1
|
Wießner I, Souza JP, Demarzo M, Tófoli LF. Mindfulness enhancements predict aberrant salience reductions and improve stress management. DISCOVER MENTAL HEALTH 2025; 5:52. [PMID: 40199816 PMCID: PMC11979052 DOI: 10.1007/s44192-025-00179-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/28/2025] [Indexed: 04/10/2025]
Abstract
BACKGROUND Mindfulness improves mental health and clinical conditions including psychosis and modulates attentional processes including salience-the automatic direction of attention to prominent elements. Aberrant salience-the exaggerated significance attribution to perceived elements-is associated with psychotic experiences, but its interactions with mindfulness remain unexplored. METHODS This pre-post-intervention pilot study included 21 participants completing an 8-week Mindfulness-Based Health Promotion (MBHP) course with measurements before (T0), after (T1), and three months post-course (T2). Primary outcomes were mindful attention (Mindful Attention Awareness Scale, MAAS), decentering (Experiences Questionnaire, EQ), aberrant salience (Aberrant Salience Inventory, ASI), and correlations between time-dependent changes (T1-T0, T2-T0, T2-T1). Secondary outcomes included qualitative reports on Motivations, Learnings, Preferred Practices, and Stress Management. RESULTS Regarding mindfulness, MAAS and EQ continuingly increased (T0 vs. T1/T2). Regarding aberrant salience, the factor Heightened Cognition (ASI) increased post-course (T0 vs. T1), whereas Heightened Emotionality (T0 vs. T2) and Total Aberrant Salience (T1 vs. T2) decreased. Importantly, MAAS (T1-T0, T2-T0) correlated negatively with Heightened Emotionality (T2-T0). Qualitative findings revealed consistent stressors but improved stress management, integrated mindfulness practices into participants' daily lives, and potential mechanisms of presence, observation, perspective change, and emotion regulation underlying decreased aberrant salience. CONCLUSION Mindfulness may modulate pre-attentional and attentional processes and improve well-being and stress management, as reflected by reduced aberrant salience and promoted mindful attention and decentering. Our findings suggest that mindful attention may play a crucial role in reducing aberrant salience, offering a promising direction for future research on mindfulness interventions in psychosis.
Collapse
Affiliation(s)
- Isabel Wießner
- Interdisciplinary Cooperation for Ayahuasca Research and Outreach (ICARO), School of Medical Sciences, University of Campinas, Rua Vital Brasil, 80, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-888, Brazil.
- Brain Institute, Federal University of Rio Grande Do Norte, Av. Senador Salgado Filho, 3000, Lagoa Nova, Natal, RN, 59078-970, Brazil.
| | - Júlia Paula Souza
- Department of Preventive Medicine, Centro Mente Aberta, Federal University of São Paulo, Av. Padre José Maria, 545, Santo Amaro, São Paulo, SP, 04753-060, Brazil
| | - Marcelo Demarzo
- Department of Preventive Medicine, Centro Mente Aberta, Federal University of São Paulo, Av. Padre José Maria, 545, Santo Amaro, São Paulo, SP, 04753-060, Brazil
| | - Luís Fernando Tófoli
- Interdisciplinary Cooperation for Ayahuasca Research and Outreach (ICARO), School of Medical Sciences, University of Campinas, Rua Vital Brasil, 80, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-888, Brazil
| |
Collapse
|
2
|
Allott K, Yassin W, Alameda L, Billah T, Borders O, Buccilli K, Carrión RE, Castillo-Passi RI, Cho KIK, Chin K, Coleman MJ, Colton BL, Corral S, Dwyer D, Gundersen KB, Gur RC, Hoftman GD, Jacobs GR, Kelly S, Lewandowski KE, Marcy PJ, Matneja P, McLaughlin D, Nunez AR, Parsa S, Penzel N, Ray S, Reinen JM, Ruparel K, Sand MS, Santorelli G, Seitz-Holland J, Spark J, Tamayo Z, Thompson A, Tod S, Wannan CMJ, Wickham A, Wood SJ, Zoupou E, Addington J, Anticevic A, Arango C, Breitborde NJK, Broome MR, Cadenhead KS, Calkins ME, Chen EYH, Choi J, Conus P, Corcoran CM, Cornblatt BA, Ellman LM, Fusar-Poli P, Gaspar PA, Gerber C, Glenthøj LB, Horton LE, Hui CLM, Kambeitz J, Kambeitz-Ilankovic L, Keshavan M, Kim SW, Koutsouleris N, Kwon JS, Langbein K, Mamah D, Diaz-Caneja CM, Mathalon DH, Mittal VA, Nordentoft M, Pearlson GD, Perkins DO, Perez J, Powers AR, Rogers J, Sabb FW, Schiffman J, Shah JL, Silverstein SM, Smesny S, Strauss GP, Thompson JL, Upthegrove R, Verma SK, Wang J, Wolf DH, Pasternak O, Bouix S, McGorry PD, Kane JM, Kahn RS, Bearden CE, Shenton ME, Woods SW, Nelson B, Stone WS. Cognitive assessment in the Accelerating Medicines Partnership® Schizophrenia Program: harmonization priorities and strategies in a diverse international sample. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2025; 11:49. [PMID: 40128256 PMCID: PMC11933323 DOI: 10.1038/s41537-025-00578-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/24/2024] [Indexed: 03/26/2025]
Abstract
Cognitive impairment occurs at higher rates in individuals at clinical high risk (CHR) for psychosis relative to healthy peers, and it contributes unique variance to multivariate prediction models of transition to psychosis. Such impairment is considered a core biomarker of schizophrenia. Thus, cognition is a key domain measured in the Accelerating Medicines Partnership® program for Schizophrenia (AMP SCZ initiative). The aim of this paper is to describe the rationale, processes, considerations, and final harmonization of the cognitive battery used in AMP SCZ across the two data collection networks. This battery comprises tests of general intellect and specific cognitive domains. We estimate premorbid intelligence at baseline and measure current intelligence at baseline and 2 years. Eight tests from the Penn Computerized Neurocognitive Battery (PennCNB), which measure verbal learning and memory, sensorimotor ability, attention, emotion recognition, working memory, processing speed, verbal memory, visual memory, and motor speed are administered repeatedly at baseline, and four follow-up timepoints over 2 years.
Collapse
Affiliation(s)
- Kelly Allott
- Orygen, Parkville, VIC, Australia.
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia.
| | - Walid Yassin
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Massachusetts Mental Health Center and Harvard Medical School, Boston, MA, USA
| | - Luis Alameda
- General Psychiatry Service, Treatment and Early Intervention in Psychosis Program (TIPP-Lausanne), Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College of London, London, UK
| | - Tashrif Billah
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Owen Borders
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kate Buccilli
- Orygen, Parkville, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Ricardo E Carrión
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine, Hempstead, NY, USA
- Institute of Behavioral Science, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Rolando I Castillo-Passi
- Department of Psychiatry, IMHAY, University of Chile, Santiago, Chile
- Department of Neurology and Psychiatry, Clínica Alemana-Universidad del Desarrollo, Santiago, RM, Chile
| | - Kang Ik K Cho
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kota Chin
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael J Coleman
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Beau-Luke Colton
- Orygen, Parkville, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Sebastián Corral
- Department of Psychiatry, University of Chile, Santiago, Chile
- Departamento de Psicologia, Universidad de La Serena, La Serena, Chile
| | - Dominic Dwyer
- Orygen, Parkville, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Kristina Ballestad Gundersen
- VIRTU Research Group, Copenhagen Research Centre for Mental Health, Mental Health Copenhagen, University of Copenhagen, Copenhagen, Denmark
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Ruben C Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Grace R Jacobs
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sinead Kelly
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kathryn E Lewandowski
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | | | | | | | - Angela R Nunez
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Connecticut Mental Health Center, New Haven, CT, USA
| | - Setari Parsa
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Massachusetts Mental Health Center and Harvard Medical School, Boston, MA, USA
| | - Nora Penzel
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Susan Ray
- Northwell Health, Glen Oaks, NY, USA
| | - Jenna M Reinen
- IBM Research, Armonk, NY, USA
- T.J. Watson Research Laboratory, Yorktown Heights, NY, USA
| | - Kosha Ruparel
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Gennarina Santorelli
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Massachusetts Mental Health Center and Harvard Medical School, Boston, MA, USA
| | - Johanna Seitz-Holland
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jessica Spark
- Orygen, Parkville, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Zailyn Tamayo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew Thompson
- Orygen, Parkville, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Division of Mental Health and Wellbeing, Warwick Medical School, University of Warwick, Coventry, USA
| | - Sophie Tod
- Orygen, Parkville, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Cassandra M J Wannan
- Orygen, Parkville, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Alana Wickham
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephen J Wood
- Orygen, Parkville, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- School of Psychology, University of Birmingham, Edgbaston, UK
| | - Eirini Zoupou
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jean Addington
- Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Yale University Department of Psychiatry, New Haven, CT, USA
| | - Celso Arango
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), CIBERSAM, ISCIII, School of Medicine, Universidad Complutense, Madrid, Spain
| | | | - Matthew R Broome
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, UK
- Early Intervention for Psychosis Services, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | | | - Monica E Calkins
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eric Yu Hai Chen
- Department of Psychiatry, School of Clinical Medicine, LKF Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Jimmy Choi
- Olin Neuropsychiatry Research Center, Hartford Health Care Behavioral Health Network, Hartford, CT, USA
| | - Philippe Conus
- General Psychiatry Service, Treatment and Early Intervention in Psychosis Program (TIPP-Lausanne), Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Cheryl M Corcoran
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Barbara A Cornblatt
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine, Hempstead, NY, USA
- Institute of Behavioral Science, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Lauren M Ellman
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | - Paolo Fusar-Poli
- Department of Psychosis Studies, King's College London, London, UK
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Pablo A Gaspar
- Institute of Behavioral Science, Feinstein Institute for Medical Research, Manhasset, NY, USA
- Department of Psychiatry, IMHAY, University of Chile, Santiago, Chile
| | - Carla Gerber
- Prevention Science Institute, University of Oregon, Eugene, OR, USA
- Oregon Research Institute, Springfield, OR, USA
| | - Louise Birkedal Glenthøj
- VIRTU Research Group, Copenhagen Research Centre for Mental Health, Mental Health Copenhagen, University of Copenhagen, Copenhagen, Denmark
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Leslie E Horton
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Christy Lai Ming Hui
- Department of Psychiatry, School of Clinical Medicine, LKF Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Joseph Kambeitz
- University of Cologne, Faculty of Medicine and University HospitalCologne, Cologne, Germany
| | - Lana Kambeitz-Ilankovic
- University of Cologne, Faculty of Medicine and University HospitalCologne, Cologne, Germany
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Matcheri Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Massachusetts Mental Health Center and Harvard Medical School, Boston, MA, USA
| | - Sung-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea
- Mindlink, Gwangju Bukgu Mental Health Center, Gwangju, Republic of Korea
| | - Nikolaos Koutsouleris
- Department of Psychosis Studies, King's College London, London, UK
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Jun Soo Kwon
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kerstin Langbein
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Daniel Mamah
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Covadonga M Diaz-Caneja
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), CIBERSAM, ISCIII, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Daniel H Mathalon
- Department of Psychiatry and Behavioral Sciences and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Mental Health Service 116D, Veterans Affairs San Francisco Health Care System, San Francisco, CA, USA
| | - Vijay A Mittal
- Department of Psychology, Northwestern University, Chicago, IL, USA
| | - Merete Nordentoft
- Copenhagen Research Centre for Mental Health, Mental Health Copenhagen, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Copenhagen University Hospital, Copenhagen, Denmark
| | - Godfrey D Pearlson
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, Hartford, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Diana O Perkins
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Jesus Perez
- CAMEO, Early Intervention in Psychosis Service, Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
- Institute of Biomedical Research (IBSAL), Department of Medicine, Universidad de Salamanca, Salamanca, Spain
| | - Albert R Powers
- Connecticut Mental Health Center, New Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Jack Rogers
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Fred W Sabb
- Prevention Science Institute, University of Oregon, Eugene, OR, USA
| | - Jason Schiffman
- Department of Psychological Science, University of California, Irvine, CA, USA
| | - Jai L Shah
- PEPP-Montreal, Douglas Research Centre, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Steven M Silverstein
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
| | - Stefan Smesny
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | | | - Judy L Thompson
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
| | - Rachel Upthegrove
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Swapna K Verma
- Institute of Mental Health, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Jijun Wang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Daniel H Wolf
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sylvain Bouix
- Department of Software Engineering and Information Technology, Ecole de technologie superieure, Montreal, QC, Canada
| | - Patrick D McGorry
- Orygen, Parkville, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - John M Kane
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine, Hempstead, NY, USA
- Institute of Behavioral Science, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Rene S Kahn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carrie E Bearden
- Departments of Psychiatry and Biobehavioral Sciences & Psychology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Department of Psychology, University of California, Los Angeles, CA, USA
| | - Martha E Shenton
- Departments of Psychiatry and Radiology, Brigham and Women's Hospital, and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Scott W Woods
- Connecticut Mental Health Center, New Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Barnaby Nelson
- Orygen, Parkville, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - William S Stone
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Massachusetts Mental Health Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Turton S, Hawkins PCT, Muller-Pollard C, Zois E, Conrod P, Zelaya F, Mehta MA. Opioidergic modulation of monetary incentive delay fMRI responses. Psychopharmacology (Berl) 2025:10.1007/s00213-025-06753-7. [PMID: 40053107 DOI: 10.1007/s00213-025-06753-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 01/24/2025] [Indexed: 03/25/2025]
Abstract
RATIONALE It is hypothesised that modulation of striatal dopaminergic signalling plays a key role in the rewarding effects of opioids. The monetary incentive delay (MID) task is a functional magnetic resonance imaging (fMRI) paradigm used to investigate striatal responses, which may reflect striatal dopamine release, during the anticipation of a financial reward. OBJECTIVES We hypothesised that fentanyl would modulate striatal MID task Blood Oxygenation Level Dependent (BOLD) responses, reflecting opioidergic modulation of striatal dopaminergic signalling. METHODS 24 right-handed males who undertook four MRI scanning sessions, during which they completed an MID task 15 min after receiving an intravenous infusion of either one of two doses of fentanyl (50 µg/70kg), naloxone (400 µg) or placebo (saline 0.9%), were included in the analyses. End tidal CO2 data were collected to control for respiratory depression. RESULTS We demonstrated fentanyl induced increases in MID task reward and loss anticipation BOLD compared with placebo and naloxone in both region of interest (ROI) and whole brain analyses. These results were in cortical regions including the lingual gyrus, precuneus, posterior cingulate and frontal pole rather than the striatum. CONCLUSIONS Our results show the primary effects of fentanyl on MID anticipation BOLD in regions associated with the preparation of a motor response to a salient visual cue, rather than in regions typically associated with reward processing such as the striatum. This suggests that opioid agonists do not affect striatal activation during the MID task. Tasks using naturalistic rewards, for example feeding, sex or social contact which induce endogenous opioid signalling, may be more appropriate to probe the effects of fentanyl on reward processing. These results are from male participants' data and therefore may not be generalisable to female participants.
Collapse
Affiliation(s)
- Samuel Turton
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- Division of Psychiatry, Imperial College London, London, UK.
| | - Peter C T Hawkins
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | | | - Evangelos Zois
- IU International University of Applied Sciences, Bad Honnef, Germany
| | - Patricia Conrod
- Department of Psychiatry, Université de Montreal, CHU Ste Justine Hospital, Montreal, QC, Canada
| | - Fernando Zelaya
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Mitul A Mehta
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
4
|
Spilka MJ, Millman ZB, Waltz JA, Walker EF, Levin JA, Powers AR, Corlett PR, Schiffman J, Gold JM, Silverstein SM, Ellman LM, Mittal VA, Woods SW, Zinbarg R, Strauss GP. A generalized reward processing deficit pathway to negative symptoms across diagnostic boundaries. Psychol Med 2025; 55:e6. [PMID: 39901872 PMCID: PMC11968125 DOI: 10.1017/s003329172400326x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 02/05/2025]
Abstract
BACKGROUND Negative symptoms are a key feature of several psychiatric disorders. Difficulty identifying common neurobiological mechanisms that cut across diagnostic boundaries might result from equifinality (i.e., multiple mechanistic pathways to the same clinical profile), both within and across disorders. This study used a data-driven approach to identify unique subgroups of participants with distinct reward processing profiles to determine which profiles predicted negative symptoms. METHODS Participants were a transdiagnostic sample of youth from a multisite study of psychosis risk, including 110 individuals at clinical high-risk for psychosis (CHR; meeting psychosis-risk syndrome criteria), 88 help-seeking participants who failed to meet CHR criteria and/or who presented with other psychiatric diagnoses, and a reference group of 66 healthy controls. Participants completed clinical interviews and behavioral tasks assessing four reward processing constructs indexed by the RDoC Positive Valence Systems: hedonic reactivity, reinforcement learning, value representation, and effort-cost computation. RESULTS k-means cluster analysis of clinical participants identified three subgroups with distinct reward processing profiles, primarily characterized by: a value representation deficit (54%), a generalized reward processing deficit (17%), and a hedonic reactivity deficit (29%). Clusters did not differ in rates of clinical group membership or psychiatric diagnoses. Elevated negative symptoms were only present in the generalized deficit cluster, which also displayed greater functional impairment and higher psychosis conversion probability scores. CONCLUSIONS Contrary to the equifinality hypothesis, results suggested one global reward processing deficit pathway to negative symptoms independent of diagnostic classification. Assessment of reward processing profiles may have utility for individualized clinical prediction and treatment.
Collapse
Affiliation(s)
| | - Zachary B. Millman
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - James A. Waltz
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Jason A. Levin
- Department of Psychology, University of Georgia, Athens, GA, USA
| | | | | | - Jason Schiffman
- Department of Psychological Science, University of California, Irvine, CA, USA
| | - James M. Gold
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Steven M. Silverstein
- Departments of Psychiatry, Neuroscience and Ophthalmology, University of Rochester Medical Center, Rochester, NY, USA
| | - Lauren M. Ellman
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | - Vijay A. Mittal
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Scott W. Woods
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Richard Zinbarg
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | | |
Collapse
|
5
|
Lee H, Han D, Rhee SJ, Lee J, Kim J, Lee Y, Kim EY, Park DY, Roh S, Baik M, Jung HY, Lee TY, Kim M, Kim H, Kim SH, Kwon JS, Ahn YM, Ha K. Identifying clinical and proteomic markers for early diagnosis and prognosis prediction of major psychiatric disorders. J Affect Disord 2025; 369:886-896. [PMID: 39426510 DOI: 10.1016/j.jad.2024.10.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/05/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND To clarify if blood proteins can predict disease progression among individuals at clinical high-risk of severe mental illness (CHR-SMI), we developed a statistical model incorporating clinical and blood protein markers to distinguish the transition group (who developed severe mental illness) (CHR-SMI-T) and from non-transition group (CHR-SMI-NT) at baseline. METHODS Ninety individuals (74 at CHR-SMI: 16 patients) were monitored for ≤4 years and were the focus of predictive models. Three predictive models (1 [100 clinical variables], 2 [158 peptides], and 3 [100 clinical variables +158 peptides]) were evaluated using area under the receiver operating characteristic (AUROC) values. Clinical and protein feature patterns were evaluated by linear mixed-effect analysis within the model at 12 and 24 months among patients who did (CHR-SMI-T) and did not transition (CHR-SMI-NT) and the entire group. RESULT Eighteen CHR-SMI individuals with major psychiatric disorders (first episode psychosis: 2; bipolar II disorder: 13; major depressive disorder; 3) developed disorders over an average of 17.7 months. The combined model showed the highest discriminatory performance (AUROC = 0.73). Cytosolic malate dehydrogenase and transgelin-2 levels were lower in the CHR-SMI-T than the CHR-SMI-NT group. Complement component C9, inter-alpha-trypsin inhibitor heavy chain H4, von Willebrand factor, and C-reactive protein were lower in the patient than the CHR-SMI-NT group. These differences were non-significant after FDR adjustment. LIMITATIONS Small sample, no control for medication use. CONCLUSION This exploratory study identified clinical and proteomic markers that might predict severe mental illness early onset, which could aid in early detection and intervention. Future studies with larger samples and controlled variables are needed to validate these findings.
Collapse
Affiliation(s)
- Hyunju Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dohyun Han
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Transdisciplinary Department of Medicine & Advanced Technology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sang Jin Rhee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Junhee Lee
- Department of Psychiatry, Seoul St. Mary's Hospital, Seoul, Republic of Korea
| | - Jayoun Kim
- Medical Research Collaborating Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yunna Lee
- Department of Neuropsychiatry, Kosin University Gospel Hospital, Busan, Republic of Korea
| | - Eun Young Kim
- Mental Health Center, Seoul National University Health Care Center, Seoul, Republic of Korea; Department of Human Systems Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong Yeon Park
- Department of Psychiatry, National Center for Mental Health, Seoul, Republic of Korea
| | - Sungwon Roh
- Department of Neuropsychiatry, Hanyang University Hospital, Seoul, Republic of Korea
| | - Myungjae Baik
- Department of Psychiatry, Kyung Hee University Medical Center, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Hee Yeon Jung
- Department of Psychiatry, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Tae Young Lee
- Department of Psychiatry, Kyungpook National University Hospital, Daegu, Republic of Korea; Department of Psychiatry, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyeyoon Kim
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Se Hyun Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Yong Min Ahn
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.
| | - Kyooseob Ha
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada; Department of Psychiatry, Lions Gate Hospital - Vancouver Coastal Health, British Columbia, Canada.
| |
Collapse
|
6
|
Schuster BA, Lamm C. How dopamine shapes trust beliefs. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111206. [PMID: 39586370 DOI: 10.1016/j.pnpbp.2024.111206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 11/27/2024]
Abstract
Learning whom to trust is integral for healthy relationships and social cohesion, and atypicalities in trust learning are common across a range of clinical conditions, including schizophrenia spectrum disorders, Parkinson's disease, and depression. Persecutory delusions - rigid, unfounded beliefs that others are intending to harm oneself - significantly impact affected individuals' lives as they are associated with a range of negative health outcomes, including suicidal behaviour and relapse. Recent advances in computational modelling and psychopharmacology have significantly extended our understanding of the brain bases of dynamic trust learning, and the neuromodulator dopamine has been suggested to play a key role in this. However, the specifics of this role on a computational and neurobiological level remain to be fully established. The current review article provides a comprehensive summary of novel conceptual developments and empirical findings regarding the computational role of dopamine in social learning processes. Research findings strongly suggest a conceptual shift, from dopamine as a reward mechanism to a teaching signal indicating which information is relevant for learning, and shed light on the neurocomputational mechanisms via which antipsychotics may alleviate symptoms of aberrant social learning processes such as persecutory delusions. Knowledge gaps and inconsistencies in the extant literature are examined and the most pressing issues highlighted, laying the foundation for future research that will further advance our understanding of the neuromodulation of social belief updating processes.
Collapse
Affiliation(s)
- Bianca A Schuster
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria.
| | - Claus Lamm
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria
| |
Collapse
|
7
|
Bielawski T, Rejek M, Misiak B. Social defeat predicts the emergence of psychotic-like experiences through the effects on aberrant salience: insights from a network analysis of longitudinal data. Psychol Med 2025; 54:1-10. [PMID: 39757704 PMCID: PMC11769911 DOI: 10.1017/s0033291724003209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/12/2024] [Accepted: 11/16/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND Psychotic-like experiences (PLEs) are subclinical phenomena that often precede the onset of psychosis and occur in various mental disorders. Social determinants of psychosis and PLEs are important and have been operationalized within the social defeat (SD) hypothesis. The SD hypothesis posits that low social status and exposure to repeated humiliation can lead to imbalanced dopamine neuron activity, and thus increased risk of psychosis. We aimed to assess the role of dynamic interactions between SD components in shaping the occurrence of PLEs using a network analysis. METHODS A total of 2241 non-clinical, young adults were assessed at baseline and invited for reassessment after a 6-month follow-up. Self-reports recording the occurrence of PLEs, aberrant salience (AS), depressive, and anxiety symptoms as well as SD characteristics (socioeconomic status, minority status, humiliation, perceived constraints, and domain control) were administered. Two networks were analyzed (the first one covering all baseline measures and the second one with the baseline SD components and follow-up measures of AS and psychopathology). RESULTS The SD components were not directly connected to the measures of PLEs in both networks. However, in both networks, SD components were connected to PLEs through a mediating effect of AS. Among SD components, humiliation had the highest bridge centrality across three predefined communities of variables (SD; depressive and anxiety symptoms; AS, and PLEs). CONCLUSIONS The findings indicate that SD might make individuals vulnerable to develop PLEs through the mediating effects of AS. Among SD components, humiliation might play the most important role in the development of PLEs.
Collapse
Affiliation(s)
- Tomasz Bielawski
- Department of Psychiatry, Wroclaw Medical University, Pasteura 10 Street, 50-367 Wroclaw, Poland
| | - Maksymilian Rejek
- Department of Psychiatry, Wroclaw Medical University, Pasteura 10 Street, 50-367 Wroclaw, Poland
| | - Błażej Misiak
- Department of Psychiatry, Wroclaw Medical University, Pasteura 10 Street, 50-367 Wroclaw, Poland
| |
Collapse
|
8
|
Wu G, Zhu T, Ma C, Xu L, Qian Z, Kong G, Cui H, Zhang T, Wang J, Tang Y. Association of abnormal cortical inhibition and clinical outcomes in patients at clinical high risk for psychosis. Clin Neurophysiol 2025; 169:65-73. [PMID: 39626344 DOI: 10.1016/j.clinph.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/27/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024]
Abstract
OBJECTIVE Cortical inhibition (CI) can be in-vivo measured using transcranial magnetic stimulation (TMS), and patients with schizophrenia had abnormal CI. However, whether the abnormal CI occur early in patients with clinical high risk for psychosis (CHR) or could predict their clinical outcomes remains less known. METHODS We measured short-interval cortical inhibition (SICI), cortical silent period (CSP), and intra-cortical facilitation (ICF) over the motor cortex and neurocognitive performances in 55 CHR, 35 first-episode schizophrenia (FES), and 35 healthy controls (HC). We divided CHR patients into CHR converters (CHR-C) and CHR non-converters (CHR-NC) according to their clinical outcomes within the two-year follow-up. RESULTS CSP was longer in CHR-C (P = 0.033) and FES (P = 0.047) than in HC, while CSP was comparable between CHR-NC and HC. In CHR, CSP was negatively related to their performances in symbol coding and maze tasks. There was no significant between-group difference for either SICI or ICF. CONCLUSIONS Our findings suggested GABAB-mediated CSP was prolonged in CHR, who later converted into schizophrenia, and was associated with poor neurocognitive functions. SIGNIFICANCE CSP is prolonged before the onset of psychosis, particularly in CHR-C patients, suggesting that CSP could be a potential biomarker for predicting transition to schizophrenia.
Collapse
Affiliation(s)
- Guanfu Wu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyuan Zhu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunyan Ma
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lihua Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenying Qian
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gai Kong
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiru Cui
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China; CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai, China.
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
Huber CG, Wullschleger A, Rabenschlag F. Context-Sensitivity and the Inclusion of Subjective Beliefs Have Broad Implications. THE AMERICAN JOURNAL OF BIOETHICS : AJOB 2024; 24:101-103. [PMID: 39565256 DOI: 10.1080/15265161.2024.2416140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
|
10
|
Drukker M, Todor T, Bongaarts J, Broggi E, Kelkar M, Wigglesworth T, Verhiel K, van Leeuwen K, Koster M, Derom C, Thiery E, De Hert M, Menne-Lothmann C, Decoster J, Collip D, van Winkel R, Jacobs N, Guloksuz S, Rutten B, van Os J. The association between aberrant salience and psychotic experiences in general population twins, and genetic vulnerability as a modifier. BMC Psychiatry 2024; 24:736. [PMID: 39462331 PMCID: PMC11515186 DOI: 10.1186/s12888-024-06176-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/14/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Previous studies assessing the hypothesis that the construct of 'aberrant salience' is associated with psychosis and psychotic symptoms showed conflicting results. For this reason, the association between measures to index aberrant salience and subclinical psychotic symptoms in a general population sample was analysed. In addition, genetic vulnerability was added to the analysis as a modifier to test the hypothesis that modification by genetic vulnerability may explain variability in the results. METHODS The TwinssCan project obtained data from general population twins (N = 887). CAPE (Community Assessment of Psychic Experience) scores were used to index psychotic experiences. Aberrant salience was assessed with white noise task and ambiguous situations task. RESULTS Measures of aberrant salience were not associated with psychotic experiences, nor was there evidence for an interaction with genetic predisposition in this association (Z = 1.08, p = 0.282). CONCLUSIONS Various studies including the present could not replicate the association between aberrant salience and psychotic experiences in general population samples. The conflicting findings might be explained by moderation by genetic vulnerability, but results are inconsistent. If there was evidence for a main effect or interaction, this was in the positive symptom scale only. On the other hand, the association was more robust in so-called 'ultra-high risk' patients and first episode psychosis patients. Thus, this association may represent a state-dependent association, present only at the more severe end of the psychosis spectrum.
Collapse
Affiliation(s)
- Marjan Drukker
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience (MHeNS), Maastricht University Medical Centre, Maastricht, the Netherlands.
| | - Tatvan Todor
- Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Jelle Bongaarts
- Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Eleonora Broggi
- Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Mihika Kelkar
- Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Thomas Wigglesworth
- Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Kayle Verhiel
- Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Karel van Leeuwen
- Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Meinte Koster
- Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Catherine Derom
- Department of Obstetrics and Gynecology, Ghent University Hospitals, Ghent University, Ghent, Belgium
| | - Evert Thiery
- Department of Neurology, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Marc De Hert
- University Psychiatric Centre, Katholieke Universiteit Leuven, Kortenberg, Belgium
- Department of Neurosciences, Centre for Clinical Psychiatry, Katholieke Universiteit Leuven, Louvain, Belgium
- Leuven Brain Institute, Katholieke Universiteit Leuven, Louvain, Belgium
- Antwerp Health, Law and Ethic Chair, University of Antwerp, Antwerp, Belgium
| | - Claudia Menne-Lothmann
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience (MHeNS), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Jeroen Decoster
- Psychiatric Care Sint-Kamillus, Brothers of Charity, Bierbeek, Belgium
| | - Dina Collip
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience (MHeNS), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Ruud van Winkel
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience (MHeNS), Maastricht University Medical Centre, Maastricht, the Netherlands
- Department of Neurosciences, Research Group Psychiatry, Center for Clinical Psychiatry, Katholieke Universiteit Leuven, Louvain, Belgium
- University Psychiatric Center, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Nele Jacobs
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience (MHeNS), Maastricht University Medical Centre, Maastricht, the Netherlands
- Faculty of Psychology, Open Universiteit, Heerlen, The Netherlands
| | - Sinan Guloksuz
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience (MHeNS), Maastricht University Medical Centre, Maastricht, the Netherlands
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Bart Rutten
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience (MHeNS), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Jim van Os
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience (MHeNS), Maastricht University Medical Centre, Maastricht, the Netherlands
- Department of Psychiatry, Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, The Netherlands
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, King's Health Partners, London, UK
| |
Collapse
|
11
|
Supekar K, de Los Angeles C, Ryali S, Kushan L, Schleifer C, Repetto G, Crossley NA, Simon T, Bearden CE, Menon V. Robust and replicable functional brain signatures of 22q11.2 deletion syndrome and associated psychosis: a deep neural network-based multi-cohort study. Mol Psychiatry 2024; 29:2951-2966. [PMID: 38605171 DOI: 10.1038/s41380-024-02495-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 04/13/2024]
Abstract
A major genetic risk factor for psychosis is 22q11.2 deletion (22q11.2DS). However, robust and replicable functional brain signatures of 22q11.2DS and 22q11.2DS-associated psychosis remain elusive due to small sample sizes and a focus on small single-site cohorts. Here, we identify functional brain signatures of 22q11.2DS and 22q11.2DS-associated psychosis, and their links with idiopathic early psychosis, using one of the largest multi-cohort data to date. We obtained multi-cohort clinical phenotypic and task-free fMRI data from 856 participants (101 22q11.2DS, 120 idiopathic early psychosis, 101 idiopathic autism, 123 idiopathic ADHD, and 411 healthy controls) in a case-control design. A novel spatiotemporal deep neural network (stDNN)-based analysis was applied to the multi-cohort data to identify functional brain signatures of 22q11.2DS and 22q11.2DS-associated psychosis. Next, stDNN was used to test the hypothesis that the functional brain signatures of 22q11.2DS-associated psychosis overlap with idiopathic early psychosis but not with autism and ADHD. stDNN-derived brain signatures distinguished 22q11.2DS from controls, and 22q11.2DS-associated psychosis with very high accuracies (86-94%) in the primary cohort and two fully independent cohorts without additional training. Robust distinguishing features of 22q11.2DS-associated psychosis emerged in the anterior insula node of the salience network and the striatum node of the dopaminergic reward pathway. These features also distinguished individuals with idiopathic early psychosis from controls, but not idiopathic autism or ADHD. Our results reveal that individuals with 22q11.2DS exhibit a highly distinct functional brain organization compared to controls. Additionally, the brain signatures of 22q11.2DS-associated psychosis overlap with those of idiopathic early psychosis in the salience network and dopaminergic reward pathway, providing substantial empirical support for the theoretical aberrant salience-based model of psychosis. Collectively, our findings, replicated across multiple independent cohorts, advance the understanding of 22q11.2DS and associated psychosis, underscoring the value of 22q11.2DS as a genetic model for probing the neurobiological underpinnings of psychosis and its progression.
Collapse
Affiliation(s)
- Kaustubh Supekar
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA.
| | - Carlo de Los Angeles
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Srikanth Ryali
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Leila Kushan
- Department of Psychiatry and Behavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Charlie Schleifer
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Gabriela Repetto
- Center for Genetics and Genomics, Facultad de Medicina, Clinica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Nicolas A Crossley
- Department of Psychiatry, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Tony Simon
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento, CA, USA
- MIND Institute, University of California, Davis, Sacramento, CA, USA
| | - Carrie E Bearden
- Department of Psychiatry and Behavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Vinod Menon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
12
|
Poletti M, Raballo A. Ontogenesis of self-disorders in the schizophrenia spectrum: A phenomenological neuro-developmental model. Schizophr Res 2024; 272:26-35. [PMID: 39181008 DOI: 10.1016/j.schres.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/28/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
The concept of basic Self-disorders (SD) captures the experiential aspects associated with vulnerability to schizophrenia spectrum disorders (SSD). SD emerge prior to, and constitute the underlying structure for, the emergence of major diagnostic symptoms, including positive psychotic ones. SD are also detectable in populations with familial risk for SSD. This paper proposes a two-stage phenomenological-developmental model, exploring the early deficit in multisensory integration and their impact on the ontogeny of the Minimal Self in the first years of life. It also examines subsequent emergence of schizotaxic vulnerability, which later manifests as typical anomalies of subjectivity, such as basic symptoms and self-disorders.
Collapse
Affiliation(s)
- Michele Poletti
- Department of Mental Health and Pathological Addiction, Child and Adolescent Neuropsychiatry Service, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Andrea Raballo
- Chair of Psychiatry, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland; Cantonal Sociopsychiatric Organisation, Public Health Division, Department of Health and Social Care, Repubblica e Cantone Ticino, Mendrisio, Switzerland.
| |
Collapse
|
13
|
Dwyer GE, Johnsen E, Hugdahl K. NMDAR dysfunction and the regulation of dopaminergic transmission in schizophrenia. Schizophr Res 2024; 271:19-27. [PMID: 39002526 DOI: 10.1016/j.schres.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/27/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024]
Abstract
A substantial body of evidence implicates dysfunction in N-methyl-d-aspartate receptors (NMDARs) in the pathophysiology of schizophrenia. This article illustrates how NMDAR dysfunction may give rise to many of the neurobiological phenomena frequently associated with schizophrenia with a particular focus on how NMDAR dysfunction affects the thalamic reticular nucleus (nRT) and pedunculopontine tegmental nucleus (PPTg). Furthermore, this article presents a model for schizophrenia illustrating how dysfunction in the nRT may interrupt prefrontal regulation of midbrain dopaminergic neurons, and how dysfunction in the PPTg may drive increased, irregular burst firing.
Collapse
Affiliation(s)
- Gerard Eric Dwyer
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway; NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway.
| | - Erik Johnsen
- NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway; Division of Psychiatry, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Kenneth Hugdahl
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway; Division of Psychiatry, Haukeland University Hospital, Bergen, Norway; Department of Radiology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
14
|
Griffin JD, Diederen KMJ, Haarsma J, Jarratt Barnham IC, Cook BRH, Fernandez-Egea E, Williamson S, van Sprang ED, Gaillard R, Vinckier F, Goodyer IM, Murray GK, Fletcher PC. Distinct alterations in probabilistic reversal learning across at-risk mental state, first episode psychosis and persistent schizophrenia. Sci Rep 2024; 14:17614. [PMID: 39080434 PMCID: PMC11289106 DOI: 10.1038/s41598-024-68004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 07/17/2024] [Indexed: 08/02/2024] Open
Abstract
We used a probabilistic reversal learning task to examine prediction error-driven belief updating in three clinical groups with psychosis or psychosis-like symptoms. Study 1 compared people with at-risk mental state and first episode psychosis (FEP) to matched controls. Study 2 compared people diagnosed with treatment-resistant schizophrenia (TRS) to matched controls. The design replicated our previous work showing ketamine-related perturbations in how meta-level confidence maintained behavioural policy. We applied the same computational modelling analysis here, in order to compare the pharmacological model to three groups at different stages of psychosis. Accuracy was reduced in FEP, reflecting increased tendencies to shift strategy following probabilistic errors. The TRS group also showed a greater tendency to shift choice strategies though accuracy levels were not significantly reduced. Applying the previously-used computational modelling approach, we observed that only the TRS group showed altered confidence-based modulation of responding, previously observed under ketamine administration. Overall, our behavioural findings demonstrated resemblance between clinical groups (FEP and TRS) and ketamine in terms of a reduction in stabilisation of responding in a noisy environment. The computational analysis suggested that TRS, but not FEP, replicates ketamine effects but we consider the computational findings preliminary given limitations in performance of the model.
Collapse
Affiliation(s)
- J D Griffin
- Department of Psychiatry, University of Cambridge, Addenbrookes Hospital, Cambridge, CB2 0QQ, UK.
| | - K M J Diederen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - J Haarsma
- Wellcome Centre for Human Neuroimaging, Queen Square, UCL, London, UK
| | - I C Jarratt Barnham
- Department of Psychiatry, University of Cambridge, Addenbrookes Hospital, Cambridge, CB2 0QQ, UK
- Cambridgeshire and Peterborough NHS Trust, Cambridge, UK
| | - B R H Cook
- Department of Psychiatry, University of Cambridge, Addenbrookes Hospital, Cambridge, CB2 0QQ, UK
| | - E Fernandez-Egea
- Department of Psychiatry, University of Cambridge, Addenbrookes Hospital, Cambridge, CB2 0QQ, UK
- Cambridgeshire and Peterborough NHS Trust, Cambridge, UK
| | - S Williamson
- Coventry and Warwickshire NHS Partnership Trust, Warwick, UK
| | - E D van Sprang
- Amsterdam University Medical Centres (UMC), Amsterdam, The Netherlands
| | - R Gaillard
- Paris Descartes University, Paris, France
| | - F Vinckier
- Service Hospitalo-Universitaire, GHU Paris Psychiatrie & Neurosciences, F-75014, Paris, France
- Motivation, Brain & Behavior (MBB) lab, Institut du Cerveau et de la Moelle épinière (ICM), F-75013, Paris, France
- Université Paris Cité, F-75006, Paris, France
| | - I M Goodyer
- Department of Psychiatry, University of Cambridge, Addenbrookes Hospital, Cambridge, CB2 0QQ, UK
- Cambridgeshire and Peterborough NHS Trust, Cambridge, UK
| | - G K Murray
- Department of Psychiatry, University of Cambridge, Addenbrookes Hospital, Cambridge, CB2 0QQ, UK
- Cambridgeshire and Peterborough NHS Trust, Cambridge, UK
| | - P C Fletcher
- Department of Psychiatry, University of Cambridge, Addenbrookes Hospital, Cambridge, CB2 0QQ, UK.
- Cambridgeshire and Peterborough NHS Trust, Cambridge, UK.
- Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
15
|
Liang X, Avram MM, Gibbs-Dean T, Chesney E, Oliver D, Wang S, Obreshkova S, Spencer T, Englund A, Diederen K. Exploring the relationship between frequent cannabis use, belief updating under uncertainty and psychotic-like symptoms. Front Psychiatry 2024; 15:1309868. [PMID: 39114739 PMCID: PMC11304345 DOI: 10.3389/fpsyt.2024.1309868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 06/17/2024] [Indexed: 08/10/2024] Open
Abstract
Background Cannabis users present an important group for investigating putative mechanisms underlying psychosis, as cannabis-use is associated with an increased risk of psychosis. Recent work suggests that alterations in belief-updating under uncertainty underlie psychosis. We therefore compared belief updating under uncertainty between cannabis and non-cannabis users. Methods 49 regular cannabis users and 52 controls completed the Space Game, via an online platform used for behavioral testing. In the task, participants were asked to predict the location of the stimulus based on previous information, under different uncertainty conditions. Mixed effects models were used to identify significant predictors of mean score, confidence, performance error and learning rate. Results Both groups showed decreased confidence in high noise conditions, and increased belief updating in more volatile conditions, suggesting that they could infer the degree and sources of uncertainty. There were no significant effects of group on any of the performance indices. However, within the cannabis group, frequent users showed worse performance than less frequent users. Conclusion Belief updating under uncertainty is not affected by cannabis use status but could be impaired in those who use cannabis more frequently. This finding could show a similarity between frequent cannabis use and psychosis risk, as predictors for abnormal belief-updating.
Collapse
Affiliation(s)
- Xinyi Liang
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Maria-Mihaela Avram
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Toni Gibbs-Dean
- School of Medicine, Yale University, New Haven, CT, United States
| | - Edward Chesney
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Dominic Oliver
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Department of Psychiatry, National Institute for Health and Care Research (NIHR) Oxford Health Biomedical Research Centre, Oxford, United Kingdom
| | - Simiao Wang
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Stiliyana Obreshkova
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Tom Spencer
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Amir Englund
- Department of Psychiatry, National Institute for Health and Care Research (NIHR) Oxford Health Biomedical Research Centre, Oxford, United Kingdom
- Addictions Department, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Kelly Diederen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| |
Collapse
|
16
|
Oliver D, Chesney E, Cullen AE, Davies C, Englund A, Gifford G, Kerins S, Lalousis PA, Logeswaran Y, Merritt K, Zahid U, Crossley NA, McCutcheon RA, McGuire P, Fusar-Poli P. Exploring causal mechanisms of psychosis risk. Neurosci Biobehav Rev 2024; 162:105699. [PMID: 38710421 PMCID: PMC11250118 DOI: 10.1016/j.neubiorev.2024.105699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/17/2024] [Accepted: 04/28/2024] [Indexed: 05/08/2024]
Abstract
Robust epidemiological evidence of risk and protective factors for psychosis is essential to inform preventive interventions. Previous evidence syntheses have classified these risk and protective factors according to their strength of association with psychosis. In this critical review we appraise the distinct and overlapping mechanisms of 25 key environmental risk factors for psychosis, and link these to mechanistic pathways that may contribute to neurochemical alterations hypothesised to underlie psychotic symptoms. We then discuss the implications of our findings for future research, specifically considering interactions between factors, exploring universal and subgroup-specific factors, improving understanding of temporality and risk dynamics, standardising operationalisation and measurement of risk and protective factors, and developing preventive interventions targeting risk and protective factors.
Collapse
Affiliation(s)
- Dominic Oliver
- Department of Psychiatry, University of Oxford, Oxford, UK; NIHR Oxford Health Biomedical Research Centre, Oxford, UK; OPEN Early Detection Service, Oxford Health NHS Foundation Trust, Oxford, UK; Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Edward Chesney
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Addictions Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 4 Windsor Walk, London SE5 8AF, UK
| | - Alexis E Cullen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Clinical Neuroscience, Karolinska Institutet, Sweden
| | - Cathy Davies
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Amir Englund
- Addictions Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 4 Windsor Walk, London SE5 8AF, UK
| | - George Gifford
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Sarah Kerins
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Paris Alexandros Lalousis
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Yanakan Logeswaran
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Biostatistics & Health Informatics, King's College London, London, UK
| | - Kate Merritt
- Division of Psychiatry, Institute of Mental Health, UCL, London, UK
| | - Uzma Zahid
- Department of Psychology, King's College London, London, UK
| | - Nicolas A Crossley
- Department of Psychiatry, University of Oxford, Oxford, UK; Department of Psychiatry, School of Medicine, Pontificia Universidad Católica de Chile, Chile
| | - Robert A McCutcheon
- Department of Psychiatry, University of Oxford, Oxford, UK; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Oxford Health NHS Foundation Trust, Oxford, UK
| | - Philip McGuire
- Department of Psychiatry, University of Oxford, Oxford, UK; NIHR Oxford Health Biomedical Research Centre, Oxford, UK; OPEN Early Detection Service, Oxford Health NHS Foundation Trust, Oxford, UK
| | - Paolo Fusar-Poli
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University Munich, Munich, Germany; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; OASIS Service, South London and Maudsley NHS Foundation Trust, London SE11 5DL, UK
| |
Collapse
|
17
|
Yang SM, Ghoshal A, Hubbard JM, Gackière F, Teyssié R, Neale SA, Hopkins SC, Koblan KS, Bristow LJ, Dedic N. TAAR1 agonist ulotaront modulates striatal and hippocampal glutamate function in a state-dependent manner. Neuropsychopharmacology 2024; 49:1091-1103. [PMID: 38110609 PMCID: PMC11109157 DOI: 10.1038/s41386-023-01779-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 12/20/2023]
Abstract
Aberrant dopaminergic and glutamatergic function, particularly within the striatum and hippocampus, has repeatedly been associated with the pathophysiology of schizophrenia. Supported by preclinical and recent clinical data, trace amine-associated receptor 1 (TAAR1) agonism has emerged as a potential new treatment approach for schizophrenia. While current evidence implicates TAAR1-mediated regulation of dopaminergic tone as the primary circuit mechanism, little is known about the effects of TAAR1 agonists on the glutamatergic system and excitation-inhibition balance. Here we assessed the impact of ulotaront (SEP-363856), a TAAR1 agonist in Phase III clinical development for schizophrenia, on glutamate function in the mouse striatum and hippocampus. Ulotaront reduced spontaneous glutamatergic synaptic transmission and neuronal firing in striatal and hippocampal brain slices, respectively. Interestingly, ulotaront potentiated electrically-evoked excitatory synaptic transmission in both brain regions, suggesting the ability to modulate glutamatergic signaling in a state-dependent manner. Similar striatal effects were also observed with the TAAR1 agonist, RO5166017. Furthermore, we show that ulotaront regulates excitation-inhibition balance in the striatum by specifically modulating glutamatergic, but not GABAergic, spontaneous synaptic events. These findings expand the mechanistic circuit hypothesis of ulotaront and TAAR1 agonists, which may be uniquely positioned to normalize both the excessive dopaminergic tone and regulate abnormal glutamatergic function associated with schizophrenia.
Collapse
Affiliation(s)
- Sung M Yang
- Sumitomo Pharma America, Inc., Marlborough, MA, USA
| | - Ayan Ghoshal
- Sumitomo Pharma America, Inc., Marlborough, MA, USA
| | | | | | | | | | | | | | | | - Nina Dedic
- Sumitomo Pharma America, Inc., Marlborough, MA, USA.
| |
Collapse
|
18
|
Delavari F, Sandini C, Kojovic N, Saccaro LF, Eliez S, Van De Ville D, Bolton TAW. Thalamic contributions to psychosis susceptibility: Evidence from co-activation patterns accounting for intra-seed spatial variability (μCAPs). Hum Brain Mapp 2024; 45:e26649. [PMID: 38520364 PMCID: PMC10960557 DOI: 10.1002/hbm.26649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/25/2024] Open
Abstract
The temporal variability of the thalamus in functional networks may provide valuable insights into the pathophysiology of schizophrenia. To address the complexity of the role of the thalamic nuclei in psychosis, we introduced micro-co-activation patterns (μCAPs) and employed this method on the human genetic model of schizophrenia 22q11.2 deletion syndrome (22q11.2DS). Participants underwent resting-state functional MRI and a data-driven iterative process resulting in the identification of six whole-brain μCAPs with specific activity patterns within the thalamus. Unlike conventional methods, μCAPs extract dynamic spatial patterns that reveal partially overlapping and non-mutually exclusive functional subparts. Thus, the μCAPs method detects finer foci of activity within the initial seed region, retaining valuable and clinically relevant temporal and spatial information. We found that a μCAP showing co-activation of the mediodorsal thalamus with brain-wide cortical regions was expressed significantly less frequently in patients with 22q11.2DS, and its occurrence negatively correlated with the severity of positive psychotic symptoms. Additionally, activity within the auditory-visual cortex and their respective geniculate nuclei was expressed in two different μCAPs. One of these auditory-visual μCAPs co-activated with salience areas, while the other co-activated with the default mode network (DMN). A significant shift of occurrence from the salience+visuo-auditory-thalamus to the DMN + visuo-auditory-thalamus μCAP was observed in patients with 22q11.2DS. Thus, our findings support existing research on the gatekeeping role of the thalamus for sensory information in the pathophysiology of psychosis and revisit the evidence of geniculate nuclei hyperconnectivity with the audio-visual cortex in 22q11.2DS in the context of dynamic functional connectivity, seen here as the specific hyper-occurrence of these circuits with the task-negative brain networks.
Collapse
Affiliation(s)
- Farnaz Delavari
- Developmental Imaging and Psychopathology LaboratoryUniversity of Geneva School of MedicineGenevaSwitzerland
- Neuro‐X InstituteÉcole Polytechnique FÉdÉrale de LausanneGenevaSwitzerland
| | - Corrado Sandini
- Developmental Imaging and Psychopathology LaboratoryUniversity of Geneva School of MedicineGenevaSwitzerland
| | - Nada Kojovic
- Autism Brain and Behavior Lab, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Luigi F. Saccaro
- Faculty of Medicine, Psychiatry DepartmentUniversity of GenevaGenevaSwitzerland
- Psychiatry DepartmentGeneva University HospitalGenevaSwitzerland
| | - Stephan Eliez
- Developmental Imaging and Psychopathology LaboratoryUniversity of Geneva School of MedicineGenevaSwitzerland
- Department of Genetic Medicine and DevelopmentUniversity of Geneva School of MedicineGenevaSwitzerland
| | - Dimitri Van De Ville
- Neuro‐X InstituteÉcole Polytechnique FÉdÉrale de LausanneGenevaSwitzerland
- Department of Radiology and Medical InformaticsUniversity of Geneva (UNIGE)GenevaSwitzerland
| | - Thomas A. W. Bolton
- Neuro‐X InstituteÉcole Polytechnique FÉdÉrale de LausanneGenevaSwitzerland
- Connectomics Laboratory, Department of RadiologyCentre Hospitalier Universitaire Vaudois (CHUV)LausanneSwitzerland
| |
Collapse
|
19
|
Saccaro LF, Mallet C, Wullschleger A, Sabé M. Psychiatric manifestations in moyamoya disease: more than a puff of smoke? a systematic review and a case-reports meta-analysis. Front Psychiatry 2024; 15:1371763. [PMID: 38585478 PMCID: PMC10995700 DOI: 10.3389/fpsyt.2024.1371763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction Moyamoya disease (MMD) is a life-threatening condition characterized by stenosis of intracranial arteries. Despite the frequency and the impact of psychiatric symptoms on the long-term prognosis and quality of life of MMD patients, no systematic review on this topic exists. Methods This systematic review and meta-analysis included 41 studies (29 being case reports), from PubMed, Scopus, Embase until 27/3/2023, on MMD patients exhibiting psychiatric symptoms. Results Despite a fair average quality of the articles, quantitative synthesis through logistic regression was possible only for case reports, due to heterogeneity between the other studies. Psychosis, the most frequent psychiatric symptom reported in case reports, was more frequent in MMD patients with left hemisphere involvement. Neurological symptoms occurrence increased the odds of MMD diagnosis preceding psychiatric symptoms. Psychiatric symptoms are highly prevalent in MMD patients and are relatively often the only presenting symptoms. Discussion We discuss the diagnostic, therapeutic, and prognostic implications of recognizing and characterizing specific psychiatric symptoms in MMD, outlining preliminary guidelines for targeted pharmacological and psychotherapeutic interventions. Lastly, we outline future research and clinical perspectives, striving to enhance the oft-overlooked psychiatric care for MMD patients and to ameliorate their long-term outcome. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42023406303.
Collapse
Affiliation(s)
- Luigi F. Saccaro
- Psychiatry Department, Geneva University Hospital, Geneva, Switzerland
- Psychiatry Department, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Clément Mallet
- Psychiatry Department, Geneva University Hospital, Geneva, Switzerland
| | - Alexandre Wullschleger
- Psychiatry Department, Geneva University Hospital, Geneva, Switzerland
- Psychiatry Department, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Michel Sabé
- Psychiatry Department, Geneva University Hospital, Geneva, Switzerland
- Psychiatry Department, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
20
|
Feyaerts J, Sass L. Self-Disorder in Schizophrenia: A Revised View (1. Comprehensive Review-Dualities of Self- and World-Experience). Schizophr Bull 2024; 50:460-471. [PMID: 38069912 PMCID: PMC10919772 DOI: 10.1093/schbul/sbad169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
A growing body of research supports the role of self-disorders as core phenotypic features of schizophrenia-spectrum disorders. Self-disorders comprise various alterations of conscious experience whose theoretical understanding continues to present a challenge. The following 2 articles aim to provide further clarification of the nature of self-disorders in schizophrenia by offering a comprehensive review (article 1) and theoretical revision (article 2) of the currently most influential model of altered selfhood in schizophrenia: the basic-self-disturbance or ipseity-disorder model (IDM). This article presents a state-of-the-art overview of the current self-disturbance model and critically assesses its descriptive adequacy with respect to the clinical variability and heterogeneity of the alterations in self- and world-awareness characteristic of schizophrenia. Special attention is paid to experiences of exaggerated basic self, increased "grip" or "hold" on the world, and paradoxical combinations. The next article proposes a theoretical revision of the self-disturbance model by considering how hyperreflexivity might form the crucial common thread or generating factor that unifies the phenomenologically heterogeneous, and sometimes even contradictory features of schizophrenic self-disorders. We outline the implications of our revised model for explanatory research, therapeutic practice, and our general understanding of the abnormalities in question.
Collapse
Affiliation(s)
- Jasper Feyaerts
- Department of Psychoanalysis and Clinical Consulting, Faculty of Psychology and Educational Sciences, Ghent University, Ghent, Belgium
| | - Louis Sass
- Department of Psychoanalysis and Clinical Consulting, Faculty of Psychology and Educational Sciences, Ghent University, Ghent, Belgium
- Graduate School of Applied and Professional Psychology, Rutgers, The State University of New Jersey, USA
| |
Collapse
|
21
|
Sass L, Feyaerts J. Self-Disorder in Schizophrenia: A Revised View (2. Theoretical Revision-Hyperreflexivity). Schizophr Bull 2024; 50:472-483. [PMID: 38069907 PMCID: PMC10919789 DOI: 10.1093/schbul/sbad170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
A growing body of research supports the role of self-disorders as core phenotypic features of schizophrenia-spectrum conditions. Self-disorders comprise various alterations of conscious experience whose theoretical understanding continues to present a challenge. This is the second of two articles that aim to clarify the nature of self-disorders in schizophrenia by considering the currently most influential, phenomenological model of schizophrenia: the basic-self-disturbance or ipseity-disorder model (IDM). The previous paper (article 1) presented a state-of-the-art overview of this model and critically assessed its descriptive adequacy with respect to the clinical heterogeneity and variability of the alterations in self- and world-awareness characteristic of schizophrenia. This paper (article 2) proposes a theoretical revision by considering how hyperreflexivity might form the crucial common thread or generating factor that unifies the heterogeneous, and sometimes even contradictory features of schizophrenic self-disorders. We outline implications of our revised model (IDMrevised) for explanatory research, therapeutic practice, and our general understanding of the abnormalities in question.
Collapse
Affiliation(s)
- Louis Sass
- Department of Psychoanalysis and Clinical Consulting, Faculty of Psychology and Educational Sciences, Ghent University, Ghent, Belgium
- Department of Clinical Psychology, Graduate School of Applied and Professional Psychology, Rutgers, The State University of New Jersey, USA
| | - Jasper Feyaerts
- Department of Psychoanalysis and Clinical Consulting, Faculty of Psychology and Educational Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
22
|
Yoshida M, Miura K, Fujimoto M, Yamamori H, Yasuda Y, Iwase M, Hashimoto R. Visual salience is affected in participants with schizophrenia during free-viewing. Sci Rep 2024; 14:4606. [PMID: 38409435 PMCID: PMC10897421 DOI: 10.1038/s41598-024-55359-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/22/2024] [Indexed: 02/28/2024] Open
Abstract
Abnormalities in visual exploration affect the daily lives of patients with schizophrenia. For example, scanpath length during free-viewing is shorter in schizophrenia. However, its origin and its relevance to symptoms are unknown. Here we investigate the possibility that abnormalities in eye movements result from abnormalities in visual or visuo-cognitive processing. More specifically, we examined whether such abnormalities reflect visual salience in schizophrenia. Eye movements of 82 patients and 252 healthy individuals viewing natural and/or complex images were examined using saliency maps for static images to determine the contributions of low-level visual features to salience-guided eye movements. The results showed that the mean value for orientation salience at the gazes of the participants with schizophrenia were higher than that of the healthy control subjects. Further analyses revealed that orientation salience defined by the L + M channel of the DKL color space is specifically affected in schizophrenia, suggesting abnormalities in the magnocellular visual pathway. By looking into the computational stages of the visual salience, we found that the difference between schizophrenia and healthy control emerges at the earlier stage, suggesting functional decline in early visual processing. These results suggest that visual salience is affected in schizophrenia, thereby expanding the concept of the aberrant salience hypothesis of psychosis to the visual domain.
Collapse
Affiliation(s)
- Masatoshi Yoshida
- Center for Human Nature, Artificial Intelligence, and Neuroscience (CHAIN), Hokkaido University, Sapporo, Japan.
| | - Kenichiro Miura
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan.
| | - Michiko Fujimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hidenaga Yamamori
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
- Japan Community Health Care Organization, Osaka Hospital, Osaka, Japan
| | - Yuka Yasuda
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
- Medical Corporation Foster, Life Grow Brilliant Mental Clinic, Osaka, Japan
| | - Masao Iwase
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
- Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka Prefectural Hospital Organization, Hirakata, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
| |
Collapse
|
23
|
Diao M, Demchenko I, Asare G, Chen Y, Debruille JB. Quantifying the effects of practicing a semantic task according to subclinical schizotypy. Sci Rep 2024; 14:2900. [PMID: 38316943 PMCID: PMC10844607 DOI: 10.1038/s41598-024-53468-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/31/2024] [Indexed: 02/07/2024] Open
Abstract
The learning ability of individuals within the schizophrenia spectrum is crucial for their psychosocial rehabilitation. When selecting a treatment, it is thus essential to consider the impact of medications on practice effects, an important type of learning ability. To achieve this end goal, a pre-treatment test has to be developed and tested in healthy participants first. This is the aim of the current work, which takes advantage of the schizotypal traits present in these participants to preliminary assess the test's validity for use among patients. In this study, 47 healthy participants completed the Schizotypal Personality Questionnaire (SPQ) and performed a semantic categorization task twice, with a 1.5-hour gap between sessions. Practice was found to reduce reaction times (RTs) in both low- and high-SPQ scorers. Additionally, practice decreased the amplitudes of the N400 event-related brain potentials elicited by semantically matching words in low SPQ scorers only, which shows the sensitivity of the task to schizotypy. Across the two sessions, both RTs and N400 amplitudes had good test-retest reliability. This task could thus be a valuable tool. Ongoing studies are currently evaluating the impact of fully deceptive placebos and of real antipsychotic medications on these practice effects. This round of research should subsequently assist psychiatrists in making informed decisions about selecting the most suitable medication for the psychosocial rehabilitation of a patient.
Collapse
Affiliation(s)
- Mingyi Diao
- Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Neurosciences, McGill University, Montreal, QC, Canada
| | - Ilya Demchenko
- Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Neurosciences, McGill University, Montreal, QC, Canada
| | - Gifty Asare
- Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Yelin Chen
- Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychology, McGill University, Montreal, QC, Canada
| | - J Bruno Debruille
- Douglas Mental Health University Institute, Montreal, QC, Canada.
- Department of Neurosciences, McGill University, Montreal, QC, Canada.
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
- Department of Psychology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
24
|
Krcmar M, Wannan CMJ, Lavoie S, Allott K, Davey CG, Yuen HP, Whitford T, Formica M, Youn S, Shetty J, Beedham R, Rayner V, Murray G, Polari A, Gawęda Ł, Koren D, Sass L, Parnas J, Rasmussen AR, McGorry P, Hartmann JA, Nelson B. The self, neuroscience and psychosis study: Testing a neurophenomenological model of the onset of psychosis. Early Interv Psychiatry 2024; 18:153-164. [PMID: 37394278 DOI: 10.1111/eip.13448] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/17/2023] [Accepted: 06/07/2023] [Indexed: 07/04/2023]
Abstract
AIM Basic self disturbance is a putative core vulnerability marker of schizophrenia spectrum disorders. The primary aims of the Self, Neuroscience and Psychosis (SNAP) study are to: (1) empirically test a previously described neurophenomenological self-disturbance model of psychosis by examining the relationship between specific clinical, neurocognitive, and neurophysiological variables in UHR patients, and (2) develop a prediction model using these neurophenomenological disturbances for persistence or deterioration of UHR symptoms at 12-month follow-up. METHODS SNAP is a longitudinal observational study. Participants include 400 UHR individuals, 100 clinical controls with no attenuated psychotic symptoms, and 50 healthy controls. All participants complete baseline clinical and neurocognitive assessments and electroencephalography. The UHR sample are followed up for a total of 24 months, with clinical assessment completed every 6 months. RESULTS This paper presents the protocol of the SNAP study, including background rationale, aims and hypotheses, design, and assessment procedures. CONCLUSIONS The SNAP study will test whether neurophenomenological disturbances associated with basic self-disturbance predict persistence or intensification of UHR symptomatology over a 2-year follow up period, and how specific these disturbances are to a clinical population with attenuated psychotic symptoms. This may ultimately inform clinical care and pathoaetiological models of psychosis.
Collapse
Affiliation(s)
- Marija Krcmar
- Orygen, Parkville, Parkville, Victoria, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Cassandra M J Wannan
- Orygen, Parkville, Parkville, Victoria, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Suzie Lavoie
- Orygen, Parkville, Parkville, Victoria, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Kelly Allott
- Orygen, Parkville, Parkville, Victoria, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher G Davey
- Orygen, Parkville, Parkville, Victoria, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Victoria, Australia
- Department of Psychiatry, University of Melbourne, Melbourne, Victoria, Australia
| | - Hok Pan Yuen
- Orygen, Parkville, Parkville, Victoria, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Thomas Whitford
- School of Psychology, University of New South Wales (UNSW), Kensington, New South Wales, Australia
| | - Melanie Formica
- Orygen, Parkville, Parkville, Victoria, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Sarah Youn
- Orygen, Parkville, Parkville, Victoria, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Jashmina Shetty
- Orygen, Parkville, Parkville, Victoria, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Rebecca Beedham
- Orygen, Parkville, Parkville, Victoria, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Victoria Rayner
- Orygen, Parkville, Parkville, Victoria, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Graham Murray
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Andrea Polari
- Orygen, Parkville, Parkville, Victoria, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Łukasz Gawęda
- Experimental Psychopathology Lab, Institute of Psychology, Polish Academy of Sciences, Warsaw, Poland
| | - Dan Koren
- Psychology Department, University of Haifa, Haifa, Israel
| | - Louis Sass
- Department of Clinical Psychology, GSAPP-Rutgers University, Piscataway, New Jersey, USA
| | - Josef Parnas
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Center for Subjectivity Research, University of Copenhagen, Copenhagen, Denmark
| | - Andreas R Rasmussen
- Orygen, Parkville, Parkville, Victoria, Australia
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Patrick McGorry
- Orygen, Parkville, Parkville, Victoria, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Jessica A Hartmann
- Department of Public Mental Health, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Barnaby Nelson
- Orygen, Parkville, Parkville, Victoria, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
25
|
Larsen EM, Jin J, Zhang X, Donaldson KR, Liew M, Horga G, Luhmann C, Mohanty A. Hallucination-Proneness is Associated With a Decrease in Robust Averaging of Perceptual Evidence. Schizophr Bull 2024; 50:59-68. [PMID: 37622401 PMCID: PMC10754164 DOI: 10.1093/schbul/sbad129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
BACKGROUND AND HYPOTHESIS Hallucinations are characterized by disturbances in perceptual decision-making about environmental stimuli. When integrating across multiple stimuli to form a perceptual decision, typical observers engage in "robust averaging" by down-weighting extreme perceptual evidence, akin to a statistician excluding outlying data. Furthermore, observers adapt to contexts with more unreliable evidence by increasing this down-weighting strategy. Here, we test the hypothesis that hallucination-prone individuals (n = 38 high vs n = 91 low) would show a decrease in this robust averaging and diminished sensitivity to changes in evidence variance. STUDY DESIGN We used a multielement perceptual averaging task to elicit dichotomous judgments about the "average color" (red/blue) of an array of stimuli in trials with varied strength (mean) and reliability (variance) of decision-relevant perceptual evidence. We fitted computational models to task behavior, with a focus on a log-posterior-ratio (LPR) model which integrates evidence as a function of the log odds of each perceptual option and produces a robust averaging effect. STUDY RESULTS Hallucination-prone individuals demonstrated less robust averaging, seeming to weigh inlying and outlying extreme or untrustworthy evidence more equally. Furthermore, the model that integrated evidence as a function of the LPR of the two perceptual options and produced robust averaging showed poorer fit for the group prone to hallucinations. Finally, the weighting strategy in hallucination-prone individuals remained insensitive to evidence variance. CONCLUSIONS Our findings provide empirical support for theoretical proposals regarding evidence integration aberrations in psychosis and alterations in the perceptual systems that track statistical regularities in environmental stimuli.
Collapse
Affiliation(s)
- Emmett M Larsen
- Department of Psychology, Stony Brook University, Stony Brook, NY
| | - Jingwen Jin
- Department of Psychology, The University of Hong Kong, Hong Kong SAR, China
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Xian Zhang
- Department of Psychology, Stony Brook University, Stony Brook, NY
| | | | - Megan Liew
- Department of Psychology, Stony Brook University, Stony Brook, NY
| | - Guillermo Horga
- Department of Psychiatry, Columbia University, New York, NY
- New York State Psychiatric Institute (NYSPI), New York, NY
| | | | - Aprajita Mohanty
- Department of Psychology, Stony Brook University, Stony Brook, NY
| |
Collapse
|
26
|
Howes OD, Bukala BR, Beck K. Schizophrenia: from neurochemistry to circuits, symptoms and treatments. Nat Rev Neurol 2024; 20:22-35. [PMID: 38110704 DOI: 10.1038/s41582-023-00904-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 12/20/2023]
Abstract
Schizophrenia is a leading cause of global disability. Current pharmacotherapy for the disease predominantly uses one mechanism - dopamine D2 receptor blockade - but often shows limited efficacy and poor tolerability. These limitations highlight the need to better understand the aetiology of the disease to aid the development of alternative therapeutic approaches. Here, we review the latest meta-analyses and other findings on the neurobiology of prodromal, first-episode and chronic schizophrenia, and the link to psychotic symptoms, focusing on imaging evidence from people with the disorder. This evidence demonstrates regionally specific neurotransmitter alterations, including higher glutamate and dopamine measures in the basal ganglia, and lower glutamate, dopamine and γ-aminobutyric acid (GABA) levels in cortical regions, particularly the frontal cortex, relative to healthy individuals. We consider how dysfunction in cortico-thalamo-striatal-midbrain circuits might alter brain information processing to underlie psychotic symptoms. Finally, we discuss the implications of these findings for developing new, mechanistically based treatments and precision medicine for psychotic symptoms, as well as negative and cognitive symptoms.
Collapse
Affiliation(s)
- Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- Faculty of Medicine, Institute of Clinical Sciences, Imperial College London, London, UK.
| | - Bernard R Bukala
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Katherine Beck
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
27
|
Spilka MJ, Raugh IM, Berglund AM, Visser KF, Strauss GP. Reinforcement learning profiles and negative symptoms across chronic and clinical high-risk phases of psychotic illness. Eur Arch Psychiatry Clin Neurosci 2023; 273:1747-1760. [PMID: 36477406 DOI: 10.1007/s00406-022-01528-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Negative symptoms are prominent in individuals with schizophrenia (SZ) and youth at clinical high-risk for psychosis (CHR). In SZ, negative symptoms are linked to reinforcement learning (RL) dysfunction; however, previous research suggests implicit RL remains intact. It is unknown whether implicit RL is preserved in the CHR phase where negative symptom mechanisms are unclear, knowledge of which may assist in developing early identification and prevention methods. Participants from two studies completed an implicit RL task: Study 1 included 53 SZ individuals and 54 healthy controls (HC); Study 2 included 26 CHR youth and 23 HCs. Bias trajectories reflecting implicit RL were compared between groups and correlations with negative symptoms were examined. Cluster analysis investigated RL profiles across the combined samples. Implicit RL was comparable between HC and their corresponding SZ and CHR groups. However, cluster analysis was able to parse performance heterogeneity across diagnostic boundaries into two distinct RL profiles: a Positive/Early Learning cluster (65% of participants) with positive bias scores increasing from the first to second task block, and a Negative/Late Learning cluster (35% of participants) with negative bias scores increasing from the second to third block. Clusters did not differ in the proportion of CHR vs. SZ cases; however, the Negative/Late Learning cluster had more severe negative symptoms. Although implicit RL is intact in CHR similar to SZ, distinct implicit RL phenotypic profiles with elevated negative symptoms were identified trans-phasically, suggesting distinct reward-processing mechanisms can contribute to negative symptoms independent of phases of illness.
Collapse
Affiliation(s)
- Michael J Spilka
- Department of Psychology, University of Georgia, Athens, GA, 30602, USA
| | - Ian M Raugh
- Department of Psychology, University of Georgia, Athens, GA, 30602, USA
| | - Alysia M Berglund
- Department of Psychology, University of Georgia, Athens, GA, 30602, USA
| | - Katherine F Visser
- Department of Psychiatry and Human Behavior, Brown University, Providence, RI, USA
| | - Gregory P Strauss
- Department of Psychology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
28
|
Abstract
BACKGROUND AND HYPOTHESIS The neurocomputational framework of predictive processing (PP) provides a promising approach to explaining delusions, a key symptom of psychotic disorders. According to PP, the brain makes inferences about the world by weighing prior beliefs against the available sensory data. Mismatches between prior beliefs and sensory data result in prediction errors that may update the brain's model of the world. Psychosis has been associated with reduced weighting of priors relative to the sensory data. However, delusional beliefs are highly resistant to change, suggesting increased rather than decreased weighting of priors. We propose that this "delusion paradox" can be resolved within a hierarchical PP model: Reduced weighting of prior beliefs at low hierarchical levels may be compensated by an increased influence of higher-order beliefs represented at high hierarchical levels, including delusional beliefs. This may sculpt perceptual processing into conformity with delusions and foster their resistance to contradictory evidence. STUDY DESIGN We review several lines of experimental evidence on low- and high-level processes, and their neurocognitive underpinnings in delusion-related phenotypes and link them to predicted processing. STUDY RESULTS The reviewed evidence supports the notion of decreased weighting of low-level priors and increased weighting of high-level priors, in both delusional and delusion-prone individuals. Moreover, we highlight the role of prefrontal cortex as a neural basis for the increased weighting of high-level prior beliefs and discuss possible clinical implications of the proposed hierarchical predictive-processing model. CONCLUSIONS Our review suggests the delusion paradox can be resolved within a hierarchical PP model.
Collapse
Affiliation(s)
- Predrag Petrovic
- Center for Psychiatry Research (CPF), Center for Cognitive and Computational Neuropsychiatry (CCNP), Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Philipp Sterzer
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| |
Collapse
|
29
|
Menon V, Palaniyappan L, Supekar K. Integrative Brain Network and Salience Models of Psychopathology and Cognitive Dysfunction in Schizophrenia. Biol Psychiatry 2023; 94:108-120. [PMID: 36702660 DOI: 10.1016/j.biopsych.2022.09.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/09/2022] [Accepted: 09/06/2022] [Indexed: 01/28/2023]
Abstract
Brain network models of cognitive control are central to advancing our understanding of psychopathology and cognitive dysfunction in schizophrenia. This review examines the role of large-scale brain organization in schizophrenia, with a particular focus on a triple-network model of cognitive control and its role in aberrant salience processing. First, we provide an overview of the triple network involving the salience, frontoparietal, and default mode networks and highlight the central role of the insula-anchored salience network in the aberrant mapping of salient external and internal events in schizophrenia. We summarize the extensive evidence that has emerged from structural, neurochemical, and functional brain imaging studies for aberrancies in these networks and their dynamic temporal interactions in schizophrenia. Next, we consider the hypothesis that atypical striatal dopamine release results in misattribution of salience to irrelevant external stimuli and self-referential mental events. We propose an integrated triple-network salience-based model incorporating striatal dysfunction and sensitivity to perceptual and cognitive prediction errors in the insula node of the salience network and postulate that dysregulated dopamine modulation of salience network-centered processes contributes to the core clinical phenotype of schizophrenia. Thus, a powerful paradigm to characterize the neurobiology of schizophrenia emerges when we combine conceptual models of salience with large-scale cognitive control networks in a unified manner. We conclude by discussing potential therapeutic leads on restoring brain network dysfunction in schizophrenia.
Collapse
Affiliation(s)
- Vinod Menon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California; Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, California.
| | - Lena Palaniyappan
- Department of Psychiatry and Robarts Research Institute, University of Western Ontario, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Kaustubh Supekar
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
30
|
Fromm SP, Wieland L, Klettke A, Nassar MR, Katthagen T, Markett S, Heinz A, Schlagenhauf F. Computational mechanisms of belief updating in relation to psychotic-like experiences. Front Psychiatry 2023; 14:1170168. [PMID: 37215663 PMCID: PMC10196365 DOI: 10.3389/fpsyt.2023.1170168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/07/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction Psychotic-like experiences (PLEs) may occur due to changes in weighting prior beliefs and new evidence in the belief updating process. It is still unclear whether the acquisition or integration of stable beliefs is altered, and whether such alteration depends on the level of environmental and belief precision, which reflects the associated uncertainty. This motivated us to investigate uncertainty-related dynamics of belief updating in relation to PLEs using an online study design. Methods We selected a sample (n = 300) of participants who performed a belief updating task with sudden change points and provided self-report questionnaires for PLEs. The task required participants to observe bags dropping from a hidden helicopter, infer its position, and dynamically update their belief about the helicopter's position. Participants could optimize performance by adjusting learning rates according to inferred belief uncertainty (inverse prior precision) and the probability of environmental change points. We used a normative learning model to examine the relationship between adherence to specific model parameters and PLEs. Results PLEs were linked to lower accuracy in tracking the outcome (helicopter location) (β = 0.26 ± 0.11, p = 0.018) and to a smaller increase of belief precision across observations after a change point (β = -0.003 ± 0.0007, p < 0.001). PLEs were related to slower belief updating when participants encountered large prediction errors (β = -0.03 ± 0.009, p = 0.001). Computational modeling suggested that PLEs were associated with reduced overall belief updating in response to prediction errors (βPE = -1.00 ± 0.45, p = 0.028) and reduced modulation of updating at inferred environmental change points (βCPP = -0.84 ± 0.38, p = 0.023). Discussion We conclude that PLEs are associated with altered dynamics of belief updating. These findings support the idea that the process of balancing prior belief and new evidence, as a function of environmental uncertainty, is altered in PLEs, which may contribute to the development of delusions. Specifically, slower learning after large prediction errors in people with high PLEs may result in rigid beliefs. Disregarding environmental change points may limit the flexibility to establish new beliefs in the face of contradictory evidence. The present study fosters a deeper understanding of inferential belief updating mechanisms underlying PLEs.
Collapse
Affiliation(s)
- Sophie Pauline Fromm
- Department of Psychiatry and Neuroscience | CCM, NeuroCure Clinical Research Center, Berlin Institute of Health CCM, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lara Wieland
- Department of Psychiatry and Neuroscience | CCM, NeuroCure Clinical Research Center, Berlin Institute of Health CCM, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Arne Klettke
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Matthew R. Nassar
- Carney Institute for Brain Science, Brown University, Providence, RI, United States
- Department of Neuroscience, Brown University, Providence, RI, United States
| | - Teresa Katthagen
- Department of Psychiatry and Neuroscience | CCM, NeuroCure Clinical Research Center, Berlin Institute of Health CCM, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sebastian Markett
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Heinz
- Department of Psychiatry and Neuroscience | CCM, NeuroCure Clinical Research Center, Berlin Institute of Health CCM, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Florian Schlagenhauf
- Department of Psychiatry and Neuroscience | CCM, NeuroCure Clinical Research Center, Berlin Institute of Health CCM, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
| |
Collapse
|
31
|
Howes OD, Onwordi EC. The synaptic hypothesis of schizophrenia version III: a master mechanism. Mol Psychiatry 2023; 28:1843-1856. [PMID: 37041418 PMCID: PMC10575788 DOI: 10.1038/s41380-023-02043-w] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/13/2023]
Abstract
The synaptic hypothesis of schizophrenia has been highly influential. However, new approaches mean there has been a step-change in the evidence available, and some tenets of earlier versions are not supported by recent findings. Here, we review normal synaptic development and evidence from structural and functional imaging and post-mortem studies that this is abnormal in people at risk and with schizophrenia. We then consider the mechanism that could underlie synaptic changes and update the hypothesis. Genome-wide association studies have identified a number of schizophrenia risk variants converging on pathways regulating synaptic elimination, formation and plasticity, including complement factors and microglial-mediated synaptic pruning. Induced pluripotent stem cell studies have demonstrated that patient-derived neurons show pre- and post-synaptic deficits, synaptic signalling alterations, and elevated, complement-dependent elimination of synaptic structures compared to control-derived lines. Preclinical data show that environmental risk factors linked to schizophrenia, such as stress and immune activation, can lead to synapse loss. Longitudinal MRI studies in patients, including in the prodrome, show divergent trajectories in grey matter volume and cortical thickness compared to controls, and PET imaging shows in vivo evidence for lower synaptic density in patients with schizophrenia. Based on this evidence, we propose version III of the synaptic hypothesis. This is a multi-hit model, whereby genetic and/or environmental risk factors render synapses vulnerable to excessive glia-mediated elimination triggered by stress during later neurodevelopment. We propose the loss of synapses disrupts pyramidal neuron function in the cortex to contribute to negative and cognitive symptoms and disinhibits projections to mesostriatal regions to contribute to dopamine overactivity and psychosis. It accounts for the typical onset of schizophrenia in adolescence/early adulthood, its major risk factors, and symptoms, and identifies potential synaptic, microglial and immune targets for treatment.
Collapse
Affiliation(s)
- Oliver D Howes
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, London, W12 0NN, UK.
- Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK.
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.
| | - Ellis Chika Onwordi
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, London, W12 0NN, UK.
- Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK.
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.
- Centre for Psychiatry and Mental Health, Wolfson Institute of Population Health, Queen Mary University of London, London, E1 2AB, UK.
| |
Collapse
|
32
|
Amir CM, Kapler S, Hoftman GD, Kushan L, Zinberg J, Cadenhead KS, Kennedy L, Cornblatt BA, Keshavan M, Mathalon DH, Perkins DO, Stone W, Tsuang MT, Walker EF, Woods SW, Cannon TD, Addington J, Bearden CE. Neurobehavioral risk factors influence prevalence and severity of hazardous substance use in youth at genetic and clinical high risk for psychosis. Front Psychiatry 2023; 14:1143315. [PMID: 37151981 PMCID: PMC10157227 DOI: 10.3389/fpsyt.2023.1143315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/31/2023] [Indexed: 05/09/2023] Open
Abstract
Background Elevated rates of alcohol, tobacco, and cannabis use are observed in both patients with psychotic disorders and individuals at clinical high risk for psychosis (CHR-P), and strong genetic associations exist between substance use disorders and schizophrenia. While individuals with 22q11.2 deletion syndrome (22qDel) are at increased genetic risk for psychosis, initial evidence suggests that they have strikingly low rates of substance use. In the current study, we aimed to directly compare substance use patterns and their neurobehavioral correlates in genetic and clinical high-risk cohorts. Methods Data on substance use frequency and severity, clinical symptoms, and neurobehavioral measures were collected at baseline and at 12-month follow-up visits in two prospective longitudinal cohorts: participants included 89 22qDel carriers and 65 age and sex-matched typically developing (TD) controls (40.67% male, Mage = 19.26 ± 7.84 years) and 1,288 CHR-P youth and 371 matched TD controls from the North American Prodrome Longitudinal Study-2 and 3 (55.74% male; Mage = 18.71 ± 4.27 years). Data were analyzed both cross-sectionally and longitudinally using linear mixed effects models. Results Controlling for age, sex, and site, CHR-P individuals had significantly elevated rates of tobacco, alcohol, and cannabis use relative to TD controls, whereas 22qDel had significantly lower rates. Increased substance use in CHR-P individuals was associated with increased psychosis symptom severity, dysphoric mood, social functioning, and IQ, while higher social anhedonia was associated with lower substance use across all domains at baseline. These patterns persisted when we investigated these relationships longitudinally over one-year. CHR-P youth exhibited significantly increased positive psychosis symptoms, dysphoric mood, social functioning, social anhedonia, and IQ compared to 22qDel carriers, and lower rates of autism spectrum disorder (ASD) compared to 22qDel carriers, both at baseline and at 1 year follow-up. Conclusion Individuals at genetic and CHR-P have strikingly different patterns of substance use. Factors such as increased neurodevelopmental symptoms (lower IQ, higher rates of ASD) and poorer social functioning in 22qDel may help explain this distinction from substance use patterns observed in CHR-P individuals.
Collapse
Affiliation(s)
- Carolyn M. Amir
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Simon Kapler
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Gil D. Hoftman
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Leila Kushan
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Jamie Zinberg
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Kristin S. Cadenhead
- Department of Psychiatry, University of California, San Diego (UCSD), San Diego, CA, United States
| | - Leda Kennedy
- Department of Psychiatry, University of California, San Diego (UCSD), San Diego, CA, United States
| | - Barbara A. Cornblatt
- Department of Psychiatry, Zucker Hillside Hospital, Long Island, NY, United States
| | - Matcheri Keshavan
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center and Massachusetts Mental Health Center, Boston, MA, United States
| | - Daniel H. Mathalon
- Department of Psychiatry, San Francisco Veterans Affairs (SFVA) Medical Center, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Diana O. Perkins
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, United States
| | - William Stone
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center and Massachusetts Mental Health Center, Boston, MA, United States
| | - Ming T. Tsuang
- Department of Psychiatry, University of California, San Diego (UCSD), San Diego, CA, United States
- Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Elaine F. Walker
- Departments of Psychology and Psychiatry, Emory University, Atlanta, GA, United States
| | - Scott W. Woods
- Department of Psychiatry, Yale University, New Haven, CT, United States
| | - Tyrone D. Cannon
- Department of Psychology, Yale University, New Haven, CT, United States
| | - Jean Addington
- Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Carrie E. Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
- Department of Psychology, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| |
Collapse
|
33
|
Hird EJ, Ohmuro N, Allen P, Moseley P, Kempton MJ, Modinos G, Sachs G, van der Gaag M, de Haan L, Gadelha A, Bressan R, Barrantes-Vidal N, Ruhrmann S, Catalan A, McGuire P. Speech Illusions in People at Clinical High Risk for Psychosis Linked to Clinical Outcome. Schizophr Bull 2023; 49:339-349. [PMID: 36516396 PMCID: PMC10016413 DOI: 10.1093/schbul/sbac163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND HYPOTHESIS Around 20% of people at clinical high risk (CHR) for psychosis later develop a psychotic disorder, but it is difficult to predict who this will be. We assessed the incidence of hearing speech (termed speech illusions [SIs]) in noise in CHR participants and examined whether this was associated with adverse clinical outcomes. STUDY DESIGN At baseline, 344 CHR participants and 67 healthy controls were presented with a computerized white noise task and asked whether they heard speech, and whether speech was neutral, affective, or whether they were uncertain about its valence. After 2 years, we assessed whether participants transitioned to psychosis, or remitted from the CHR state, and their functioning. STUDY RESULTS CHR participants had a lower sensitivity to the task. Logistic regression revealed that a bias towards hearing targets in stimuli was associated with remission status (OR = 0.21, P = 042). Conversely, hearing SIs with uncertain valence at baseline was associated with reduced likelihood of remission (OR = 7.72. P = .007). When we assessed only participants who did not take antipsychotic medication at baseline, the association between hearing SIs with uncertain valence at baseline and remission likelihood remained (OR = 7.61, P = .043) and this variable was additionally associated with a greater likelihood of transition to psychosis (OR = 5.34, P = .029). CONCLUSIONS In CHR individuals, a tendency to hear speech in noise, and uncertainty about the affective valence of this speech, is associated with adverse outcomes. This task could be used in a battery of cognitive markers to stratify CHR participants according to subsequent outcomes.
Collapse
Affiliation(s)
- Emily J Hird
- To whom correspondence should be addressed; Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, 16 De Crespigny Park, SE5 8AF, London, UK; e-mail:
| | | | - Paul Allen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- School of Psychology, Whitelands College, University of Roehampton, Holybourne Ave, London, SW15 4JD, UK
| | - Peter Moseley
- Psychology Department, Northumbria University, College Lane, Newcastle-Upon-Tyne, NE1 8ST, UK
| | - Matthew J Kempton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Gemma Modinos
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Gabriele Sachs
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Mark van der Gaag
- Faculty of Behavioural and Movement Sciences, Department of Clinical Psychology, VU University, van der Boechorststraat 1, 1081 BT Amsterdam, The Netherlands
- EMGO Institute for Health and Care Research, VU University, van der Boechorststraat 1, 1081 BT Amsterdam, The Netherlands
- Department of Psychosis Research, Parnassia Psychiatric Institute, Zoutkeetsingel 40, 2512 HN The Hague, The Netherlands
| | - Lieuwe de Haan
- Department Early Psychosis, AMC, Academic Psychiatric Centre, Meibergdreef 5, 1105 AZ Amsterdam, The Netherlands
- Arkin, Amsterdam, The Netherlands
| | - Ary Gadelha
- LiNC - Lab Interdisciplinar Neurociências Clínicas, Depto Psiquiatria, Escola Paulista de Medicina, Universidade Federal de São Paulo – UNIFESP, São Paulo, Brazil
| | - Rodrigo Bressan
- LiNC - Lab Interdisciplinar Neurociências Clínicas, Depto Psiquiatria, Escola Paulista de Medicina, Universidade Federal de São Paulo – UNIFESP, São Paulo, Brazil
| | - Neus Barrantes-Vidal
- Departament de Psicologia Clínica i de la Salut (Universitat Autònoma de Barcelona), Fundació Sanitària Sant Pere Claver (Spain), Spanish Mental Health Research Network (CIBERSAM), Barcelona, Spain
| | - Stephan Ruhrmann
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Ana Catalan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Psychiatry Department, Biocruces Bizkaia Health Research Institute, OSI Bilbao-Basurto, Facultad de Medicina y Odontología, University of the Basque Country UPV/EHU, Centro de Investigación en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Plaza de Cruces 12, 48903 Barakaldo, Bizkaia, Spain
| | - EU-GEI High Risk Study
McGuirePhilipDepartment of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, De Crespigny Park, Denmark 458 Hill, London, SE5 8AF, UKValmaggiaLucia RDepartment of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, De Crespigny Park, Denmark Hill, 456, London, SE5 8AF, UKKemptonMatthew JDepartment of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, De Crespigny Park, Denmark 458 Hill, London, SE5 8AF, UKCalemMariaDepartment of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, De Crespigny Park, Denmark 458 Hill, London, SE5 8AF, UKTogninStefaniaDepartment of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, De Crespigny Park, Denmark 458 Hill, London, SE5 8AF, UKModinosGemmaDepartment of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, De Crespigny Park, Denmark 458 Hill, London, SE5 8AF, UKde HaanLieuweDepartment Early Psychosis, AMC, Academic Psychiatric Centre, Meibergdreef 5, 1105 AZ Amsterdam, The NetherlandsArkin, Amsterdam, The Netherlandsvan der GaagMarkFaculty of Behavioural and Movement Sciences, Department of Clinical Psychology and EMGO Institute for Health and Care Research, VU University, van der Boechorststraat 1, 1081 BT Amsterdam, The NetherlandsDepartment of Psychosis Research, Parnassia Psychiatric Institute, Zoutkeetsingel 40, 2512 HN The Hague, The NetherlandsVelthorstEvaDepartment Early Psychosis, AMC, Academic Psychiatric Centre, Meibergdreef 5, 1105 AZ Amsterdam, The NetherlandsDepartment of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, New York, NY 10029, USAKraanTamar CDepartment Early Psychosis, AMC, Academic Psychiatric Centre, Meibergdreef 5, 1105 AZ Amsterdam, The Netherlandsvan DamDaniella SDepartment Early Psychosis, AMC, Academic Psychiatric Centre, Meibergdreef 5, 1105 AZ Amsterdam, The NetherlandsBurgerNadineDepartment of Psychosis Research, Parnassia Psychiatric Institute, Zoutkeetsingel 40, 2512 HN The Hague, The NetherlandsNelsonBarnabyCentre for Youth Mental Health, University of Melbourne, 35 Poplar Road (Locked Bag 10), Parkville, Victoria 485 3052, AustraliaMcGorryPatrickCentre for Youth Mental Health, University of Melbourne, 35 Poplar Road (Locked Bag 10), Parkville, Victoria 485 3052, AustraliaPaul AmmingerGünterCentre for Youth Mental Health, University of Melbourne, 35 Poplar Road (Locked Bag 10), Parkville, Victoria 485 3052, AustraliaPantelisChristosCentre for Youth Mental Health, University of Melbourne, 35 Poplar Road (Locked Bag 10), Parkville, Victoria 485 3052, AustraliaPolitisAthenaCentre for Youth Mental Health, University of Melbourne, 35 Poplar Road (Locked Bag 10), Parkville, Victoria 485 3052, AustraliaGoodallJoanneCentre for Youth Mental Health, University of Melbourne, 35 Poplar Road (Locked Bag 10), Parkville, Victoria 485 3052, AustraliaRiecher-RösslerAnitaUniversity Psychiatric Hospital, Wilhelm Klein-Strasse 27, CH-4002 Basel, SwitzerlandBorgwardtStefanUniversity Psychiatric Hospital, Wilhelm Klein-Strasse 27, CH-4002 Basel, SwitzerlandRappCharlotteUniversity Psychiatric Hospital, Wilhelm Klein-Strasse 27, CH-4002 Basel, SwitzerlandIttigSarahUniversity Psychiatric Hospital, Wilhelm Klein-Strasse 27, CH-4002 Basel, SwitzerlandStuderusErichUniversity Psychiatric Hospital, Wilhelm Klein-Strasse 27, CH-4002 Basel, SwitzerlandSmieskovaRenataUniversity Psychiatric Hospital, Wilhelm Klein-Strasse 27, CH-4002 Basel, SwitzerlandBressanRodrigoLiNC - Lab Interdisciplinar Neurociências Clínicas, Depto Psiquiatria, Escola Paulista de Medicina, Universidade Federal de São Paulo – UNIFESP, São Paulo, BrazilGadelhaAryLiNC - Lab Interdisciplinar Neurociências Clínicas, Depto Psiquiatria, Escola Paulista de Medicina, Universidade Federal de São Paulo – UNIFESP, São Paulo, BrazilBrietzkeElisaDepto Psiquiatria, Escola Paulista de Medicina, Universidade Federal de São Paulo – UNIFESP, São Paulo, BrazilAsevedoGraccielleLiNC - Lab Interdisciplinar Neurociências Clínicas, Depto Psiquiatria, Escola Paulista de Medicina, Universidade Federal de São Paulo – UNIFESP, São Paulo, BrazilAsevedoElsonLiNC - Lab Interdisciplinar Neurociências Clínicas, Depto Psiquiatria, Escola Paulista de Medicina, Universidade Federal de São Paulo – UNIFESP, São Paulo, BrazilZugmanAndreLiNC - Lab Interdisciplinar Neurociências Clínicas, Depto Psiquiatria, Escola Paulista de Medicina, Universidade Federal de São Paulo – UNIFESP, São Paulo, BrazilBarrantes-VidalNeusDepartament de Psicologia Clínica i de la Salut (Universitat Autònoma de Barcelona), Fundació Sanitària Sant Pere Claver (Spain), Spanish Mental Health Research Network (CIBERSAM), Barcelona, SpainDomínguez-MartínezTecelliCONACYT-Dirección de Investigaciones Epidemiológicas y Psicosociales, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz (México), Mexico City, MexicoTorrecillaPilarDepartament de Psicologia Clínica i de la Salut (Universitat Autònoma de Barcelona), Barcelona, SpainKwapilThomas RDepartment of Psychology, University of Illinois at Urbana-Champaign, IL, USAMonsonetManelDepartament de Psicologia Clínica i de la Salut (Universitat Autònoma de Barcelona), Barcelona, SpainHinojosaLídiaDepartament de Psicologia Clínica i de la Salut (Universitat Autònoma de Barcelona), Barcelona, SpainKazesMathildeUniversity Paris Descartes, Hôpital Sainte-Anne, C’JAAD, Service HospitaloUniversitaire, Inserm U894, Institut de Psychiatrie (CNRS 3557) Paris, FranceDabanClaireUniversity Paris Descartes, Hôpital Sainte-Anne, C’JAAD, Service HospitaloUniversitaire, Inserm U894, Institut de Psychiatrie (CNRS 3557) Paris, FranceBourginJulieUniversity Paris Descartes, Hôpital Sainte-Anne, C’JAAD, Service HospitaloUniversitaire, Inserm U894, Institut de Psychiatrie (CNRS 3557) Paris, FranceGayOlivierUniversity Paris Descartes, Hôpital Sainte-Anne, C’JAAD, Service HospitaloUniversitaire, Inserm U894, Institut de Psychiatrie (CNRS 3557) Paris, FranceMam-Lam-FookCéliaUniversity Paris Descartes, Hôpital Sainte-Anne, C’JAAD, Service HospitaloUniversitaire, Inserm U894, Institut de Psychiatrie (CNRS 3557) Paris, FranceKrebsMarie-OdileUniversity Paris Descartes, Hôpital Sainte-Anne, C’JAAD, Service HospitaloUniversitaire, Inserm U894, Institut de Psychiatrie (CNRS 3557) Paris, FranceNordholmDorteMental Health Center Copenhagen and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Center Glostrup, Mental Health Services in the Capital Region of Copenhagen, University of Copenhagen, Copenhagen, DenmarkRandersLasseMental Health Center Copenhagen and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Center Glostrup, Mental Health Services in the Capital Region of Copenhagen, University of Copenhagen, Copenhagen, DenmarkKrakauerKristineMental Health Center Copenhagen and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Center Glostrup, Mental Health Services in the Capital Region of Copenhagen, University of Copenhagen, Copenhagen, DenmarkGlenthøjLouiseMental Health Center Copenhagen and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Center Glostrup, Mental Health Services in the Capital Region of Copenhagen, University of Copenhagen, Copenhagen, DenmarkGlenthøjBirteCentre for Neuropsychiatric Schizophrenia Research (CNSR) & Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, DenmarkNordentoftMereteMental Health Center Copenhagen and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Center Glostrup, Mental Health Services in the Capital Region of Copenhagen, University of Copenhagen, Copenhagen, DenmarkRuhrmannStephanDepartment of Psychiatry and Psychotherapy, University of Cologne, Cologne, GermanyGebhardDominikaDepartment of Psychiatry and Psychotherapy, University of Cologne, Cologne, GermanyArnholdJuliaPsyberlin, Berlin, GermanyKlosterkötterJoachimDepartment of Psychiatry and Psychotherapy, University of Cologne, Cologne, GermanySachsGabrieleDepartment of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, AustriaLasserIrisDepartment of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, AustriaWinklbaurBernadetteDepartment of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, AustriaDelespaulPhilippe ADepartment of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, PO Box 616, 6200 MD 464 Maastricht, The NetherlandsMondriaan Mental Health Trust, PO Box 4436 CX Heerlen, The NetherlandsRuttenBart PDepartment of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, PO Box 616, 6200 MD 464 Maastricht, The Netherlandsvan Os1JimDepartment of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, PO Box 616, 6200 MD 464 Maastricht, The Netherlands
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| |
Collapse
|
34
|
Connectivity alterations of mesostriatal pathways in first episode psychosis. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:15. [PMID: 36918579 PMCID: PMC10014938 DOI: 10.1038/s41537-023-00339-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 02/24/2023] [Indexed: 03/15/2023]
Abstract
BACKGROUND AND HYPOTHESIS Pathogenic understanding of the psychotic disorders converges on regulation of dopaminergic signaling in mesostriatocortical pathways. Functional connectivity of the mesostriatal pathways may inform us of the neuronal networks involved. STUDY DESIGN This longitudinal study of first episode psychosis (FEP) (49 patients, 43 controls) employed seed-based functional connectivity analyses of fMRI data collected during a naturalistic movie stimulus. STUDY RESULTS We identified hypoconnectivity of the dorsal striatum with the midbrain, associated with antipsychotic medication dose in FEP, in comparison with the healthy control group. The midbrain regions that showed hypoconnectivity with the dorsal striatum also showed hypoconnectivity with cerebellar regions suggested to be involved in regulation of the mesostriatocortical dopaminergic pathways. None of the baseline hypoconnectivity detected was seen at follow-up. CONCLUSIONS These findings extend earlier resting state findings on mesostriatal connectivity in psychotic disorders and highlight the potential for cerebellar regulation of the mesostriatocortical pathways as a target of treatment trials.
Collapse
|
35
|
Berg M, Riehle M, Rief W, Lincoln T. Does partial blockade of dopamine D2 receptors with Amisulpride cause anhedonia? An experimental study in healthy volunteers. J Psychiatr Res 2023; 158:409-416. [PMID: 36680855 DOI: 10.1016/j.jpsychires.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/22/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
BACKGROUND Anhedonia is a frequent cause of functional impairment in psychosis. Although it is plausible that medication-induced D2 receptor blockade could diminish hedonic responding, there is little experimental research testing this hypothesis in humans. METHODS To inspect possible effects of partial D2 blockade on hedonic experiences, we administered 300 mg of Amisulpride or placebo to 85 participants in a randomized, double-blind, placebo-controlled trial. Participants were then subjected to an emotional evocation task utilizing standardized pictorial pleasant, neutral, and unpleasant stimuli. RESULTS We observed lower positivity ratings in the Amisulpride group compared to placebo across all stimulus categories (p = .026, f = 0.25) and no group differences in negativity or arousal ratings. The Amisulpride group also showed lower electrodermal responses across all stimulus categories compared to placebo (p = .017, f = 0.27). The electrodermal response was especially diminished for pleasant stimuli. CONCLUSION We interpret our findings as evidence that D2 blockade via Amisulpride can reduce at-the-moment hedonic responsivity in healthy volunteers. If these results can be confirmed in drug-naïve clinical samples, this would indicate that antipsychotic medication contributes to clinical anhedonia, probably via antagonistic effects at the dopamine D2 receptor.
Collapse
Affiliation(s)
- Max Berg
- Philipps-University of Marburg, Dept. of Psychology, Division of Clinical Psychology and Psychotherapy, Gutenbergstraße 18, D-35032, Marburg, Germany.
| | - Marcel Riehle
- Universität Hamburg, Dept. of Psychology, Clinical Psychology and Psychotherapy, Von-Melle-Park 5, D-20146, Hamburg, Germany
| | - Winfried Rief
- Philipps-University of Marburg, Dept. of Psychology, Division of Clinical Psychology and Psychotherapy, Gutenbergstraße 18, D-35032, Marburg, Germany
| | - Tania Lincoln
- Universität Hamburg, Dept. of Psychology, Clinical Psychology and Psychotherapy, Von-Melle-Park 5, D-20146, Hamburg, Germany
| |
Collapse
|
36
|
Using Nonhuman Primate Models to Reverse-Engineer Prefrontal Circuit Failure Underlying Cognitive Deficits in Schizophrenia. Curr Top Behav Neurosci 2023; 63:315-362. [PMID: 36607528 DOI: 10.1007/7854_2022_407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In this chapter, I review studies in nonhuman primates that emulate the circuit failure in prefrontal cortex responsible for working memory and cognitive control deficits in schizophrenia. These studies have characterized how synaptic malfunction, typically induced by blockade of NMDAR, disrupts neural function and computation in prefrontal networks to explain errors in cognitive tasks that are seen in schizophrenia. This work is finding causal relationships between pathogenic events of relevance to schizophrenia at vastly different levels of scale, from synapses, to neurons, local, circuits, distributed networks, computation, and behavior. Pharmacological manipulation, the dominant approach in primate models, has limited construct validity for schizophrenia pathogenesis, as the disease results from a complex interplay between environmental, developmental, and genetic factors. Genetic manipulation replicating schizophrenia risk is more advanced in rodent models. Nonetheless, gene manipulation in nonhuman primates is rapidly advancing, and primate developmental models have been established. Integration of large scale neural recording, genetic manipulation, and computational modeling in nonhuman primates holds considerable potential to provide a crucial schizophrenia model moving forward. Data generated by this approach is likely to fill several crucial gaps in our understanding of the causal sequence leading to schizophrenia in humans. This causal chain presents a vexing problem largely because it requires understanding how events at very different levels of scale relate to one another, from genes to circuits to cognition to social interactions. Nonhuman primate models excel here. They optimally enable discovery of causal relationships across levels of scale in the brain that are relevant to cognitive deficits in schizophrenia. The mechanistic understanding of prefrontal circuit failure they promise to provide may point the way to more effective therapeutic interventions to restore function to prefrontal networks in the disease.
Collapse
|
37
|
Glutamatergic dysfunction leads to a hyper-dopaminergic phenotype through deficits in short-term habituation: a mechanism for aberrant salience. Mol Psychiatry 2023; 28:579-587. [PMID: 36460723 PMCID: PMC9908551 DOI: 10.1038/s41380-022-01861-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/19/2022] [Accepted: 10/28/2022] [Indexed: 12/05/2022]
Abstract
Psychosis in disorders like schizophrenia is commonly associated with aberrant salience and elevated striatal dopamine. However, the underlying cause(s) of this hyper-dopaminergic state remain elusive. Various lines of evidence point to glutamatergic dysfunction and impairments in synaptic plasticity in the etiology of schizophrenia, including deficits associated with the GluA1 AMPAR subunit. GluA1 knockout (Gria1-/-) mice provide a model of impaired synaptic plasticity in schizophrenia and exhibit a selective deficit in a form of short-term memory which underlies short-term habituation. As such, these mice are unable to reduce attention to recently presented stimuli. In this study we used fast-scan cyclic voltammetry to measure phasic dopamine responses in the nucleus accumbens of Gria1-/- mice to determine whether this behavioral phenotype might be a key driver of a hyper-dopaminergic state. There was no effect of GluA1 deletion on electrically-evoked dopamine responses in anaesthetized mice, demonstrating normal endogenous release properties of dopamine neurons in Gria1-/- mice. Furthermore, dopamine signals were initially similar in Gria1-/- mice compared to controls in response to both sucrose rewards and neutral light stimuli. They were also equally sensitive to changes in the magnitude of delivered rewards. In contrast, however, these stimulus-evoked dopamine signals failed to habituate with repeated presentations in Gria1-/- mice, resulting in a task-relevant, hyper-dopaminergic phenotype. Thus, here we show that GluA1 dysfunction, resulting in impaired short-term habituation, is a key driver of enhanced striatal dopamine responses, which may be an important contributor to aberrant salience and psychosis in psychiatric disorders like schizophrenia.
Collapse
|
38
|
Vinogradov S, Chafee MV, Lee E, Morishita H. Psychosis spectrum illnesses as disorders of prefrontal critical period plasticity. Neuropsychopharmacology 2023; 48:168-185. [PMID: 36180784 PMCID: PMC9700720 DOI: 10.1038/s41386-022-01451-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 01/05/2023]
Abstract
Emerging research on neuroplasticity processes in psychosis spectrum illnesses-from the synaptic to the macrocircuit levels-fill key gaps in our models of pathophysiology and open up important treatment considerations. In this selective narrative review, we focus on three themes, emphasizing alterations in spike-timing dependent and Hebbian plasticity that occur during adolescence, the critical period for prefrontal system development: (1) Experience-dependent dysplasticity in psychosis emerges from activity decorrelation within neuronal ensembles. (2) Plasticity processes operate bidirectionally: deleterious environmental and experiential inputs shape microcircuits. (3) Dysregulated plasticity processes interact across levels of scale and time and include compensatory mechanisms that have pathogenic importance. We present evidence that-given the centrality of progressive dysplastic changes, especially in prefrontal cortex-pharmacologic or neuromodulatory interventions will need to be supplemented by corrective learning experiences for the brain if we are to help people living with these illnesses to fully thrive.
Collapse
Affiliation(s)
- Sophia Vinogradov
- Department of Psychiatry & Behavioral Science, University of Minnesota Medical School, Minneapolis, MN, USA.
| | - Matthew V Chafee
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Erik Lee
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, MN, USA
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN, USA
| | - Hirofumi Morishita
- Department of Psychiatry, Neuroscience, & Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
39
|
Fromm S, Katthagen T, Deserno L, Heinz A, Kaminski J, Schlagenhauf F. Belief Updating in Subclinical and Clinical Delusions. SCHIZOPHRENIA BULLETIN OPEN 2023; 4:sgac074. [PMID: 39145350 PMCID: PMC11207849 DOI: 10.1093/schizbullopen/sgac074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Background and Hypothesis Current frameworks propose that delusions result from aberrant belief updating due to altered prediction error (PE) signaling and misestimation of environmental volatility. We aimed to investigate whether behavioral and neural signatures of belief updating are specifically related to the presence of delusions or generally associated with manifest schizophrenia. Methods Our cross-sectional design includes human participants (n[female/male] = 66[25/41]), stratified into four groups: healthy participants with minimal (n = 22) or strong delusional-like ideation (n = 18), and participants with diagnosed schizophrenia with minimal (n = 13) or strong delusions (n = 13), resulting in a 2 × 2 design, which allows to test for the effects of delusion and diagnosis. Participants performed a reversal learning task with stable and volatile task contingencies during fMRI scanning. We formalized learning with a hierarchical Gaussian filter model and conducted model-based fMRI analysis regarding beliefs of outcome uncertainty and volatility, precision-weighted PEs of the outcome- and the volatility-belief. Results Patients with schizophrenia as compared to healthy controls showed lower accuracy and heightened choice switching, while delusional ideation did not affect these measures. Participants with delusions showed increased precision-weighted PE-related neural activation in fronto-striatal regions. People with diagnosed schizophrenia overestimated environmental volatility and showed an attenuated neural representation of volatility in the anterior insula, medial frontal and angular gyrus. Conclusions Delusional beliefs are associated with altered striatal PE-signals. Juxtaposing, the potentially unsettling belief that the environment is constantly changing and weaker neural encoding of this subjective volatility seems to be associated with manifest schizophrenia, but not with the presence of delusional ideation.
Collapse
Affiliation(s)
- Sophie Fromm
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health CCM, Department of Psychiatry and Neuroscience | CCM, NeuroCure Clinical Research Center, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
- Department of Psychology, Humboldt-Universität zu Berlin, Germany
| | - Teresa Katthagen
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health CCM, Department of Psychiatry and Neuroscience | CCM, NeuroCure Clinical Research Center, Berlin, Germany
| | - Lorenz Deserno
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Psychiatry and Psychotherapy, Technische Universität, Dresden, Germany
| | - Andreas Heinz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health CCM, Department of Psychiatry and Neuroscience | CCM, NeuroCure Clinical Research Center, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Jakob Kaminski
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health CCM, Department of Psychiatry and Neuroscience | CCM, NeuroCure Clinical Research Center, Berlin, Germany
| | - Florian Schlagenhauf
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health CCM, Department of Psychiatry and Neuroscience | CCM, NeuroCure Clinical Research Center, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
| |
Collapse
|
40
|
Balter LJT, Matheson GJ, Sundelin T, Sterzer P, Petrovic P, Axelsson J. Experimental Sleep Deprivation Results in Diminished Perceptual Stability Independently of Psychosis Proneness. Brain Sci 2022; 12:1338. [PMID: 36291272 PMCID: PMC9599202 DOI: 10.3390/brainsci12101338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 09/07/2024] Open
Abstract
Psychotic disorders as well as psychosis proneness in the general population have been associated with perceptual instability, suggesting weakened predictive processing. Sleep disturbances play a prominent role in psychosis and schizophrenia, but it is unclear whether perceptual stability diminishes with sleep deprivation, and whether the effects of sleep deprivation differ as a function of psychosis proneness. In the current study, we aimed to clarify this matter. In this preregistered study, 146 participants successfully completed an intermittent version of the random dot kinematogram (RDK) task and the 21-item Peters Delusion Inventory (PDI-21) to assess perceptual stability and psychosis proneness, respectively. Participants were randomized to sleep either as normal (8 to 9 h in bed) (n = 72; Mage = 24.7, SD = 6.2, 41 women) or to stay awake through the night (n = 74; Mage = 24.8, SD = 5.1, 44 women). Sleep deprivation resulted in diminished perceptual stability, as well as in decreases in perceptual stability over the course of the task. However, we did not observe any association between perceptual stability and PDI-21 scores, nor a tendency for individuals with higher PDI-21 scores to be more vulnerable to sleep-deprivation-induced decreases in perceptual stability. The present study suggests a compromised predictive processing system in the brain after sleep deprivation, but variation in psychosis trait is not related to greater vulnerability to sleep deprivation in our dataset. Further studies in risk groups and patients with psychosis are needed to evaluate whether sleep loss plays a role in the occurrence of objectively measured perceptual-related clinical symptoms.
Collapse
Affiliation(s)
- Leonie J. T. Balter
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
- Stress Research Institute, Department of Psychology, Stockholm University, 106 91 Stockholm, Sweden
| | - Granville J. Matheson
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
- Molecular Imaging and Neuropathology Division, Department of Psychiatry, Columbia University, New York, NY 10032, USA
- Department of Biostatistics, Mailman School of Public Health, Columbia University Mailman School of Public Health, New York, NY 10032, USA
| | - Tina Sundelin
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
- Stress Research Institute, Department of Psychology, Stockholm University, 106 91 Stockholm, Sweden
| | - Philipp Sterzer
- University Psychiatric Clinics Basel, University of Basel, 4002 Basel, Switzerland
| | - Predrag Petrovic
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
- Center for Cognitive and Computational Psychiatry, Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
- Center for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - John Axelsson
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
- Stress Research Institute, Department of Psychology, Stockholm University, 106 91 Stockholm, Sweden
- Center for Cognitive and Computational Psychiatry, Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
41
|
Dourron HM, Strauss C, Hendricks PS. Self-Entropic Broadening Theory: Toward a New Understanding of Self and Behavior Change Informed by Psychedelics and Psychosis. Pharmacol Rev 2022; 74:982-1027. [PMID: 36113878 DOI: 10.1124/pharmrev.121.000514] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 03/21/2025] Open
Abstract
The extremes of human experiences, such as those occasioned by classic psychedelics and psychosis, provide a rich contrast for understanding how components of these experiences impact well-being. In recent years, research has suggested that classic psychedelics display the potential to promote positive enduring psychologic and behavioral changes in clinical and nonclinical populations. Paradoxically, classic psychedelics have been described as psychotomimetics. This review offers a putative solution to this paradox by providing a theory of how classic psychedelics often facilitate persistent increases in well-being, whereas psychosis leads down a "darker" path. This will be done by providing an overview of the overlap between the states (i.e., entropic processing) and their core differences (i.e., self-focus). In brief, entropic processing can be defined as an enhanced overall attentional scope and decreased predictability in processing stimuli facilitating a hyperassociative style of thinking. However, the outcomes of entropic states vary depending on level of self-focus, or the degree to which the associations and information being processed are evaluated in a self-referential manner. We also describe potential points of overlap with less extreme experiences, such as creative thinking and positive emotion-induction. Self-entropic broadening theory offers a heuristically valuable perspective on classic psychedelics and their lasting effects and relation to other states by creating a novel synthesis of contemporary theories in psychology. SIGNIFICANCE STATEMENT: Self-entropic broadening theory provides a novel theory examining the psychedelic-psychotomimetic paradox, or how classic psychedelics can be therapeutic, yet mimic symptoms of psychosis. It also posits a framework for understanding the transdiagnostic applicability of classic psychedelics. We hope this model invigorates the field to provide more rigorous comparisons between classic psychedelic-induced states and psychosis and further examinations of how classic psychedelics facilitate long-term change. As a more psychedelic future of psychiatry appears imminent, a model that addresses these long-standing questions is crucial.
Collapse
Affiliation(s)
- Haley Maria Dourron
- Drug Use & Behavior Laboratory, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama (H.M.D., P.S.H.) and Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey (C.S.)
| | - Camilla Strauss
- Drug Use & Behavior Laboratory, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama (H.M.D., P.S.H.) and Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey (C.S.)
| | - Peter S Hendricks
- Drug Use & Behavior Laboratory, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama (H.M.D., P.S.H.) and Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey (C.S.)
| |
Collapse
|
42
|
Howes OD, Shatalina E. Integrating the Neurodevelopmental and Dopamine Hypotheses of Schizophrenia and the Role of Cortical Excitation-Inhibition Balance. Biol Psychiatry 2022; 92:501-513. [PMID: 36008036 DOI: 10.1016/j.biopsych.2022.06.017] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/16/2022] [Accepted: 06/04/2022] [Indexed: 12/23/2022]
Abstract
The neurodevelopmental and dopamine hypotheses are leading theories of the pathoetiology of schizophrenia, but they were developed in isolation. However, since they were originally proposed, there have been considerable advances in our understanding of the normal neurodevelopmental refinement of synapses and cortical excitation-inhibition (E/I) balance, as well as preclinical findings on the interrelationship between cortical and subcortical systems and new in vivo imaging and induced pluripotent stem cell evidence for lower synaptic density markers in patients with schizophrenia. Genetic advances show that schizophrenia is associated with variants linked to genes affecting GABA (gamma-aminobutyric acid) and glutamatergic signaling as well as neurodevelopmental processes. Moreover, in vivo studies on the effects of stress, particularly during later development, show that it leads to synaptic elimination. We review these lines of evidence as well as in vivo evidence for altered cortical E/I balance and dopaminergic dysfunction in schizophrenia. We discuss mechanisms through which frontal cortex circuitry may regulate striatal dopamine and consider how frontal E/I imbalance may cause dopaminergic dysregulation to result in psychotic symptoms. This integrated neurodevelopmental and dopamine hypothesis suggests that overpruning of synapses, potentially including glutamatergic inputs onto frontal cortical interneurons, disrupts the E/I balance and thus underlies cognitive and negative symptoms. It could also lead to disinhibition of excitatory projections from the frontal cortex and possibly other regions that regulate mesostriatal dopamine neurons, resulting in dopamine dysregulation and psychotic symptoms. Together, this explains a number of aspects of the epidemiology and clinical presentation of schizophrenia and identifies new targets for treatment and prevention.
Collapse
Affiliation(s)
- Oliver D Howes
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, United Kingdom; Department of Psychosis, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom.
| | - Ekaterina Shatalina
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, United Kingdom
| |
Collapse
|
43
|
Scazza I, Pelizza L, Azzali S, Garlassi S, Paterlini F, Chiri LR, Poletti M, Pupo S, Raballo A. Aberrant salience in first-episode psychosis: Longitudinal stability and treatment-response. Early Interv Psychiatry 2022; 16:912-919. [PMID: 34786863 DOI: 10.1111/eip.13243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 07/02/2021] [Accepted: 11/07/2021] [Indexed: 01/24/2023]
Abstract
AIM Aberrant salience (AS) is considered a putative predisposing factor for the onset of psychosis. However, despite several studies conducted in the general population, research in early psychosis is still relatively scarce. The main purposes of this study were to investigate any relevant correlation of AS with functioning and psychopathology in young patients with first episode psychosis (FEP), and to analyse the longitudinal stability of AS across a 1 year follow-up period. METHODS All the participants (139 FEP), aged 13-35 years, completed the Aberrant Salience Inventory (ASI), the Comprehensive Assessment of At-Risk Mental States (CAARMS), and the Positive And Negative Syndrome Scale (PANSS). Spearman correlation analysis among psychopathological parameters were performed both at baseline and after the 1 year of follow-up. RESULTS Across the follow-up, FEP patients showed a significant decrease in the ASI total score. This reduction was specifically associated with the number of individual cognitive-behavioural therapy sessions offered to FEP individuals in the same time period (and not with antipsychotic dose at baseline). CONCLUSIONS AS is clinically significant in FEP patients. However, it tends to ameliorate over time together with the delivery of specialized, person-tailored FEP treatments within a specific "Early Intervention in Psychosis" protocol.
Collapse
Affiliation(s)
- Ilaria Scazza
- Department of Mental Health and Pathological Addiction, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Lorenzo Pelizza
- Department of Mental Health and Pathological Addiction, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy.,Department of Mental Health and Pathological Addiction, Azienda USL di Parma, Parma, Italy
| | - Silvia Azzali
- Department of Mental Health and Pathological Addiction, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Sara Garlassi
- Department of Mental Health and Pathological Addiction, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Federica Paterlini
- Department of Mental Health and Pathological Addiction, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Luigi Rocco Chiri
- Department of Mental Health and Pathological Addiction, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy.,Department of Primary Care, Azienda USL di Parma, Parma, Italy
| | - Michele Poletti
- Department of Mental Health and Pathological Addiction, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Simona Pupo
- Intensive Care Unit, Guastalla Civil Hospital, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy.,Second Service of Anesthesiology and Resuscitation, Azienda Ospedaliera-Universitaria di Parma, Parma, Italy
| | - Andrea Raballo
- Department of Medicine, Division of Psychiatry, Clinical Psychology and Rehabilitation, University of Perugia, Perugia, Italy.,Center for Translational, Phenomenological and Developmental Psychopathology, Perugia University Hospital, Perugia, Italy
| |
Collapse
|
44
|
Sheldon AD, Kafadar E, Fisher V, Greenwald MS, Aitken F, Negreira AM, Woods SW, Powers AR. Perceptual pathways to hallucinogenesis. Schizophr Res 2022; 245:77-89. [PMID: 35216865 PMCID: PMC9232894 DOI: 10.1016/j.schres.2022.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 12/22/2022]
Abstract
Recent advances in computational psychiatry have provided unique insights into the neural and cognitive underpinnings of psychotic symptoms. In particular, a host of new data has demonstrated the utility of computational frameworks for understanding how hallucinations might arise from alterations in typical perceptual processing. Of particular promise are models based in Bayesian inference that link hallucinatory perceptual experiences to latent states that may drive them. In this piece, we move beyond these findings to ask: how and why do these latent states arise, and how might we take advantage of heterogeneity in that process to develop precision approaches to the treatment of hallucinations? We leverage specific models of Bayesian inference to discuss components that might lead to the development of hallucinations. Using the unifying power of our model, we attempt to place disparate findings in the study of psychotic symptoms within a common framework. Finally, we suggest directions for future elaboration of these models in the service of a more refined psychiatric nosology based on predictable, testable, and ultimately treatable information processing derangements.
Collapse
Affiliation(s)
- Andrew D Sheldon
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, United States of America
| | - Eren Kafadar
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, United States of America
| | - Victoria Fisher
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, United States of America
| | - Maximillian S Greenwald
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, United States of America
| | - Fraser Aitken
- School of Biomedical and Imaging Sciences, Kings College, London, UK
| | | | - Scott W Woods
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, United States of America
| | - Albert R Powers
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, United States of America.
| |
Collapse
|
45
|
Masina F, Pezzetta R, Lago S, Mantini D, Scarpazza C, Arcara G. Disconnection from prediction: A systematic review on the role of right temporoparietal junction in aberrant predictive processing. Neurosci Biobehav Rev 2022; 138:104713. [PMID: 35636560 DOI: 10.1016/j.neubiorev.2022.104713] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/06/2022] [Accepted: 05/24/2022] [Indexed: 11/27/2022]
Abstract
The right temporoparietal junction (rTPJ) is a brain area that plays a critical role in a variety of cognitive functions. Although different theoretical proposals tried to explain the ubiquitous role of rTPJ, recent evidence suggests that rTPJ may be a fundamental cortical region involved in different kinds of predictions. This systematic review aims to better investigate the potential role of rTPJ under a predictive processing perspective, providing an overview of cognitive impairments in neurological patients as the consequence of structural or functional disconnections or damage of rTPJ. Results confirm the involvement of rTPJ across several tasks and neurological pathologies. RTPJ, via its connections with other brain networks, would integrate diverse information and update internal models of the world. Against traditional views, which tend to focus on distinct domains, we argue that the role of rTPJ can be parsimoniously interpreted as a key hub involved in domain-general predictions. This alternative account of rTPJ role in aberrant predictive processing opens different perspectives, stimulating new hypotheses in basic research and clinical contexts.
Collapse
Affiliation(s)
| | | | - Sara Lago
- IRCCS San Camillo Hospital, Venice, Italy.
| | - Dante Mantini
- Research Center for Motor Control and Neuroplasticity, KU Leuven, Leuven 3001, Belgium.
| | - Cristina Scarpazza
- IRCCS San Camillo Hospital, Venice, Italy; Department of General Psychology, University of Padua, Padua, Italy.
| | | |
Collapse
|
46
|
Poletti M, Pelizza L, Azzali S, Scazza I, Paterlini F, Garlassi S, Chiri LR, Pupo S, Raballo A. Association between psychosocial interventions and aberrant salience in adolescents with early psychosis: A follow-up study. Scand J Psychol 2022; 63:290-296. [PMID: 35285026 DOI: 10.1111/sjop.12806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 12/05/2021] [Accepted: 01/16/2022] [Indexed: 01/26/2023]
Affiliation(s)
- Michele Poletti
- Department of Mental Health and Pathological Addiction, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Lorenzo Pelizza
- Department of Mental Health and Pathological Addiction, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy.,Department of Mental Health and Pathological Addiction, Azienda USL di Parma, Parma, Italy
| | - Silvia Azzali
- Department of Mental Health and Pathological Addiction, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Ilaria Scazza
- Department of Mental Health and Pathological Addiction, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Federica Paterlini
- Department of Mental Health and Pathological Addiction, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Sara Garlassi
- Department of Mental Health and Pathological Addiction, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | | | - Simona Pupo
- Service of Anesthesiology and Resuscitation, Azienda Ospedaliera-Universitaria di Parma, Parma, Italy
| | - Andrea Raballo
- Department of Medicine, Division of Psychiatry, Clinical Psychology and Rehabilitation, University of Perugia, Perugia, Italy.,Center for Translational, Phenomenological and Developmental Psychopathology, Perugia University Hospital, Perugia, Italy
| |
Collapse
|
47
|
Poletti M, Pelizza L, Azzali S, Garlassi S, Scazza I, Paterlini F, Chiri LR, Pupo S, Raballo A. Subjective experience of aberrant salience in young people at Ultra-High Risk (UHR) for psychosis: a cross-sectional study. Nord J Psychiatry 2022; 76:129-137. [PMID: 34185607 DOI: 10.1080/08039488.2021.1942547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE Aberrant salience (AS) is conceptualized as a potential predisposing factor for psychotic states of mind. Despite several studies in the general population, research on AS in the early phases of psychosis is still relatively scarce. The aim of this cross-sectional study is (1) to evaluate the AS subjective experience in Ultra-High Risk (UHR) adolescents and young adults compared to help-seeking peers with First Episode Psychosis (FEP) and (2) to assess any significant association of baseline AS with psychopathology and functioning in UHR participants. MATERIALS AND METHODS Participants (87 UHR and 139 FEP), aged 13-35 years, completed the Comprehensive Assessment of At-Risk Mental States (CAARMS), the Aberrant Salience Inventory (ASI) and the brief version of the Schizotypal Personality Questionnaire (SPQ-B). Within the UHR subgroup, Spearman correlation and multiple linear regression analyses among psychopathological parameters were performed. RESULTS No difference in baseline AS subjective levels was found between UHR and FEP participants (median [interquartile range]: 14.50 [7-19] vs 14 [9-21]; z = -1.576; p = 0.115). In UHR individuals, the ASI total score was significantly associated with attenuated positive symptoms (ρ = 0.284, p = 0.008), depression (ρ = 0.256; p = 0.018) and specific schizotypal personality traits (i.e. cognitive-perceptual deficits and disorganization [respectively, ρ = 0.487, p = 0.001, and ρ = 0.295, p = 0.008]). CONCLUSIONS AS is clinically relevant in UHR subjects, comparable to FEP patients. Moreover, it seems to mutually interact with schizotypy in the clinical manifestation of attenuated positive psychopathology.
Collapse
Affiliation(s)
- Michele Poletti
- Department of Mental Health and Pathological Addiction, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Lorenzo Pelizza
- Department of Mental Health and Pathological Addiction, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy.,Department of Mental Health and Pathological Addiction, Azienda USL di Parma, Parma, Italy
| | - Silvia Azzali
- Department of Mental Health and Pathological Addiction, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Sara Garlassi
- Department of Mental Health and Pathological Addiction, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Ilaria Scazza
- Department of Mental Health and Pathological Addiction, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Federica Paterlini
- Department of Mental Health and Pathological Addiction, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Luigi Rocco Chiri
- Department of Mental Health and Pathological Addiction, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy.,Department of Primary Care, Azienda USL di Parma, Parma, Italy
| | - Simona Pupo
- Intensive Care Unit, Guastalla Civil Hospital, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy.,Service of Anesthesiology and Resuscitaton, Azienda Ospedaliera-Universitaria di Parma, Parma, Italy
| | - Andrea Raballo
- Department of Medicine, Division of Psychiatry, Clinical Psychology and Rehabilitation, University of Perugia, Perugia, Italy.,Center for Translational, Phenomenological and Developmental Psychopathology, Perugia University Hospital, Perugia, Italy
| |
Collapse
|
48
|
Millman ZB, Schiffman J, Gold JM, Akouri-Shan L, Demro C, Fitzgerald J, Rakhshan Rouhakhtar PJ, Klaunig M, Rowland LM, Waltz JA. Linking Salience Signaling With Early Adversity and Affective Distress in Individuals at Clinical High Risk for Psychosis: Results From an Event-Related fMRI Study. SCHIZOPHRENIA BULLETIN OPEN 2022; 3:sgac039. [PMID: 35799887 PMCID: PMC9250803 DOI: 10.1093/schizbullopen/sgac039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Evidence suggests dysregulation of the salience network in individuals with psychosis, but few studies have examined the intersection of stress exposure and affective distress with prediction error (PE) signals among youth at clinical high-risk (CHR). Here, 26 individuals at CHR and 19 healthy volunteers (HVs) completed a monetary incentive delay task in conjunction with fMRI. We compared these groups on the amplitudes of neural responses to surprising outcomes-PEs without respect to their valence-across the whole brain and in two regions of interest, the anterior insula and amygdala. We then examined relations of these signals to the severity of depression, anxiety, and trauma histories in the CHR group. Relative to HV, youth at CHR presented with aberrant PE-evoked activation of the temporoparietal junction and weaker deactivation of the precentral gyrus, posterior insula, and associative striatum. No between-group differences were observed in the amygdala or anterior insula. Among youth at CHR, greater trauma histories were correlated with stronger PE-evoked amygdala activation. No associations were found between affective symptoms and the neural responses to PE. Our results suggest that unvalenced PE signals may provide unique information about the neurobiology of CHR syndromes and that early adversity exposure may contribute to neurobiological heterogeneity in this group. Longitudinal studies of young people with a range of risk syndromes are needed to further disentangle the contributions of distinct aspects of salience signaling to the development of psychopathology.
Collapse
Affiliation(s)
- Zachary B Millman
- Psychotic Disorders Division, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
- Department of Psychiatry, Harvard Medical School, 25 Shattuck Street, Boston, MA 02114, USA
| | - Jason Schiffman
- Department of Psychological Science, University of California, Irvine, 4201 Social and Behavioral Sciences Gateway, Irvine, CA 92697-7085, USA
- Department of Psychology, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - James M Gold
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228, USA
| | - LeeAnn Akouri-Shan
- Department of Psychology, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Caroline Demro
- Department of Psychology, University of Minnesota, 75 East River Parkway, Minneapolis, MN 55455, USA
| | - John Fitzgerald
- Department of Psychology, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Pamela J Rakhshan Rouhakhtar
- Department of Psychology, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Mallory Klaunig
- Department of Psychology, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Laura M Rowland
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228, USA
| | - James A Waltz
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228, USA
| |
Collapse
|
49
|
Patti A, Santarelli G, D'Anna G, Ballerini A, Ricca V. Aberrant Salience among Young Healthy Postgraduate University Students: The Role of Cannabis Use, Psychotic-Like Experiences, and Personality. Psychopathology 2022; 55:116-122. [PMID: 35016193 DOI: 10.1159/000520331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/19/2021] [Indexed: 11/19/2022]
Abstract
Aberrant salience (AS) is an anomalous world experience which plays a major role in psychotic proneness. In the general population, a deployment of this construct - encompassing personality traits, psychotic-like symptoms, and cannabis use - could prove useful to outline the relative importance of these factors. For this purpose, 106 postgraduate university students filled the AS Inventory (ASI), the Community Assessment of Psychic Experiences (CAPE), the Temperament and Character Inventory (TCI), and the Symptom Checklist 90-Revised (SCL-90-R). Lifetime cannabis users (n = 56) and individuals who did not use cannabis (n = 50) were compared. The role of cannabis use and psychometric indexes on ASI total scores was tested in different subgroups (overall sample, cannabis users, and nonusers). The present study confirmed that cannabis users presented higher ASI scores. The deployment of AS proved to involve positive symptom frequency (assessed through CAPE), character dimensions of self-directedness and self-transcendence (TCI subscales), and cannabis use. Among nonusers, the role of personality traits (assessed through the TCI) was preeminent, whereas positive psychotic-like experiences (measured by means of CAPE) had a major weight among cannabis users. The present study suggests that pre-reflexive anomalous world experiences such as AS are intertwined with reflexive self-consciousness, personality traits, current subclinical psychotic symptoms, and cannabis use. In the present study, subthreshold psychotic experiences proved to play a major role among cannabis users, whereas personality appeared to be more relevant among nonusers.
Collapse
Affiliation(s)
- Andrea Patti
- Department of Health Sciences, Psychiatry Unit, University of Florence, Florence, Italy
| | - Gabriele Santarelli
- Department of Health Sciences, Psychiatry Unit, University of Florence, Florence, Italy
| | - Giulio D'Anna
- Department of Health Sciences, Psychiatry Unit, University of Florence, Florence, Italy
| | - Andrea Ballerini
- Department of Health Sciences, Psychiatry Unit, University of Florence, Florence, Italy
| | - Valdo Ricca
- Department of Health Sciences, Psychiatry Unit, University of Florence, Florence, Italy
| |
Collapse
|
50
|
Hippocampal Disinhibition Reduces Contextual and Elemental Fear Conditioning While Sparing the Acquisition of Latent Inhibition. eNeuro 2022; 9:ENEURO.0270-21.2021. [PMID: 34980662 PMCID: PMC8805190 DOI: 10.1523/eneuro.0270-21.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/01/2021] [Accepted: 10/13/2021] [Indexed: 11/21/2022] Open
Abstract
Hippocampal neural disinhibition, i.e., reduced GABAergic inhibition, is a key feature of schizophrenia pathophysiology. The hippocampus is an important part of the neural circuitry that controls fear conditioning and can also modulate prefrontal and striatal mechanisms, including dopamine signaling, which play a role in salience modulation. Consequently, hippocampal neural disinhibition may contribute to impairments in fear conditioning and salience modulation reported in schizophrenia. Therefore, we examined the effect of ventral hippocampus (VH) disinhibition in male rats on fear conditioning and salience modulation, as reflected by latent inhibition (LI), in a conditioned emotional response (CER) procedure. A flashing light was used as the conditioned stimulus (CS), and conditioned suppression was used to index conditioned fear. In experiment 1, VH disinhibition via infusion of the GABA-A receptor antagonist picrotoxin before CS pre-exposure and conditioning markedly reduced fear conditioning to both the CS and context; LI was evident in saline-infused controls but could not be detected in picrotoxin-infused rats because of the low level of fear conditioning to the CS. In experiment 2, VH picrotoxin infusions only before CS pre-exposure did not affect the acquisition of fear conditioning or LI. Together, these findings indicate that VH neural disinhibition disrupts contextual and elemental fear conditioning, without affecting the acquisition of LI. The disruption of fear conditioning resembles aversive conditioning deficits reported in schizophrenia and may reflect a disruption of neural processing both within the hippocampus and in projection sites of the hippocampus.
Collapse
|