1
|
Liao C, O’Farrell E, Qalieh Y, Savalia NK, Girgenti MJ, Kwan KY, Kwan AC. Single-nucleus transcriptomics reveals time-dependent and cell-type-specific effects of psilocybin on gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.04.631335. [PMID: 39803502 PMCID: PMC11722411 DOI: 10.1101/2025.01.04.631335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
There is growing interest to investigate classic psychedelics as potential therapeutics for mental illnesses. Previous studies have demonstrated that one dose of psilocybin leads to persisting neural and behavioral changes. The durability of psilocybin's effects suggests that there are likely alterations of gene expression at the transcriptional level. In this study, we performed single-nucleus RNA sequencing of the dorsal medial frontal cortex of male and female mice. Samples were collected at 1, 2, 4, 24, or 72 hours after psilocybin or ketamine administration and from control animals. At baseline, major excitatory and GABAergic cell types selectively express particular serotonin receptor transcripts. The psilocybin-evoked differentially expressed genes in excitatory neurons were involved in synaptic plasticity, which were distinct from genes enriched in GABAergic neurons that contribute to mitochondrial function and cellular metabolism. The effect of psilocybin on gene expression was time-dependent, including an early phase at 1-2 hours followed by a late phase at 72 hours of transcriptional response after administration. Ketamine administration produced transcriptional changes that show a high degree of correlation to those induced by psilocybin. Collectively, the results reveal that psilocybin produces time-dependent and cell-type specific changes in gene expression in the medial frontal cortex, which may underpin the drug's long-term effects on neural circuits and behavior.
Collapse
Affiliation(s)
- Clara Liao
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Ethan O’Farrell
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yaman Qalieh
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Neil K. Savalia
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06511, USA
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, Connecticut, 06511, USA
| | - Matthew J. Girgenti
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Kenneth Y. Kwan
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alex C. Kwan
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
2
|
Cuarenta A. Retrotransposons and the brain: Exploring a complex relationship between mobile elements, stress, and neurological health. Neurobiol Stress 2025; 34:100709. [PMID: 39927173 PMCID: PMC11803260 DOI: 10.1016/j.ynstr.2025.100709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/14/2024] [Accepted: 01/13/2025] [Indexed: 02/11/2025] Open
Abstract
Environmental experiences during early life, including stress, can significantly impact brain development and behavior. Early life stress (ELS) is linked to an increased risk for various psychiatric disorders including anxiety, depression, and substance use disorders. Epigenetic mechanisms have increasingly been of interest to understand how environmental factors contribute to reprogramming the brain and alter risk and resilience to developing psychiatric disorders. However, we know very little about mobile elements or the regulation of mobile elements and their contribution to psychiatric disorders. Recently, advances in genomics have contributed to our understanding of mobile elements, including the retrotransposon LINE-1 (L1) and their potential role in mediating environmental experiences. Yet we still do not understand how these elements may contribute to psychiatric disorders. Future research leveraging cutting-edge technologies will deepen our understanding of these mobile elements. By elucidating their role in development and how stress may impact them, we may unlock new avenues for therapeutic and diagnostic innovations.
Collapse
Affiliation(s)
- Amelia Cuarenta
- Neuroscience Institute and the Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
3
|
Myers T, Birmingham EA, Rhoads BT, McGrath AG, Miles NA, Schuldt CB, Briand LA. Post-weaning social isolation alters sociability in a sex-specific manner. Front Behav Neurosci 2024; 18:1444596. [PMID: 39267986 PMCID: PMC11390411 DOI: 10.3389/fnbeh.2024.1444596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Adolescence is a critical period for brain development in humans and stress exposure during this time can have lasting effects on behavior and brain development. Social isolation and loneliness are particularly salient stressors that lead to detrimental mental health outcomes particularly in females, although most of the preclinical work on social isolation has been done in male animals. Our lab has developed a model of post-weaning adolescent social isolation that leads to increased drug reward sensitivity and altered neuronal structure in limbic brain regions. The current study utilized this model to determine the impact of adolescent social isolation on a three-chamber social interaction task both during adolescence and adulthood. We found that while post-weaning isolation does not alter social interaction during adolescence (PND45), it has sex-specific effects on social interaction in young adulthood (PND60), potentiating social interaction in male mice and decreasing it in female mice. As early life stress can activate microglia leading to alterations in neuronal pruning, we next examined the impact of inhibiting microglial activation with daily minocycline administration during the first 3 weeks of social isolation on these changes in social interaction. During adolescence, minocycline dampened social interaction in male mice, while having no effect in females. In contrast, during young adulthood, minocycline did not alter the impact of adolescent social isolation in males, with socially isolated males exhibiting higher levels of social interaction compared to their group housed counterparts. In females, adolescent minocycline treatment reversed the effect of social isolation leading to increased social interaction in the social isolation group, mimicking what is seen in naïve males. Taken together, adolescent social isolation leads to sex-specific effects on social interaction in young adulthood and adolescent minocycline treatment alters the effects of social isolation in females, but not males.
Collapse
Affiliation(s)
- Teneisha Myers
- Neuroscience Program, Temple University, Philadelphia, PA, United States
| | - Elizabeth A. Birmingham
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, United States
| | - Brigham T. Rhoads
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, United States
| | - Anna G. McGrath
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, United States
| | - Nylah A. Miles
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, United States
| | - Carmen B. Schuldt
- Neuroscience Program, Temple University, Philadelphia, PA, United States
| | - Lisa A. Briand
- Neuroscience Program, Temple University, Philadelphia, PA, United States
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, United States
| |
Collapse
|
4
|
Hong Y, Hu J, Zhang S, Liu J, Yan F, Yang H, Hu H. Integrative analysis identifies region- and sex-specific gene networks and Mef2c as a mediator of anxiety-like behavior. Cell Rep 2024; 43:114455. [PMID: 38990717 DOI: 10.1016/j.celrep.2024.114455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/20/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024] Open
Abstract
The molecular mechanisms underlying multi-brain region origins and sexual dimorphism of anxiety remain unclear. Here, we leverage large-scale transcriptomics from seven brain regions in mouse models of anxiety and extensive experiments to dissect brain-region- and sex-specific gene networks. We identify 4,840 genes with sex-specific expression alterations across seven brain regions, organized into ten network modules with sex-biased expression patterns. Modular analysis prioritizes 86 sex-specific mediators of anxiety susceptibility, including myocyte-specific enhancer factor 2c (Mef2c) in the CA3 region of male mice. Mef2c expression is decreased in the pyramidal neurons (PyNs) of susceptible male mice. Up-regulating Mef2c in CA3 PyNs significantly alleviates anxiety-like behavior, whereas down-regulating Mef2c induces anxiety-like behavior in male mice. The anxiolytic effect of Mef2c up-regulation is associated with enhanced neuronal excitability and synaptic transmission. In summary, this study uncovers brain-region- and sex-specific networks and identifies Mef2c in CA3 PyNs as a critical mediator of anxiety in male mice.
Collapse
Affiliation(s)
- Yizhou Hong
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jiameng Hu
- School of Life Science and Technology, Chongqing Innovation Institute of China Pharmaceutical University, China Pharmaceutical University, Nanjing, China
| | - Shiya Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China; College of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jiaxin Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China; College of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Fangrong Yan
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Haiyang Hu
- School of Life Science and Technology, Chongqing Innovation Institute of China Pharmaceutical University, China Pharmaceutical University, Nanjing, China; Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Myers T, Birmingham EA, Rhoads BT, McGrath AG, Miles NA, Schuldt CB, Briand LA. Post-weaning social isolation alters sociability in a sex-specific manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.603129. [PMID: 39026733 PMCID: PMC11257562 DOI: 10.1101/2024.07.11.603129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Adolescence is a critical period for brain development in humans and stress exposure during this time can have lasting effects on behavior and brain development. Social isolation and loneliness are particularly salient stressors that lead to detrimental mental health outcomes particularly in females, although most of the preclinical work on social isolation has been done in male animals. Our lab has developed a model of post-weaning adolescent social isolation that leads to increased drug reward sensitivity and altered neuronal structure in limbic brain regions. The current study utilized this model to determine the impact of adolescent social isolation on a three-chamber social interaction task both during adolescence and adulthood. We found that while post-weaning isolation does not alter social interaction during adolescence (PND45), it has sex-specific effects on social interaction in adulthood (PND60), potentiating social interaction in male mice and decreasing it in female mice. As early life stress can activate microglia leading to alterations in neuronal pruning, we next examined the impact of inhibiting microglial activation with daily minocycline administration during the first three weeks of social isolation on these changes in social interaction. During adolescence, minocycline dampened social interaction in male mice, while having no effect in females. In contrast, during adulthood, minocycline did not alter the impact of adolescent social isolation in males, with socially isolated males exhibiting higher levels of social interaction compared to their group housed counterparts. In females, adolescent minocycline treatment reversed the effect of social isolation leading to increased social interaction in the social isolation group, mimicking what is seen in naïve males. Taken together, adolescent social isolation leads to sex-specific effects on social interaction in adulthood and adolescent minocycline treatment alters the effects of social isolation in females, but not males.
Collapse
|
6
|
Martínez-Rivera FJ, Yim YY, Godino A, Minier-Toribio A, Tofani S, Holt LM, Torres-Berrío A, Futamura R, Browne CJ, Markovic T, Hamilton PJ, Neve RL, Nestler EJ. Cell-Type-Specific Regulation of Cocaine Reward by the E2F3a Transcription Factor in Nucleus Accumbens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602609. [PMID: 39026727 PMCID: PMC11257579 DOI: 10.1101/2024.07.08.602609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The development of drug addiction is characterized by molecular changes in brain reward regions that lead to the transition from recreational to compulsive drug use. These neurobiological processes in brain reward regions, such as the nucleus accumbens (NAc), are orchestrated in large part by transcriptional regulation. Our group recently identified the transcription factor E2F3a as a novel regulator of cocaine's rewarding effects and gene expression regulation in the NAc of male mice. Despite this progress, no information is available about the role of E2F3a in regulating cocaine reward at the sex- and cell-specific levels. Here, we used male and female mice expressing Cre-recombinase in either D1- or D2-type medium spiny neurons (MSNs) combined with viral-mediated gene transfer to bidirectionally control levels of E2F3a in a cell-type-specific manner in the NAc during conditioned place preference (CPP) to cocaine. Our findings show that selective overexpression of E2F3a in D1-MSNs increased cocaine CPP in both male and female mice, whereas opposite effects were observed under knockdown conditions. In contrast, equivalent E2F3a manipulations in D2-MSNs had no significant effects. To further explore the role of E2F3a in sophisticated operant and motivated behaviors, we performed viral manipulations of all NAc neurons in combination with cocaine self-administration and behavioral economics procedures in rats and demonstrated that E2F3a regulates sensitivity aspects of cocaine seeking and taking. These results confirm E2F3a as a central substrate of cocaine reward and demonstrate that this effect is mediated in D1-MSNs, thereby providing increased knowledge of cocaine action at the transcriptional level.
Collapse
|
7
|
Csikós V, Dóra F, Láng T, Darai L, Szendi V, Tóth A, Cservenák M, Dobolyi A. Social Isolation Induces Changes in the Monoaminergic Signalling in the Rat Medial Prefrontal Cortex. Cells 2024; 13:1043. [PMID: 38920671 PMCID: PMC11201939 DOI: 10.3390/cells13121043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/02/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
(1) Background: The effects of short-term social isolation during adulthood have not yet been fully established in rats behaviourally, and not at all transcriptomically in the medial prefrontal cortex (mPFC). (2) Methods: We measured the behavioural effects of housing adult male rats in pairs or alone for 10 days. We also used RNA sequencing to measure the accompanying gene expression alterations in the mPFC of male rats. (3) Results: The isolated animals exhibited reduced sociability and social novelty preference, but increased social interaction. There was no change in their aggression, anxiety, or depression-like activity. Transcriptomic analysis revealed a differential expression of 46 genes between the groups. The KEGG pathway analysis showed that differentially expressed genes are involved in neuroactive ligand-receptor interactions, particularly in the dopaminergic and peptidergic systems, and addiction. Subsequent validation confirmed the decreased level of three altered genes: regulator of G protein signalling 9 (Rgs9), serotonin receptor 2c (Htr2c), and Prodynorphin (Pdyn), which are involved in dopaminergic, serotonergic, and peptidergic function, respectively. Antagonizing Htr2c confirmed its role in social novelty discrimination. (4) Conclusions: Social homeostatic regulations include monoaminergic and peptidergic systems of the mPFC.
Collapse
Affiliation(s)
- Vivien Csikós
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Fanni Dóra
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, 1094 Budapest, Hungary
| | - Tamás Láng
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, 1094 Budapest, Hungary
| | - Luca Darai
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Vivien Szendi
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Attila Tóth
- In Vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Melinda Cservenák
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Arpád Dobolyi
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, 1117 Budapest, Hungary
| |
Collapse
|
8
|
Teague CD, Markovic T, Zhou X, Martinez-Rivera FJ, Minier-Toribio A, Zinsmaier A, Pulido NV, Schmidt KH, Lucerne KE, Godino A, van der Zee YY, Ramakrishnan A, Futamura R, Browne CJ, Holt LM, Yim YY, Azizian CH, Walker DM, Shen L, Dong Y, Zhang B, Nestler EJ. Circuit-Wide Gene Network Analysis Reveals Sex-Specific Roles for Phosphodiesterase 1b in Cocaine Addiction. J Neurosci 2024; 44:e1327232024. [PMID: 38637154 PMCID: PMC11154853 DOI: 10.1523/jneurosci.1327-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 03/21/2024] [Accepted: 04/01/2024] [Indexed: 04/20/2024] Open
Abstract
Cocaine use disorder is a significant public health issue without an effective pharmacological treatment. Successful treatments are hindered in part by an incomplete understanding of the molecular mechanisms that underlie long-lasting maladaptive plasticity and addiction-like behaviors. Here, we leverage a large RNA sequencing dataset to generate gene coexpression networks across six interconnected regions of the brain's reward circuitry from mice that underwent saline or cocaine self-administration. We identify phosphodiesterase 1b (Pde1b), a Ca2+/calmodulin-dependent enzyme that increases cAMP and cGMP hydrolysis, as a central hub gene within a nucleus accumbens (NAc) gene module that was bioinformatically associated with addiction-like behavior. Chronic cocaine exposure increases Pde1b expression in NAc D2 medium spiny neurons (MSNs) in male but not female mice. Viral-mediated Pde1b overexpression in NAc reduces cocaine self-administration in female rats but increases seeking in both sexes. In female mice, overexpressing Pde1b in D1 MSNs attenuates the locomotor response to cocaine, with the opposite effect in D2 MSNs. Overexpressing Pde1b in D1/D2 MSNs had no effect on the locomotor response to cocaine in male mice. At the electrophysiological level, Pde1b overexpression reduces sEPSC frequency in D1 MSNs and regulates the excitability of NAc MSNs. Lastly, Pde1b overexpression significantly reduced the number of differentially expressed genes (DEGs) in NAc following chronic cocaine, with discordant effects on gene transcription between sexes. Together, we identify novel gene modules across the brain's reward circuitry associated with addiction-like behavior and explore the role of Pde1b in regulating the molecular, cellular, and behavioral responses to cocaine.
Collapse
Affiliation(s)
- Collin D Teague
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Tamara Markovic
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Freddyson J Martinez-Rivera
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Angelica Minier-Toribio
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Alexander Zinsmaier
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Nathalia V Pulido
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Kyra H Schmidt
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Kelsey E Lucerne
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Arthur Godino
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Yentl Y van der Zee
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Rita Futamura
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Caleb J Browne
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Leanne M Holt
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Yun Young Yim
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Corrine H Azizian
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Deena M Walker
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon 97239
| | - Li Shen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Yan Dong
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| |
Collapse
|
9
|
Mews P, Sosnick L, Gurung A, Sidoli S, Nestler EJ. Decoding cocaine-induced proteomic adaptations in the mouse nucleus accumbens. Sci Signal 2024; 17:eadl4738. [PMID: 38626009 PMCID: PMC11170322 DOI: 10.1126/scisignal.adl4738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/28/2024] [Indexed: 04/18/2024]
Abstract
Cocaine use disorder (CUD) is a chronic neuropsychiatric condition that results from enduring cellular and molecular adaptations. Among substance use disorders, CUD is notable for its rising prevalence and the lack of approved pharmacotherapies. The nucleus accumbens (NAc), a region that is integral to the brain's reward circuitry, plays a crucial role in the initiation and continuation of maladaptive behaviors that are intrinsic to CUD. Leveraging advancements in neuroproteomics, we undertook a proteomic analysis that spanned membrane, cytosolic, nuclear, and chromatin compartments of the NAc in a mouse model. The results unveiled immediate and sustained proteomic modifications after cocaine exposure and during prolonged withdrawal. We identified congruent protein regulatory patterns during initial cocaine exposure and reexposure after withdrawal, which contrasted with distinct patterns during withdrawal. Pronounced proteomic shifts within the membrane compartment indicated adaptive and long-lasting molecular responses prompted by cocaine withdrawal. In addition, we identified potential protein translocation events between soluble-nuclear and chromatin-bound compartments, thus providing insight into intracellular protein dynamics after cocaine exposure. Together, our findings illuminate the intricate proteomic landscape that is altered in the NAc by cocaine use and provide a dataset for future research toward potential therapeutics.
Collapse
Affiliation(s)
- Philipp Mews
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lucas Sosnick
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ashik Gurung
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Eric J. Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
10
|
Deckers C, Karbalaei R, Miles NA, Harder EV, Witt E, Harris EP, Reissner K, Wimmer ME, Bangasser DA. Early resource scarcity causes cortical astrocyte enlargement and sex-specific changes in the orbitofrontal cortex transcriptome in adult rats. Neurobiol Stress 2024; 29:100607. [PMID: 38304302 PMCID: PMC10831308 DOI: 10.1016/j.ynstr.2024.100607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
Astrocyte morphology affects function, including the regulation of glutamatergic signaling. This morphology changes dynamically in response to the environment. However, how early life manipulations alter adult cortical astrocyte morphology is underexplored. Our lab uses brief postnatal resource scarcity, the limited bedding and nesting (LBN) manipulation, in rats. We previously found that LBN augments maternal behaviors and promotes later resilience to adult addiction-related behaviors, reducing impulsivity, risky decision-making, and morphine self-administration. These behaviors rely on glutamatergic transmission in the medial orbitofrontal (mOFC) and medial prefrontal (mPFC) cortex. Here we tested whether LBN changed astrocyte morphology in the mOFC and mPFC of adult rats using a novel viral approach that, unlike traditional markers, fully labels astrocytes. Prior exposure to LBN causes an increase in the surface area and volume of astrocytes in the mOFC and mPFC of adult males and females relative to control-raised rats. We next used bulk RNA sequencing of OFC tissue to assess transcriptional changes that could increase astrocyte size in LBN rats. LBN caused mainly sex-specific changes in differentially expressed genes. Pathway analysis revealed that OFC glutamatergic signaling is altered by LBN in males and females, but the gene changes in that pathway differed across sex. This may represent a convergent sex difference where glutamatergic signaling, which affects astrocyte morphology, is altered by LBN via sex-specific mechanisms. Collectively, these studies highlight that astrocytes may be an important cell type that mediates the effect of early resource scarcity on adult brain function.
Collapse
Affiliation(s)
- Claire Deckers
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, USA
| | - Reza Karbalaei
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, USA
| | - Nylah A. Miles
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, USA
| | - Eden V. Harder
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emily Witt
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Erin P. Harris
- Neuroscience Institute, Georgia State University, Atlanta, USA
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, USA
| | - Kathryn Reissner
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mathieu E. Wimmer
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, USA
| | - Debra A. Bangasser
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, USA
- Neuroscience Institute, Georgia State University, Atlanta, USA
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, USA
| |
Collapse
|
11
|
Garman A, Ash AM, Kokkinos EK, Nerland D, Winter L, Langreck CB, Forgette ML, Girgenti MJ, Banasr M, Duric V. Novel hippocampal genes involved in enhanced susceptibility to chronic pain-induced behavioral emotionality. Eur J Pharmacol 2024; 964:176273. [PMID: 38135263 DOI: 10.1016/j.ejphar.2023.176273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Altered mood and psychiatric disorders are commonly associated with chronic pain conditions; however, brain mechanisms linking pain and comorbid clinical depression are still largely unknown. In this study, we aimed to identify whether key genes/cellular mechanisms underlie susceptibility/resiliency to development of depressive-like behaviors during chronic pain state. Genome-wide RNA-seq analysis was used to examine the transcriptomic profile of the hippocampus, a limbic brain region that regulates mood and stress responses, from male rats exposed to chronic inflammatory pain. Pain-exposed animals were separated into either 'resilient' or 'susceptible' to development of enhanced behavioral emotionality based on behavioral testing. RNA-seq bioinformatic analysis, followed by validation using qPCR, revealed dysregulation of hippocampal genes involved in neuroinflammation, cell cycle/neurogenesis and blood-brain barrier integrity. Specifically, ADAM Metallopeptidase Domain 8 (Adam8) and Aurora Kinase B (Aurkb), genes with functional roles in activation of the NLRP3 inflammasome and microgliosis, respectively, were significantly upregulated in the hippocampus of 'susceptible' animals expressing increased behavioral emotionality. In addition, genes associated with blood-brain barrier integrity, such as the Claudin 4 (Cldn4), a tight junction protein and a known marker of astrocyte activation, were also significantly dysregulated between 'resilient' or 'susceptible' pain groups. Furthermore, differentially expressed genes (DEGs) were further characterized in rodents stress models to determine whether their hippocampal dysregulation is driven by common stress responses vs. affective pain processing. Altogether these results continue to strengthen the connection between dysregulation of hippocampal genes involved in neuroinflammatory and neurodegenerative processes with increased behavioral emotionality often expressed in chronic pain state.
Collapse
Affiliation(s)
- Adam Garman
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, 50312, USA
| | - Allison M Ash
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, 50312, USA
| | - Ellesavette K Kokkinos
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, 50312, USA
| | - Dakota Nerland
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, 50312, USA
| | - Lori Winter
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, 50312, USA
| | - Cory B Langreck
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, 50312, USA; Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, 10032, USA
| | - Morgan L Forgette
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, 50312, USA
| | - Matthew J Girgenti
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06508, USA
| | - Mounira Banasr
- Campbell Family Mental Health Research Institute of CAMH, Toronto, Canada; Department of Psychiatry, Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Vanja Duric
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, 50312, USA.
| |
Collapse
|
12
|
Kundakovic M, Tickerhoof M. Epigenetic mechanisms underlying sex differences in the brain and behavior. Trends Neurosci 2024; 47:18-35. [PMID: 37968206 PMCID: PMC10841872 DOI: 10.1016/j.tins.2023.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/21/2023] [Accepted: 09/26/2023] [Indexed: 11/17/2023]
Abstract
Sex differences are found across brain regions, behaviors, and brain diseases. Sexual differentiation of the brain is initiated prenatally but it continues throughout life, as a result of the interaction of three major factors: gonadal hormones, sex chromosomes, and the environment. These factors are thought to act, in part, via epigenetic mechanisms which control chromatin and transcriptional states in brain cells. In this review, we discuss evidence that epigenetic mechanisms underlie sex-specific neurobehavioral changes during critical organizational periods, across the estrous cycle, and in response to diverse environments throughout life. We further identify future directions for the field that will provide novel mechanistic insights into brain sex differences, inform brain disease treatments and women's brain health in particular, and apply to people across genders.
Collapse
Affiliation(s)
- Marija Kundakovic
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA.
| | - Maria Tickerhoof
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA
| |
Collapse
|
13
|
Gyles TM, Nestler EJ, Parise EM. Advancing preclinical chronic stress models to promote therapeutic discovery for human stress disorders. Neuropsychopharmacology 2024; 49:215-226. [PMID: 37349475 PMCID: PMC10700361 DOI: 10.1038/s41386-023-01625-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/08/2023] [Accepted: 05/19/2023] [Indexed: 06/24/2023]
Abstract
There is an urgent need to develop more effective treatments for stress-related illnesses, which include depression, post-traumatic stress disorder, and anxiety. We view animal models as playing an essential role in this effort, but to date, such approaches have generally not succeeded in developing therapeutics with new mechanisms of action. This is partly due to the complexity of the brain and its disorders, but also to inherent difficulties in modeling human disorders in rodents and to the incorrect use of animal models: namely, trying to recapitulate a human syndrome in a rodent which is likely not possible as opposed to using animals to understand underlying mechanisms and evaluating potential therapeutic paths. Recent transcriptomic research has established the ability of several different chronic stress procedures in rodents to recapitulate large portions of the molecular pathology seen in postmortem brain tissue of individuals with depression. These findings provide crucial validation for the clear relevance of rodent stress models to better understand the pathophysiology of human stress disorders and help guide therapeutic discovery. In this review, we first discuss the current limitations of preclinical chronic stress models as well as traditional behavioral phenotyping approaches. We then explore opportunities to dramatically enhance the translational use of rodent stress models through the application of new experimental technologies. The goal of this review is to promote the synthesis of these novel approaches in rodents with human cell-based approaches and ultimately with early-phase proof-of-concept studies in humans to develop more effective treatments for human stress disorders.
Collapse
Affiliation(s)
- Trevonn M Gyles
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric M Parise
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
14
|
Rullo L, Losapio LM, Morosini C, Mottarlini F, Schiavi S, Buzzelli V, Ascone F, Ciccocioppo R, Fattore L, Caffino L, Fumagalli F, Romualdi P, Trezza V, Candeletti S. Outcomes of early social experiences on glucocorticoid and endocannabinoid systems in the prefrontal cortex of male and female adolescent rats. Front Cell Neurosci 2023; 17:1270195. [PMID: 38174157 PMCID: PMC10762649 DOI: 10.3389/fncel.2023.1270195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
Social and emotional experiences differently shape individual's neurodevelopment inducing substantial changes in neurobiological substrates and behavior, particularly when they occur early in life. In this scenario, the present study was aimed at (i) investigating the impact of early social environments on emotional reactivity of adolescent male and female rats and (ii) uncovering the underlying molecular features, focusing on the cortical endocannabinoid (eCB) and glucocorticoid systems. To this aim, we applied a protocol of environmental manipulation based on early postnatal socially enriched or impoverished conditions. Social enrichment was realized through communal nesting (CN). Conversely, an early social isolation (ESI) protocol was applied (post-natal days 14-21) to mimic an adverse early social environment. The two forms of social manipulation resulted in specific behavioral and molecular outcomes in both male and female rat offspring. Despite the combination of CN and ESI did not affect emotional reactivity in both sexes, the molecular results reveal that the preventive exposure to CN differently altered mRNA and protein expression of the main components of the glucocorticoid and eCB systems in male and female rats. In particular, adolescent females exposed to the combination of CN and ESI showed increased corticosterone levels, unaltered genomic glucocorticoid receptor, reduced cannabinoid receptor type-1 and fatty acid amide hydrolase protein levels, suggesting that the CN condition evokes different reorganization of these systems in males and females.
Collapse
Affiliation(s)
- Laura Rullo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Loredana Maria Losapio
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Camilla Morosini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti,” Università degli Studi di Milano, Milan, Italy
| | - Sara Schiavi
- Section of Biomedical Sciences and Technologies, Department of Science, Roma Tre University, Rome, Italy
| | - Valeria Buzzelli
- Section of Biomedical Sciences and Technologies, Department of Science, Roma Tre University, Rome, Italy
| | - Fabrizio Ascone
- Section of Biomedical Sciences and Technologies, Department of Science, Roma Tre University, Rome, Italy
| | - Roberto Ciccocioppo
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Liana Fattore
- CNR Institute of Neuroscience-Cagliari, National Research Council, Cagliari, Italy
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti,” Università degli Studi di Milano, Milan, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti,” Università degli Studi di Milano, Milan, Italy
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Viviana Trezza
- Section of Biomedical Sciences and Technologies, Department of Science, Roma Tre University, Rome, Italy
| | - Sanzio Candeletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
15
|
Rocks D, Jaric I, Bellia F, Cham H, Greally JM, Suzuki M, Kundakovic M. Early-life stress and ovarian hormones alter transcriptional regulation in the nucleus accumbens resulting in sex-specific responses to cocaine. Cell Rep 2023; 42:113187. [PMID: 37777968 PMCID: PMC10753961 DOI: 10.1016/j.celrep.2023.113187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/29/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023] Open
Abstract
Early-life stress and ovarian hormones contribute to increased female vulnerability to cocaine addiction. Here, we reveal molecular substrates in the reward area, the nucleus accumbens, through which these female-specific factors affect immediate and conditioning responses to cocaine. We find shared involvement of X chromosome inactivation-related and estrogen signaling-related gene regulation in enhanced conditioning responses following early-life stress and during the low-estrogenic state in females. Low-estrogenic females respond to acute cocaine by opening neuronal chromatin enriched for the sites of ΔFosB, a transcription factor implicated in chronic cocaine response and addiction. Conversely, high-estrogenic females respond to cocaine by preferential chromatin closing, providing a mechanism for limiting cocaine-driven chromatin and synaptic plasticity. We find that physiological estrogen withdrawal, early-life stress, and absence of one X chromosome all nullify the protective effect of a high-estrogenic state on cocaine conditioning in females. Our findings offer a molecular framework to enable understanding of sex-specific neuronal mechanisms underlying cocaine use disorder.
Collapse
Affiliation(s)
- Devin Rocks
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Ivana Jaric
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Fabio Bellia
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Heining Cham
- Department of Psychology, Fordham University, Bronx, NY, USA
| | - John M Greally
- Center for Epigenomics, Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Masako Suzuki
- Center for Epigenomics, Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Marija Kundakovic
- Department of Biological Sciences, Fordham University, Bronx, NY, USA.
| |
Collapse
|
16
|
Giovanniello J, Bravo-Rivera C, Rosenkranz A, Matthew Lattal K. Stress, associative learning, and decision-making. Neurobiol Learn Mem 2023; 204:107812. [PMID: 37598745 DOI: 10.1016/j.nlm.2023.107812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/02/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Exposure to acute and chronic stress has significant effects on the basic mechanisms of associative learning and memory. Stress can both impair and enhance associative learning depending on type, intensity, and persistence of the stressor, the subject's sex, the context that the stress and behavior is experienced in, and the type of associative learning taking place. In some cases, stress can cause or exacerbate the maladaptive behavior that underlies numerous psychiatric conditions including anxiety disorders, obsessive-compulsive disorder, post-traumatic stress disorder, substance use disorder, and others. Therefore, it is critical to understand how the varied effects of stress, which may normally facilitate adaptive behavior, can also become maladaptive and even harmful. In this review, we highlight several findings of associative learning and decision-making processes that are affected by stress in both human and non-human subjects and how they are related to one another. An emerging theme from this work is that stress biases behavior towards less flexible strategies that may reflect a cautious insensitivity to changing contingencies. We consider how this inflexibility has been observed in different associative learning procedures and suggest that a goal for the field should be to clarify how factors such as sex and previous experience influence this inflexibility.
Collapse
Affiliation(s)
| | - Christian Bravo-Rivera
- Departments of Psychiatry and Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, PR 00935, United States.
| | - Amiel Rosenkranz
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Chicago Medical School, Rosalind Franklin University of Medicine and Science, United States.
| | - K Matthew Lattal
- Department of Behavioral Neuroscience, Oregon Health & Science University, United States.
| |
Collapse
|
17
|
Deckers C, Karbalaei R, Miles NA, Harder EV, Witt E, Harris EP, Reissner K, Wimmer ME, Bangasser DA. Early resource scarcity causes cortical astrocyte enlargement and sex-specific changes in the orbitofrontal cortex transcriptome in adult rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.01.547315. [PMID: 37425737 PMCID: PMC10327175 DOI: 10.1101/2023.07.01.547315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Astrocyte morphology affects function, including the regulation of glutamatergic signaling. This morphology changes dynamically in response to the environment. However, how early life manipulations alter adult cortical astrocyte morphology is underexplored. Our lab uses brief postnatal resource scarcity, the limited bedding and nesting (LBN) manipulation, in rats. We previously found that LBN promotes later resilience to adult addiction-related behaviors, reducing impulsivity, risky decision-making, and morphine self-administration. These behaviors rely on glutamatergic transmission in the medial orbitofrontal (mOFC) and medial prefrontal (mPFC) cortex. Here we tested whether LBN changed astrocyte morphology in the mOFC and mPFC of adult rats using a novel viral approach that, unlike traditional markers, fully labels astrocytes. Prior exposure to LBN causes an increase in the surface area and volume of astrocytes in the mOFC and mPFC of adult males and females relative to control-raised rats. We next used bulk RNA sequencing of OFC tissue to assess transcriptional changes that could increase astrocyte size in LBN rats. LBN caused mainly sex-specific changes in differentially expressed genes. However, Park7, which encodes for the protein DJ-1 that alters astrocyte morphology, was increased by LBN across sex. Pathway analysis revealed that OFC glutamatergic signaling is altered by LBN in males and females, but the gene changes in that pathway differed across sex. This may represent a convergent sex difference where glutamatergic signaling, which affects astrocyte morphology, is altered by LBN via sex-specific mechanisms. Collectively, these studies highlight that astrocytes may be an important cell type that mediates the effect of early resource scarcity on adult brain function.
Collapse
Affiliation(s)
- Claire Deckers
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia
| | - Reza Karbalaei
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia
| | - Nylah A Miles
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia
| | - Eden V Harder
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Emily Witt
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Erin P Harris
- Neuroscience Institute, Georgia State University, Atlanta
- Center for Behavioral Neuroscience, Georgia State University, Atlanta
| | - Kathryn Reissner
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Mathieu E Wimmer
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia
| | - Debra A Bangasser
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia
- Neuroscience Institute, Georgia State University, Atlanta
- Center for Behavioral Neuroscience, Georgia State University, Atlanta
| |
Collapse
|
18
|
Browne CJ, Futamura R, Minier-Toribio A, Hicks EM, Ramakrishnan A, Martínez-Rivera FJ, Estill M, Godino A, Parise EM, Torres-Berrío A, Cunningham AM, Hamilton PJ, Walker DM, Huckins LM, Hurd YL, Shen L, Nestler EJ. Transcriptional signatures of heroin intake and relapse throughout the brain reward circuitry in male mice. SCIENCE ADVANCES 2023; 9:eadg8558. [PMID: 37294757 PMCID: PMC10256172 DOI: 10.1126/sciadv.adg8558] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/05/2023] [Indexed: 06/11/2023]
Abstract
Opioid use disorder (OUD) looms as one of the most severe medical crises facing society. More effective therapeutics will require a deeper understanding of molecular changes supporting drug-taking and relapse. Here, we develop a brain reward circuit-wide atlas of opioid-induced transcriptional regulation by combining RNA sequencing (RNA-seq) and heroin self-administration in male mice modeling multiple OUD-relevant conditions: acute heroin exposure, chronic heroin intake, context-induced drug-seeking following abstinence, and relapse. Bioinformatics analysis of this rich dataset identified numerous patterns of transcriptional regulation, with both region-specific and pan-circuit biological domains affected by heroin. Integration of RNA-seq data with OUD-relevant behavioral outcomes uncovered region-specific molecular changes and biological processes that predispose to OUD vulnerability. Comparisons with human OUD RNA-seq and genome-wide association study data revealed convergent molecular abnormalities and gene candidates with high therapeutic potential. These studies outline molecular reprogramming underlying OUD and provide a foundational resource for future investigations into mechanisms and treatment strategies.
Collapse
Affiliation(s)
- Caleb J. Browne
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rita Futamura
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Angélica Minier-Toribio
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emily M. Hicks
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Freddyson J. Martínez-Rivera
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Molly Estill
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arthur Godino
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric M. Parise
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Angélica Torres-Berrío
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ashley M. Cunningham
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter J. Hamilton
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Deena M. Walker
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| | - Laura M. Huckins
- Department of Psychiatry, Yale Center for Genomic Health, Yale School of Medicine, New Haven, CT, USA
| | - Yasmin L. Hurd
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Li Shen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric J. Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
19
|
Sadino JM, Bradeen XG, Kelly CJ, Brusman LE, Walker DM, Donaldson ZR. Prolonged partner separation erodes nucleus accumbens transcriptional signatures of pair bonding in male prairie voles. eLife 2023; 12:e80517. [PMID: 36852906 PMCID: PMC10112888 DOI: 10.7554/elife.80517] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 02/27/2023] [Indexed: 03/01/2023] Open
Abstract
The loss of a spouse is often cited as the most traumatic event in a person's life. However, for most people, the severity of grief and its maladaptive effects subside over time via an understudied adaptive process. Like humans, socially monogamous prairie voles (Microtus ochrogaster) form opposite-sex pair bonds, and upon partner separation, show stress phenotypes that diminish over time. We test the hypothesis that extended partner separation diminishes pair bond-associated behaviors and causes pair bond transcriptional signatures to erode. Opposite-sex or same-sex paired males were cohoused for 2 weeks and then either remained paired or were separated for 48 hours or 4 weeks before collecting fresh nucleus accumbens tissue for RNAseq. In a separate cohort, we assessed partner-directed affiliation at these time points. We found that these behaviors persist despite prolonged separation in both same-sex and opposite-sex paired voles. Opposite-sex pair bonding led to changes in accumbal transcription that were stably maintained while animals remained paired but eroded following prolonged partner separation. Eroded genes are associated with gliogenesis and myelination, suggesting a previously undescribed role for glia in pair bonding and loss. Further, we pioneered neuron-specific translating ribosomal affinity purification in voles. Neuronally enriched transcriptional changes revealed dopaminergic-, mitochondrial-, and steroid hormone signaling-associated gene clusters sensitive to acute pair bond disruption and loss adaptation. Our results suggest that partner separation erodes transcriptomic signatures of pair bonding despite core behavioral features of the bond remaining intact, revealing potential molecular processes priming a vole to be able to form a new bond.
Collapse
Affiliation(s)
- Julie M Sadino
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado BoulderBoulderUnited States
| | - Xander G Bradeen
- Department of Psychology and Neuroscience, University of Colorado BoulderBoulderUnited States
- Department of Adult Hematology, University of Colorado- Anschutz Medical CampusAuroraUnited States
| | - Conor J Kelly
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado BoulderBoulderUnited States
- BioFrontiers Institute, University of Colorado BoulderBoulderUnited States
| | - Liza E Brusman
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado BoulderBoulderUnited States
| | - Deena M Walker
- Department of Behavioral Neuroscience, Oregon Health and Science University, School of MedicinePortlandUnited States
| | - Zoe R Donaldson
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado BoulderBoulderUnited States
- Department of Psychology and Neuroscience, University of Colorado BoulderBoulderUnited States
| |
Collapse
|
20
|
Brown RE. Sex Differences in Neurodevelopment and Its Disorders. NEURODEVELOPMENTAL PEDIATRICS 2023:179-212. [DOI: 10.1007/978-3-031-20792-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
21
|
The Protective Effect of Social Reward on Opioid and Psychostimulant Reward and Relapse: Behavior, Pharmacology, and Brain Regions. J Neurosci 2022; 42:9298-9314. [PMID: 36517252 PMCID: PMC9794371 DOI: 10.1523/jneurosci.0931-22.2022] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 12/30/2022] Open
Abstract
Until recently, most modern neuroscience research on addiction using animal models did not incorporate manipulations of social factors. Social factors play a critical role in human addiction: social isolation and exclusion can promote drug use and relapse, while social connections and inclusion tend to be protective. Here, we discuss the state of the literature on social factors in animal models of opioid and psychostimulant preference, self-administration, and relapse. We first summarize results from rodent studies on behavioral, pharmacological, and circuit mechanisms of the protective effect of traditional experimenter-controlled social interaction procedures on opioid and psychostimulant conditioned place preference, self-administration, and relapse. Next, we summarize behavioral and brain-mechanism results from studies using newer operant social-interaction procedures that inhibit opioid and psychostimulant self-administration and relapse. We conclude by discussing how the reviewed studies point to future directions for the addiction field and other neuroscience and psychiatric fields, and their implications for mechanistic understanding of addiction and development of new treatments.SIGNIFICANCE STATEMENT In this review, we propose that incorporating social factors into modern neuroscience research on addiction could improve mechanistic accounts of addiction and help close gaps in translating discovery to treatment. We first summarize rodent studies on behavioral, pharmacological, and circuit mechanisms of the protective effect of both traditional experimenter-controlled and newer operant social-interaction procedures. We then discuss potential future directions and clinical implications.
Collapse
|
22
|
Issler O, van der Zee YY, Ramakrishnan A, Xia S, Zinsmaier AK, Tan C, Li W, Browne CJ, Walker DM, Salery M, Torres-Berrío A, Futamura R, Duffy JE, Labonte B, Girgenti MJ, Tamminga CA, Dupree JL, Dong Y, Murrough JW, Shen L, Nestler EJ. The long noncoding RNA FEDORA is a cell type- and sex-specific regulator of depression. SCIENCE ADVANCES 2022; 8:eabn9494. [PMID: 36449610 PMCID: PMC9710883 DOI: 10.1126/sciadv.abn9494] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 10/12/2022] [Indexed: 05/31/2023]
Abstract
Women suffer from depression at twice the rate of men, but the underlying molecular mechanisms are poorly understood. Here, we identify marked baseline sex differences in the expression of long noncoding RNAs (lncRNAs), a class of regulatory transcripts, in human postmortem brain tissue that are profoundly lost in depression. One such human lncRNA, RP11-298D21.1 (which we termed FEDORA), is enriched in oligodendrocytes and neurons and up-regulated in the prefrontal cortex (PFC) of depressed females only. We found that virally expressing FEDORA selectively either in neurons or in oligodendrocytes of PFC promoted depression-like behavioral abnormalities in female mice only, changes associated with cell type-specific regulation of synaptic properties, myelin thickness, and gene expression. We also found that blood FEDORA levels have diagnostic implications for depressed women and are associated with clinical response to ketamine. These findings demonstrate the important role played by lncRNAs, and FEDORA in particular, in shaping the sex-specific landscape of the brain and contributing to sex differences in depression.
Collapse
Affiliation(s)
- Orna Issler
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yentl Y. van der Zee
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sunhui Xia
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Chunfeng Tan
- Department of Psychiatry, UT Southwestern, Dallas, TX, USA
| | - Wei Li
- Department of Psychiatry, UT Southwestern, Dallas, TX, USA
| | - Caleb J. Browne
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Deena M. Walker
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marine Salery
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Angélica Torres-Berrío
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rita Futamura
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julia E. Duffy
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benoit Labonte
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew J. Girgenti
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Jeffrey L. Dupree
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Yan Dong
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - James W. Murrough
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Li Shen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric J. Nestler
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
23
|
Murphy MD, Heller EA. Convergent actions of stress and stimulants via epigenetic regulation of neural circuitry. Trends Neurosci 2022; 45:955-967. [PMID: 36280459 PMCID: PMC9671852 DOI: 10.1016/j.tins.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/21/2022] [Accepted: 10/01/2022] [Indexed: 11/17/2022]
Abstract
The dorsal striatum integrates prior and current information to guide appropriate decision-making. Chronic stress and stimulant exposure interferes with decision-making, and can confer similar cognitive and behavioral inflexibilities. This review examines the literature on acute and chronic regulation of the epigenome by stress and stimulants. Recent evidence suggests that exposures to stress and stimulants share similarities in the manners in which they regulate the dorsal striatum epigenome through DNA methylation, transposable element activity, and histone post-translational modifications. These findings suggest that chronic stress and stimulant exposure leads to the accumulation of epigenetic modifications that impair immediate and future neuron function and activity. Such epigenetic mechanisms represent potential therapeutic targets for ameliorating convergent symptoms of stress and addiction.
Collapse
Affiliation(s)
- Michael D Murphy
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Elizabeth A Heller
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
24
|
Walker DM, Zhou X, Cunningham AM, Ramakrishnan A, Cates HM, Lardner CK, Peña CJ, Bagot RC, Issler O, Van der Zee Y, Lipschultz AP, Godino A, Browne CJ, Hodes GE, Parise EM, Torres-Berrio A, Kennedy PJ, Shen L, Zhang B, Nestler EJ. Crystallin Mu in Medial Amygdala Mediates the Effect of Social Experience on Cocaine Seeking in Males but Not in Females. Biol Psychiatry 2022; 92:895-906. [PMID: 36182529 PMCID: PMC9828478 DOI: 10.1016/j.biopsych.2022.06.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/31/2022] [Accepted: 06/20/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Social experiences influence susceptibility to substance use disorder. The adolescent period is associated with the development of social reward and is exceptionally sensitive to disruptions to reward-associated behaviors by social experiences. Social isolation (SI) during adolescence alters anxiety- and reward-related behaviors in adult males, but little is known about females. The medial amygdala (meA) is a likely candidate for the modulation of social influence on drug reward because it regulates social reward, develops during adolescence, and is sensitive to social stress. However, little is known regarding how the meA responds to drugs of abuse. METHODS We used adolescent SI coupled with RNA sequencing to better understand the molecular mechanisms underlying meA regulation of social influence on reward. RESULTS We show that SI in adolescence, a well-established preclinical model for addiction susceptibility, enhances preference for cocaine in male but not in female mice and alters cocaine-induced protein and transcriptional profiles within the adult meA particularly in males. To determine whether transcriptional mechanisms within the meA are important for these behavioral effects, we manipulated Crym expression, a sex-specific key driver gene identified through differential gene expression and coexpression network analyses, specifically in meA neurons. Overexpression of Crym, but not another key driver that did not meet our sex-specific criteria, recapitulated the behavioral and transcriptional effects of adolescent SI. CONCLUSIONS These results show that the meA is essential for modulating the sex-specific effects of social experience on drug reward and establish Crym as a critical mediator of sex-specific behavioral and transcriptional plasticity.
Collapse
Affiliation(s)
- Deena M Walker
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, New York; Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ashley M Cunningham
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Hannah M Cates
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Casey K Lardner
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Catherine J Peña
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rosemary C Bagot
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Orna Issler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Yentl Van der Zee
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Andrew P Lipschultz
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Arthur Godino
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Caleb J Browne
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Georgia E Hodes
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Eric M Parise
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Angelica Torres-Berrio
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Pamela J Kennedy
- Department of Psychology, University of California, Los Angeles, Los Angeles, California
| | - Li Shen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, New York; Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
25
|
Zhao J, Ye L, Liu Z, Cui Y, Deng D, Bai S, Yang L, Shi Y, Liu Z, Zhang R. Protective Effects of Resveratrol on Adolescent Social Isolation-Induced Anxiety-Like Behaviors via Modulating Nucleus Accumbens Spine Plasticity and Mitochondrial Function in Female Rats. Nutrients 2022; 14:4542. [PMID: 36364807 PMCID: PMC9656193 DOI: 10.3390/nu14214542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 09/10/2023] Open
Abstract
Social isolation (SI) is a major risk factor for mood disorders in adolescents. The nucleus accumbens (NAc) is an important reward center implicated in psychiatric disorders. Resveratrol (RSV) is one of the most effective natural polyphenols with anti-anxiety and depression effects. However, little is known about the therapeutic effects and mechanisms of RSV on behavioral abnormality of adolescent social stress. Therefore, this study aimed to investigate the underlying mechanism of RSV on the amelioration of SI-induced behavioral abnormality. We found that SI induced anxiety-like behavior and social dysfunction in isolated female rats. Moreover, SI reduced mitochondrial number and ATP levels and increased thin spine density in the NAc. RNA sequencing results showed that SI changed the transcription pattern in the NAc, including 519 upregulated genes and 610 downregulated genes, especially those related to mitochondrial function. Importantly, RSV ameliorated behavioral and spine abnormalities induced by SI and increased NAc ATP levels and mitochondria number. Furthermore, RSV increased the activity of cytochrome C oxidase (COX) and upregulated mRNA levels of Cox5a, Cox6a1 and Cox7c. These results demonstrate that the modulation of spine plasticity and mitochondrial function in the NAc by RSV has a therapeutic effect on mood disorders induced by social isolation.
Collapse
Affiliation(s)
- Jinlan Zhao
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Lihong Ye
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zuyi Liu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yongfei Cui
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Di Deng
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Shasha Bai
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Lei Yang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yafei Shi
- School of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhongqiu Liu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Rong Zhang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
26
|
Mayberry HL, Bavley CC, Karbalaei R, Peterson DR, Bongiovanni AR, Ellis AS, Downey SH, Toussaint AB, Wimmer ME. Transcriptomics in the nucleus accumbens shell reveal sex- and reinforcer-specific signatures associated with morphine and sucrose craving. Neuropsychopharmacology 2022; 47:1764-1775. [PMID: 35190706 PMCID: PMC9372067 DOI: 10.1038/s41386-022-01289-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/16/2022]
Abstract
Incubation of craving is a well-documented phenomenon referring to the intensification of drug craving over extended abstinence. The neural adaptations that occur during forced abstinence following chronic drug taking have been a topic of intense study. However, little is known about the transcriptomic changes occurring throughout this window of time. To define gene expression changes associated with morphine consumption and extended abstinence, male and female rats underwent 10 days of morphine self-administration. Separate drug-naive rats self-administered sucrose in order to compare opioid-induced changes from those associated with natural, non-drug rewards. After one or 30 days of forced abstinence, rats were tested for craving, or nucleus accumbens shell tissue was dissected for RNA sequencing. Morphine consumption was predictive of drug seeking after extended (30 days) but not brief (1 day) abstinence in both sexes. Extended abstinence was also associated with robust sex- and reinforcer-specific changes in gene expression, suggesting sex differences underlying incubation of morphine and sucrose seeking respectively. Importantly, these changes in gene expression occurred without re-exposure to drug-paired cues, indicating that chronic morphine causes long-lasting changes in gene expression that prime the system for increased craving. These findings lay the groundwork for identifying specific therapeutic targets for curbing opioid craving without impacting the natural reward system in males and females.
Collapse
Affiliation(s)
- Hannah L Mayberry
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, USA
| | - Charlotte C Bavley
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, USA
| | - Reza Karbalaei
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, USA
| | - Drew R Peterson
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, USA
| | - Angela R Bongiovanni
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, USA
| | - Alexandra S Ellis
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, USA
| | - Sara H Downey
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, USA
| | - Andre B Toussaint
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, USA
| | - Mathieu E Wimmer
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
27
|
Petković A, Chaudhury D. Encore: Behavioural animal models of stress, depression and mood disorders. Front Behav Neurosci 2022; 16:931964. [PMID: 36004305 PMCID: PMC9395206 DOI: 10.3389/fnbeh.2022.931964] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Animal studies over the past two decades have led to extensive advances in our understanding of pathogenesis of depressive and mood disorders. Among these, rodent behavioural models proved to be of highest informative value. Here, we present a comprehensive overview of the most popular behavioural models with respect to physiological, circuit, and molecular biological correlates. Behavioural stress paradigms and behavioural tests are assessed in terms of outcomes, strengths, weaknesses, and translational value, especially in the domain of pharmacological studies.
Collapse
Affiliation(s)
| | - Dipesh Chaudhury
- Laboratory of Neural Systems and Behaviour, Department of Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
28
|
Touchant M, Labonté B. Sex-Specific Brain Transcriptional Signatures in Human MDD and Their Correlates in Mouse Models of Depression. Front Behav Neurosci 2022; 16:845491. [PMID: 35592639 PMCID: PMC9110970 DOI: 10.3389/fnbeh.2022.845491] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/05/2022] [Indexed: 01/13/2023] Open
Abstract
Major depressive disorder (MDD) is amongst the most devastating psychiatric conditions affecting several millions of people worldwide every year. Despite the importance of this disease and its impact on modern societies, still very little is known about the etiological mechanisms. Treatment strategies have stagnated over the last decades and very little progress has been made to improve the efficiency of current therapeutic approaches. In order to better understand the disease, it is necessary for researchers to use appropriate animal models that reproduce specific aspects of the complex clinical manifestations at the behavioral and molecular levels. Here, we review the current literature describing the use of mouse models to reproduce specific aspects of MDD and anxiety in males and females. We first describe some of the most commonly used mouse models and their capacity to display unique but also shared features relevant to MDD. We then transition toward an integral description, combined with genome-wide transcriptional strategies. The use of these models reveals crucial insights into the molecular programs underlying the expression of stress susceptibility and resilience in a sex-specific fashion. These studies performed on human and mouse tissues establish correlates into the mechanisms mediating the impact of stress and the extent to which different mouse models of chronic stress recapitulate the molecular changes observed in depressed humans. The focus of this review is specifically to highlight the sex differences revealed from different stress paradigms and transcriptional analyses both in human and animal models.
Collapse
Affiliation(s)
- Maureen Touchant
- CERVO Brain Research Centre, Québec, QC, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Benoit Labonté
- CERVO Brain Research Centre, Québec, QC, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec, QC, Canada
- *Correspondence: Benoit Labonté
| |
Collapse
|
29
|
Eck SR, Palmer JL, Bavley CC, Karbalaei R, Ordoñes Sanchez E, Flowers J, Holley A, Wimmer ME, Bangasser DA. Effects of early life adversity on male reproductive behavior and the medial preoptic area transcriptome. Neuropsychopharmacology 2022; 47:1231-1239. [PMID: 35102257 PMCID: PMC9019015 DOI: 10.1038/s41386-022-01282-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/18/2021] [Accepted: 01/14/2022] [Indexed: 02/02/2023]
Abstract
Early life adversity can alter reproductive development in humans, changing the timing of pubertal onset and sexual activity. One common form of early adversity is limited access to resources. This adversity can be modeled in rats using the limited bedding/nesting model (LBN), in which dams and pups are placed in a low resource environment from pups' postnatal days 2-9. Our laboratory previously found that adult male rats raised in LBN conditions have elevated levels of plasma estradiol compared to control males. In females, LBN had no effect on plasma hormone levels, pubertal timing, or estrous cycle duration. Estradiol mediates male reproductive behaviors. Thus, here we compared reproductive behaviors in adult males exposed to LBN vs. control housing. LBN males acquired the suite of reproductive behaviors (mounts, intromissions, and ejaculations) more quickly than their control counterparts over 3 weeks of testing. However, there was no effect of LBN in males on puberty onset or masculinization of certain brain regions, suggesting LBN effects on estradiol and reproductive behaviors manifest after puberty. In male and female rats, we next used RNA sequencing to characterize LBN-induced transcriptional changes in the medial preoptic area (mPOA), which underlies male reproductive behaviors. LBN produced sex-specific alterations in gene expression, with many transcripts showing changes in opposite directions. Numerous transcripts altered by LBN in males are regulated by estradiol, linking hormonal changes to molecular changes in the mPOA. Pathway analysis revealed that LBN induced changes in neurosignaling and immune signaling in males and females, respectively. Collectively, these studies reveal novel neurobiological mechanisms by which early life adversity can alter reproductive strategies.
Collapse
Affiliation(s)
- Samantha R. Eck
- grid.264727.20000 0001 2248 3398Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122 USA
| | - Jamie L. Palmer
- grid.264727.20000 0001 2248 3398Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122 USA
| | - Charlotte C. Bavley
- grid.264727.20000 0001 2248 3398Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122 USA
| | - Reza Karbalaei
- grid.264727.20000 0001 2248 3398Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122 USA
| | - Evelyn Ordoñes Sanchez
- grid.264727.20000 0001 2248 3398Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122 USA
| | - James Flowers
- grid.264727.20000 0001 2248 3398Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122 USA
| | - Amanda Holley
- grid.411024.20000 0001 2175 4264Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Mathieu E. Wimmer
- grid.264727.20000 0001 2248 3398Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122 USA
| | - Debra A. Bangasser
- grid.264727.20000 0001 2248 3398Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122 USA
| |
Collapse
|
30
|
Catale C, Lo Iacono L, Martini A, Heil C, Guatteo E, Mercuri NB, Viscomi MT, Palacios D, Carola V. Early Life Social Stress Causes Sex- and Region-Dependent Dopaminergic Changes that Are Prevented by Minocycline. Mol Neurobiol 2022; 59:3913-3932. [PMID: 35435618 PMCID: PMC9148283 DOI: 10.1007/s12035-022-02830-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/02/2022] [Indexed: 02/03/2023]
Abstract
Early life stress (ELS) is known to modify trajectories of brain dopaminergic development, but the mechanisms underlying have not been determined. ELS perturbs immune system and microglia reactivity, and inflammation and microglia influence dopaminergic transmission and development. Whether microglia mediate the effects of ELS on dopamine (DA) system development is still unknown. We explored the effects of repeated early social stress on development of the dopaminergic system in male and female mice through histological, electrophysiological, and transcriptomic analyses. Furthermore, we tested whether these effects could be mediated by ELS-induced altered microglia/immune activity through a pharmacological approach. We found that social stress in early life altered DA neurons morphology, reduced dopamine transporter (DAT) and tyrosine hydroxylase expression, and lowered DAT-mediated currents in the ventral tegmental area but not substantia nigra of male mice only. Notably, stress-induced DA alterations were prevented by minocycline, an inhibitor of microglia activation. Transcriptome analysis in the developing male ventral tegmental area revealed that ELS caused downregulation of dopaminergic transmission and alteration in hormonal and peptide signaling pathways. Results from this study offer new insight into the mechanisms of stress response and altered brain dopaminergic maturation after ELS, providing evidence of neuroimmune interaction, sex differences, and regional specificity.
Collapse
Affiliation(s)
- Clarissa Catale
- Division of Experimental Neuroscience, Neurobiology of Behavior Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Luisa Lo Iacono
- Department of Dynamic and Clinical Psychology, and Health Studies, Sapienza University of Rome, Via degli Apuli 1, Rome, Italy
| | - Alessandro Martini
- Division of Experimental Neuroscience, Experimental Neurology Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Constantin Heil
- Division of Experimental Neuroscience, Epigenetics and Signal Transduction Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Ezia Guatteo
- Division of Experimental Neuroscience, Experimental Neurology Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Motor Science and Wellness, University of Naples Parthenope, Naples, Italy
| | - Nicola Biagio Mercuri
- Division of Experimental Neuroscience, Experimental Neurology Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Systems Medicine, Università Degli Studi Di Roma Tor Vergata, Rome, Italy
| | - Maria Teresa Viscomi
- Department of Life Science and Public Health, Section of Histology and Embryology, Università Cattolica Del S. Cuore, Rome, Italy
- IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - Daniela Palacios
- Division of Experimental Neuroscience, Epigenetics and Signal Transduction Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
- IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
- Department of Life Science and Public Health, Section of Biology, Università Cattolica Del S. Cuore, Rome, Italy
| | - Valeria Carola
- Division of Experimental Neuroscience, Neurobiology of Behavior Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy.
- Department of Dynamic and Clinical Psychology, and Health Studies, Sapienza University of Rome, Via degli Apuli 1, Rome, Italy.
| |
Collapse
|
31
|
Singh A, Xie Y, Davis A, Wang ZJ. Early social isolation stress increases addiction vulnerability to heroin and alters c-Fos expression in the mesocorticolimbic system. Psychopharmacology (Berl) 2022; 239:1081-1095. [PMID: 34997861 DOI: 10.1007/s00213-021-06024-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/04/2021] [Indexed: 01/02/2023]
Abstract
RATIONALE Adverse psychosocial factors during early childhood or adolescence compromise neural structure and brain function, inducing susceptibility for many psychiatric disorders such as substance use disorder. Nevertheless, the mechanisms underlying early life stress-induced addiction vulnerability is still unclear, especially for opioids. OBJECTIVES To address this, we used a mouse heroin self-administration model to examine how chronic early social isolation (ESI) stress (5 weeks, beginning at weaning) affects the behavioral and neural responses to heroin during adulthood. RESULTS We found that ESI stress did not alter the acquisition for sucrose or heroin self-administration, nor change the motivation for sucrose on a progressive ratio schedule. However, ESI stress induced an upward shift of heroin dose-response curve in female mice and increased motivation and seeking for heroin in both sexes. Furthermore, we examined the neuronal activity (measured by c-Fos expression) within the key brain regions of the mesocorticolimbic system, including the prelimbic cortex (PrL), infralimbic cortex (IL), nucleus accumbens (NAc) core and shell, caudate putamen, and ventral tegmental area (VTA). We found that ESI stress dampened c-Fos expression in the PrL, IL, and VTA after 14-day forced abstinence, while augmented the neuronal responses to heroin-predictive context and cue in the IL and NAc core. Moreover, ESI stress disrupted the association between c-Fos expression and attempted infusions during heroin-seeking test in the PrL. CONCLUSIONS These data indicate that ESI stress leads to increased seeking and motivation for heroin, and this may be associated with distinct changes in neuronal activities in different subregions of the mesocorticolimbic system.
Collapse
Affiliation(s)
- Archana Singh
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS, 66045, USA
| | - Yang Xie
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS, 66045, USA
| | - Ashton Davis
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS, 66045, USA
| | - Zi-Jun Wang
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS, 66045, USA.
| |
Collapse
|
32
|
Mukamel EA. Multiple Comparisons and Inappropriate Statistical Testing Lead to Spurious Sex Differences in Gene Expression. Biol Psychiatry 2022; 91:e1-e2. [PMID: 34674833 PMCID: PMC10725829 DOI: 10.1016/j.biopsych.2021.06.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/13/2021] [Accepted: 06/02/2021] [Indexed: 12/13/2022]
Affiliation(s)
- Eran A Mukamel
- Department of Cognitive Science, University of California San Diego, La Jolla, California.
| |
Collapse
|
33
|
Seney ML, Nestler EJ. Introduction to Special Issue: Insight Into Sex Differences in Neuropsychiatric Syndromes From Transcriptomic Analyses. Biol Psychiatry 2022; 91:3-5. [PMID: 34857105 PMCID: PMC8887677 DOI: 10.1016/j.biopsych.2021.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Marianne L. Seney
- Department of Psychiatry and Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eric J. Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
34
|
Reply to: Multiple Comparisons and Inappropriate Statistical Testing Lead to Spurious Sex Differences in Gene Expression. Biol Psychiatry 2022; 91:e3-e5. [PMID: 34674832 PMCID: PMC9163995 DOI: 10.1016/j.biopsych.2021.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 01/03/2023]
|
35
|
Cahill B, Poelker-Wells S, Prather JF, Li Y. A Glimpse Into the Sexual Dimorphisms in Major Depressive Disorder Through Epigenetic Studies. Front Neural Circuits 2021; 15:768571. [PMID: 34744641 PMCID: PMC8564393 DOI: 10.3389/fncir.2021.768571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Depression is an umbrella term used to describe a mood disorder with a broad spectrum of symptoms including a persistent feeling of sadness, loss of interest, and deficits in social behavior. Epigenetic research bridges the environmental and genetic landscape and has the potential to exponentially improve our understanding of such a complex disorder. Depression is also a sexually dimorphic disorder and variations exist within epigenetic modification sites between sexes. These sex-specific mediators may impact behavioral symptomology and could serve as therapeutic targets for treatments to improve behavioral deficits. This mini review will focus on the social behavior perspective of depression and specifically explore the sexually different epigenetic modifications on depression.
Collapse
Affiliation(s)
- Branden Cahill
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States
| | - Samuel Poelker-Wells
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States
| | - Jonathan F Prather
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States
| | - Yun Li
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States
| |
Collapse
|
36
|
Seney ML, Kim SM, Glausier JR, Hildebrand MA, Xue X, Zong W, Wang J, Shelton MA, Phan BN, Srinivasan C, Pfenning AR, Tseng GC, Lewis DA, Freyberg Z, Logan RW. Transcriptional Alterations in Dorsolateral Prefrontal Cortex and Nucleus Accumbens Implicate Neuroinflammation and Synaptic Remodeling in Opioid Use Disorder. Biol Psychiatry 2021; 90:550-562. [PMID: 34380600 PMCID: PMC8463497 DOI: 10.1016/j.biopsych.2021.06.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Prevalence rates of opioid use disorder (OUD) have increased dramatically, accompanied by a surge of overdose deaths. While opioid dependence has been extensively studied in preclinical models, an understanding of the biological alterations that occur in the brains of people who chronically use opioids and who are diagnosed with OUD remains limited. To address this limitation, RNA sequencing was conducted on the dorsolateral prefrontal cortex and nucleus accumbens, regions heavily implicated in OUD, from postmortem brains in subjects with OUD. METHODS We performed RNA sequencing on the dorsolateral prefrontal cortex and nucleus accumbens from unaffected comparison subjects (n = 20) and subjects diagnosed with OUD (n = 20). Our transcriptomic analyses identified differentially expressed transcripts and investigated the transcriptional coherence between brain regions using rank-rank hypergeometric orderlap. Weighted gene coexpression analyses identified OUD-specific modules and gene networks. Integrative analyses between differentially expressed transcripts and genome-wide association study datasets using linkage disequilibrium scores assessed the genetic liability of psychiatric-related phenotypes in OUD. RESULTS Rank-rank hypergeometric overlap analyses revealed extensive overlap in transcripts between the dorsolateral prefrontal cortex and nucleus accumbens in OUD, related to synaptic remodeling and neuroinflammation. Identified transcripts were enriched for factors that control proinflammatory cytokine, chondroitin sulfate, and extracellular matrix signaling. Cell-type deconvolution implicated a role for microglia as a potential driver for opioid-induced neuroplasticity. Linkage disequilibrium score analysis suggested genetic liabilities for risky behavior, attention-deficit/hyperactivity disorder, and depression in subjects with OUD. CONCLUSIONS Overall, our findings suggest connections between the brain's immune system and opioid dependence in the human brain.
Collapse
Affiliation(s)
- Marianne L Seney
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Center for Adolescent Reward, Rhythms, and Sleep, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sam-Moon Kim
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Center for Adolescent Reward, Rhythms, and Sleep, University of Pittsburgh, Pittsburgh, Pennsylvania; Center for Systems Neurogenetics of Addiction, The Jackson Laboratory, Bar Harbor, Maine
| | - Jill R Glausier
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Mariah A Hildebrand
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Xiangning Xue
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Wei Zong
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jiebiao Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Micah A Shelton
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - BaDoi N Phan
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Chaitanya Srinivasan
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Andreas R Pfenning
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania; Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - George C Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Zachary Freyberg
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ryan W Logan
- Center for Systems Neurogenetics of Addiction, The Jackson Laboratory, Bar Harbor, Maine; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts; Center for Systems Neuroscience, Boston University, Boston, Massachusetts.
| |
Collapse
|
37
|
Lardner CK, van der Zee Y, Estill MS, Kronman HG, Salery M, Cunningham AM, Godino A, Parise EM, Kim JH, Neve RL, Shen L, Hamilton PJ, Nestler EJ. Gene-Targeted, CREB-Mediated Induction of ΔFosB Controls Distinct Downstream Transcriptional Patterns Within D1 and D2 Medium Spiny Neurons. Biol Psychiatry 2021; 90:540-549. [PMID: 34425966 PMCID: PMC8501456 DOI: 10.1016/j.biopsych.2021.06.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 06/02/2021] [Accepted: 06/25/2021] [Indexed: 01/23/2023]
Abstract
BACKGROUND The onset and persistence of addiction phenotypes are, in part, mediated by transcriptional mechanisms in the brain that affect gene expression and, subsequently, neural circuitry. ΔFosB is a transcription factor that accumulates in the nucleus accumbens (NAc)-a brain region responsible for coordinating reward and motivation-after exposure to virtually every known rewarding substance, including cocaine and opioids. ΔFosB has also been shown to directly control gene transcription and behavior downstream of both cocaine and opioid exposure, but with potentially different roles in D1 and D2 medium spiny neurons (MSNs) in NAc. METHODS To clarify MSN subtype-specific roles for ΔFosB and investigate how these coordinate the actions of distinct classes of addictive drugs in NAc, we developed a CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9-based epigenome editing tool to induce endogenous ΔFosB expression in vivo in the absence of drug exposure. After inducing ΔFosB in D1- or D2-MSNs or both, we performed RNA sequencing on bulk male and female NAc tissue (n = 6-8/group). RESULTS We found that ΔFosB induction elicits distinct transcriptional profiles in NAc by MSN subtype and by sex, establishing for the first time that ΔFosB mediates different transcriptional effects in males versus females. We also demonstrated that changes in D1-MSNs, but not those in D2-MSNs or both, significantly recapitulate changes in gene expression induced by cocaine self-administration. CONCLUSIONS Together, these findings demonstrate the efficacy of a novel molecular tool for studying cell type-specific transcriptional mechanisms and shed new light on the activity of ΔFosB, a critical transcriptional regulator of drug addiction.
Collapse
Affiliation(s)
- Casey K Lardner
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Yentl van der Zee
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Molly S Estill
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Hope G Kronman
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Marine Salery
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ashley M Cunningham
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Arthur Godino
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Eric M Parise
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jee Hyun Kim
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Rachael L Neve
- Gene Delivery Technology Core, Massachusetts General Hospital, Boston, Massachusetts
| | - Li Shen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Peter J Hamilton
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
38
|
Bendersky CJ, Milian AA, Andrus MD, De La Torre U, Walker DM. Long-Term Impacts of Post-weaning Social Isolation on Nucleus Accumbens Function. Front Psychiatry 2021; 12:745406. [PMID: 34616326 PMCID: PMC8488119 DOI: 10.3389/fpsyt.2021.745406] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/26/2021] [Indexed: 01/07/2023] Open
Abstract
Adolescence is a period of incredible change, especially within the brain's reward circuitry. Stress, including social isolation, during this time has profound effects on behaviors associated with reward and other neuropsychiatric disorders. Because the Nucleus Accumbens (NAc), is crucial to the integration of rewarding stimuli, the NAc is especially sensitive to disruptions by adolescent social isolation stress. This review highlights the long-term behavioral consequences of adolescent social isolation rearing on the NAc. It will discuss the cellular and molecular changes within the NAc that might underlie the long-term effects on behavior. When available sex-specific effects are discussed. Finally by mining publicly available data we identify, for the first time, key transcriptional profiles induced by adolescence social isolation in genes associated with dopamine receptor 1 and 2 medium spiny neurons and genes associated with cocaine self-administration. Together, this review provides a comprehensive discussion of the wide-ranging long-term impacts of adolescent social isolation on the dopaminergic system from molecules through behavior.
Collapse
Affiliation(s)
- Cari J Bendersky
- Department of Behavioral Neuroscience, Oregon Health and Science and University, Portland, OR, United States
| | - Allison A Milian
- Department of Behavioral Neuroscience, Oregon Health and Science and University, Portland, OR, United States
| | - Mason D Andrus
- Department of Behavioral Neuroscience, Oregon Health and Science and University, Portland, OR, United States
| | - Ubaldo De La Torre
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Deena M Walker
- Department of Behavioral Neuroscience, Oregon Health and Science and University, Portland, OR, United States
| |
Collapse
|