1
|
Contarino A. Genetic inactivation of the CRF 2 receptor eliminates morphine-induced sociability deficits in female mice. Neuropharmacology 2025; 274:110480. [PMID: 40274013 DOI: 10.1016/j.neuropharm.2025.110480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/14/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025]
Abstract
Social behavior deficits, such as poor sociability and social isolation, are key clinical features of substance use disorders. The corticotropin-releasing factor (CRF) system may underlie the effects of substances of abuse but its implication in substance-induced social behavior deficits remains largely unknown. CRF signaling is mediated by two receptor types, termed CRF1 and CRF2. Using the genetic mouse model of CRF2 receptor-deficiency and the three-chamber task for sociability, the present studies examined the specific role for the CRF2 receptor in sociability deficits induced by morphine. Notably, to assess possible sex-linked differences, female and male CRF2 receptor wild-type (CRF2 WT) or knockout (CRF2 KO) mice were used. Intraperitoneal administration of morphine (1 mg/kg) reliably eliminated the preference for an unfamiliar same-sex conspecific over an object in female CRF2 WT, but not in CRF2 KO, mice, revealing a key role for the CRF2 receptor in opiate-induced sociability deficits. In contrast, morphine almost significantly and similarly reduced the preference for an unfamiliar same-sex conspecific over an object in male CRF2 WT and CRF2 KO mice, indicating no role for the CRF2 receptor. Notably, treatment with morphine never affected distance travelled during the three-chamber test, indicating that CRF2 receptor-dependent or -independent opiate effects were specific to social behavior. The present findings provide initial evidence of a critical sex-linked role for the CRF2 receptor in social behavior deficits induced by opiate substances, suggesting new, sex-customized, therapeutic strategy for opioid use disorders.
Collapse
Affiliation(s)
- Angelo Contarino
- Université Paris Cité, INSERM, CNRS, Health & Functional Exposomics - HealthFex, U1124, 75006, Paris, France; Université de Bordeaux, 33076, Bordeaux, France.
| |
Collapse
|
2
|
Pirri F, McCormick CM. Oxytocin receptors within the caudal lateral septum regulate social approach-avoidance, long-term social discrimination, and anxiety-like behaviors in adult male and female rats. Neuropharmacology 2025; 271:110409. [PMID: 40074168 DOI: 10.1016/j.neuropharm.2025.110409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/26/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
OTR signaling promotes social approach or facilitates social avoidance, depending on the brain region involved. The lateral septum plays a critical role in regulating social interactions and memory. We investigated the role of OTR signaling in the caudodorsal lateral septum (LSc.d) in modulating social approach-avoidance behavior, long-term social discrimination memory, and anxiety-like behaviors in adult rats. Local infusion of the selective OTR antagonist L-368,899 (1 μg/0.5 μl) into the LSc.d decreased social approach, increased social vigilance, and reduced long-term social discrimination memory in both sexes. Administration of the biased OTR/Gq agonist carbetocin (0.5 μg/0.5 μl) reduced social approach and long-term social discrimination memory in both sexes, and had anxiogenic effects (increased latency to consume palatable food in test arena) only in males. In contrast, the full OTR agonist TGOT (50 ng/0.5 μl) had no effect on social approach or long-term social discrimination memory, and decreased latency to consume palatable food (anxiolytic effect). The results indicate that the oxytocin system can both promote and inhibit social behaviors depending on the differential activation of G-protein subunits and β-arrestins, as well as the pivotal role of the LS in modulating social and anxiety-like behavior in rats.
Collapse
Affiliation(s)
- Fardad Pirri
- Biological Sciences Department, Brock University, Canada
| | - Cheryl M McCormick
- Biological Sciences Department, Brock University, Canada; Psychology Department, Brock University, Canada.
| |
Collapse
|
3
|
Hammond E, Monari P, Kilponen L, Chen Y, Auger A, Marler C. Oxytocin impairs wound-healing during social isolation but not social living. Psychoneuroendocrinology 2025; 176:107445. [PMID: 40147192 DOI: 10.1016/j.psyneuen.2025.107445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 02/05/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
Social isolation hampers immune system function, and the biological mechanisms driving this effect remain understudied. We hypothesized that oxytocin (OT), a key neuropeptide involved in social cognition, is a critical mediator of social context on immune function. In the California mouse (Peromyscus californicus), we examined how female and male immune function is influenced by (1) social isolation from same-sex peers, (2) social peer affiliation, and (3) exogenous OT. We evaluated immune function through wound size progression following a skin biopsy and proinflammatory cytokines in the wound fluid. Unexpectedly, social isolation alone did not influence wound healing, but isolation + OT increased wound size in a dose dependent manner. Wound size progression interacted with sex and OT in socially-housed mice, suggesting that OT increases inflammation in females, while decreasing inflammation in males in a social context-dependent manner. Inflammatory biomarker interleukin-6 (IL-6) mRNA expression correlated with wound size overall, supporting wound healing as an index of inflammatory response. However, isolation + OT mice did not have higher levels of IL-6, suggesting that the mechanism through which isolation + OT influences wound size is not through IL-6 activity. Behaviorally, higher levels of affiliation were negatively associated with wound size, and this effect was diminished by OT treatment. Our results highlight that the anti-inflammatory effects of OT are likely highly dependent on social context.
Collapse
Affiliation(s)
- Emma Hammond
- University of Wisconsin-Madison, Department of Psychology, Madison, WI, USA.
| | - Patrick Monari
- University of Wisconsin-Madison, Department of Psychology, Madison, WI, USA
| | - Lila Kilponen
- University of Wisconsin-Madison, Department of Psychology, Madison, WI, USA
| | - Yiru Chen
- University of Wisconsin-Madison, Department of Psychology, Madison, WI, USA
| | - Anthony Auger
- University of Wisconsin-Madison, Department of Psychology, Madison, WI, USA
| | - Catherine Marler
- University of Wisconsin-Madison, Department of Psychology, Madison, WI, USA
| |
Collapse
|
4
|
Kanterman A, Shamay-Tsoory S. From social effort to social behavior: An integrated neural model for social motivation. Neurosci Biobehav Rev 2025; 173:106170. [PMID: 40252883 DOI: 10.1016/j.neubiorev.2025.106170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
As humans rely on social groups for survival, social motivation is central to behavior and well-being. Here we define social motivation as the effort that initiates and directs behavior towards social outcomes, with the goal of satisfying our fundamental need for connection. We propose an integrated framework of social motivation which emphasizes the maintenance of optimal connection levels through effort exertion, regulating social approach and avoidance, which allow interpersonal synchrony. Together, these behaviors serve as basic building blocks of social behavior, and give rise to behaviors critical for collective living such as cooperation and empathy. We describe a neural model according to which social connection levels are monitored by the hypothalamus, while the anterior cingulate cortex and anterior insula respond to detected social deficiency. As adjustment is required, the social effort system - comprised of the thalamus and striatum - is activated. This system directs neural networks that permit interpersonal synchrony or, conversely, desynchronization, aiming to restore and maintain optimal connection by preventing isolation on the one hand, and exaggerated social closeness on the other hand. The proposed framework offers insights into disorders characterized by aberrant social motivation, potentially identifying neural dysfunctions that may inform novel interventions.
Collapse
|
5
|
Laymon JL, Whitten CJ, Radford AF, Brewer AR, Deo YS, Hooker MK, Geddati AA, Cooper MA. Distinguishing neural ensembles in the infralimbic cortex that regulate stress vulnerability and coping behavior. Neurobiol Stress 2025; 36:100720. [PMID: 40230624 PMCID: PMC11994976 DOI: 10.1016/j.ynstr.2025.100720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/28/2025] [Accepted: 03/19/2025] [Indexed: 04/16/2025] Open
Abstract
Neural ensembles in the medial prefrontal cortex regulate several types of responses to stress. We used a Syrian hamster model to investigate the role of infralimbic (IL) neurons in coping with social defeat stress and vulnerability to subsequent anxiety-like behavior. We created social dominance relationships in male and female hamsters, used a robust activity marker (RAM) approach to label IL neural ensembles activated during social defeat stress, and employed light-dark (LD), social avoidance (SA), and conditioned defeat (CD) tests to assess anxiety-like behavior. We found that dominant animals were less anxious in LD tests compared to subordinate animals after achieving their higher status. Also, status-dependent differences in anxiety-like behavior were maintained following social defeat in males, but not females. Subordinate males showed greater RAM-mKate2 expression in IL parvalbumin (PV) cells during social defeat exposure compared to dominant males, and submissive behavior during CD testing was correlated with RAM/PV co-expression. In contrast, greater RAM-mKate2 expression in IL neurons was correlated with a longer latency to submit during social defeat in dominant females, although the correlation of RAM/PV co-expression and defeat-induced anxiety in females was mixed. Overall, these findings suggest that activation of IL PV cells during social defeat predicts the development stress vulnerability in males, whereas activation of IL neurons is associated with a proactive response to social defeat exposure in females. Understanding how social dominance generates plasticity in IL PV cells should improve our understanding of the mechanisms by which behavioral treatments prior to stress might promote stress resilience.
Collapse
Affiliation(s)
- Jenna L. Laymon
- Translational Neuroscience Program, Wayne State University School of Medicine, USA
| | | | - Anna F. Radford
- Department of Psychology, University of Tennessee Knoxville, USA
| | | | - Yash S. Deo
- Department of Psychology, University of Tennessee Knoxville, USA
| | | | - Akhil A. Geddati
- Department of Psychology, University of Tennessee Knoxville, USA
| | | |
Collapse
|
6
|
Nasanbuyan N, Yoshida M, Inutsuka A, Takayanagi Y, Kato S, Hidema S, Nishimori K, Kobayashi K, Onaka T. Differential Functions of Oxytocin Receptor-Expressing Neurons in the Ventromedial Hypothalamus in Social Stress Responses: Induction of Adaptive and Maladaptive Coping Behaviors. Biol Psychiatry 2025; 97:874-886. [PMID: 39343339 DOI: 10.1016/j.biopsych.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 08/27/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND The flexibility to adjust actions and attitudes in response to varying social situations is a fundamental aspect of adaptive social behavior. Adaptive social behaviors influence an individual's vulnerability to social stress. While it has been proposed that oxytocin is a facilitator of active coping behaviors during social stress, the exact mechanisms remain unknown. METHODS Using a social defeat stress paradigm in male mice, we identified the distribution of oxytocin receptor (OXTR)-expressing neurons in the ventrolateral part of the ventromedial hypothalamus (vlVMH) that are activated during stress by detection of c-Fos protein expression. We then investigated the role of vlVMH OXTR-expressing neurons in social defeat stress responses by chemogenetic methods or deletion of local OXTRs. The social defeat posture was measured for quantification of adaptive social behavior during repeated social stress. RESULTS Social defeat stress activated OXTR-expressing neurons rather than estrogen receptor 1-expressing neurons in the rostral vlVMH. OXTR-expressing neurons in the vlVMH were glutamatergic. Chemogenetic activation of vlVMH OXTR-expressing neurons facilitated exhibition of the social defeat posture during exposure to social stress, while local OXTR deletion suppressed it. In contrast, overactivation of vlVMH-OXTR neurons induced generalized social avoidance after exposure to chronic social defeat stress. Neural circuits for the social defeat posture centered on OXTR-expressing neurons were identified by viral tracers and c-Fos mapping. CONCLUSIONS vlVMH OXTR-expressing neurons are a functionally unique population of neurons that promote active coping behavior during social stress, but their excessive and repetitive activation under chronic social stress impairs subsequent social behavior.
Collapse
Affiliation(s)
- Naranbat Nasanbuyan
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Tochigi, Japan
| | - Masahide Yoshida
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Tochigi, Japan.
| | - Ayumu Inutsuka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Tochigi, Japan
| | - Yuki Takayanagi
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Tochigi, Japan
| | - Shigeki Kato
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Shizu Hidema
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Katsuhiko Nishimori
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Tatsushi Onaka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Tochigi, Japan.
| |
Collapse
|
7
|
Szebik H, Miskolczi C, Bruzsik B, Balla G, Szabó S, Biró L, Mikics É. Dynamic changes of serotonin transporter expression in the prefrontal cortex evoked by aggressive social interactions. Neurobiol Stress 2025; 36:100722. [PMID: 40230625 PMCID: PMC11994973 DOI: 10.1016/j.ynstr.2025.100722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/17/2025] [Accepted: 03/25/2025] [Indexed: 04/16/2025] Open
Abstract
Aggression is a complex behavior influenced by developmental experiences, internal state, and social context, yet its neurobiological underpinnings remain insufficiently understood. The serotonergic system, particularly the serotonin transporter (SERT), plays a crucial role in aggression regulation. Here, we investigated region-specific, dynamic changes in SERT expression following aggressive interactions and in mice subjected to early-life social adversity. We found that aggressive encounters (resident-intruder test) triggered a significant, rapid increase in SERT immunoreactivity within 90 min, accompanied by neuronal activation in aggression-related brain regions, including the medial prefrontal cortex (mPFC), lateral septum (LS), medial amygdala (MeA), ventromedial hypothalamus (VMHvl), lateral habenula (LH), and dorsal raphe (DR), but not in the paraventricular thalamus (PVT). Notably, this SERT upregulation occurred across the aggression circuitry but was accompanied by a significant increase in 5-HT levels only in the mPFC, a key region in top-down regulation of social and aggressive behavior. This SERT upregulation was not observed following exposure to a non-social challenge, suggesting that it may be more specifically associated with social contexts. Using super-resolution microscopy, we identified an increased density of SERT localization points within serotonergic mPFC axons after an aggressive encounter. Social isolation during adolescence, a model of early social neglect, impaired this rapid SERT response, particularly in the ventral and medial orbitofrontal regions, and altered the relationship between SERT levels and aggression-related behaviors. These findings demonstrate that SERT expression undergoes rapid, experience-dependent plasticity in response to social aggression, and that early-life adversity disrupts this adaptive mechanism, providing new insights into the serotonergic regulation of aggression and its potential relevance for stress-related social dysfunctions.
Collapse
Affiliation(s)
- Huba Szebik
- Translational Behavioral Neuroscience Research Group, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
- Semmelweis University, Doctoral School, Budapest, Hungary
| | - Christina Miskolczi
- Translational Behavioral Neuroscience Research Group, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
- Semmelweis University, Doctoral School, Budapest, Hungary
| | - Bíborka Bruzsik
- Translational Behavioral Neuroscience Research Group, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Gyula Balla
- Translational Behavioral Neuroscience Research Group, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Soma Szabó
- Translational Behavioral Neuroscience Research Group, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - László Biró
- Translational Behavioral Neuroscience Research Group, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
- Thalamus Research Group, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Éva Mikics
- Translational Behavioral Neuroscience Research Group, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
8
|
Tickerhoof MC, Nerio Morales LK, Goff J, Vitale EM, Smith AS. Extended amygdala corticotropin-releasing hormone neurons regulate sexually dimorphic changes in pair bond formation following social defeat in prairie voles (Microtus ochrogaster). Neuropsychopharmacology 2025; 50:965-975. [PMID: 39939823 PMCID: PMC12032363 DOI: 10.1038/s41386-025-02067-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/03/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
The neurobiological mechanisms underlying the connection between anxiety brought on by social stressors and the negative impact on relationship formation have remained elusive. In order to address this question, we used the social defeat model in the socially monogamous prairie vole to investigate the impact of this stress on pair bond formation. Social defeat experience inhibited partner preference formation in males but promoted preference in females. Furthermore, pair bonding increased corticotropin-releasing hormone (CRH) expression in the bed nucleus of the stria terminalis (BNST) in male prairie voles, while defeat experience increased BNST CRH expression in females. Chemogenetic excitation of BNST CRH neurons during a short cohabitation with a new partner promoted a partner preference in stress-naïve prairie voles. Interestingly, chemogenetic inhibition of BNST CRH neurons during cohabitation with a new partner blocked partner preference in stress-naïve males but promoted preference in defeated males. Inhibition of BNST CRH neurons also blocked partner preference in stress-naïve females but did not alter preference behavior in defeated females. This study revealed sexual dimorphism in not only the impact of social defeat on pair bond formation, but also in the role BNST CRHergic neurons play in regulating changes in pair bonding following social conflict.
Collapse
Affiliation(s)
- Maria C Tickerhoof
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, 66045, USA
| | - Lina K Nerio Morales
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, 66045, USA
| | - Jeff Goff
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, 66045, USA
| | - Erika M Vitale
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, 66045, USA
| | - Adam S Smith
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, 66045, USA.
| |
Collapse
|
9
|
Gossman KR, Andrews E, Dykstra B, Ta K, Ashourvan A, Smith AS. Structural connectivity of the fore- and mid-brain in prairie voles. iScience 2025; 28:112065. [PMID: 40144636 PMCID: PMC11938270 DOI: 10.1016/j.isci.2025.112065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/14/2024] [Accepted: 02/17/2025] [Indexed: 03/28/2025] Open
Abstract
Mammals live in complex social systems that require higher order cognition to process and display complex social behaviors. It is suggested that brain networks, such as the social decision-making network (SDMN), have evolved to process such information. Recent functional connectivity studies of the SDMN have revealed distinct network dynamics during different social events across several species. However, the structural mapping of this network is incomplete which limits structural-functional modeling. Here, we assess the structural connectivity of an extended SDMN as well as the fore- and mid-brain afferent projections with the use of cholera toxin subunit-B retrograde tracers and the prairie vole (Microtus ochrogaster), a socially monogamous rodent that displays complex social behaviors. This work greatly expands upon the limited structural connectivity of the vole social brain and highlights important regions within the SDMN and other highly innervated regions that may serve as information hubs.
Collapse
Affiliation(s)
- Kyle R. Gossman
- Department of Pharmacsology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Emalee Andrews
- Department of Pharmacsology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Ben Dykstra
- Department of Pharmacsology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Kyle Ta
- Department of Pharmacsology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Arian Ashourvan
- Department of Psychology, University of Kansas, Lawrence KS, USA
| | - Adam S. Smith
- Department of Pharmacsology and Toxicology, University of Kansas, Lawrence, KS, USA
- Program in Neuroscience, University of Kansas, Lawrence KS, USA
| |
Collapse
|
10
|
Amin N, Hussein AB, Ye Q, Chen S, Wu F, Yuan X, Abbasi IN, Sundus J, Hu Z, Fang M. Combination of rTMS and oxytocin agonist attenuate depression-like behavior after postpartum depression in mice. Brain Res 2025; 1851:149459. [PMID: 39832612 DOI: 10.1016/j.brainres.2025.149459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/27/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
The Diagnostic and Statistical Manual of Mental Disorders (DSM-5) categorizes postpartum depression (PPD) as a subtype of Major Depressive Disorder (MDD) with peripartum onset, generally arising within the initial trimester following delivery. This acute psychiatric condition is characterized by feelings of worthlessness, insomnia, extreme anxiety, or maternal neglect. Intranasal oxytocin (OT) and transcranial magnetic stimulation (TMS) have the potential to address impaired social cognition; nonetheless, their neuronal underpinnings, along with their safety and efficacy, are little comprehended. This study examines the effects of rTMS stimulation with an oxytocin agonist or antagonist in a PPD model. We employed the maternal separation with early weaning (MSEW) strategy for 21 days to attain our objective. Oxytocin acetate (agonist) and atosiban (antagonist) were administered by injection twice daily for three consecutive days following the model according to the established protocol. A single session of rTMS involved the application of high-frequency stimulation (20 Hz) one hour following the final injection. Behavioral testing and brain collection were conducted 12 h post-rTMS. The results indicated that treatment with OT followed by rTMS stimulation decreased neuronal cell death and microglial activation, meanwhile enhancing synaptic plasticity through the upregulation of PSD95, Synapsin I, and Synaptophysin. Simultaneously, both OT therapy and repetitive transcranial magnetic stimulation demonstrated a significant capacity to alter autophagy activity and astrocyte function. Nonetheless, OTA therapy followed by rTMS did not exhibit the same pattern of outcomes. Our findings indicate that the combination of rTMS stimulation and an oxytocin agonist in a PPD model may mitigate depression-like behavior.
Collapse
Affiliation(s)
- Nashwa Amin
- Department of Orthopaedics of Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, China; Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China; Department of Zoology, Faculty of Science, Aswan University, 81528 Aswan, Egypt
| | - Azhar B Hussein
- Department of Orthopaedics of Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, China
| | - Qing Ye
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Shijia Chen
- Department of Neurology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Centre for Child Health, Hangzhou, China
| | - Fei Wu
- Department of Orthopaedics of Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, China
| | - Xia Yuan
- Department of Orthopaedics of Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, China
| | - Irum Naz Abbasi
- Department of Orthopaedics of Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, China
| | - Javaria Sundus
- Department of Orthopaedics of Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, China
| | - Zhiying Hu
- Obstetrics & Gynecology Department, Zhejiang Integrated Traditional and Western Medicine Hospital, Hangzhou, China
| | - Marong Fang
- Department of Orthopaedics of Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, China.
| |
Collapse
|
11
|
Piccin A, Allain AE, Baufreton JM, Bertrand SS, Contarino A. Disruption of the CRF 1 receptor eliminates morphine-induced sociability deficits and firing of oxytocinergic neurons in male mice. eLife 2025; 13:RP100849. [PMID: 39907358 PMCID: PMC11798570 DOI: 10.7554/elife.100849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025] Open
Abstract
Substance-induced social behavior deficits dramatically worsen the clinical outcome of substance use disorders; yet, the underlying mechanisms remain poorly understood. Herein, we investigated the role for the corticotropin-releasing factor receptor 1 (CRF1) in the acute sociability deficits induced by morphine and the related activity of oxytocin (OXY)- and arginine-vasopressin (AVP)-expressing neurons of the paraventricular nucleus of the hypothalamus (PVN). For this purpose, we used both the CRF1 receptor-preferring antagonist compound antalarmin and the genetic mouse model of CRF1 receptor-deficiency. Antalarmin completely abolished sociability deficits induced by morphine in male, but not in female, C57BL/6J mice. Accordingly, genetic CRF1 receptor-deficiency eliminated morphine-induced sociability deficits in male mice. Ex vivo electrophysiology studies showed that antalarmin also eliminated morphine-induced firing of PVN neurons in male, but not in female, C57BL/6J mice. Likewise, genetic CRF1 receptor-deficiency reduced morphine-induced firing of PVN neurons in a CRF1 gene expression-dependent manner. The electrophysiology results consistently mirrored the behavioral results, indicating a link between morphine-induced PVN activity and sociability deficits. Interestingly, in male mice antalarmin abolished morphine-induced firing in neurons co-expressing OXY and AVP, but not in neurons expressing only AVP. In contrast, in female mice antalarmin did not affect morphine-induced firing of neurons co-expressing OXY and AVP or only OXY, indicating a selective sex-specific role for the CRF1 receptor in opiate-induced PVN OXY activity. The present findings demonstrate a major, sex-linked, role for the CRF1 receptor in sociability deficits and related brain alterations induced by morphine, suggesting new therapeutic strategy for opiate use disorders.
Collapse
Affiliation(s)
- Alessandro Piccin
- Université de Bordeaux, INCIABordeauxFrance
- CNRS, INCIABordeauxFrance
| | | | | | | | - Angelo Contarino
- Université de Bordeaux, INCIABordeauxFrance
- CNRS, INCIABordeauxFrance
- INSERM, T3S, UMR-S 1124, Université Paris CitéParisFrance
| |
Collapse
|
12
|
Hu W, Wang Q, Jiang L, Zhang L, Sun H, Bao J, Chen X, Yuan G, Yan K, Liu Y, Wu J, Liu T. Dorsal bed nucleus of the stria terminalis GABA neurons are necessary for chronic unpredictable stress-induced depressive behaviors in adolescent male mice. J Psychiatr Res 2025; 182:347-357. [PMID: 39848102 DOI: 10.1016/j.jpsychires.2025.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/22/2024] [Accepted: 01/15/2025] [Indexed: 01/25/2025]
Abstract
BACKGROUND Previous studies have shown that neurons in the Bed Nucleus of the Stria Terminalis (BNST) respond to stress and play a key role in mental health. However, the cellular bases of BNST in adolescent depression remain elusive. METHODS Male C57BL/6 mice were randomly assigned to the control (Ctrl) or chronic unpredictable stress (CUS) groups. The CUS mice, aged 28 days, were subjected to diverse stressors at various times of the day for 12 days. Depression-like behaviors were assessed through the sucrose preference test (SPT) and tail suspension test (TST). Immunostaining was used to investigate the neural activity and subtypes in the brain. A chemogenetic tool was conducted to examine the role of specific neural activity in CUS-induced depression-like behaviors. RESULTS CUS led to a significant decrease in preference for sucrose solution in the SPT and increased immobility time in the TST. C-Fos immunostaining showed hyperactivity of the GABAergic neurons within the dorsal BNST (dBNSTGABA). Chemogenetic activation of dBNSTGABA neurons increased depression-like behaviors. Conversely, chemogenetic inhibition of dBNSTGABA neurons led to a decrease in CUS-induced depression. CONCLUSIONS These results suggest that adolescent CUS induces hyperactivity of dBNSTGABA neurons, subsequently giving rise to depression-like behaviors and that reducing dBNSTGABA neuronal activity might constitute a novel and efficacious therapeutic approach for adolescent depression.
Collapse
Affiliation(s)
- Wenjing Hu
- Department of Pediatrics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Qiyuan Wang
- Department of Pediatrics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Lifang Jiang
- Department of Pediatrics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Lina Zhang
- Department of Pediatrics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China; Jiangxi Provincial Key Laboratory of Trauma, Burn and Pain Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Huichao Sun
- Department of Pediatrics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Junying Bao
- Department of Pediatrics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Xiao Chen
- Department of Pediatrics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Gaole Yuan
- Department of Pediatrics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China; Jiangxi Provincial Key Laboratory of Trauma, Burn and Pain Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Kai Yan
- Department of Pediatrics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Yun Liu
- Department of Pediatrics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Jian Wu
- Department of Pediatrics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Tao Liu
- Department of Pediatrics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China; Jiangxi Provincial Key Laboratory of Trauma, Burn and Pain Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
13
|
Borland JM. A review of the effects of different types of social behaviors on the recruitment of neuropeptides and neurotransmitters in the nucleus accumbens. Front Neuroendocrinol 2025; 77:101175. [PMID: 39892577 DOI: 10.1016/j.yfrne.2025.101175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 01/25/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
There is a lack of understanding of the neural mechanisms regulating the rewarding effects of social interactions. A significant contributor to this lack of clarity is the diversity of social behaviors and animal models utilized to investigate mechanisms. Other sources of the lack of clarity are the diversity of brain regions that can regulate social reward and the diversity of signaling pathways that regulate reward. To provide some clarity into the mechanisms of social reward, this review focused on the brain region most implicated in reward for multiple stimuli, the nucleus accumbens, and surveyed (systematically reviewed) studies that investigated the relationship between social interaction and five signaling systems implicated in the regulation of reward and social behavior: oxytocin, vasopressin, serotonin, opioids and endocannabinoids. Moreover, all of these studies were organized by the type of social behavior studied: affiliative interactions, play behavior, aggression, social defeat, sex behavior, pair-bonding, parental behavior and social isolation. From this survey and organization, this review concludes that oxytocin, endocannabinoids and mu-opioid receptors in the nucleus accumbens positively regulate the rewarding social behaviors, and kappa-opioid receptors negatively regulate the rewarding social behaviors. The opposite profile is observed for these signaling systems for the aversive social behaviors. More studies are needed to investigate the directional role of the serotonin system in the nucleus accumbens in the regulation of many types of social behaviors, and vasopressin likely does not act in the nucleus accumbens in the regulation of the valence of social behaviors. Many of these different signaling systems are also interdependent of one another in the regulation of different types of social behaviors. Finally, the interaction of these signaling systems with dopamine in the nucleus accumbens is briefly discussed.
Collapse
|
14
|
Campbell HM, Guo JD, Kuhn CM. Applying the Research Domain Criteria to Rodent Studies of Sex Differences in Chronic Stress Susceptibility. Biol Psychiatry 2024; 96:848-857. [PMID: 38821193 DOI: 10.1016/j.biopsych.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/27/2024] [Accepted: 05/17/2024] [Indexed: 06/02/2024]
Abstract
Women have a 2-fold increased rate of stress-associated psychiatric disorders such as depression and anxiety, but the mechanisms that underlie this increased susceptibility remain incompletely understood. Historically, female subjects were excluded from preclinical studies and clinical trials. Additionally, chronic stress paradigms used to study psychiatric pathology in animal models were developed for use in males. However, recent changes in National Institutes of Health policy encourage inclusion of female subjects, and considerable work has been performed in recent years to understand biological sex differences that may underlie differences in susceptibility to chronic stress-associated psychiatric conditions. Here, we review the utility as well as current challenges of using the framework of the National Institute of Mental Health's Research Domain Criteria as a transdiagnostic approach to study sex differences in rodent models of chronic stress including recent progress in the study of sex differences in the neurobehavioral domains of negative valence, positive valence, cognition, social processes, and arousal.
Collapse
Affiliation(s)
- Hannah M Campbell
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
| | - Jessica D Guo
- Duke University School of Medicine, Durham, North Carolina
| | - Cynthia M Kuhn
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
15
|
Rosenkranz JA. Shaping behaviors through social experience and their proposed sensitivity to stress. Learn Mem 2024; 31:a053926. [PMID: 39681461 DOI: 10.1101/lm.053926.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/09/2024] [Indexed: 12/18/2024]
Abstract
Mammals have evolved with a range of innate drives, such as thirst and hunger, that promote motivated behaviors to ensure survival. A drive for social engagement promotes social interaction and bond formation. While a stable social environment maintains the opportunity for resource sharing and protection, an additional benefit is provided by the social transmission of information. Social experiences, and information obtained from conspecifics, can be used to learn about threats and opportunities in the environment. This review examines the primary forms of social learning and how they can shape behavior. Additionally, while there is much known about the effects of stress on learning and memory, there is much less known about its effects on social learning and memory. This review will therefore dissect the major factors that contribute to social learning and propose how stress may impact these factors. This may serve as a way to formulate new hypotheses about how stress might impact social learning and the effects of social experiences on behavior.
Collapse
Affiliation(s)
- J Amiel Rosenkranz
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064, USA
| |
Collapse
|
16
|
Hulsman AM, Klaassen FH, de Voogd LD, Roelofs K, Klumpers F. How Distributed Subcortical Integration of Reward and Threat May Inform Subsequent Approach-Avoidance Decisions. J Neurosci 2024; 44:e0794242024. [PMID: 39379152 PMCID: PMC11604143 DOI: 10.1523/jneurosci.0794-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/19/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
Healthy and successful living involves carefully navigating rewarding and threatening situations by balancing approach and avoidance behaviors. Excessive avoidance to evade potential threats often leads to forfeiting potential rewards. However, little is known about how reward and threat information is integrated neurally to inform approach or avoidance. In this preregistered study, participants (N behavior = 31, 17F; N MRI = 28, 15F) made approach-avoidance decisions under varying reward (monetary gains) and threat (electrical stimulations) prospects during functional MRI scanning. In contrast to theorized parallel subcortical processing of reward and threat information before cortical integration, Bayesian multivariate multilevel analyses revealed subcortical reward and threat integration prior to indicating approach-avoidance decisions. This integration occurred in the ventral striatum, thalamus, and bed nucleus of the stria terminalis (BNST). When reward was low, risk-diminishing avoidance decisions dominated, which was linked to more positive tracking of threat magnitude prior to indicating avoidance than approach decisions. In contrast, the amygdala exhibited dual sensitivity to reward and threat. While anticipating outcomes of risky approach decisions, we observed positive tracking of threat magnitude within the salience network (dorsal anterior cingulate cortex, thalamus, periaqueductal gray, BNST). Conversely, after risk-diminishing avoidance, characterized by reduced reward prospects, we observed more negative tracking of reward magnitude in the ventromedial prefrontal cortex and ventral striatum. These findings shed light on the temporal dynamics of approach-avoidance decision-making. Importantly, they demonstrate the role of subcortical integration of reward and threat information in balancing approach and avoidance, challenging theories positing predominantly separate subcortical processing prior to cortical integration.
Collapse
Affiliation(s)
- Anneloes M Hulsman
- Behavioural Science Institute, Radboud University, 6525 GD Nijmegen, The Netherlands
- Donders Centre for Cognitive Neuroimaging, Radboud University, 6525 EN Nijmegen, The Netherlands
| | - Felix H Klaassen
- Behavioural Science Institute, Radboud University, 6525 GD Nijmegen, The Netherlands
- Donders Centre for Cognitive Neuroimaging, Radboud University, 6525 EN Nijmegen, The Netherlands
| | - Lycia D de Voogd
- Behavioural Science Institute, Radboud University, 6525 GD Nijmegen, The Netherlands
- Donders Centre for Cognitive Neuroimaging, Radboud University, 6525 EN Nijmegen, The Netherlands
- Institute of Psychology and Leiden Institute for Brain and Cognition, Leiden University, 2333 AK Leiden, The Netherlands
| | - Karin Roelofs
- Behavioural Science Institute, Radboud University, 6525 GD Nijmegen, The Netherlands
- Donders Centre for Cognitive Neuroimaging, Radboud University, 6525 EN Nijmegen, The Netherlands
| | - Floris Klumpers
- Behavioural Science Institute, Radboud University, 6525 GD Nijmegen, The Netherlands
- Donders Centre for Cognitive Neuroimaging, Radboud University, 6525 EN Nijmegen, The Netherlands
| |
Collapse
|
17
|
Tickerhoof MC, Morales LKN, Goff J, Vitale EM, Smith AS. Extended amygdala corticotropin-releasing hormone neurons regulate sexually dimorphic changes in pair bond formation following social defeat in prairie voles ( Microtus ochrogaster). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.623026. [PMID: 39605377 PMCID: PMC11601433 DOI: 10.1101/2024.11.11.623026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The neurobiological mechanisms underlying the connection between anxiety brought on by social stressors and the negative impact on relationship formation have remained elusive. In order to address this question, we used the social defeat model in the socially monogamous prairie vole to investigate the impact of this stress on pair bond formation. Social defeat experience inhibited partner preference formation in males but promoted preference in females. Furthermore, pair bonding increased corticotropin-releasing hormone (CRH) expression in the bed nucleus of the stria terminalis (BNST) in male prairie voles, while defeat experience increased BNST CRH expression in females. Chemogenetic excitation of BNST CRH neurons during a short cohabitation with a new partner promoted a partner preference in stress-naïve prairie voles. Interestingly, chemogenetic inhibition of BNST CRH neurons during cohabitation with a new partner blocked partner preference in stress-naïve males but promoted preference in defeated males. Inhibition of BNST CRH neurons also blocked partner preference in stress-naïve females but did not alter preference behavior in defeated females. This study revealed sexual dimorphism in not only the impact of social defeat on pair bond formation, but also in the role BNST CRHergic neurons play in regulating changes in pair bonding following social conflict.
Collapse
Affiliation(s)
- Maria C. Tickerhoof
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045
| | - Lina K. Nerio Morales
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045
| | - Jeff Goff
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045
| | - Erika M. Vitale
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045
| | - Adam S. Smith
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045
| |
Collapse
|
18
|
Grizzell JA, Clarity TT, Rodriguez RM, Marshall ZQ, Cooper MA. Effects of social dominance and acute social stress on morphology of microglia and structural integrity of the medial prefrontal cortex. Brain Behav Immun 2024; 122:353-367. [PMID: 39187049 PMCID: PMC11402560 DOI: 10.1016/j.bbi.2024.08.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024] Open
Abstract
Chronic stress increases activity of the brain's innate immune system and impairs function of the medial prefrontal cortex (mPFC). However, whether acute stress triggers similar neuroimmune mechanisms is poorly understood. Across four studies, we used a Syrian hamster model to investigate whether acute stress drives changes in mPFC microglia in a time-, subregion-, and social status-dependent manner. We found that acute social defeat increased expression of ionized calcium binding adapter molecule 1 (Iba1) in the infralimbic (IL) and prelimbic (PL) and altered the morphology Iba1+ cells 1, 2, and 7 days after social defeat. We also investigated whether acute defeat induced tissue degeneration and reductions of synaptic plasticity 2 days post-defeat. We found that while social defeat increased deposition of cellular debris and reduced synaptophysin immunoreactivity in the PL and IL, treatment with minocycline protected against these cellular changes. Finally, we tested whether a reduced conditioned defeat response in dominant compared to subordinate hamsters was associated with changes in microglia reactivity in the IL and PL. We found that while subordinate hamsters and those without an established dominance relationships showed defeat-induced changes in morphology of Iba1+ cells and cellular degeneration, dominant hamsters showed resistance to these effects of social defeat. Taken together, these findings indicate that acute social defeat alters microglial morphology, increases markers of tissue degradation, and impairs structural integrity in the IL and PL, and that experience winning competitive interactions can specifically protect the IL and reduce stress vulnerability.
Collapse
Affiliation(s)
- J Alex Grizzell
- Neuroscience and Behavioral Biology Program, Emory University, United States; Department of Psychology, University of Tennessee Knoxville, United States; Department of Psychology and Neurosciences, University of Colorado Boulder, United States
| | - Thomas T Clarity
- Department of Psychology, University of Tennessee Knoxville, United States
| | - R Mason Rodriguez
- Department of Psychology, University of Tennessee Knoxville, United States
| | - Zachary Q Marshall
- Department of Psychology and Neurosciences, University of Colorado Boulder, United States
| | - Matthew A Cooper
- Department of Psychology, University of Tennessee Knoxville, United States.
| |
Collapse
|
19
|
Ding S, Liu Y, Tao H, Zhao Y, Zeng H, Han Y, Wang S, Chen Z, Tang Y, Guo W. Chronic intranasal oxytocin alleviates cognitive impairment and reverses oxytocin signaling upregulation in MK801-induced mice. Psychoneuroendocrinology 2024; 168:107138. [PMID: 39068687 DOI: 10.1016/j.psyneuen.2024.107138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/03/2024] [Accepted: 07/13/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVE Cognitive impairment, especially impaired social cognition, is largely responsible for the deterioration of the social life of patients with schizophrenia (SZ). Oxytocin (OT) is a neuropeptide that offers promising therapy for SZ. This study aimed to explore whether OT could affect dizocilpine (MK801)-induced cognitive impairment and to investigate the effect of exogenous OT on the endogenous OT system in the hippocampus. METHODS The SZ mouse model was established by repeated administration of dizocilpine [MK801, 0.6 mg/kg, intraperitoneal (i.p.)], and then OT (6-60 μg/kg, intranasal) or risperidone (0.3 mg/kg, i.p.) was administered to explore the effect of OT on cognitive impairment. RESULTS OT at a dose of 6 μg/kg alleviated MK801-induced hyperactivity, sociability impairment, and spatial memory impairment. OT at a dose of 20 or 60 μg/kg attenuated the hyperactivity and social novelty impairment. In MK801-injected mice, the compensatory upregulation of OT mRNA in the hippocampus was reversed by three OT doses, whereas 60 μg/kg OT reversed the compensatory upregulation of CD38 protein expression. CONCLUSION OT alleviated cognitive impairment in the SZ mouse model to varying degrees, reversing the compensatory upregulation of OT signaling in the hippocampus.
Collapse
Affiliation(s)
- Shan Ding
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yong Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Huai Tao
- Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, China
| | - Yuxu Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hongtao Zeng
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yiding Han
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shichen Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiheng Chen
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yamei Tang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
20
|
Worth AA, Feetham CH, Morrissey NA, Luckman SM. Paraventricular oxytocin neurons impact energy intake and expenditure: projections to the bed nucleus of the stria terminalis reduce sucrose consumption. Front Endocrinol (Lausanne) 2024; 15:1449326. [PMID: 39286269 PMCID: PMC11402739 DOI: 10.3389/fendo.2024.1449326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Background The part played by oxytocin and oxytocin neurons in the regulation of food intake is controversial. There is much pharmacological data to support a role for oxytocin notably in regulating sugar consumption, however, several recent experiments have questioned the importance of oxytocin neurons themselves. Methods Here we use a combination of histological and chemogenetic techniques to investigate the selective activation or inhibition of oxytocin neurons in the hypothalamic paraventricular nucleus (OxtPVH). We then identify a pathway from OxtPVH neurons to the bed nucleus of the stria terminalis using the cell-selective expression of channel rhodopsin. Results OxtPVH neurons increase their expression of cFos after both physiological (fast-induced re-feeding or oral lipid) and pharmacological (systemic administration of cholecystokinin or lithium chloride) anorectic signals. Chemogenetic activation of OxtPVH neurons is sufficient to decrease free-feeding in Oxt Cre:hM3Dq mice, while inhibition in Oxt Cre:hM4Di mice attenuates the response to administration of cholecystokinin. Activation of OxtPVH neurons also increases energy expenditure and core-body temperature, without a significant effect on locomotor activity. Finally, the selective, optogenetic stimulation of a pathway from OxtPVH neurons to the bed nucleus of the stria terminalis reduces the consumption of sucrose. Conclusion Our results support a role for oxytocin neurons in the regulation of whole-body metabolism, including a modulatory action on food intake and energy expenditure. Furthermore, we demonstrate that the pathway from OxtPVH neurons to the bed nucleus of the stria terminalis can regulate sugar consumption.
Collapse
Affiliation(s)
| | | | | | - Simon M. Luckman
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
21
|
Whitten CJ, King JE, Rodriguez RM, Hennon LM, Scarborough MC, Hooker MK, Jenkins MS, Katigbak IM, Cooper MA. Activation of androgen receptor-expressing neurons in the posterior medial amygdala is associated with stress resistance in dominant male hamsters. Horm Behav 2024; 164:105577. [PMID: 38878493 PMCID: PMC11330741 DOI: 10.1016/j.yhbeh.2024.105577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/10/2024] [Accepted: 06/04/2024] [Indexed: 08/20/2024]
Abstract
Social stress is a negative emotional experience that can increase fear and anxiety. Dominance status can alter the way individuals react to and cope with stressful events. The underlying neurobiology of how social dominance produces stress resistance remains elusive, although experience-dependent changes in androgen receptor (AR) expression is thought to play an essential role. Using a Syrian hamster (Mesocricetus auratus) model, we investigated whether dominant individuals activate more AR-expressing neurons in the posterior dorsal and posterior ventral regions of the medial amygdala (MePD, MePV), and display less social anxiety-like behavior following social defeat stress compared to subordinate counterparts. We allowed male hamsters to form and maintain a dyadic dominance relationship for 12 days, exposed them to social defeat stress, and then tested their approach-avoidance behavior using a social avoidance test. During social defeat stress, dominant subjects showed a longer latency to submit and greater c-Fos expression in AR+ cells in the MePD/MePV compared to subordinates. We found that social defeat exposure reduced the amount of time animals spent interacting with a novel conspecific 24 h later, although there was no effect of dominance status. The amount of social vigilance shown by dominants during social avoidance testing was positively correlated with c-Fos expression in AR+ cells in the MePV. These findings indicate that dominant hamsters show greater neural activity in AR+ cells in the MePV during social defeat compared to their subordinate counterparts, and this pattern of neural activity correlates with their proactive coping response. Consistent with the central role of androgens in experience-dependent changes in aggression, activation of AR+ cells in the MePD/MePV contributes to experience-dependent changes in stress-related behavior.
Collapse
Affiliation(s)
- C J Whitten
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - J E King
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - R M Rodriguez
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - L M Hennon
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - M C Scarborough
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - M K Hooker
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - M S Jenkins
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - I M Katigbak
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - M A Cooper
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, United States.
| |
Collapse
|
22
|
Nerio-Morales LK, Boender AJ, Young LJ, Lamprea MR, Smith AS. Limbic oxytocin receptor expression alters molecular signaling and social avoidance behavior in female prairie voles ( Microtus ochrogaster). Front Neurosci 2024; 18:1409316. [PMID: 39081850 PMCID: PMC11286410 DOI: 10.3389/fnins.2024.1409316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction The social defeat paradigm is the most representative animal model to study social anxiety disorder (SAD) and its underlying neuronal mechanisms. We have previously reported that defeat progressively reduces oxytocin receptors (OXTR) in limbic regions of the brain over an eight-week period in female prairie voles (Microtus ochrogaster). Oxytocin receptors activate the mitogen-activated protein kinase (MAPK) pathway, which has been previously associated with the anxiolytic effects of oxytocin. Here, we assessed the functional significance of OXTR in stress-induced social avoidance and the response of the MAPK signaling pathway in the nucleus accumbens (NAc), anterior cingulate cortex (ACC), and basolateral amygdala (BLA) of female prairie voles. Methods In experiment 1, Sexually naïve adult female prairie voles were defeated for three consecutive days and tested a week after for social preference/avoidance (SPA) test. Control subjects were similarly handled without defeat conditioning. In experiment 2, sexually and stress naïve adult female prairie voles were bilaterally injected into the NAc, ACC, or the BLA with a CRISPR/Cas9 virus targeting the Oxtr coding sequence to induce OXTR knockdown. Two weeks post-surgery, subjects were tested for SPA behavior. Viral control groups were similarly handled but injected with a control virus. A subgroup of animals from each condition in both experiments were similarly treated and euthanized without being tested for SPA behavior. Brains were harvested for OXTR autoradiography, western blot analysis of MAPK proteins and quantification of local oxytocin content in the NAc, BLA, ACC, and PVN through ELISA. Results Social defeat reduced OXTR binding in the NAc and affected MAPK pathway activity and oxytocin availability. These results were region-specific and sensitive to exposure to the SPA test. Additionally, OXTR knockdown in the NAc, ACC, and BLA induced social avoidance and decreased basal MAPK activity in the NAc. Finally, we found that OXTR knockdown in these regions was associated with less availability of oxytocin in the PVN. Conclusion Dysregulation of the oxytocin system and MAPK signaling pathway in the NAc, ACC, and BLA are important in social behavior disruptions in female voles. This dysregulation could, therefore, play an important role in the etiology of SAD in women.
Collapse
Affiliation(s)
- Lina K. Nerio-Morales
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Arjen J. Boender
- Department of Psychiatry and Behavioral Sciences, Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Larry J. Young
- Department of Psychiatry and Behavioral Sciences, Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Marisol R. Lamprea
- Department of Psychology, School of Human Sciences, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Adam S. Smith
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
- Program in Neuroscience, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
23
|
Kuske JX, Godoy AS, Ramirez AV, Trainor BC. Sex differences in responses to aggressive encounters among California mice. Horm Behav 2024; 162:105537. [PMID: 38582062 DOI: 10.1016/j.yhbeh.2024.105537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/08/2024]
Abstract
Despite how widespread female aggression is across the animal kingdom, there remains much unknown about its neuroendocrine mechanisms, especially in females that engage in aggression outside the peripartum period. Although the impact of aggressive experience on steroid hormone responses have been described, little is known about the impact of these experiences on female behavior or the subsequent neuropeptide responses to performing aggression. In this study, we compared behavioral responses in both male and female adult California mice based on if they had 0, 1, or 3 aggressive encounters using a resident intruder paradigm. We measured how arginine vasopressin and oxytocin cells in the paraventricular nucleus responded to aggression using c-fos immunohistochemistry. We saw that both sexes disengaged from intruders with repeated aggressive encounters, but that on the final day of testing females were more likely to freeze when they encountered intruders compared to no aggression controls - which was not significant in males. Finally, we saw that percent of arginine vasopressin and c-fos co-localizations in the posterior region of the paraventricular nucleus increased in males who fought compared to no aggression controls. No difference was observed in females. Overall, there is evidence that engaging in aggression induces stress responses in both sexes, and that females may be more sensitive to the effects of fighting.
Collapse
Affiliation(s)
- Jace X Kuske
- Department of Psychology, University of California, Davis, CA 95616, United States of America
| | - Alexandra Serna Godoy
- Department of Psychology, University of California, Davis, CA 95616, United States of America
| | - Alison V Ramirez
- Department of Psychology, University of California, Davis, CA 95616, United States of America
| | - Brian C Trainor
- Department of Psychology, University of California, Davis, CA 95616, United States of America.
| |
Collapse
|
24
|
Hou W, Ma H, Huang C, Li Y, Li L, Zhang L, Qu Y, Xun Y, Yang Q, He Z, Tai F. Effects of paternal deprivation on empathetic behavior and the involvement of oxytocin receptors in the anterior cingulate cortex. Horm Behav 2024; 162:105536. [PMID: 38522143 DOI: 10.1016/j.yhbeh.2024.105536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/04/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Paternal deprivation (PD) impairs social cognition and sociality and increases levels of anxiety-like behavior. However, whether PD affects the levels of empathy in offspring and its underlying mechanisms remain unknown. The present study found that PD increased anxiety-like behavior in mandarin voles (Microtus mandarinus), impaired sociality, reduced the ability of emotional contagion, and the level of consolation behavior. Meanwhile, PD reduced OT neurons in the paraventricular nucleus (PVN) in both male and female mandarin voles. PD decreased the level of OT receptor (OTR) mRNA in the anterior cingulate cortex (ACC) of male and female mandarin voles. Besides, OTR overexpression in the ACC reversed the PD-induced changes in anxiety-like behavior, social preference, emotional contagion, and consolation behavior. Interference of OTR expression in the ACC increased levels of anxiety-like behaviors, while it reduced levels of sociality, emotional contagion, and consolation. These results revealed that the OTR in the ACC is involved in the effects of PD on empathetic behaviors, and provide mechanistic insight into how social experiences affect empathetic behaviors.
Collapse
Affiliation(s)
- Wenjuan Hou
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China; School of Environmental and Material Engineering, Yantai University, 264005, China
| | - Huan Ma
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Caihong Huang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yin Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Lu Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Lizi Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yishan Qu
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yufeng Xun
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Qixuan Yang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Zhixiong He
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China.
| | - Fadao Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
25
|
Sherman ER, Li J, Cahill EN. No impairment of contextual fear memory consolidation by oxytocin receptor antagonism in male rats. Physiol Behav 2024; 279:114545. [PMID: 38580203 DOI: 10.1016/j.physbeh.2024.114545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/11/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Oxytocin is a peptide released into brain regions associated with the processing of aversive memory and threat responses. Given the expression of oxytocin receptors across this vigilance surveillance system of the brain, we investigated whether pharmacological antagonism of the receptor would impact contextual aversive conditioning and memory. Adult male rats were conditioned to form an aversive contextual memory. The effects of peripheral administration of either the competitive antagonist Atosiban or noncompetitive antagonist L-368,899 were compared to saline controls. Oxytocin receptor antagonism treatment did not significantly impact the consolidation of aversive contextual memory in any of the groups. We conclude that peripheral antagonism of oxytocin signalling did not impact the formation of aversive memory.
Collapse
Affiliation(s)
- Emily R Sherman
- Department of Physiology, Development, and Neuroscience, University of Cambridge, CB2 3EB, UK
| | - Jialu Li
- Bristol Medical School, University of Bristol, BS8 1TH, UK
| | - Emma N Cahill
- Department of Physiology, Development, and Neuroscience, University of Cambridge, CB2 3EB, UK; School of Physiology, Pharmacology and Neuroscience, University of Bristol, BS8 1TD, UK.
| |
Collapse
|
26
|
Lake AA, Trainor BC. Leveraging the unique social organization of California mice to study circuit-specific effects of oxytocin on behavior. Horm Behav 2024; 160:105487. [PMID: 38281444 PMCID: PMC11391860 DOI: 10.1016/j.yhbeh.2024.105487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/21/2023] [Accepted: 01/18/2024] [Indexed: 01/30/2024]
Abstract
Oxytocin is a versatile neuropeptide that modulates many different forms of social behavior. Recent hypotheses pose that oxytocin enhances the salience of rewarding and aversive social experiences, and the field has been working to identify mechanisms that allow oxytocin to have diverse effects on behavior. Here we review studies conducted on the California mouse (Peromyscus californicus) that shed light on how oxytocin modulates social behavior following stressful experiences. In this species, both males and females exhibit high levels of aggression, which has facilitated the study of how social stress impacts both sexes. We review findings of short- and long-term effects of social stress on the reactivity of oxytocin neurons. We also consider the results of pharmacological studies which show that oxytocin receptors in the bed nucleus of the stria terminalis and nucleus accumbens have distinct but overlapping effects on social approach behaviors. These findings help explain how social stress can have different behavioral effects in males and females, and how oxytocin can have such divergent effects on behavior. Finally, we consider how new technological developments and innovative research programs take advantage of the unique social organization of California mice to address questions that can be difficult to study in conventional rodent model species. These new methods and questions have opened new avenues for studying the neurobiology of social behavior.
Collapse
Affiliation(s)
- Alyssa A Lake
- Department of Psychology, University of California, Davis, CA 95616, United States of America
| | - Brian C Trainor
- Department of Psychology, University of California, Davis, CA 95616, United States of America.
| |
Collapse
|
27
|
Perisic M, Woolcock K, Hering A, Mendel H, Muttenthaler M. Oxytocin and vasopressin signaling in health and disease. Trends Biochem Sci 2024; 49:361-377. [PMID: 38418338 DOI: 10.1016/j.tibs.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 03/01/2024]
Abstract
Neurohypophysial peptides are ancient and evolutionarily highly conserved neuropeptides that regulate many crucial physiological functions in vertebrates and invertebrates. The human neurohypophysial oxytocin/vasopressin (OT/VP) signaling system with its four receptors has become an attractive drug target for a variety of diseases, including cancer, pain, cardiovascular indications, and neurological disorders. Despite its promise, drug development faces hurdles, including signaling complexity, selectivity and off-target concerns, translational interspecies differences, and inefficient drug delivery. In this review we dive into the complexity of the OT/VP signaling system in health and disease, provide an overview of relevant pharmacological probes, and discuss the latest trends in therapeutic lead discovery and drug development.
Collapse
Affiliation(s)
- Monika Perisic
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; Vienna Doctoral School in Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Katrina Woolcock
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Anke Hering
- Institute for Molecular Bioscience, The University of Queensland, 4072 Brisbane, Australia
| | - Helen Mendel
- Institute for Molecular Bioscience, The University of Queensland, 4072 Brisbane, Australia
| | - Markus Muttenthaler
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; Institute for Molecular Bioscience, The University of Queensland, 4072 Brisbane, Australia.
| |
Collapse
|
28
|
Grieb ZA, Lee S, Stoehr MC, Horne BW, Norvelle A, Shaughnessy EK, Albers HE, Huhman KL. Sex-dependent regulation of social avoidance by oxytocin signaling in the ventral tegmental area. Behav Brain Res 2024; 462:114881. [PMID: 38272188 PMCID: PMC10923107 DOI: 10.1016/j.bbr.2024.114881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
It has been hypothesized that oxytocin increases the salience of social stimuli, whether the valence is positive or negative, through its interactions with the ventral tegmental area (VTA). Indeed, oxytocin neurons project to the VTA and activate dopamine neurons that are necessary for social experiences with positive valence. Surprisingly, though, there has not been an investigation of the role of oxytocin in the VTA in mediating social experiences with negative valence (e.g., social stress). Given that there are sex differences in how oxytocin regulates the salience of positively-valenced social interactions, we hypothesized that oxytocin acting in the VTA also alters the salience of social stress in a sex-dependent manner. To test this, female and male Syrian hamsters were site-specifically infused with either saline, oxytocin (9 μM), or oxytocin receptor antagonist (90 μM) into the VTA. Subjects were then exposed to either no defeat or a single, 15 min defeat by one RA. The day following social defeat, subjects underwent a 5 min social avoidance test. There was an interaction between sex and drug treatment, such that the oxytocin antagonist increased social avoidance compared to saline treatment in socially stressed females, while oxytocin decreased social avoidance compared to saline treatment in socially stressed males. Contrary to expectations, these results suggest that oxytocin signaling generally acts to decrease social avoidance, regardless of sex. These sex differences in the efficacy of oxytocin and oxytocin receptor antagonists to alter negatively-valenced social stimuli, however, should be considered when guiding pharmacotherapies for disorders involving social deficits.
Collapse
Affiliation(s)
- Zachary A Grieb
- Neuroscience Institute, 880 Petit Science Center, Georgia State University, Atlanta, GA 30303, USA
| | - Susan Lee
- Neuroscience Institute, 880 Petit Science Center, Georgia State University, Atlanta, GA 30303, USA
| | - Maura C Stoehr
- Neuroscience Institute, 880 Petit Science Center, Georgia State University, Atlanta, GA 30303, USA
| | - Benjamin W Horne
- Neuroscience Institute, 880 Petit Science Center, Georgia State University, Atlanta, GA 30303, USA
| | - Alisa Norvelle
- Neuroscience Institute, 880 Petit Science Center, Georgia State University, Atlanta, GA 30303, USA
| | - Emma K Shaughnessy
- Neuroscience Institute, 880 Petit Science Center, Georgia State University, Atlanta, GA 30303, USA
| | - H Elliott Albers
- Neuroscience Institute, 880 Petit Science Center, Georgia State University, Atlanta, GA 30303, USA
| | - Kim L Huhman
- Neuroscience Institute, 880 Petit Science Center, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
29
|
Chaudhary S, Wong HK, Chen Y, Zhang S, Li CSR. Sex differences in the effects of individual anxiety state on regional responses to negative emotional scenes. Biol Sex Differ 2024; 15:15. [PMID: 38351045 PMCID: PMC10863151 DOI: 10.1186/s13293-024-00591-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/08/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Men and women are known to show differences in the incidence and clinical manifestations of mood and anxiety disorders. Many imaging studies have investigated the neural correlates of sex differences in emotion processing. However, it remains unclear how anxiety might impact emotion processing differently in men and women. METHOD We recruited 119 healthy adults and assessed their levels of anxiety using State-Trait Anxiety Inventory (STAI) State score. With functional magnetic resonance imaging (fMRI), we examined regional responses to negative vs. neutral (Neg-Neu) picture matching in the Hariri task. Behavioral data were analyzed using regression and repeated-measures analysis of covariance with age as a covariate, and fMRI data were analyzed using a full-factorial model with sex as a factor and age as a covariate. RESULTS Men and women did not differ in STAI score, or accuracy rate or reaction time (RT) (Neg-Neu). However, STAI scores correlated positively with RT (Neg-Neu) in women but not in men. Additionally, in women, STAI score correlated positively with lingual gyrus (LG) and negatively with medial prefrontal cortex (mPFC) and superior frontal gyrus (SFG) activity during Neg vs. Neu trials. The parameter estimates (βs) of mPFC also correlated with RT (Neg-Neu) in women but not in men. Generalized psychophysiological interaction (gPPI) analysis in women revealed mPFC connectivity with the right inferior frontal gyrus, right SFG, and left parahippocampal gyrus during Neg vs. Neu trials in positive correlation with both STAI score and RT (Neg-Neu). In a mediation analysis, mPFC gPPI but not mPFC activity fully mediated the association between STAI scores and RT (Neg-Neu). CONCLUSION With anxiety affecting the behavioral and neural responses to negative emotions in women but not in men and considering the known roles of the mPFC in emotion regulation, we discussed heightened sensitivity and regulatory demands during negative emotion processing as neurobehavioral markers of anxiety in women.
Collapse
Affiliation(s)
- Shefali Chaudhary
- Department of Psychiatry, Yale University School of Medicine, Connecticut Mental Health Center, 34 Park Street, New Haven, CT, 06519, USA.
| | | | - Yu Chen
- Department of Psychiatry, Yale University School of Medicine, Connecticut Mental Health Center, 34 Park Street, New Haven, CT, 06519, USA
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, Connecticut Mental Health Center, 34 Park Street, New Haven, CT, 06519, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, Connecticut Mental Health Center, 34 Park Street, New Haven, CT, 06519, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06520, USA
- Wu Tsai Institute, Yale University, New Haven, CT, 06520, USA
| |
Collapse
|
30
|
Freeman SM, Catrow JL, Cox JE, Turano A, Rich MA, Ihrig HP, Poudyal N, Chang CWT, Gese EM, Young JK, Olsen AL. Binding Affinity, Selectivity, and Pharmacokinetics of the Oxytocin Receptor Antagonist L-368,899 in the Coyote ( Canis latrans). Comp Med 2024; 74:3-11. [PMID: 38532262 PMCID: PMC10938559 DOI: 10.30802/aalas-cm-23-000044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/18/2023] [Accepted: 01/27/2024] [Indexed: 03/28/2024]
Abstract
L-368,899 is a selective small-molecule oxytocin receptor (OXTR) antagonist originally developed in the 1990s to prevent preterm labor. Although its utility for that purpose was limited, L-368,899 is now one of the most commonly used drugs in animal research for the selective blockade of neural OXTR after peripheral delivery. A growing number of rodent and primate studies have used L-368,899 to evaluate whether certain behaviors are oxytocin dependent. These studies have improved our understanding of oxytocin's function in the brains of rodents and monkeys, but very little work has been done in other mammals, and only a single paper in macaques has provided any evidence that L-368,899 can be detected in the CNS after peripheral delivery. The current study sought to extend those findings in a novel species: coyotes ( Canis latrans ). Coyotes are ubiquitous North American canids that form long-term monogamous pair-bonds. Although monogamy is rare in rodents and primates, all wild canid species studied to date exhibit social monogamy. Coyotes are therefore an excellent model organism for the study of oxytocin and social bonds. Our goal was to determine whether L-368,899 is a viable candidate for future use in behavioral studies in coyotes. We used captive coyotes at the USDA National Wildlife Research Center's Predator Research Facility to evaluate the pharmacokinetics of L-368,899 in blood and CSF during a 90-min time course after intramuscular injection. We then characterized the binding affinity and selectivity of L-368,899 to coyote OXTR and the structurally similar vasopressin 1a receptor. We found that L-368,899 peaked in CSF at 15 to 30 min after intramuscular injection and slowly accumulated in blood. L-368,899 was 40 times more selective for OXTR than vasopressin 1a receptors and bound to the coyote OXTR with an affinity of 12 nM. These features of L-368,899 support its utility in future studies to probe the oxytocin system of coyotes.
Collapse
Key Words
- avp, arginine vasopressin
- avpr1a, vasopressin 1a receptor
- lva, linearized vasopressin antagonist
- mrm, multiple reaction monitoring
- nwrc, national wildlife research center
- obd, optical binding values
- ovta, ornithine vasotocin analog
- oxt, oxytocin
- oxtr, oxytocin receptor
- ptfe, polytetrafluoroethylene
Collapse
Affiliation(s)
- Sara M Freeman
- Department of Biology, Utah State University, Logan, Utah
| | - J Leon Catrow
- Metabolomics, Proteomics, and Mass Spectrometry Cores, University of Utah, Salt Lake City, Utah
- Department of Biochemistry, University of Utah, Salt Lake City, Utah
| | - James Eric Cox
- Metabolomics, Proteomics, and Mass Spectrometry Cores, University of Utah, Salt Lake City, Utah
- Department of Biochemistry, University of Utah, Salt Lake City, Utah
| | | | - McKenna A Rich
- Department of Biology, Utah State University, Logan, Utah
| | | | - Naveena Poudyal
- Department of Chemistry & Biochemistry, Utah State University, Logan, Utah
| | | | - Eric M Gese
- Department of Wildland Resources, Utah State University, Logan, Utah
- Ecology Center, Utah State University, Logan, Utah
- US Department of Agriculture, Wildlife Services, National Wildlife Research Center, Predator Research Facility, Millville, Utah; and
| | - Julie K Young
- Department of Wildland Resources, Utah State University, Logan, Utah
- Ecology Center, Utah State University, Logan, Utah
- US Department of Agriculture, Wildlife Services, National Wildlife Research Center, Predator Research Facility, Millville, Utah; and
| | - Aaron L Olsen
- Animal Dairy and Veterinary Sciences Department, Utah State University, Logan, Utah
| |
Collapse
|
31
|
Chaudhary S, Wong HK, Chen Y, Zhang S, Li CSR. Sex differences in the effects of individual anxiety state on regional responses to negative emotional scenes. RESEARCH SQUARE 2023:rs.3.rs-3701951. [PMID: 38196586 PMCID: PMC10775373 DOI: 10.21203/rs.3.rs-3701951/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Background Men and women are known to show differences in the incidence and clinical manifestations of mood and anxiety disorders. Many imaging studies have investigated the neural correlates of sex differences in emotion processing. However, it remains unclear how anxiety might impact emotion processing differently in men and women. Method We recruited 119 healthy adults and assessed their levels of anxiety using State-Trait Anxiety Inventory (STAI) State score. With functional magnetic resonance imaging (fMRI), we examined regional responses to negative vs. neutral (Neg-Neu) picture matching in the Hariri task. Behavioral data were analyzed using regression and repeated-measures analysis of covariance with age as a covariate, and fMRI data were analyzed using a full-factorial model with sex as a factor and age as a covariate. Results Men and women did not differ in STAI score, or accuracy rate or reaction time (RT) (Neg-Neu). However, STAI scores correlated positively with RT (Neg-Neu) in women but not in men. Additionally, in women, STAI score correlated positively with lingual gyrus (LG) and negatively with medial prefrontal cortex (mPFC) and superior frontal gyrus (SFG) activity during Neg vs. Neu trials. The parameter estimates (β's) of mPFC also correlated with RT (Neg-Neu) in women but not in men. Generalized psychophysiological interaction (gPPI) analysis in women revealed mPFC connectivity with the right inferior frontal gyrus, right SFG, and left parahippocampal gyrus during Neg vs. Neu trials in positive correlation with both STAI score and RT (Neg-Neu). In a mediation analysis, mPFC gPPI but not mPFC activity fully mediated the association between STAI scores and RT (Neg-Neu). Conclusion With anxiety affecting the behavioral and neural responses to negative emotions in women but not in men and considering the known roles of the mPFC in emotion regulation, we discussed heightened sensitivity and regulatory demands during negative emotion processing as neurobehavioral markers of anxiety in women.
Collapse
Affiliation(s)
| | | | - Yu Chen
- Yale School of Medicine: Yale University School of Medicine
| | - Sheng Zhang
- Yale School of Medicine: Yale University School of Medicine
| | | |
Collapse
|
32
|
Menon R, Neumann ID. Detection, processing and reinforcement of social cues: regulation by the oxytocin system. Nat Rev Neurosci 2023; 24:761-777. [PMID: 37891399 DOI: 10.1038/s41583-023-00759-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 10/29/2023]
Abstract
Many social behaviours are evolutionarily conserved and are essential for the healthy development of an individual. The neuropeptide oxytocin (OXT) is crucial for the fine-tuned regulation of social interactions in mammals. The advent and application of state-of-the-art methodological approaches that allow the activity of neuronal circuits involving OXT to be monitored and functionally manipulated in laboratory mammals have deepened our understanding of the roles of OXT in these behaviours. In this Review, we discuss how OXT promotes the sensory detection and evaluation of social cues, the subsequent approach and display of social behaviour, and the rewarding consequences of social interactions in selected reproductive and non-reproductive social behaviours. Social stressors - such as social isolation, exposure to social defeat or social trauma, and partner loss - are often paralleled by maladaptations of the OXT system, and restoring OXT system functioning can reinstate socio-emotional allostasis. Thus, the OXT system acts as a dynamic mediator of appropriate behavioural adaptations to environmental challenges by enhancing and reinforcing social salience and buffering social stress.
Collapse
Affiliation(s)
- Rohit Menon
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
33
|
Jiang J, Zou Y, Xie C, Yang M, Tong Q, Yuan M, Pei X, Deng S, Tian M, Xiao L, Gong Y. Oxytocin alleviates cognitive and memory impairments by decreasing hippocampal microglial activation and synaptic defects via OXTR/ERK/STAT3 pathway in a mouse model of sepsis-associated encephalopathy. Brain Behav Immun 2023; 114:195-213. [PMID: 37648002 DOI: 10.1016/j.bbi.2023.08.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/09/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) is a diffuse brain dysfunction, characterized by cognitive and memory impairments closely linked to hippocampal dysfunction. Though it is well-known that SAE is a diffuse brain dysfunction with microglial activation, the pathological mechanisms of SAE are not well established and effective clinical interventions are lacking. Oxytocin (OXT) is reported to have anti-inflammatory and neuroprotective roles. However, the effects of OXT on SAE and the underlying mechanisms are not clear. METHODS SAE was induced in adult C57BL/6J male mice by cecal ligation and perforation (CLP) surgery. Exogenous OXT was intranasally applied after surgery. Clinical score, survivor rate, cognitive and memory behaviors, and hippocampal neuronal and non-neuronal functions were evaluated. Cultured microglia challenged with lipopolysaccharide (LPS) were used to investigate the effects of OXT on microglial functions, including inflammatory cytokines release and phagocytosis. The possible intracellular signal pathways involved in the OXT-induced neuroprotection were explored with RNA sequencing. RESULTS Hippocampal OXT level decreases, while the expression of OXT receptor (OXTR) increases around 24 h after CLP surgery. Intranasal OXT application at a proper dose increases mouse survival rate, alleviates cognitive and memory dysfunction, and restores hippocampal synaptic function and neuronal activity via OXTR in the SAE model. Intraperitoneal or local administration of the OXTR antagonist L-368,899 in hippocampal CA1 region inhibited the protective effects of OXT. Moreover, during the early stages of sepsis, hippocampal microglia are activated, while OXT application reduces microglial phagocytosis and the release of inflammatory cytokines, thereby exerting a neuroprotective effect. OXT may improve the SAE outcomes via the OXTR-ERK-STAT3 signaling pathway. CONCLUSION Our study uncovers the dysfunction of the OXT signal in SAE and shows that intranasal OXT application at a proper dose can alleviate SAE outcomes by reducing microglial overactivation, suggests that OXT may be a promising therapeutic approach in managing SAE patients.
Collapse
Affiliation(s)
- Junliang Jiang
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China; Department of Orthopedics & Traumatology, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China
| | - Yue Zou
- Yunnan Eye Institute & Key Laboratory of Yunnan Province, Yunnan Eye Disease Clinical Medical Center, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China
| | - Chuantong Xie
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Miaoxian Yang
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Qiuping Tong
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Mimi Yuan
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xu Pei
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Shuixiang Deng
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Mi Tian
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Lei Xiao
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| | - Ye Gong
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
34
|
Monari PK, Herro ZJ, Bymers J, Marler CA. Chronic intranasal oxytocin increases acoustic eavesdropping and adult neurogenesis. Horm Behav 2023; 156:105443. [PMID: 37871536 DOI: 10.1016/j.yhbeh.2023.105443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/25/2023]
Abstract
Social information gathering is a complex process influenced by neuroendocrine-modulated neural plasticity. Oxytocin (OXT) is a key regulator of social decision-making processes such as information gathering, as it contextually modulates social salience and can induce long-term structural plasticity, including neurogenesis. Understanding the link between OXT-induced plasticity and communicative awareness is crucial, particularly because OXT is being considered for treatment of social pathologies. We investigated the role of chronic OXT-dependent plasticity in attention to novel social information by manipulating the duration of time following cessation of intranasal treatment to allow for the functional integration of adult-born neurons resulting from OXT treatment. Following a 3-week delay, chronic intranasal OXT (IN-OXT) increased approach behavior of both female and male mice towards aggressive vocal playbacks of two unseen novel conspecifics, while no effect was observed after a 3-day delay. Immature neurons increased in the ventral hippocampus of females and males treated with chronic IN-OXT after the 3-week delay, indicating a potential association between ventral hippocampal neurogenesis and approach/acoustic eavesdropping. The less the mouse approached, the higher the level of neurogenesis. Contrary to expectations, the correlation between ventral hippocampal neurogenesis and approach behavior was not affected by IN-OXT, suggesting that other plasticity mechanisms underlie the long-term effects of chronic OXT on social approach. Furthermore, we found a negative correlation between ventral hippocampal neurogenesis and freezing behavior. Overall, our results demonstrate that chronic IN-OXT-induced long-term plasticity can influence approach to vocal information and we further reinforced the link between neurogenesis and anxiety.
Collapse
Affiliation(s)
- Patrick K Monari
- Department of Psychology, University of Wisconsin-Madison, WI, USA.
| | - Zachary J Herro
- Department of Psychology, University of Wisconsin-Madison, WI, USA
| | - Jessica Bymers
- Department of Psychology, University of Wisconsin-Madison, WI, USA
| | | |
Collapse
|
35
|
Wright EC, Luo PX, Zakharenkov HC, Serna Godoy A, Lake AA, Prince ZD, Sekar S, Culkin HI, Ramirez AV, Dwyer T, Kapoor A, Corbett C, Tian L, Fox AS, Trainor BC. Sexual differentiation of neural mechanisms of stress sensitivity during puberty. Proc Natl Acad Sci U S A 2023; 120:e2306475120. [PMID: 37847733 PMCID: PMC10614610 DOI: 10.1073/pnas.2306475120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/12/2023] [Indexed: 10/19/2023] Open
Abstract
Anxiety disorders are a major public health concern and current treatments are inadequate for many individuals. Anxiety is more common in women than men and this difference arises during puberty. Sex differences in physiological stress responses may contribute to this variability. During puberty, gonadal hormones shape brain structure and function, but the extent to which these changes affect stress sensitivity is unknown. We examined how pubertal androgens shape behavioral and neural responses to social stress in California mice (Peromyscus californicus), a model species for studying sex differences in stress responses. In adults, social defeat reduces social approach and increases social vigilance in females but not males. We show this sex difference is absent in juveniles, and that prepubertal castration sensitizes adult males to social defeat. Adult gonadectomy does not alter behavioral responses to defeat, indicating that gonadal hormones act during puberty to program behavioral responses to stress in adulthood. Calcium imaging in the medioventral bed nucleus of the stria terminalis (BNST) showed that social threats increased neural activity and that prepubertal castration generalized these responses to less threatening social contexts. These results support recent hypotheses that the BNST responds to immediate threats. Prepubertal treatment with the nonaromatizable androgen dihydrotestosterone acts in males and females to reduce the effects of defeat on social approach and vigilance in adults. These data indicate that activation of androgen receptors during puberty is critical for programming behavioral responses to stress in adulthood.
Collapse
Affiliation(s)
- Emily C. Wright
- Department of Psychology, University of California, Davis, CA95616
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA95616
| | - Pei X. Luo
- Department of Psychology, University of California, Davis, CA95616
| | | | | | - Alyssa A. Lake
- Department of Psychology, University of California, Davis, CA95616
| | - Zhana D. Prince
- Department of Psychology, University of California, Davis, CA95616
| | - Shwetha Sekar
- Department of Psychology, University of California, Davis, CA95616
| | - Hannah I. Culkin
- Department of Psychology, University of California, Davis, CA95616
| | | | - Tjien Dwyer
- Department of Psychology, University of California, Davis, CA95616
| | - Amita Kapoor
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI53715
| | - Cody Corbett
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI53715
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA95616
| | - Andrew S. Fox
- Department of Psychology, University of California, Davis, CA95616
- California National Primate Research Center, University of California, Davis, CA95616
| | - Brian C. Trainor
- Department of Psychology, University of California, Davis, CA95616
| |
Collapse
|
36
|
Giovanniello J, Bravo-Rivera C, Rosenkranz A, Matthew Lattal K. Stress, associative learning, and decision-making. Neurobiol Learn Mem 2023; 204:107812. [PMID: 37598745 DOI: 10.1016/j.nlm.2023.107812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/02/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Exposure to acute and chronic stress has significant effects on the basic mechanisms of associative learning and memory. Stress can both impair and enhance associative learning depending on type, intensity, and persistence of the stressor, the subject's sex, the context that the stress and behavior is experienced in, and the type of associative learning taking place. In some cases, stress can cause or exacerbate the maladaptive behavior that underlies numerous psychiatric conditions including anxiety disorders, obsessive-compulsive disorder, post-traumatic stress disorder, substance use disorder, and others. Therefore, it is critical to understand how the varied effects of stress, which may normally facilitate adaptive behavior, can also become maladaptive and even harmful. In this review, we highlight several findings of associative learning and decision-making processes that are affected by stress in both human and non-human subjects and how they are related to one another. An emerging theme from this work is that stress biases behavior towards less flexible strategies that may reflect a cautious insensitivity to changing contingencies. We consider how this inflexibility has been observed in different associative learning procedures and suggest that a goal for the field should be to clarify how factors such as sex and previous experience influence this inflexibility.
Collapse
Affiliation(s)
| | - Christian Bravo-Rivera
- Departments of Psychiatry and Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, PR 00935, United States.
| | - Amiel Rosenkranz
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Chicago Medical School, Rosalind Franklin University of Medicine and Science, United States.
| | - K Matthew Lattal
- Department of Behavioral Neuroscience, Oregon Health & Science University, United States.
| |
Collapse
|
37
|
Cooper MA, Hooker MK, Whitten CJ, Kelly JR, Jenkins MS, Mahometano SC, Scarbrough MC. Dominance status modulates activity in medial amygdala cells with projections to the bed nucleus of the stria terminalis. Behav Brain Res 2023; 453:114628. [PMID: 37579818 PMCID: PMC10496856 DOI: 10.1016/j.bbr.2023.114628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
The medial amygdala (MeA) controls several types of social behavior via its projections to other limbic regions. Cells in the posterior dorsal and posterior ventral medial amygdala (MePD and MePV, respectively) project to the bed nucleus of the stria terminalis (BNST) and these pathways respond to chemosensory cues and regulate aggressive and defensive behavior. Because the BNST is also essential for the display of stress-induced anxiety, a MePD/MePV-BNST pathway may modulate both aggression and responses to stress. In this study we tested the hypothesis that dominant animals would show greater neural activity than subordinates in BNST-projecting MePD and MePV cells after winning a dominance encounter as well as after losing a social defeat encounter. We created dominance relationships in male and female Syrian hamsters (Mesocricetus auratus), used cholera toxin b (CTB) as a retrograde tracer to label BNST-projecting cells, and collected brains for c-Fos staining in the MePD and MePV. We found that c-Fos immunoreactivity in the MePD and MePV was positively associated with aggression in males, but not in females. Also, dominant males showed a greater proportion of c-Fos+ /CTB+ double-labeled cells compared to their same-sex subordinate counterparts. Another set of animals received social defeat stress after acquiring a dominant or subordinate social status and we stained for stress-induced c-Fos expression in the MePD and MePV. We found that dominant males showed a greater proportion of c-Fos+ /CTB+ double-labeled cells in the MePD after social defeat stress compared to subordinates. Also, dominants showed a longer latency to submit during social defeat than subordinates. Further, in males, latency to submit was positively associated with the proportion of c-Fos+ /CTB+ double-labeled cells in the MePD and MePV. These findings indicate that social dominance increases neural activity in BNST-projecting MePD and MePV cells and activity in this pathway is also associated with proactive responses during social defeat stress. In sum, activity in a MePD/MePV-BNST pathway contributes to status-dependent differences in stress coping responses and may underlie experience-dependent changes in stress resilience.
Collapse
Affiliation(s)
- Matthew A Cooper
- Department of Psychology, University of Tennessee Knoxville, USA.
| | | | - Conner J Whitten
- Department of Psychology, University of Tennessee Knoxville, USA
| | - Jeff R Kelly
- Department of Psychology, University of Tennessee Knoxville, USA
| | | | | | | |
Collapse
|
38
|
Nisbett KE, Gonzalez LA, Teruel M, Carter CS, Vendruscolo LF, Ragozzino ME, Koob GF. Sex and hormonal status influence the anxiolytic-like effect of oxytocin in mice. Neurobiol Stress 2023; 26:100567. [PMID: 37706061 PMCID: PMC10495655 DOI: 10.1016/j.ynstr.2023.100567] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 09/15/2023] Open
Abstract
Anxiety and depression are highly prevalent psychiatric disorders, affecting approximately 18% of the United States population. Evidence indicates that central oxytocin mediates social cognition, social bonding, and social anxiety. Although it is well-established that oxytocin ameliorates social deficits, less is known about the therapeutic effects of oxytocin in non-social contexts. We hypothesized that positive effects of oxytocin in social contexts are attributable to intrinsic effects of oxytocin on neural systems that are related to emotion regulation. The present study investigated the effect of intracerebroventricular (ICV) oxytocin administration (i.e., central action) on anxiety- and depression-like behavior in C57Bl/6J mice using non-social tests. Male and female mice received an ICV infusion of vehicle or oxytocin (100, 200, or 500 ng), then were tested in the elevated zero maze (for anxiety-like behavior) and the tail suspension test (for depression-like behavior). Oxytocin dose-dependently increased open zone occupancy and entries in the elevated zero maze and reduced immobility duration in the tail suspension test in both sexes. Oxytocin decreased anxiety and depression-like behavior in male and female mice. The observed effect of oxytocin on anxiolytic-like behavior appeared to be driven by the males. Given the smaller anxiolytic-like effect of oxytocin in the female mice and the established interaction between oxytocin and reproductive hormones (estrogen and progesterone), we also explored whether oxytocin sensitivity in females varies across estrous cycle phases and in ovariectomized females that were or were not supplemented with estrogen or progesterone. Oxytocin reduced anxiety-like behavior in female mice in proestrus/estrus, ovariectomized females (supplemented or not with estrogen or progesterone), but not females in metestrus/diestrus. Additionally, oxytocin reduced depression-like behavior in all groups tested with slight differences across the various hormonal statuses. These results suggest that the effect of oxytocin in depression- and anxiety-like behavior in mice can be influenced by sex and hormonal status.
Collapse
Affiliation(s)
- Khalin E. Nisbett
- Graduate Program in Neuroscience, Graduate College, University of Illinois Chicago, Chicago, IL 60607, USA
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
- Stress and Addiction Neuroscience Unit, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD 21224, USA
- Department of Psychology, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Luis A. Gonzalez
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Marina Teruel
- Department of Psychology, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL 60607, USA
| | - C. Sue Carter
- Department of Psychology, University of Virginia, Charlottesville, VA 22903, USA
- Kinsey Institute, Indiana University, Bloomington, IN 47405, USA
| | - Leandro F. Vendruscolo
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Michael E. Ragozzino
- Department of Psychology, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL 60607, USA
| | - George F. Koob
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
39
|
Malone CL, Rieger NS, Spool JA, Payette A, Riters LV, Marler CA. Behavioral convergence in defense behaviors in pair bonded individuals correlates with neuroendocrine receptors in the medial amygdala. Behav Brain Res 2023; 452:114556. [PMID: 37356669 PMCID: PMC10644349 DOI: 10.1016/j.bbr.2023.114556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Monogamous, pair-bonded animals coordinate intra-pair behavior for spatially separated challenges including territorial defense and nest attendance. Paired California mice, a monogamous, territorial and biparental species, approach intruders together or separately, but often express behavioral convergence across intruder challenges. To gain a more systems-wide perspective of potential mechanisms contributing to behavioral convergence across two conspecific intruder challenges, we conducted an exploratory study correlating behavior and receptor mRNA (Days 10 and 17 post-pairing). We examined associations between convergence variability in pair time for intruder-oriented behaviors with a pair mRNA index for oxytocin (OXTR), androgen (AR), and estrogen alpha (ERα) receptors within the medial amygdala (MeA) and the anterior olfactory nucleus (AON), brain regions associated with social behavior. An intruder behavior index revealed a bimodal distribution of intruder-related behaviors in Challenge 1 and a unimodal distribution in Challenge 2, suggesting population behavioral convergence, but no significant correlations with neuroendocrine measures. However, OXTR, AR, and ERα mRNA in the MeA were positively associated with convergence in individual intruder-related behaviors, suggesting multiple mechanisms may influence convergence. Mice could also occupy the nest during intruder challenges and convergence in nest attendance was positively correlated with MeA OXTR. At an individual level, nest attendance was positively associated with MeA ERα. Vocalizations were positively associated with AR and ERα mRNA. No positive associations were found in the AON. Overall, neuroendocrine receptors were implicated in convergence of a monogamous pair's defense behavior, highlighting the potential importance of the MeA as part of a circuit underlying convergence.
Collapse
Affiliation(s)
- Candice L Malone
- University of Wisconsin-Madison, Department of Psychology, Madison, WI, USA.
| | - Nathaniel S Rieger
- University of Wisconsin-Madison, Department of Psychology, Madison, WI, USA; University of Washington-Seattle, Department of Psychiatry and Behavioral Sciences, Seattle, WA, USA
| | - Jeremy A Spool
- University of Wisconsin-Madison, Department of Integrative Biology, Madison, WI, USA; University of Massachusetts-Amherst, Department of Psychological and Brain Sciences, Amherst, MA, USA
| | - Alexis Payette
- University of Wisconsin-Madison, Department of Psychology, Madison, WI, USA
| | - Lauren V Riters
- University of Wisconsin-Madison, Department of Integrative Biology, Madison, WI, USA
| | - Catherine A Marler
- University of Wisconsin-Madison, Department of Psychology, Madison, WI, USA.
| |
Collapse
|
40
|
Taylor JH, Campbell NS, Powell JM, Elliott Albers H, Kelly AM. Distribution of Vasopressin 1a and Oxytocin Receptor Binding in the Basal Forebrain and Midbrain of Male and Female Mongolian Gerbils. Neuroscience 2023; 522:33-41. [PMID: 37172688 PMCID: PMC10330636 DOI: 10.1016/j.neuroscience.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
The nonapeptide system modulates a diversity of social behaviors, including aggression, parental care, affiliation, sexual behavior, and pair bonding. Such social behaviors are regulated through oxytocin and vasopressin activation of the oxytocin receptor (OXTR) and vasopressin V1a receptor (AVPR1A) in the brain. Nonapeptide receptor distributions have been mapped for several species, however, studies have demonstrated that there is substantial variation across species. Mongolian gerbils (Meriones unguiculatus) are an excellent organism for studying family dynamics, social development, pair bonding, and territorial aggression. Although an increasing number of studies are examining the neural mechanisms of social behavior in Mongolian gerbils, nonapeptide receptor distributions have yet to be characterized for this species. Here we conducted receptor autoradiography to map distributions of OXTR and AVPR1A binding throughout the basal forebrain and midbrain of female and male Mongolian gerbils. Further, we assessed whether gonadal sex influenced binding densities in brain regions important for social behavior and reward, however, we observed no effects of sex on OXTR or AVPR1A binding densities. These findings provide mapping distributions of nonapeptide receptors in male and female Mongolian gerbils, laying a foundation for future studies that seek to manipulate the nonapeptide system to examine nonapeptide-mediated social behavior.
Collapse
Affiliation(s)
- Jack H Taylor
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA; Center for Behavioral Neuroscience, Atlanta, GA, USA
| | - Noah S Campbell
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA; Center for Behavioral Neuroscience, Atlanta, GA, USA
| | - Jeanne M Powell
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - H Elliott Albers
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA; Center for Behavioral Neuroscience, Atlanta, GA, USA
| | - Aubrey M Kelly
- Department of Psychology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
41
|
Biro L, Miskolczi C, Szebik H, Bruzsik B, Varga ZK, Szente L, Toth M, Halasz J, Mikics E. Post-weaning social isolation in male mice leads to abnormal aggression and disrupted network organization in the prefrontal cortex: Contribution of parvalbumin interneurons with or without perineuronal nets. Neurobiol Stress 2023; 25:100546. [PMID: 37323648 PMCID: PMC10265620 DOI: 10.1016/j.ynstr.2023.100546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/10/2023] [Accepted: 05/28/2023] [Indexed: 06/17/2023] Open
Abstract
Adverse social experiences during childhood increase the risk of developing aggression-related psychopathologies. The prefrontal cortex (PFC) is a key regulator of social behavior, where experience-dependent network development is tied to the maturation of parvalbumin-positive (PV+) interneurons. Maltreatment in childhood could impact PFC development and lead to disturbances in social behavior during later life. However, our knowledge regarding the impact of early-life social stress on PFC operation and PV+ cell function is still scarce. Here, we used post-weaning social isolation (PWSI) to model early-life social neglect in mice and to study the associated neuronal changes in the PFC, additionally distinguishing between the two main subpopulations of PV+ interneurons, i.e. those without or those enwrapped by perineuronal nets (PNN). For the first time to such detailed extent in mice, we show that PWSI induced disturbances in social behavior, including abnormal aggression, excessive vigilance and fragmented behavioral organization. PWSI mice showed altered resting-state and fighting-induced co-activation patterns between orbitofrontal and medial PFC (mPFC) subregions, with a particularly highly elevated activity in the mPFC. Surprisingly, aggressive interaction was associated with a higher recruitment of mPFC PV+ neurons that were surrounded by PNN in PWSI mice that seemed to mediate the emergence of social deficits. PWSI did not affect the number of PV+ neurons and PNN density, but enhanced PV and PNN intensity as well as cortical and subcortical glutamatergic drive onto mPFC PV+ neurons. Our results suggest that the increased excitatory input of PV+ cells could emerge as a compensatory mechanism for the PV+ neuron-mediated impaired inhibition of mPFC layer 5 pyramidal neurons, since we found lower numbers of GABAergic PV+ puncta on the perisomatic region of these cells. In conclusion, PWSI leads to altered PV-PNN activity and impaired excitatory/inhibitory balance in the mPFC, which possibly contributes to social behavioral disruptions seen in PWSI mice. Our data advances our understanding on how early-life social stress can impact the maturing PFC and lead to the development of social abnormalities in adulthood.
Collapse
Affiliation(s)
- Laszlo Biro
- Institute of Experimental Medicine, Laboratory of Translational Behavioural Neuroscience, 1083 Budapest, Szigony utca 43., Hungary
| | - Christina Miskolczi
- Institute of Experimental Medicine, Laboratory of Translational Behavioural Neuroscience, 1083 Budapest, Szigony utca 43., Hungary
- Janos Szentagothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Ulloi ut 26., Hungary
| | - Huba Szebik
- Institute of Experimental Medicine, Laboratory of Translational Behavioural Neuroscience, 1083 Budapest, Szigony utca 43., Hungary
- Janos Szentagothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Ulloi ut 26., Hungary
| | - Biborka Bruzsik
- Institute of Experimental Medicine, Laboratory of Translational Behavioural Neuroscience, 1083 Budapest, Szigony utca 43., Hungary
| | - Zoltan Kristof Varga
- Institute of Experimental Medicine, Laboratory of Translational Behavioural Neuroscience, 1083 Budapest, Szigony utca 43., Hungary
| | - Laszlo Szente
- Institute of Experimental Medicine, Laboratory of Translational Behavioural Neuroscience, 1083 Budapest, Szigony utca 43., Hungary
- Janos Szentagothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Ulloi ut 26., Hungary
| | - Mate Toth
- Institute of Experimental Medicine, Laboratory of Translational Behavioural Neuroscience, 1083 Budapest, Szigony utca 43., Hungary
| | - Jozsef Halasz
- Institute of Experimental Medicine, Laboratory of Translational Behavioural Neuroscience, 1083 Budapest, Szigony utca 43., Hungary
| | - Eva Mikics
- Institute of Experimental Medicine, Laboratory of Translational Behavioural Neuroscience, 1083 Budapest, Szigony utca 43., Hungary
| |
Collapse
|
42
|
Wallace KJ, Chun EK, Manns JR, Ophir AG, Kelly AM. A test of the social behavior network reveals differential patterns of neural responses to social novelty in bonded, but not non-bonded, male prairie voles. Horm Behav 2023; 152:105362. [PMID: 37086574 PMCID: PMC10291480 DOI: 10.1016/j.yhbeh.2023.105362] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 03/02/2023] [Accepted: 04/09/2023] [Indexed: 04/24/2023]
Abstract
The social behavior network (SBN) has provided a framework for understanding the neural control of social behavior. The original SBN hypothesis proposed this network modulates social behavior and should exhibit distinct patterns of neural activity across nodes, which correspond to distinct social contexts. Despite its tremendous impact on the field of social neuroscience, no study has directly tested this hypothesis. Thus, we assessed Fos responses across the SBN of male prairie voles (Microtus ochrogaster). Virgin/non-bonded and pair bonded subjects were exposed to a sibling cagemate or pair bonded partner, novel female, novel male, novel meadow vole, novel object, or no stimulus. Inconsistent with the original SBN hypothesis, we did not find profoundly different patterns of neural responses across the SBN for different contexts, but instead found that the SBN generated significantly different patterns of activity in response to social novelty in pair bonded, but not non-bonded males. These findings suggest that non-bonded male prairie voles may perceive social novelty differently from pair bonded males or that SBN functionality undergoes substantial changes after pair bonding. This study reveals novel information about bond-dependent, context-specific neural responsivity in male prairie voles and suggests that the SBN may be particularly important for processing social salience. Further, our study suggests there is a need to reconceptualize the framework of how the SBN modulates social behavior.
Collapse
Affiliation(s)
- Kelly J Wallace
- Department of Psychology, Emory University, Atlanta, GA 30322, USA
| | - Eileen K Chun
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Joseph R Manns
- Department of Psychology, Emory University, Atlanta, GA 30322, USA
| | | | - Aubrey M Kelly
- Department of Psychology, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
43
|
Młotkowska P, Marciniak E, Misztal A, Misztal T. Effect of Neurosteroids on Basal and Stress-Induced Oxytocin Secretion in Luteal-Phase and Pregnant Sheep. Animals (Basel) 2023; 13:ani13101658. [PMID: 37238088 DOI: 10.3390/ani13101658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Oxytocin (OT) is a neuropeptide synthesized in the hypothalamic nuclei that modulates both behavioral and reproductive functions, associated with the increased neurosteroid synthesis in the brain. Therefore, the present study tested the hypothesis that manipulation of central neurosteroid levels could affect oxytocin synthesis and release in non-pregnant and pregnant sheep under both basal and stressful conditions. In Experiment 1, luteal-phase sheep were subjected to a series of intracerebroventricular (icv.) infusions of allopregnanolone (AL, 4 × 15 μg/60 μL/30 min) for 3 days. In Experiment 2, pregnant animals (4th month) received a series of infusions of the neurosteroid synthesis blocker, finasteride (4 × 25 μg/60 μL/30 min), conducted for 3 days. In non-pregnant sheep AL alone was shown to differentially modulate OT synthesis in basal conditions, and strongly inhibit OT response to stress (p < 0.001). In contrast, in pregnant animals, basal and stress-induced OT secretion was significantly (p < 0.001) increased during finasteride infusion compared to controls. In conclusion, we showed that neurosteroids were involved in the control of OT secretion in sheep, particularly under stress and pregnancy conditions and are part of an adaptive mechanism which is responsible for protecting and maintaining pregnancy in harmful situations.
Collapse
Affiliation(s)
- Patrycja Młotkowska
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| | - Elżbieta Marciniak
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| | - Anna Misztal
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| | - Tomasz Misztal
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| |
Collapse
|
44
|
Azari AE, Peeri M, Masrour FF. The role of the oxytocinergic system in the antidepressant-like effect of swimming training in male mice. Behav Brain Res 2023; 449:114474. [PMID: 37148917 DOI: 10.1016/j.bbr.2023.114474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/12/2023] [Accepted: 03/20/2023] [Indexed: 05/08/2023]
Abstract
Increasing evidence shows that higher physical activity such as running and swimming exercises is associated with decreased depression-related symptoms. However, underlying mechanisms are not fully understood. This study aimed to investigate whether oxytocinergic system can mediate the antidepressant effect of swimming exercises in mice. First, male NMRI mice were subjected to swimming training for eight weeks, then animals intraperitoneally received oxytocin antagonist (L-368899) 1hour before behavioral tests. We assessed anhedonia and social behavior and behavioral despair using the sucrose preference test, social interaction test, and tail suspension test. Oxytocin levels in the brain and serum were also measured. The results showed that swimming training decreased anhedonia and behavioral despair, whereas it increased social behavior and oxytocin levels in male mice. On the other hand, a subthreshold dose of oxytocin antagonist treatment in exercised mice prevented the antidepressant effect of swimming exercise via increased anhedonia and behavioral despair and decreased social behavior compared to the swimming training group. However, the blockade of oxytocin receptors did not affect oxytocin levels in exercised mice. Overall, these findings suggest that oxytocinergic system can play a role in mediating the antidepressant-like effect of swimming training in mice.
Collapse
Affiliation(s)
- Amir Emad Azari
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Maghsoud Peeri
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Forouzan Fattahi Masrour
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
45
|
Guoynes CD, Marler CA. Acute intranasal oxytocin dose enhances social preference for parents over peers in male but not female peri-adolescent California mice (Peromyscus californicus). Gen Comp Endocrinol 2023; 335:114230. [PMID: 36781024 DOI: 10.1016/j.ygcen.2023.114230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/10/2022] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Peri-adolescence is a critical developmental stage marked by profound changes in the valence of social interactions with parents and peers. We hypothesized that the oxytocin (OXT) and vasopressin (AVP) systems, known for influencing social behavior, would be involved in the maintenance and breaking of bonding behavior expressed by very early peri-adolescent males and females. In rodents, OXT is associated with mother-pup bonding and may promote social attachment to members of the natal territory. AVP, on the other hand, can act in contrasting ways to OXT and has been associated with aggression and territoriality. Specifically, we predicted that in peri-adolescent male and female juveniles of the biparental and territorial California mouse (Peromyscus californicus), a) OXT would increase the social preferences for the parents over unfamiliar age-matched peers (one male and one female), and b) AVP would break the parent-offspring bond and either increase time in the neutral chamber and/or approach to their unfamiliar and novel peers. We examined anxiety and exploratory behavior using an elevated plus maze and a novel object task as a control. Peri-adolescent mice were administered an acute intranasal (IN) treatment of 0.5 IU/kg IN AVP, 0.5 IU/kg IN OXT, or saline control; five minutes later, the behavioral tests were conducted. As predicted, we found that IN OXT enhanced social preference for parents; however, this was only in male and not female peri-adolescent mice. IN AVP did not influence social preference in either sex. These effects appear specific to social behavior and not anxiety, as neither IN OXT nor AVP influenced behavior during the elevated plus maze or novel object tasks. To our knowledge, this is the first evidence indicating that OXT may play a role in promoting peri-adolescent social preferences for parents and delaying weaning in males.
Collapse
Affiliation(s)
- Caleigh D Guoynes
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA; Center for Neuroscience Research, Children's National Hospital, Washington, DC, USA.
| | - Catherine A Marler
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
46
|
Pan Y, Mou Q, Huang Z, Chen S, Shi Y, Ye M, Shao M, Wang Z. Chronic social defeat alters behaviors and neuronal activation in the brain of female Mongolian gerbils. Behav Brain Res 2023; 448:114456. [PMID: 37116662 DOI: 10.1016/j.bbr.2023.114456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/30/2023] [Accepted: 04/25/2023] [Indexed: 04/30/2023]
Abstract
Chronic social defeat has been found to be stressful and to affect many aspects of the brain and behaviors in males. However, relatively little is known about its effects on females. In the present study, we examined the effects of repeated social defeat on social approach and anxiety-like behaviors as well as the neuronal activation in the brain of sexually naïve female Mongolian gerbils (Meriones unguiculatus). Our data indicate that repeated social defeats for 20 days reduced social approach and social investigation, but increased risk assessment or vigilance to an unfamiliar conspecific. Such social defeat experience also increased anxiety-like behavior and reduced locomotor activity. Using ΔFosB-immunoreactive (ΔFosB-ir) staining as a marker of neuronal activation in the brain, we found significant elevations by social defeat experience in the density of ΔFosB-ir stained neurons in several brain regions, including the prelimbic (PL) and infralimbic (IL) subnuclei of the prefrontal cortex (PFC), CA1 subfields (CA1) of the hippocampus, central subnuclei of the amygdala (CeA), the paraventricular nucleus (PVN), dorsomedial nucleus (DMH), and ventrolateral subdivision of the ventromedial nucleus (VMHvl) of the hypothalamus. As these brain regions have been implicated in social behaviors and stress responses, our data suggest that the specific patterns of neuronal activation in the brain may relate to the altered social and anxiety-like behaviors following chronic social defeat in female Mongolian gerbils.
Collapse
Affiliation(s)
- Yongliang Pan
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou Central Hospital, Huzhou University, Huzhou 313000, China.
| | - Qiuyue Mou
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou Central Hospital, Huzhou University, Huzhou 313000, China
| | - Zhexue Huang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou Central Hospital, Huzhou University, Huzhou 313000, China
| | - Senyao Chen
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou Central Hospital, Huzhou University, Huzhou 313000, China
| | - Yilei Shi
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou Central Hospital, Huzhou University, Huzhou 313000, China
| | - Mengfan Ye
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou Central Hospital, Huzhou University, Huzhou 313000, China
| | - Mingqin Shao
- College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
47
|
Gigliucci V, Busnelli M, Santini F, Paolini C, Bertoni A, Schaller F, Muscatelli F, Chini B. Oxytocin receptors in the Magel2 mouse model of autism: Specific region, age, sex and oxytocin treatment effects. Front Neurosci 2023; 17:1026939. [PMID: 36998737 PMCID: PMC10043208 DOI: 10.3389/fnins.2023.1026939] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
The neurohormone oxytocin (OXT) has been implicated in the regulation of social behavior and is intensively investigated as a potential therapeutic treatment in neurodevelopmental disorders characterized by social deficits. In the Magel2-knockout (KO) mouse, a model of Schaaf-Yang Syndrome, an early postnatal administration of OXT rescued autistic-like behavior and cognition at adulthood, making this model relevant for understanding the actions of OXT in (re)programming postnatal brain development. The oxytocin receptor (OXTR), the main brain target of OXT, was dysregulated in the hippocampus of Magel2-KO adult males, and normalized upon OXT treatment at birth. Here we have analyzed male and female Magel2-KO brains at postnatal day 8 (P8) and at postnatal day 90 (P90), investigating age, genotype and OXT treatment effects on OXTR levels in several regions of the brain. We found that, at P8, male and female Magel2-KOs displayed a widespread, substantial, down-regulation of OXTR levels compared to wild type (WT) animals. Most intriguingly, the postnatal OXT treatment did not affect Magel2-KO OXTR levels at P8 and, consistently, did not rescue the ultrasonic vocalization deficits observed at this age. On the contrary, the postnatal OXT treatment reduced OXTR levels at P90 in male Magel2-KO in a region-specific way, restoring normal OXTR levels in regions where the Magel2-KO OXTR was upregulated (central amygdala, hippocampus and piriform cortex). Interestingly, Magel2-KO females, previously shown to lack the social deficits observed in Magel2-KO males, were characterized by a different trend in receptor expression compared to males; as a result, the dimorphic expression of OXTR observed in WT animals, with higher OXTR expression observed in females, was abolished in Magel2-KO mice. In conclusion, our data indicate that in Magel2-KO mice, OXTRs undergo region-specific modifications related to age, sex and postnatal OXT treatment. These results are instrumental to design precisely-timed OXT-based therapeutic strategies that, by acting at specific brain regions, could modify the outcome of social deficits in Schaaf-Yang Syndrome patients.
Collapse
Affiliation(s)
- Valentina Gigliucci
- Institute of Neuroscience, National Research Council, Vedano al Lambro, Italy
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Marta Busnelli
- Institute of Neuroscience, National Research Council, Vedano al Lambro, Italy
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Francesca Santini
- Institute of Neuroscience, National Research Council, Vedano al Lambro, Italy
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Camilla Paolini
- Institute of Neuroscience, National Research Council, Vedano al Lambro, Italy
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | | | | | | | - Bice Chini
- Institute of Neuroscience, National Research Council, Vedano al Lambro, Italy
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
- *Correspondence: Bice Chini,
| |
Collapse
|
48
|
Borges-Assis AB, Uliana DL, Hott SC, Guimarães FS, Lisboa SF, Resstel LBM. Bed nucleus of the stria terminalis CB1 receptors and the FAAH enzyme modulate anxiety behavior depending on previous stress exposure. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110739. [PMID: 36870468 DOI: 10.1016/j.pnpbp.2023.110739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
The endocannabinoid (eCB) anandamide (AEA) is synthesized on-demand in the post-synaptic terminal and can act on presynaptic cannabinoid type 1 (CB1) receptors, decreasing the release of neurotransmitters, including glutamate. AEA action is ended through enzymatic hydrolysis via FAAH (fatty acid amid hydrolase) in the post-synaptic neuron. eCB system molecules are widely expressed in brain areas involved in the modulation of fear and anxiety responses, including the Bed Nucleus of the Stria Terminalis (BNST), which is involved in the integration of autonomic, neuroendocrine, and behavioral regulation. The presence of the CB1 and FAAH was described in the BNST; however, their role in the modulation of defensive reactions is not fully comprehended. In the present work we aimed at investigating the role of AEA and CB1 receptors in the BNST in modulating anxiety-related behaviors. Adult male Wistar rats received local BNST injections of the CB1 receptor antagonist AM251 (0.1-0.6 nmol) and/or the FAAH inhibitor (URB597; 0.001-0.1 nmol) and were evaluated in the elevated plus maze (EPM) test, with or without previous acute restraint stress (2 h) exposure, or in the contextual fear conditioning. We observed that although AM251 and URB597 had no effects on the EPM, they increased and decreased, respectively, the conditioned fear response. Supporting a possible influence of stress in these differences, URB597 was able to prevent the restraint stress-induced anxiogenic effect in the EPM. The present data, therefore, suggest that eCB signaling in the BNST is recruited during more aversive situations to counteract the stress effect.
Collapse
Affiliation(s)
- Anna Bárbara Borges-Assis
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Daniela Lescano Uliana
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, USA
| | - Sara Cristina Hott
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Francisco Silveira Guimarães
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Sabrina Francesca Lisboa
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Leonardo Barbosa Moraes Resstel
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
49
|
Arakawa H, Higuchi Y, Ozawa A. Oxytocin neurons in the paraventricular nucleus of the hypothalamus circuit-dependently regulates social behavior, which malfunctions in BTBR mouse model of autism. RESEARCH SQUARE 2023:rs.3.rs-2621359. [PMID: 36909537 PMCID: PMC10002846 DOI: 10.21203/rs.3.rs-2621359/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Oxytocin (OXT) a neuropeptide synthesized in the hypothalamic nuclei has a variety of function including socio-emotional processes in mammals. While the neural circuits and signaling pathways in central OXT converge in the paraventricular nucleus of the hypothalamus (PVN), we illuminate specific function of discrete PVN OXT circuits, which connect to the medial amygdala (MeA) and the bed nucleus of the stria terminalis (BnST) in mouse models. The OXTPVN→BnST projections are innervated from entire portions of the PVN, while those OXTPVN→MeA projections are asymmetrically innervated from the posterior portion of the PVN. Compared with OXT neurons in B6 wild type mice, BTBR mice that are recognized as a behavior-based autism model exhibited defect in the OXTPVN→BnST projection. We demonstrate that chemogenetic activation of OXTPVN→MeA circuit enhances anxiety-like behavior and facilitates social approach behavior, while activation of OXTPVN→BnST circuit suppresses anxiety-like behavior along with inhibiting social approach. This chemogenetic manipulation on the OXTPVN→BnST circuit proves ineffective in BTBR mice. Accordingly, chemogenetic activation of OXTPVN neurons that stimulate both OXT circuits induces OXT receptor expressions in both MeA and BnST as with those by social encounter in B6 mice. The induction of OXT receptor genes in the BnST was not observed in BTBR mice. These data support the hypothesis that OXT circuits serve as a regulator for OXT signaling in PVN to control socio-emotional approach/avoidance behavior, and a defect of OXTPVN→BnST circuit contributes to autism-like social phenotypes in BTBR mice.
Collapse
|
50
|
Powell JM, Inoue K, Wallace KJ, Seifert AW, Young LJ, Kelly AM. Distribution of vasopressin 1a and oxytocin receptor protein and mRNA in the basal forebrain and midbrain of the spiny mouse (Acomys cahirinus). Brain Struct Funct 2023; 228:413-431. [PMID: 36271259 PMCID: PMC9974677 DOI: 10.1007/s00429-022-02581-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/07/2022] [Indexed: 01/25/2023]
Abstract
The nonapeptide system modulates numerous social behaviors through oxytocin and vasopressin activation of the oxytocin receptor (OXTR) and vasopressin receptor (AVPR1A) in the brain. OXTRs and AVPR1As are widely distributed throughout the brain and binding densities exhibit substantial variation within and across species. Although OXTR and AVPR1A binding distributions have been mapped for several rodents, this system has yet to be characterized in the spiny mouse (Acomys cahirinus). Here we conducted receptor autoradiography and in situ hybridization to map distributions of OXTR and AVPR1A binding and Oxtr and Avpr1a mRNA expression throughout the basal forebrain and midbrain of male and female spiny mice. We found that nonapeptide receptor mRNA is diffuse throughout the forebrain and midbrain and does not always align with OXTR and AVPR1A binding. Analyses of sex differences in brain regions involved in social behavior and reward revealed that males exhibit higher OXTR binding densities in the lateral septum, bed nucleus of the stria terminalis, and anterior hypothalamus. However, no association with gonadal sex was observed for AVPR1A binding. Hierarchical clustering analysis further revealed that co-expression patterns of OXTR and AVPR1A binding across brain regions involved in social behavior and reward differ between males and females. These findings provide mapping distributions and sex differences in nonapeptide receptors in spiny mice. Spiny mice are an excellent organism for studying grouping behaviors such as cooperation and prosociality, and the nonapeptide receptor mapping here can inform the study of nonapeptide-mediated behavior in a highly social, large group-living rodent.
Collapse
Affiliation(s)
- Jeanne M Powell
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA, 30322, USA
| | - Kiyoshi Inoue
- Center for Translational Social Neuroscience, Emory University, Atlanta, GA, 30329, USA
- Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Kelly J Wallace
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA, 30322, USA
| | - Ashley W Seifert
- Department of Biology, University of Kentucky, 101 Morgan Building, Lexington, KY, 40506, USA
| | - Larry J Young
- Center for Translational Social Neuroscience, Emory University, Atlanta, GA, 30329, USA
- Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Aubrey M Kelly
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA, 30322, USA.
| |
Collapse
|