages. We often hear that the main drawback of the chronic unpredictable mild stress (CUMS) model of depression is its poor reproducibility, but rarely does anyone try to find the real causes and sources of such poor reproducibility. Analyzing the articles available in the PubMed database, we tried to identify the factors that may be the sources of the poor reproducibility of CUMS. Among such factors, there may be chronic sleep deprivation, painful stressors, social stress, the difference in sex and age of animals, different stress susceptibility of different animal strains, handling quality, habituation to stressful factors, various combinations of physical and psychological stressors in the CUMS protocol, the influence of olfactory and auditory stimuli on animals, as well as the possible influence of various other factors that are rarely taken into account by researchers. We assume that careful inspection of these factors will increase the reproducibility of the CUMS model between laboratories and allow to make the interpretation of the obtained results and their comparison between laboratories to be more adequate.
Collapse
|
38
|
Yoshioka T, Ohashi M, Matsumoto K, Omata T, Hamano T, Yamazaki M, Kimiki S, Okano K, Kobayashi R, Yamada D, Hada N, Kato S, Saitoh A. Repeated psychological stress, chronic vicarious social defeat stress, evokes irritable bowel syndrome-like symptoms in mice. Front Neurosci 2022; 16:993132. [PMID: 36277999 PMCID: PMC9582264 DOI: 10.3389/fnins.2022.993132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence has demonstrated that emotional states and intestinal conditions are inter-connected in so-called “brain–gut interactions.” Indeed, many psychiatric disorders are accompanied by gastrointestinal symptoms, such as the irritable bowel syndrome (IBS). However, the functional connection remains elusive, partly because there are few useful experimental animal models. Here, we focused on a highly validated animal model of stress-induced psychiatric disorders, such as depression, known as the chronic vicarious social defeat stress (cVSDS) model mice, which we prepared using exposure to repeated psychological stress, thereafter examining their intestinal conditions. In the charcoal meal test and the capsaicin-induced hyperalgesia test, cVSDS model mice showed a significantly higher intestinal transit ratio and increased visceral pain-related behaviors, respectively. These changes persisted over one month after the stress session. On the other hand, the pathological evaluations of the histological and inflammatory scores of naive and cVSDS model mice did not differ. Furthermore, keishikashakuyakuto—a kampo medicine clinically used for the treatment of IBS—normalized the intestinal motility change in cVSDS model mice. Our results indicate that cVSDS model mice present IBS-like symptoms such as chronic intestinal peristaltic changes and abdominal hyperalgesia without organic lesion. We therefore propose the cVSDS paradigm as a novel animal model of IBS with wide validity, elucidating the correlation between depressive states and intestinal abnormalities.
Collapse
Affiliation(s)
- Toshinori Yoshioka
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Misaki Ohashi
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Kenjiro Matsumoto
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Tomoki Omata
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Takumi Hamano
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Mayuna Yamazaki
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Sayaka Kimiki
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Kotaro Okano
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Riho Kobayashi
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Daisuke Yamada
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Noriyasu Hada
- Laboratory of Pharmacognosy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Shinichi Kato
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Akiyoshi Saitoh
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
- *Correspondence: Akiyoshi Saitoh,
| |
Collapse
|
39
|
Toyoshima M, Okuda E, Hasegawa N, Kaseda K, Yamada K. Socially Transferred Stress Experience Modulates Social Affective Behaviors in Rats. Neuroscience 2022; 502:68-76. [PMID: 36064051 DOI: 10.1016/j.neuroscience.2022.08.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022]
Abstract
Social communication of affective states between individuals, as well as actual experiences, influences their internal states and behaviors. Although prior stress experiences promote empathy-like behaviors, it remains unclear whether the social transmission of stress events modulates these behaviors. Here, we provide evidence that transferred stress experiences from cage mates modulate socioaffective approach-avoidance behaviors in rats. Male Wistar-Imamichi rats were assigned to one of five experimental groups (Control (n = 15); no shock with shocked cage mates (n = 15); low (0.1 mA, n = 15), middle (0.5 mA, n = 14), and high shock (1.0 mA, n = 14)). Except for the naïve and housed with stressed mate groups, rats received two foot-shocks (5 s for each). The next day, the subjects were allowed to explore two unfamiliar conspecifics; one was a naïve, while the other was a distressed conspecific that received two foot-shocks (1.0 mA, 5 s) immediately before the test. Rats that were housed with stressed mates, as well as those that experienced a higher intensity of foot-shocks, were more likely to approach, while naïve rats avoided, a distressed conspecific. These results suggest that socially transferred stress shifts socioaffective response styles from avoidance to approach toward a stressed conspecific in rats.
Collapse
Affiliation(s)
- Michimasa Toyoshima
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan; JSPS Research Fellow, Japan Society for the Promotion of Science, Chiyoda, Tokyo 102-0083, Japan.
| | - Eri Okuda
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Natsu Hasegawa
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Kodai Kaseda
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Kazuo Yamada
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan.
| |
Collapse
|
40
|
Keysers C, Knapska E, Moita MA, Gazzola V. Emotional contagion and prosocial behavior in rodents. Trends Cogn Sci 2022; 26:688-706. [PMID: 35667978 DOI: 10.1016/j.tics.2022.05.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 01/09/2023]
Abstract
Empathy is critical to adjusting our behavior to the state of others. The past decade dramatically deepened our understanding of the biological origin of this capacity. We now understand that rodents robustly show emotional contagion for the distress of others via neural structures homologous to those involved in human empathy. Their propensity to approach others in distress strengthens this effect. Although rodents can also learn to favor behaviors that benefit others via structures overlapping with those of emotional contagion, they do so less reliably and more selectively. Together, this suggests evolution selected mechanisms for emotional contagion to prepare animals for dangers by using others as sentinels. Such shared emotions additionally can, under certain circumstances, promote prosocial behavior.
Collapse
Affiliation(s)
- Christian Keysers
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences, Amsterdam, the Netherlands; Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands.
| | - Ewelina Knapska
- Laboratory of Emotions' Neurobiology, Center of Excellence for Neural Plasticity and Brain Disorders BRAINCITY, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Marta A Moita
- Champalimaud Neuroscience Progamme, Champalimaud Foundation, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Valeria Gazzola
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences, Amsterdam, the Netherlands; Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
41
|
Pagliusi M, Franco D, Cole S, Morais-Silva G, Chandra R, Fox ME, Iñiguez SD, Sartori CR, Lobo MK. The BDNF-TrkB Pathway Acts Through Nucleus Accumbens D2 Expressing Neurons to Mediate Stress Susceptible Outcomes. Front Psychiatry 2022; 13:854494. [PMID: 35722560 PMCID: PMC9200970 DOI: 10.3389/fpsyt.2022.854494] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) has a critical role in stress response including neuropsychiatric disorders that are precipitated by stress, such as major depressive disorder (MDD). BDNF acts through its full-length BDNF receptor tyrosine kinase B (TrkB) to trigger a pro-plasticity effect. In contrast, the truncated isoform of the BDNF receptor (TrkB.t1) triggers an anti-plasticity effect. In stress outcomes, BDNF acting in the hippocampus has a stress resilience effect, and, inversely, in the nucleus accumbens (NAc), BDNF acts as a stress susceptible molecule. It is unknown if BDNF-TrkB acts on a specific NAc projection neuron, i.e., medium spiny neuron (MSN or spiny projection neuron), a subtype in stress outcomes. To determine this, we performed chronic social or vicarious witness defeat stress (CSDS or CWDS) in mice expressing TrkB.t1 in dopamine receptor 1 or 2 containing MSNs (D1- or D2-MSNs). Our results showed that TrkB.t1 overexpression in NAc D2-MSNs prevented the CSDS-induced social avoidance or other stress susceptible behaviors in male and female mice. We further showed that this overexpression in D2-MSNs blocked stress susceptible behavior induced by intra-NAc BDNF infusion. In contrast, our results demonstrate that overexpression of TrkB.t1 on NAc D1-MSNs facilitates the SDS susceptible behaviors. Our study provides enhanced details into the NAc cell subtype role of BDNF-TrkB signaling in stress outcomes.
Collapse
Affiliation(s)
- Marco Pagliusi
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Structural and Functional Biology, University of Campinas, Campinas, Brazil
| | - Daniela Franco
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Shannon Cole
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Gessynger Morais-Silva
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, Brazil
| | - Ramesh Chandra
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Megan E. Fox
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Sergio D. Iñiguez
- Department of Psychology, University of Texas at El Paso, El Paso, TX, United States
| | - Cesar R. Sartori
- Department of Structural and Functional Biology, University of Campinas, Campinas, Brazil
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
42
|
Lee RX, Stephens GJ, Kuhn B. Social Relationship as a Factor for the Development of Stress Incubation in Adult Mice. Front Behav Neurosci 2022; 16:854486. [PMID: 35685272 PMCID: PMC9172995 DOI: 10.3389/fnbeh.2022.854486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
While stress reactions can emerge long after the triggering event, it remains elusive how they emerge after a protracted, seemingly stress-free period during which stress incubates. Here, we study the behavioral development in mice isolated after observing an aggressive encounter inflicted upon their pair-housed partners. We developed a spatially resolved fine-scale behavioral analysis and applied it to standard behavioral tests. It reveals that the seemingly sudden behavioral changes developed gradually. These behavioral changes were not observed if the aggressive encounter happened to a stranger mouse, suggesting that social bonding is a prerequisite for stress incubation in this paradigm. This finding was corroborated by hemisphere-specific morphological changes in cortex regions centering at the anterior cingulate cortex, a cognitive and emotional center. Our non-invasive analytical methods to capture informative behavioral details may have applications beyond laboratory animals.
Collapse
Affiliation(s)
- Ray X. Lee
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology (OIST) Graduate University, Okinawa, Japan
- Biological Physics Theory Unit, Okinawa Institute of Science and Technology (OIST) Graduate University, Okinawa, Japan
- *Correspondence: Ray X. Lee,
| | - Greg J. Stephens
- Biological Physics Theory Unit, Okinawa Institute of Science and Technology (OIST) Graduate University, Okinawa, Japan
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Bernd Kuhn
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology (OIST) Graduate University, Okinawa, Japan
| |
Collapse
|
43
|
Carneiro de Oliveira PE, Carmona IM, Casarotto M, Silveira LM, Oliveira ACB, Canto-de-Souza A. Mice Cohabiting With Familiar Conspecific in Chronic Stress Condition Exhibit Methamphetamine-Induced Locomotor Sensitization and Augmented Consolation Behavior. Front Behav Neurosci 2022; 16:835717. [PMID: 35517576 PMCID: PMC9062221 DOI: 10.3389/fnbeh.2022.835717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Recognizing and sharing emotions are essential for species survival, but in some cases, living with a conspecific in distress condition may induce negative emotional states through empathy-like processes. Studies have reported that stressors promote psychiatric disorders in both, those who suffer directly and who witness these aversive episodes, principally whether social proximity is involved. However, the mechanisms underlying the harmful outcomes of emotional contagion need more studies, mainly in the drug addiction-related behaviors. Here, we investigated the relevance of familiarity and the effects of cohabitation with a partner submitted to chronic stress in the anxiety-like, locomotor sensitization, and consolation behaviors. Male Swiss mice were housed in pairs during different periods to test the establishment of familiarity and the stress-induced anxiety behavior in the elevated plus maze. Another cohort was housed with a conspecific subjected to repeated restraint stress (1 h/day) for 14 days. During chronic restraint the allogrooming was measured and after the stress period mice were tested in the open field for evaluation of anxiety and locomotor cross-sensitization induced by methamphetamine. We found that familiarity was established after 14 days of cohabitation and the anxiogenic behavior appeared after 14 days of stress. Repeated restraint stress also increased anxiety in the open field test and induced locomotor cross-sensitization in the stressed mice and their cagemates. Cagemates also exhibited an increase in the consolation behavior after stress sessions when compared to control mice. These results indicate that changes in drug abuse-related, consolation, and affective behaviors may be precipitated through emotional contagion in familiar conspecifics.
Collapse
Affiliation(s)
| | - Isabela Miranda Carmona
- Psychobiology Group/Department of Psychology/CECH - Federal University of São Carlos, São Carlos, Brazil.,Joint Graduate Program in Physiological Sciences UFSCar/UNESP, Federal University of São Carlos, São Carlos, Brazil
| | - Mariana Casarotto
- Psychobiology Group/Department of Psychology/CECH - Federal University of São Carlos, São Carlos, Brazil
| | - Lara Maria Silveira
- Psychobiology Group/Department of Psychology/CECH - Federal University of São Carlos, São Carlos, Brazil.,Graduate Program in Psychology, Federal University of São Carlos, São Carlos, Brazil
| | - Anna Cecília Bezerra Oliveira
- Psychobiology Group/Department of Psychology/CECH - Federal University of São Carlos, São Carlos, Brazil.,Joint Graduate Program in Physiological Sciences UFSCar/UNESP, Federal University of São Carlos, São Carlos, Brazil
| | - Azair Canto-de-Souza
- Psychobiology Group/Department of Psychology/CECH - Federal University of São Carlos, São Carlos, Brazil.,Joint Graduate Program in Physiological Sciences UFSCar/UNESP, Federal University of São Carlos, São Carlos, Brazil.,Graduate Program in Psychology, Federal University of São Carlos, São Carlos, Brazil.,Neuroscience and Behavioral Institute, Ribeirão Preto, Brazil
| |
Collapse
|
44
|
Touchant M, Labonté B. Sex-Specific Brain Transcriptional Signatures in Human MDD and Their Correlates in Mouse Models of Depression. Front Behav Neurosci 2022; 16:845491. [PMID: 35592639 PMCID: PMC9110970 DOI: 10.3389/fnbeh.2022.845491] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/05/2022] [Indexed: 01/13/2023] Open
Abstract
Major depressive disorder (MDD) is amongst the most devastating psychiatric conditions affecting several millions of people worldwide every year. Despite the importance of this disease and its impact on modern societies, still very little is known about the etiological mechanisms. Treatment strategies have stagnated over the last decades and very little progress has been made to improve the efficiency of current therapeutic approaches. In order to better understand the disease, it is necessary for researchers to use appropriate animal models that reproduce specific aspects of the complex clinical manifestations at the behavioral and molecular levels. Here, we review the current literature describing the use of mouse models to reproduce specific aspects of MDD and anxiety in males and females. We first describe some of the most commonly used mouse models and their capacity to display unique but also shared features relevant to MDD. We then transition toward an integral description, combined with genome-wide transcriptional strategies. The use of these models reveals crucial insights into the molecular programs underlying the expression of stress susceptibility and resilience in a sex-specific fashion. These studies performed on human and mouse tissues establish correlates into the mechanisms mediating the impact of stress and the extent to which different mouse models of chronic stress recapitulate the molecular changes observed in depressed humans. The focus of this review is specifically to highlight the sex differences revealed from different stress paradigms and transcriptional analyses both in human and animal models.
Collapse
Affiliation(s)
- Maureen Touchant
- CERVO Brain Research Centre, Québec, QC, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Benoit Labonté
- CERVO Brain Research Centre, Québec, QC, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec, QC, Canada
- *Correspondence: Benoit Labonté
| |
Collapse
|
45
|
Doney E, Cadoret A, Dion‐Albert L, Lebel M, Menard C. Inflammation-driven brain and gut barrier dysfunction in stress and mood disorders. Eur J Neurosci 2022; 55:2851-2894. [PMID: 33876886 PMCID: PMC9290537 DOI: 10.1111/ejn.15239] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/18/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
Regulation of emotions is generally associated exclusively with the brain. However, there is evidence that peripheral systems are also involved in mood, stress vulnerability vs. resilience, and emotion-related memory encoding. Prevalence of stress and mood disorders such as major depression, bipolar disorder, and post-traumatic stress disorder is increasing in our modern societies. Unfortunately, 30%-50% of individuals respond poorly to currently available treatments highlighting the need to further investigate emotion-related biology to gain mechanistic insights that could lead to innovative therapies. Here, we provide an overview of inflammation-related mechanisms involved in mood regulation and stress responses discovered using animal models. If clinical studies are available, we discuss translational value of these findings including limitations. Neuroimmune mechanisms of depression and maladaptive stress responses have been receiving increasing attention, and thus, the first part is centered on inflammation and dysregulation of brain and circulating cytokines in stress and mood disorders. Next, recent studies supporting a role for inflammation-driven leakiness of the blood-brain and gut barriers in emotion regulation and mood are highlighted. Stress-induced exacerbated inflammation fragilizes these barriers which become hyperpermeable through loss of integrity and altered biology. At the gut level, this could be associated with dysbiosis, an imbalance in microbial communities, and alteration of the gut-brain axis which is central to production of mood-related neurotransmitter serotonin. Novel therapeutic approaches such as anti-inflammatory drugs, the fast-acting antidepressant ketamine, and probiotics could directly act on the mechanisms described here improving mood disorder-associated symptomatology. Discovery of biomarkers has been a challenging quest in psychiatry, and we end by listing promising targets worth further investigation.
Collapse
Affiliation(s)
- Ellen Doney
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| | - Alice Cadoret
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| | - Laurence Dion‐Albert
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| | - Manon Lebel
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| | - Caroline Menard
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| |
Collapse
|
46
|
Impact of stress on inhibitory neuronal circuits, our tribute to Bruce McEwen. Neurobiol Stress 2022; 19:100460. [PMID: 35734023 PMCID: PMC9207718 DOI: 10.1016/j.ynstr.2022.100460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/22/2022] [Accepted: 05/10/2022] [Indexed: 12/03/2022] Open
Abstract
This manuscript is dedicated to the memory of Bruce S. McEwen, to commemorate the impact he had on how we understand stress and neuronal plasticity, and the profound influence he exerted on our scientific careers. The focus of this review is the impact of stressors on inhibitory circuits, particularly those of the limbic system, but we also consider other regions affected by these adverse experiences. We revise the effects of acute and chronic stress during different stages of development and lifespan, taking into account the influence of the sex of the animals. We review first the influence of stress on the physiology of inhibitory neurons and on the expression of molecules related directly to GABAergic neurotransmission, and then focus on specific interneuron subpopulations, particularly on parvalbumin and somatostatin expressing cells. Then we analyze the effects of stress on molecules and structures related to the plasticity of inhibitory neurons: the polysialylated form of the neural cell adhesion molecule and perineuronal nets. Finally, we review the potential of antidepressants or environmental manipulations to revert the effects of stress on inhibitory circuits.
Collapse
|
47
|
Franco D, Wulff AB, Lobo MK, Fox ME. Chronic Physical and Vicarious Psychosocial Stress Alter Fentanyl Consumption and Nucleus Accumbens Rho GTPases in Male and Female C57BL/6 Mice. Front Behav Neurosci 2022; 16:821080. [PMID: 35221946 PMCID: PMC8867005 DOI: 10.3389/fnbeh.2022.821080] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/20/2022] [Indexed: 12/16/2022] Open
Abstract
Chronic stress can increase the risk of developing a substance use disorder in vulnerable individuals. Numerous models have been developed to probe the underlying neurobiological mechanisms, however, most prior work has been restricted to male rodents, conducted only in rats, or introduces physical injury that can complicate opioid studies. Here we sought to establish how chronic psychosocial stress influences fentanyl consumption in male and female C57BL/6 mice. We used chronic social defeat stress (CSDS), or the modified vicarious chronic witness defeat stress (CWDS), and used social interaction to stratify mice as stress-susceptible or resilient. We then subjected mice to a 15 days fentanyl drinking paradigm in the home cage that consisted of alternating forced and choice periods with increasing fentanyl concentrations. Male mice susceptible to either CWDS or CSDS consumed more fentanyl relative to unstressed mice. CWDS-susceptible female mice did not differ from unstressed mice during the forced periods, but showed increased preference for fentanyl over time. We also found decreased expression of nucleus accumbens Rho GTPases in male, but not female mice following stress and fentanyl drinking. We also compare fentanyl drinking behavior in mice that had free access to plain water throughout. Our results indicate that stress-sensitized fentanyl consumption is dependent on both sex and behavioral outcomes to stress.
Collapse
Affiliation(s)
- Daniela Franco
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Andreas B. Wulff
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Megan E. Fox
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States,Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, United States,*Correspondence: Megan E. Fox,
| |
Collapse
|
48
|
Wang W, Liu WZ, Wang ZL, Duan DX, Wang XY, Liu SJ, Wang ZJ, Xing GG, Xing Y. Spinal microglial activation promotes perioperative social defeat stress-induced prolonged postoperative pain in a sex-dependent manner. Brain Behav Immun 2022; 100:88-104. [PMID: 34808295 DOI: 10.1016/j.bbi.2021.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/08/2021] [Accepted: 11/13/2021] [Indexed: 11/25/2022] Open
Abstract
Prolonged postsurgical pain, which is associated with multiple risk factors in the perioperative stage, is a common medical and social problem worldwide. Suitable animal models should be established to elucidate the mechanisms underlying the perioperative prolonged postsurgical pain. In this study, standard and modified social defeat stress mice models, including chronic social defeat stress (CSDS), chronic nondiscriminatory social defeat stress (CNSDS) and vicarious social defeat stress (VSDS), were applied to explore the effect of perioperative social defeat stress on postsurgical pain in male and female mice. Our results showed that exposure to preoperative CSDS could induce prolonged postsurgical pain in defeated mice regardless of susceptibility or resilience differentiated by the social interaction test. Similar prolongation of incision-induced mechanical hypersensitivity was also observed in both sexes upon exposing to CNSDS or VSDS in the preoperative period. Moreover, we found that using the modified CNSDS or VSDS models at different recovery stages after surgery could still promote abnormal pain without sex differences. Further studies revealed the key role of spinal microglial activation in the stress-induced transition from acute to prolonged postoperative pain in male but not female mice. Together, these data indicate that perioperative social defeat stress is a vital risk factor for developing prolonged postoperative pain in both sexes, but the promotion of stress-induced prolonged postoperative pain by spinal microglial activation is sexually dimorphic in mice.
Collapse
Affiliation(s)
- Wang Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; The Academy of Medical Sciences of Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Wei-Zhen Liu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; The Academy of Medical Sciences of Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Zi-Liang Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; The Academy of Medical Sciences of Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Dong-Xiao Duan
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xue-Yun Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; The Academy of Medical Sciences of Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Shi-Jin Liu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; The Academy of Medical Sciences of Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Zhi-Ju Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Guo-Gang Xing
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing 100191, China.
| | - Ying Xing
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
49
|
Belelli D, Phillips GD, Atack JR, Lambert JJ. Relating neurosteroid modulation of inhibitory neurotransmission to behaviour. J Neuroendocrinol 2022; 34:e13045. [PMID: 34644812 DOI: 10.1111/jne.13045] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/24/2021] [Accepted: 09/15/2021] [Indexed: 12/11/2022]
Abstract
Studies in the 1980s revealed endogenous metabolites of progesterone and deoxycorticosterone to be potent, efficacious, positive allosteric modulators (PAMs) of the GABAA receptor (GABAA R). The discovery that such steroids are locally synthesised in the central nervous system (CNS) promoted the thesis that neural inhibition in the CNS may be "fine-tuned" by these neurosteroids to influence behaviour. In preclinical studies, these neurosteroids exhibited anxiolytic, anticonvulsant, analgesic and sedative properties and, at relatively high doses, induced a state of general anaesthesia, a profile consistent with their interaction with GABAA Rs. However, realising the therapeutic potential of either endogenous neurosteroids or synthetic "neuroactive" steroids has proven challenging. Recent approval by the Food and Drug Administration of the use of allopregnanolone (brexanolone) to treat postpartum depression has rekindled enthusiasm for exploring their potential as new medicines. Although neurosteroids are selective for GABAA Rs, they exhibit little or no selectivity across the many GABAA R subtypes. Nevertheless, a relatively minor population of receptors incorporating the δ-subunit (δ-GABAA Rs) appears to be an important contributor to their behavioural effects. Here, we consider how neurosteroids acting upon GABAA Rs influence neuronal signalling, as well as how such effects may acutely and persistently influence behaviour, and explore the case for developing selective PAMs of δ-GABAA R subtypes for the treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Delia Belelli
- Neuroscience, Division of Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Grant D Phillips
- Neuroscience, Division of Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - John R Atack
- Medicines Discovery Institute, Cardiff University, Cardiff, UK
| | - Jeremy J Lambert
- Neuroscience, Division of Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| |
Collapse
|
50
|
Qi G, Zhang P, Li T, Li M, Zhang Q, He F, Zhang L, Cai H, Lv X, Qiao H, Chen X, Ming J, Tian B. NAc-VTA circuit underlies emotional stress-induced anxiety-like behavior in the three-chamber vicarious social defeat stress mouse model. Nat Commun 2022; 13:577. [PMID: 35102141 PMCID: PMC8804001 DOI: 10.1038/s41467-022-28190-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/07/2022] [Indexed: 01/07/2023] Open
Abstract
Emotional stress is considered a severe pathogenetic factor of psychiatric disorders. However, the circuit mechanisms remain largely unclear. Using a three-chamber vicarious social defeat stress (3C-VSDS) model in mice, we here show that chronic emotional stress (CES) induces anxiety-like behavior and transient social interaction changes. Dopaminergic neurons of ventral tegmental area (VTA) are required to control this behavioral deficit. VTA dopaminergic neuron hyperactivity induced by CES is involved in the anxiety-like behavior in the innate anxiogenic environment. Chemogenetic activation of VTA dopaminergic neurons directly triggers anxiety-like behavior, while chemogenetic inhibition of these neurons promotes resilience to the CES-induced anxiety-like behavior. Moreover, VTA dopaminergic neurons receiving nucleus accumbens (NAc) projections are activated in CES mice. Bidirectional modulation of the NAc-VTA circuit mimics or reverses the CES-induced anxiety-like behavior. In conclusion, we propose that a NAc-VTA circuit critically establishes and regulates the CES-induced anxiety-like behavior. This study not only characterizes a preclinical model that is representative of the nuanced aspect of CES, but also provides insight to the circuit-level neuronal processes that underlie empathy-like behavior.
Collapse
Affiliation(s)
- Guangjian Qi
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
- College of Acupuncture & Massage, Shaanxi University of Chinese Medicine, Xixian New Area, Shaanxi Province, 712046, P. R. China
- Key Laboratory of Acupuncture & Medicine of Shaanxi Province, Shaanxi University of Chinese Medicine, Xixian New Area, Shaanxi Province, 712046, P. R. China
| | - Pei Zhang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
- Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei Province, 430030, P. R. China
| | - Tongxia Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
| | - Ming Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
| | - Qian Zhang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
| | - Feng He
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
| | - Lijun Zhang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
| | - Hongwei Cai
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
| | - Xinyuan Lv
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
| | - Haifa Qiao
- College of Acupuncture & Massage, Shaanxi University of Chinese Medicine, Xixian New Area, Shaanxi Province, 712046, P. R. China
- Key Laboratory of Acupuncture & Medicine of Shaanxi Province, Shaanxi University of Chinese Medicine, Xixian New Area, Shaanxi Province, 712046, P. R. China
| | - Xiaoqian Chen
- Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei Province, 430030, P. R. China
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
| | - Jie Ming
- Department of Breast and Thyroid Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430022, P. R. China.
| | - Bo Tian
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China.
- Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China.
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei Province, 430030, P. R. China.
| |
Collapse
|