1
|
Isaac J, Balasubramanian H, Karkare SC, Schappaugh N, Murugan M. Protocol for the quantitative assessment of social and nonsocial reward-seeking in mice using an automated two choice operant assay. STAR Protoc 2025; 6:103788. [PMID: 40286274 DOI: 10.1016/j.xpro.2025.103788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/05/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025] Open
Abstract
The complexity of social behaviors makes it difficult to study the neural mechanisms that underlie them. Here, we describe an automated, low-cost two choice operant assay to directly compare social and nonsocial reward-seeking in mice. We provide instructions for the assembly of the operant chamber and conducting behavioral experiments, which include a graphical user interface (GUI)-based acquisition system that can be readily combined with various experimental manipulations. This assay allows for the characterization of social and nonsocial behaviors and their associated neural mechanisms. For complete details on the use and execution of this protocol, please refer to Isaac et al.1.
Collapse
Affiliation(s)
- Jennifer Isaac
- Emory Neuroscience Graduate Program, Emory University, Atlanta, GA 30322, USA; Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Hymavathy Balasubramanian
- Emory Neuroscience Graduate Program, Emory University, Atlanta, GA 30322, USA; Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Sonia Corbett Karkare
- Emory Neuroscience Graduate Program, Emory University, Atlanta, GA 30322, USA; Department of Biology, Emory University, Atlanta, GA 30322, USA
| | | | - Malavika Murugan
- Emory Neuroscience Graduate Program, Emory University, Atlanta, GA 30322, USA; Department of Biology, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
2
|
Huwart SJP, Morales-Puerto N, Everard A. Gut microbiota-related neuroinflammation at the crossroad of food reward alterations: implications for eating disorders. Gut 2025:gutjnl-2024-333397. [PMID: 39961644 DOI: 10.1136/gutjnl-2024-333397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 01/28/2025] [Indexed: 03/05/2025]
Abstract
The link between gut microbiome and eating behaviours, especially palatable food intake, is a growing focus of scientific investigation. The complex ecosystem of microorganisms in the gut influences host metabolism, immune function and neurobehavioural signalling. This review explores the role of neuroinflammation in dysregulations of food-induced reward signalling and the potential causal role of the gut microbiota on these proinflammatory processes. Particular attention is given to eating disorders (ED, specifically anorexia nervosa, binge eating disorder and bulimia nervosa) and potential links with the gut microbiota, food reward alterations and neuroinflammation. Finally, we propose gut microbiota modulation as a promising therapeutic strategy in food reward alterations and ED.
Collapse
Affiliation(s)
- Sabrina J P Huwart
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
- Walloon Excellence in Life BIOtechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
| | - Nuria Morales-Puerto
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
- Walloon Excellence in Life BIOtechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
| | - Amandine Everard
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
- Walloon Excellence in Life BIOtechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
3
|
Wang B, Qin Y, Chen Y, Zheng X, Chen Y, Zhao J, Zhang F, Duan S. Adipose tissue may not be a major player in the inflammatory pathogenesis of Autism Spectrum Disorder. Brain Behav Immun Health 2025; 43:100929. [PMID: 39810796 PMCID: PMC11732481 DOI: 10.1016/j.bbih.2024.100929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/04/2024] [Accepted: 12/21/2024] [Indexed: 01/16/2025] Open
Abstract
Purpose Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder increasingly recognized for its strong association with chronic inflammation. Adipose tissue functions as an endocrine organ and can secrete inflammatory cytokines to mediate inflammation. However, its involvement in ASD-related inflammation remains unclear. The present study aimed to clarify the role of adipose tissue in inducing inflammatory responses associated with ASD. Methods A total of 36 children with ASD and 18 unrelated healthy controls, aged 2-14.5 years, were enrolled in the study. The up-regulated differentially expressed genes from the GSE18123 dataset were subjected to gene ontology (GO) enrichment analysis to explore ASD-associated pathways. Plasma cytokines and adipokines levels were quantified using Milliplex MAP immunoaffinity technology. The BTBR T + Itprtf/J (BTBR) mice that are known for their core ASD behavioral traits and inflammatory phenotypes were employed as an animal ASD model to verify the key clinical findings. Results GO enrichment analyses revealed immune dysfunction in ASD. Symptom analysis showed that the recruited individuals had typical autistic symptoms. Plasma analysis showed no significant difference in adipokines levels, including adiponectin, leptin, resistin, adipsin, and lipocalin-2, between the ASD and control groups. However, markedly elevated levels of IL-6, IL-8, and tumor necrosis factor (TNF-α) were detected in children with ASD, suggesting that the inflammatory state is independent of adipokines. Similar results were also observed in BTBR autistic mice. Notably, levels of insulin, which are closely related to the exertion of adipokines function, also showed no significant changes. Conclusions Our findings suggest that inflammation in ASD likely originates from non-adipocyte sources, implying that adipose tissue may not play a major role in inflammatory pathogenesis of ASD. Consequently, targeting adipose-related inflammation may not be an effective treatment approach, providing new directions for the development of targeted interventions.
Collapse
Affiliation(s)
- Baojiang Wang
- Institute of Maternal and Child Medicine, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
- Shenzhen Key Laboratory of Maternal and Child Health and Diseases, Shenzhen, China
| | - Yueyuan Qin
- Institute of Maternal and Child Medicine, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Yong Chen
- Department of Rheumatology and Immunology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiujie Zheng
- Institute of Maternal and Child Medicine, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Yanjuan Chen
- Department of Rheumatology and Immunology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Juan Zhao
- Institute of Maternal and Child Medicine, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Feng Zhang
- Stomatology Health Care Center, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Shan Duan
- Institute of Maternal and Child Medicine, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
- Shenzhen Key Laboratory of Maternal and Child Health and Diseases, Shenzhen, China
| |
Collapse
|
4
|
Crine V, Papenberg G, Johansson J, Boraxbekk CJ, Wåhlin A, Lindenberger U, Lövdén M, Riklund K, Bäckman L, Nyberg L, Karalija N. Associations between inflammation and striatal dopamine D2-receptor availability in aging. J Neuroinflammation 2025; 22:24. [PMID: 39885603 PMCID: PMC11783874 DOI: 10.1186/s12974-025-03355-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/23/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Normal brain aging is associated with dopamine decline, which has been linked to age-related cognitive decline. Factors underlying individual differences in dopamine integrity at older ages remain, however, unclear. Here we aimed at investigating: (i) whether inflammation is associated with levels and 5-year changes of in vivo dopamine D2-receptor (DRD2) availability, (ii) if DRD2-inflammation associations differ between men and women, and (iii) whether inflammation and cerebral small-vessel disease (white-matter lesions) serve as two independent predictors of DRD2 availability. METHODS Analyses were performed in a sample of healthy adults > 60 years assessed at two measurement occasions separated by 5 years. At both occasions, DRD2 availability was estimated by 11C-raclopride PET, and white-matter lesions by MRI. Inflammation was assessed by two C-reactive protein-associated DNA methylation scores at study baseline. RESULTS Individuals with higher DNA methylation scores at baseline showed reduced striatal DRD2 availability. An interaction was found between DNA methylation scores and sex in relation to striatal DRD2 availability, such that associations were found in men but not in women. DNA methylation scores at study entrance were not significantly associated with 5-year striatal DRD2 decline rates. No significant association was found between DNA methylation scores and white-matter lesions, but higher scores as well as higher lesion burden were independently associated with reduced striatal DRD2 availability in men. CONCLUSIONS These findings suggest negative associations between one proxy of inflammation and DRD2 availability in older adults, selectively for men who had higher DNA methylation scores. Future studies should investigate other inflammatory markers in relation to dopamine integrity.
Collapse
Affiliation(s)
- Vanessa Crine
- Department of Medical and Translational Biology, Umeå university, Umeå, 901 87, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Goran Papenberg
- Aging Research Center, Karolinska Institute and Stockholm University, Stockholm, Sweden
| | - Jarkko Johansson
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden
| | - Carl-Johan Boraxbekk
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden
- Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute of Sports Medicine Copenhagen (ISMC), Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Anders Wåhlin
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden
- Department of Applied Physics and Electronics, Umeå University, Umeå, Sweden
| | - Ulman Lindenberger
- Center for Lifeorgdivision Psychology, Max Planck Institute for Human Development, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany and London, UK
| | - Martin Lövdén
- Department of Psychology, University of Gothenburg, Gothenburg, Sweden
| | - Katrine Riklund
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden
| | - Lars Bäckman
- Aging Research Center, Karolinska Institute and Stockholm University, Stockholm, Sweden
| | - Lars Nyberg
- Department of Medical and Translational Biology, Umeå university, Umeå, 901 87, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden
| | - Nina Karalija
- Department of Medical and Translational Biology, Umeå university, Umeå, 901 87, Sweden.
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden.
| |
Collapse
|
5
|
Isaac J, Karkare SC, Balasubramanian H, Schappaugh N, Javier JL, Rashid M, Murugan M. Sex differences in neural representations of social and nonsocial reward in the medial prefrontal cortex. Nat Commun 2024; 15:8018. [PMID: 39271723 PMCID: PMC11399386 DOI: 10.1038/s41467-024-52294-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
The reinforcing nature of social interactions is necessary for the maintenance of appropriate social behavior. However, the neural substrates underlying social reward processing and how they might differ based on the sex and internal state of the animal remains unknown. It is also unclear whether these neural substrates are shared with those involved in nonsocial rewarding processing. We developed a fully automated, two choice (social-sucrose) operant assay in which mice choose between social and nonsocial rewards to directly compare the reward-related behaviors associated with two competing stimuli. We performed cellular resolution calcium imaging of medial prefrontal cortex (mPFC) neurons in male and female mice across varying states of water restriction and social isolation. We found that mPFC neurons maintain largely non-overlapping, flexible representations of social and nonsocial reward that vary with internal state in a sex-dependent manner. Additionally, optogenetic manipulation of mPFC activity during the reward period of the assay disrupted reward-seeking behavior across male and female mice. Thus, using a two choice operant assay, we have identified sex-dependent, non-overlapping neural representations of social and nonsocial reward in the mPFC that vary with internal state and that are essential for appropriate reward-seeking behavior.
Collapse
Affiliation(s)
- Jennifer Isaac
- Neuroscience Graduate Program, Emory University, Atlanta, GA, 30322, USA
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | - Sonia Corbett Karkare
- Neuroscience Graduate Program, Emory University, Atlanta, GA, 30322, USA
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | - Hymavathy Balasubramanian
- Neuroscience Graduate Program, Emory University, Atlanta, GA, 30322, USA
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | | | - Jarildy Larimar Javier
- Neuroscience Graduate Program, Emory University, Atlanta, GA, 30322, USA
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | - Maha Rashid
- Neuroscience Graduate Program, Emory University, Atlanta, GA, 30322, USA
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | - Malavika Murugan
- Neuroscience Graduate Program, Emory University, Atlanta, GA, 30322, USA.
- Department of Biology, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
6
|
Du B, Zhang W, Chen L, Deng X, Li K, Lin F, Jia F, Su S, Tang W. Higher or lower? Interpersonal behavioral and neural synchronization of movement imitation in autistic children. Autism Res 2024; 17:1876-1901. [PMID: 39118396 DOI: 10.1002/aur.3205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
How well autistic children can imitate movements and how their brain activity synchronizes with the person they are imitating have been understudied. The current study adopted functional near-infrared spectroscopy (fNIRS) hyperscanning and employed a task involving real interactions involving meaningful and meaningless movement imitation to explore the fundamental nature of imitation as a dynamic and interactive process. Experiment 1 explored meaningful and meaningless gesture imitation. The results revealed that autistic children exhibited lower imitation accuracy and behavioral synchrony than non-autistic children when imitating both meaningful and meaningless gestures. Specifically, compared to non-autistic children, autistic children displayed significantly higher interpersonal neural synchronization (INS) in the right inferior parietal lobule (r-IPL) (channel 12) when imitating meaningful gestures but lower INS when imitating meaningless gestures. Experiment 2 further investigated the imitation of four types of meaningless movements (orofacial movements, transitive movements, limb movements, and gestures). The results revealed that across all four movement types, autistic children exhibited significantly lower imitation accuracy, behavioral synchrony, and INS in the r-IPL (channel 12) than non-autistic children. This study is the first to identify INS as a biomarker of movement imitation difficulties in autistic individuals. Furthermore, an intra- and interindividual imitation mechanism model was proposed to explain the underlying causes of movement imitation difficulties in autistic individuals.
Collapse
Affiliation(s)
- Bang Du
- School of Education and Psychology, University of Jinan, Jinan, China
| | - Wenjun Zhang
- School of Education and Psychology, University of Jinan, Jinan, China
- Department of Special Education, East China Normal University, Shanghai, China
| | - Liu Chen
- School of Education and Psychology, University of Jinan, Jinan, China
| | - Xiaorui Deng
- School of Education and Psychology, University of Jinan, Jinan, China
| | - Kaiyun Li
- School of Education and Psychology, University of Jinan, Jinan, China
| | - Fengxun Lin
- School of Education and Psychology, University of Jinan, Jinan, China
- School of Education, Qingdao Huanghai University, Qingdao, China
| | - Fanlu Jia
- School of Education and Psychology, University of Jinan, Jinan, China
| | - Shuhua Su
- School of Education and Psychology, University of Jinan, Jinan, China
| | - Wanzhi Tang
- Faculty of Arts, Psychology, University of Alberta, Edmonton, Canada
| |
Collapse
|
7
|
Cao X, Tang X, Feng C, Lin J, Zhang H, Liu Q, Zheng Q, Zhuang H, Liu X, Li H, Khan NU, Shen L. A Systematic Investigation of Complement and Coagulation-Related Protein in Autism Spectrum Disorder Using Multiple Reaction Monitoring Technology. Neurosci Bull 2023; 39:1623-1637. [PMID: 37031449 PMCID: PMC10603015 DOI: 10.1007/s12264-023-01055-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 02/02/2023] [Indexed: 04/10/2023] Open
Abstract
Autism spectrum disorder (ASD) is one of the common neurodevelopmental disorders in children. Its etiology and pathogenesis are poorly understood. Previous studies have suggested potential changes in the complement and coagulation pathways in individuals with ASD. In this study, using multiple reactions monitoring proteomic technology, 16 of the 33 proteins involved in this pathway were identified as differentially-expressed proteins in plasma between children with ASD and controls. Among them, CFHR3, C4BPB, C4BPA, CFH, C9, SERPIND1, C8A, F9, and F11 were found to be altered in the plasma of children with ASD for the first time. SERPIND1 expression was positively correlated with the CARS score. Using the machine learning method, we obtained a panel composed of 12 differentially-expressed proteins with diagnostic potential for ASD. We also reviewed the proteins changed in this pathway in the brain and blood of patients with ASD. The complement and coagulation pathways may be activated in the peripheral blood of children with ASD and play a key role in the pathogenesis of ASD.
Collapse
Affiliation(s)
- Xueshan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China
- College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Chengyun Feng
- Maternal and Child Health Hospital of Baoan, Shenzhen, 518100, China
| | - Jing Lin
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Huajie Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Qiong Liu
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China
- College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Qihong Zheng
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Hongbin Zhuang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Xukun Liu
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Haiying Li
- Department of Endocrinology, Guiyang First People's Hospital, Guiyang, 550002, China
| | - Naseer Ullah Khan
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China.
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen, 518060, China.
| |
Collapse
|
8
|
Yui K, Imataka G, Shiohama T. Lipid Peroxidation of the Docosahexaenoic Acid/Arachidonic Acid Ratio Relating to the Social Behaviors of Individuals with Autism Spectrum Disorder: The Relationship with Ferroptosis. Int J Mol Sci 2023; 24:14796. [PMID: 37834244 PMCID: PMC10572946 DOI: 10.3390/ijms241914796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/11/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) undergo lipid peroxidation and conversion into malondialdehyde (MDA). MDA reacts with acetaldehyde to form malondialdehyde-modified low-density lipoprotein (MDA-LDL). We studied unsettled issues in the association between MDA-LDL and the pathophysiology of ASD in 18 individuals with autism spectrum disorders (ASD) and eight age-matched controls. Social behaviors were assessed using the social responsiveness scale (SRS). To overcome the problem of using small samples, adaptive Lasso was used to enhance the interpretability accuracy, and a coefficient of variation was used for variable selections. Plasma levels of the MDA-LDL levels (91.00 ± 16.70 vs. 74.50 ± 18.88) and the DHA/arachidonic acid (ARA) ratio (0.57 ± 0.16 vs. 0.37 ± 0.07) were significantly higher and the superoxide dismutase levels were significantly lower in the ASD group than those in the control group. Total SRS scores in the ASD group were significantly higher than those in the control group. The unbeneficial DHA/ARA ratio induced ferroptosis via lipid peroxidation. Multiple linear regression analysis and adaptive Lasso revealed an association of the DHA/ARA ratio with total SRS scores and increased MDA-LDL levels in plasma, resulting in neuronal deficiencies. This unbeneficial DHA/ARA-ratio-induced ferroptosis contributes to autistic social behaviors and is available for therapy.
Collapse
Affiliation(s)
- Kunio Yui
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan;
- Department of Pediatrics, Dokkyo Medical University, Mibu 321-0293, Japan;
| | - George Imataka
- Department of Pediatrics, Dokkyo Medical University, Mibu 321-0293, Japan;
| | - Tadashi Shiohama
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan;
| |
Collapse
|
9
|
Li F, Ke H, Wang S, Mao W, Fu C, Chen X, Fu Q, Qin X, Huang Y, Li B, Li S, Xing J, Wang M, Deng W. Leaky Gut Plays a Critical Role in the Pathophysiology of Autism in Mice by Activating the Lipopolysaccharide-Mediated Toll-Like Receptor 4–Myeloid Differentiation Factor 88–Nuclear Factor Kappa B Signaling Pathway. Neurosci Bull 2022:10.1007/s12264-022-00993-9. [DOI: 10.1007/s12264-022-00993-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/09/2022] [Indexed: 12/23/2022] Open
Abstract
AbstractIncreased intestinal barrier permeability, leaky gut, has been reported in patients with autism. However, its contribution to the development of autism has not been determined. We selected dextran sulfate sodium (DSS) to disrupt and metformin to repair the intestinal barrier in BTBR T+tf/J autistic mice to test this hypothesis. DSS treatment resulted in a decreased affinity for social proximity; however, autistic behaviors in mice were improved after the administration of metformin. We found an increased affinity for social proximity/social memory and decreased repetitive and anxiety-related behaviors. The concentration of lipopolysaccharides in blood decreased after the administration of metformin. The expression levels of the key molecules in the toll-like receptor 4 (TLR4)–myeloid differentiation factor 88 (MyD88)–nuclear factor kappa B (NF-κB) pathway and their downstream inflammatory cytokines in the cerebral cortex were both repressed. Thus, “leaky gut” could be a trigger for the development of autism via activation of the lipopolysaccharide-mediated TLR4–MyD88–NF-κB pathway.
Collapse
|
10
|
Schiller CE, Walsh E, Eisenlohr-Moul TA, Prim J, Dichter GS, Schiff L, Bizzell J, Slightom SL, Richardson EC, Belger A, Schmidt P, Rubinow DR. Effects of gonadal steroids on reward circuitry function and anhedonia in women with a history of postpartum depression. J Affect Disord 2022; 314:176-184. [PMID: 35777494 PMCID: PMC9605402 DOI: 10.1016/j.jad.2022.06.078] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/25/2022] [Accepted: 06/23/2022] [Indexed: 01/17/2023]
Abstract
BACKGROUND Reward system dysfunction is evident across neuropsychiatric conditions. Here we present data from a double-blinded pharmaco-fMRI study investigating the triggering of anhedonia and reward circuit activity in women. METHODS The hormonal states of pregnancy and parturition were simulated in euthymic women with a history of postpartum depression (PPD+; n = 15) and those without such a history (PPD-; n = 15) by inducing hypogonadism, adding back estradiol and progesterone for 8 weeks ("addback"), and then withdrawing both steroids ("withdrawal"). Anhedonia was assessed using the Inventory of Depression and Anxiety Symptoms (IDAS) during each hormone phase. Those who reported a 30 % or greater increase in IDAS anhedonia, dysphoria, or ill temper during addback or withdrawal, compared with pre-treatment, were identified as hormone sensitive (HS+) and all others were identified as non-hormone sensitive (HS-). The monetary incentive delay (MID) task was administered during fMRI sessions at pre-treatment and during hormone withdrawal to assess brain activation during reward anticipation and feedback. RESULTS On average, anhedonia increased during addback and withdrawal in PPD+ but not PPD-. During reward feedback, both HS+ (n = 10) and HS- (n = 18) showed decreased activation in clusters in the right putamen (p < .031, FWE-corrected) and left postcentral and supramarginal gyri (p < .014, FWE-corrected) at the withdrawal scans, relative to pre-treatment scans. LIMITATIONS A modest sample size, stringent exclusion criteria, and relative lack of diversity in study participants limit the generalizability of results. CONCLUSION Although results do not explain differential hormone sensitivity in depression, they demonstrate significant effects of reproductive hormones on reward-related brain function in women.
Collapse
Affiliation(s)
- C E Schiller
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, United States of America.
| | - E Walsh
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, United States of America
| | - T A Eisenlohr-Moul
- Department of Psychiatry, University of Illinois at Chicago, United States of America
| | - J Prim
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, United States of America
| | - G S Dichter
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, United States of America
| | - L Schiff
- Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill School of Medicine, United States of America
| | - J Bizzell
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, United States of America
| | - S L Slightom
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, United States of America
| | | | - A Belger
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, United States of America
| | - P Schmidt
- National Institute of Mental Health, Behavioral Endocrinology Branch, United States of America
| | - D R Rubinow
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, United States of America
| |
Collapse
|
11
|
Santos A, Caramelo F, Melo JB, Castelo-Branco M. Dopaminergic Gene Dosage Reveals Distinct Biological Partitions between Autism and Developmental Delay as Revealed by Complex Network Analysis and Machine Learning Approaches. J Pers Med 2022; 12:jpm12101579. [PMID: 36294718 PMCID: PMC9604562 DOI: 10.3390/jpm12101579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/11/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
The neurobiological mechanisms underlying Autism Spectrum Disorders (ASD) remains controversial. One factor contributing to this debate is the phenotypic heterogeneity observed in ASD, which suggests that multiple system disruptions may contribute to diverse patterns of impairment which have been reported between and within study samples. Here, we used SFARI data to address genetic imbalances affecting the dopaminergic system. Using complex network analysis, we investigated the relations between phenotypic profiles, gene dosage and gene ontology (GO) terms related to dopaminergic neurotransmission from a polygenic point-of-view. We observed that the degree of distribution of the networks matched a power-law distribution characterized by the presence of hubs, gene or GO nodes with a large number of interactions. Furthermore, we identified interesting patterns related to subnetworks of genes and GO terms, which suggested applicability to separation of clinical clusters (Developmental Delay (DD) versus ASD). This has the potential to improve our understanding of genetic variability issues and has implications for diagnostic categorization. In ASD, we identified the separability of four key dopaminergic mechanisms disrupted with regard to receptor binding, synaptic physiology and neural differentiation, each belonging to particular subgroups of ASD participants, whereas in DD a more unitary biological pattern was found. Finally, network analysis was fed into a machine learning binary classification framework to differentiate between the diagnosis of ASD and DD. Subsets of 1846 participants were used to train a Random Forest algorithm. Our best classifier achieved, on average, a diagnosis-predicting accuracy of 85.18% (sd 1.11%) on the test samples of 790 participants using 117 genes. The achieved accuracy surpassed results using genetic data and closely matched imaging approaches addressing binary diagnostic classification. Importantly, we observed a similar prediction accuracy when the classifier uses only 62 GO features. This result further corroborates the complex network analysis approach, suggesting that different genetic causes might converge to the dysregulation of the same set of biological mechanisms, leading to a similar disease phenotype. This new biology-driven ontological framework yields a less variable and more compact domain-related set of features with potential mechanistic generalization. The proposed network analysis, allowing for the determination of a clearcut biological distinction between ASD and DD (the latter presenting much lower modularity and heterogeneity), is amenable to machine learning approaches and provides an interesting avenue of research for the future.
Collapse
Affiliation(s)
- André Santos
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), ICNAS, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Francisco Caramelo
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), ICNAS, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CIBB, iCBR, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Joana Barbosa Melo
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), ICNAS, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CIBB, iCBR, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), ICNAS, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
12
|
He X, Xie J, Zhang J, Wang X, Jia X, Yin H, Qiu Z, Yang Z, Chen J, Ji Z, Yu W, Chen M, Xu W, Gao H. Acid-Responsive Dual-Targeted Nanoparticles Encapsulated Aspirin Rescue the Immune Activation and Phenotype in Autism Spectrum Disorder. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104286. [PMID: 35285177 PMCID: PMC9108608 DOI: 10.1002/advs.202104286] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 02/21/2022] [Indexed: 05/07/2023]
Abstract
The treatment of autism spectrum disorder (ASD) is one of the most difficult challenges in neurodevelopmental diseases, because of the unclear pathogenesis research and low brain-lesion targeting efficiency. Besides, maternal immune activation has been reported as the most mature and widely used model of ASD and aspirin-triggered lipoxin A4 is a potent anti-inflammatory mediator being involved in the resolution of neuroinflammation in ASD. Therefore, an aspirin encapsulated cascade drug delivery system (Asp@TMNPs) is established, which can successively target the blood-brain barrier (BBB) and microglial cells and response to the acid microenvironment in lysosome. As a result, the mitochondrial oxidative stress, DNA damage, and inflammation of microglial cells are prominently alleviated. After the treatment of Asp@TMNPs, the social interaction, stereotype behavior, and anxious condition of ASD mice are notably improved and the activation of microglial cells is inhibited. Overall, this system successively penetrates the BBB and targets microglial cells, therefore, it significantly enhances the intracephalic drug accumulation and improves anti-neuroinflammatory efficacy of aspirin, providing a promising strategy for ASD treatment.
Collapse
Affiliation(s)
- Xueqin He
- Key Laboratory of Drug‐Targeting and Drug Delivery of MOE, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University HospitalWest China School of PharmacySichuan UniversityChengdu610041China
| | - Jiang Xie
- Key Laboratory of Drug‐Targeting and Drug Delivery of MOE, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University HospitalWest China School of PharmacySichuan UniversityChengdu610041China
- Department of pediatricsChengdu Third People's HospitalChengdu610041China
| | - Jing Zhang
- Key Laboratory of Drug‐Targeting and Drug Delivery of MOE, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University HospitalWest China School of PharmacySichuan UniversityChengdu610041China
| | - Xiaorong Wang
- Key Laboratory of Drug‐Targeting and Drug Delivery of MOE, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University HospitalWest China School of PharmacySichuan UniversityChengdu610041China
| | - Xufeng Jia
- Key Laboratory of Drug‐Targeting and Drug Delivery of MOE, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University HospitalWest China School of PharmacySichuan UniversityChengdu610041China
- Department of pediatricsChengdu Third People's HospitalChengdu610041China
| | - Heng Yin
- Key Laboratory of Drug‐Targeting and Drug Delivery of MOE, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University HospitalWest China School of PharmacySichuan UniversityChengdu610041China
- Department of pediatricsChengdu Third People's HospitalChengdu610041China
| | - Zhongqing Qiu
- Key Laboratory of Drug‐Targeting and Drug Delivery of MOE, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University HospitalWest China School of PharmacySichuan UniversityChengdu610041China
- Department of pediatricsChengdu Third People's HospitalChengdu610041China
| | - Zhihang Yang
- Key Laboratory of Drug‐Targeting and Drug Delivery of MOE, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University HospitalWest China School of PharmacySichuan UniversityChengdu610041China
| | - Jiao Chen
- State Key Laboratory of Stress Cell BiologySchool of Life SciencesXiamen UniversityXiamen361102China
| | - Zhiliang Ji
- State Key Laboratory of Stress Cell BiologySchool of Life SciencesXiamen UniversityXiamen361102China
| | - Wenqi Yu
- Key Laboratory of Drug‐Targeting and Drug Delivery of MOE, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University HospitalWest China School of PharmacySichuan UniversityChengdu610041China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauMacau999078China
| | - Wenming Xu
- Key Laboratory of Drug‐Targeting and Drug Delivery of MOE, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University HospitalWest China School of PharmacySichuan UniversityChengdu610041China
| | - Huile Gao
- Key Laboratory of Drug‐Targeting and Drug Delivery of MOE, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University HospitalWest China School of PharmacySichuan UniversityChengdu610041China
| |
Collapse
|
13
|
Dichter GS, Rodriguez-Romaguera J. Anhedonia and Hyperhedonia in Autism and Related Neurodevelopmental Disorders. Curr Top Behav Neurosci 2022; 58:237-254. [PMID: 35397066 DOI: 10.1007/7854_2022_312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although autism spectrum disorder (ASD) is defined by impaired social communication and restricted and repetitive behaviors and interests, ASD is also characterized by impaired motivational processes. The "social motivation theory of autism" describes how social motivation disruptions in ASD in early childhood may impede the drive to engage in reciprocal social behaviors and ultimately interfere with the development of neural networks critical for social communication (Chevallier et al., Trends Cogn Sci 16:231-239, 2012b). Importantly, clinical studies and preclinical research using model organisms for ASD indicate that motivational impairments in ASD are not constrained to social rewards but are evident in response to a range of nonsocial rewards as well. Additionally, translational studies on certain genetically defined neurodevelopmental disorders associated with ASD indicate that these syndromic forms of ASD are also characterized by motivational deficits and mesolimbic dopamine impairments. In this chapter we summarize clinical and preclinical research relevant to reward processing impairments in ASD and related neurodevelopmental disorders. We also propose a nosology to describe reward processing impairments in these disorders that uses a three-axes model. In this triaxial nosology, the first axis defines the direction of the reward response (i.e., anhedonic, hyperhedonic); the second axis defines the construct of the reward process (e.g., reward liking, reward wanting); and the third axis defines the context of the reward response (e.g., social, nonsocial). A more precise nosology for describing reward processing impairments in ASD and related neurodevelopmental disorders will aid in the translation of preclinical research to clinical investigations which will ultimately help to speed up the development of interventions that target motivational systems for ASD and related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Gabriel S Dichter
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Jose Rodriguez-Romaguera
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
14
|
Dayton JR, Yuan Y, Pacumio LP, Dorflinger BG, Yoo SC, Olson MJ, Hernández-Suárez SI, McMahon MM, Cruz-Orengo L. Expression of IL-20 Receptor Subunit β Is Linked to EAE Neuropathology and CNS Neuroinflammation. Front Cell Neurosci 2021; 15:683687. [PMID: 34557075 PMCID: PMC8452993 DOI: 10.3389/fncel.2021.683687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 08/13/2021] [Indexed: 12/24/2022] Open
Abstract
Considerable clinical evidence supports that increased blood-brain barrier (BBB) permeability is linked to immune extravasation of CNS parenchyma during neuroinflammation. Although BBB permeability and immune extravasation are known to be provoked by vascular endothelial growth factor-A (i.e., VEGF-A) and C-X-C motif chemokine ligand 12 (CXCL12), respectively, the mechanisms that link both processes are still elusive. The interleukin-20 (i.e., IL-20) cytokine signaling pathway was previously implicated in VEGF-mediated angiogenesis and is known to induce cellular response by way of signaling through IL-20 receptor subunit β (i.e., IL-20RB). Dysregulated IL-20 signaling is implicated in many inflammatory pathologies, but it's contribution to neuroinflammation has yet to be reported. We hypothesize that the IL-20 cytokine, and the IL cytokine subfamily more broadly, play a key role in CNS neuroinflammation by signaling through IL-20RB, induce VEGF activity, and enhance both BBB-permeability and CXCL12-mediated immune extravasation. To address this hypothesis, we actively immunized IL-20RB-/- mice and wild-type mice to induce experimental autoimmune encephalomyelitis (EAE) and found that IL-20RB-/- mice showed amelioration of disease progression compared to wild-type mice. Similarly, we passively immunized IL-20RB-/- mice and wild-type mice with myelin-reactive Th1 cells from either IL-20RB-/- and wild-type genotype. Host IL-20RB-/- mice showed lesser disease progression than wild-type mice, regardless of the myelin-reactive Th1 cells genotype. Using multianalyte bead-based immunoassay and ELISA, we found distinctive changes in levels of pro-inflammatory cytokines between IL-20RB-/- mice and wild-type mice at peak of EAE. We also found detectable levels of all cytokines of the IL-20 subfamily within CNS tissues and specific alteration to IL-20 subfamily cytokines IL-19, IL-20, and IL-24, expression levels. Immunolabeling of CNS region-specific microvessels confirmed IL-20RB protein at the spinal cord microvasculature and upregulation during EAE. Microvessels isolated from macaques CNS tissues also expressed IL-20RB. Moreover, we identified the expression of all IL-20 receptor subunits: IL-22 receptor subunit α-1 (IL-22RA1), IL-20RB, and IL-20 receptor subunit α (IL-20RA) in human CNS microvessels. Notably, human cerebral microvasculature endothelial cells (HCMEC/D3) treated with IL-1β showed augmented expression of the IL-20 receptor. Lastly, IL-20-treated HCMEC/D3 showed alterations on CXCL12 apicobasal polarity consistent with a neuroinflammatory status. This evidence suggests that IL-20 subfamily cytokines may signal at the BBB via IL-20RB, triggering neuroinflammation.
Collapse
Affiliation(s)
- Jacquelyn R Dayton
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, United States
| | - Yinyu Yuan
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, United States
| | - Lisa P Pacumio
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, United States
| | - Bryce G Dorflinger
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, United States
| | - Samantha C Yoo
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, United States
| | - Mariah J Olson
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, United States
| | - Sara I Hernández-Suárez
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, United States.,Bayer School of Natural and Environmental Sciences, Duquesne University of the Holy Spirit, Pittsburgh, PA, United States
| | - Moira M McMahon
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, United States.,Department of Molecular and Cell Biology, College of Letters and Science, University of California, Berkeley, Berkeley, CA, United States
| | - Lillian Cruz-Orengo
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
15
|
Pavăl D, Micluția IV. The Dopamine Hypothesis of Autism Spectrum Disorder Revisited: Current Status and Future Prospects. Dev Neurosci 2021; 43:73-83. [PMID: 34010842 DOI: 10.1159/000515751] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/09/2021] [Indexed: 11/19/2022] Open
Abstract
Autism spectrum disorder (ASD) comprises a group of neurodevelopmental disorders characterized by social deficits and stereotyped behaviors. Despite intensive research, its etiopathogenesis remains largely unclear. Although studies consistently reported dopaminergic anomalies, a coherent dopaminergic model of ASD was lacking until recently. In 2017, we provided a theoretical framework for a "dopamine hypothesis of ASD" which proposed that autistic behavior arises from a dysfunctional midbrain dopaminergic system. Namely, we hypothesized that malfunction of 2 critical circuits originating in the midbrain, that is, the mesocorticolimbic and nigrostriatal pathways, generates the core behavioral features of ASD. Moreover, we provided key predictions of our model along with testing means. Since then, a notable number of studies referenced our work and numerous others provided support for our model. To account for these developments, we review all these recent data and discuss their implications. Furthermore, in the light of these new insights, we further refine and reconceptualize our model, debating on the possibility that various etiologies of ASD converge upon a dysfunctional midbrain dopaminergic system. In addition, we discuss future prospects, providing new means of testing our hypothesis, as well as its limitations. Along these lines, we aimed to provide a model which, if confirmed, could provide a better understanding of the etiopathogenesis of ASD along with new therapeutic strategies.
Collapse
Affiliation(s)
- Denis Pavăl
- Psychiatry Clinic, Emergency County Hospital, Cluj-Napoca, Romania
| | - Ioana Valentina Micluția
- Department of Psychiatry, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
16
|
García-Cabrerizo R, Carbia C, O Riordan KJ, Schellekens H, Cryan JF. Microbiota-gut-brain axis as a regulator of reward processes. J Neurochem 2021; 157:1495-1524. [PMID: 33368280 DOI: 10.1111/jnc.15284] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/08/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022]
Abstract
Our gut harbours trillions of microorganisms essential for the maintenance of homeostasis and host physiology in health and disease. In the last decade, there has been a growing interest in understanding the bidirectional pathway of communication between our microbiota and the central nervous system. With regard to reward processes there is accumulating evidence from both animal and human studies that this axis may be a key factor in gating reward valence. Focusing on the mesocorticolimbic pathway, we will discuss how the intestinal microbiota is involved in regulating brain reward functions, both in natural (i.e. eating, social or sexual behaviours) and non-natural reinforcers (drug addiction behaviours including those relevant to alcohol, psychostimulants, opioids and cannabinoids). We will integrate preclinical and clinical evidence suggesting that the microbiota-gut-brain axis could be implicated in the development of disorders associated with alterations in the reward system and how it may be targeted as a promising therapeutic strategy. Cover Image for this issue: https://doi.org/10.1111/jnc.15065.
Collapse
Affiliation(s)
| | - Carina Carbia
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Harriet Schellekens
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
17
|
di Michele F. Why Vitamin D Status Might be Important for Brain Health and Mental Well-Being? Curr Pharm Des 2020; 26:2439-2441. [DOI: 10.2174/138161282621200520085710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Flavia di Michele
- Acute Psychiatric Unit, PTV Foundation, Policlinico Tor Vergata, Rome, Italy
| |
Collapse
|
18
|
Sex-specific effects of developmental exposure to polychlorinated biphenyls on neuroimmune and dopaminergic endpoints in adolescent rats. Neurotoxicol Teratol 2020; 79:106880. [PMID: 32259577 DOI: 10.1016/j.ntt.2020.106880] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/17/2020] [Accepted: 03/24/2020] [Indexed: 12/22/2022]
Abstract
Exposure to environmental contaminants early in life can have long lasting consequences for physiological function. Polychlorinated biphenyls (PCBs) are a group of ubiquitous contaminants that perturb endocrine signaling and have been associated with altered immune function in children. In this study, we examined the effects of developmental exposure to PCBs on neuroimmune responses to an inflammatory challenge during adolescence. Sprague Dawley rat dams were exposed to a PCB mixture (Aroclor 1242, 1248, 1254, 1:1:1, 20 μg/kg/day) or oil control throughout pregnancy, and adolescent male and female offspring were injected with lipopolysaccharide (LPS, 50 μg/kg, ip) or saline control prior to euthanasia. Gene expression profiling was conducted in the hypothalamus, prefrontal cortex, striatum, and midbrain. In the hypothalamus, PCBs increased expression of genes involved in neuroimmune function, including those within the nuclear factor kappa b (NF-κB) complex, independent of LPS challenge. PCB exposure also increased expression of receptors for dopamine, serotonin, and estrogen in this region. In contrast, in the prefrontal cortex, PCB exposure blunted or induced irregular neuroimmune gene expression responses to LPS challenge. Moreover, neither PCB nor LPS exposure altered expression of neurotransmitter receptors throughout the mesocorticolimbic circuit. Almost all effects were present in males but not females, in agreement with the idea that male neuroimmune cells are more sensitive to perturbation and emphasizing the importance of studying both male and female subjects. Given that altered neuroimmune signaling has been implicated in mental health and substance abuse disorders that often begin during adolescence, these results highlight neuroimmune processes as another mechanism by which early life PCBs can alter brain function later in life.
Collapse
|
19
|
Shen L, Liu X, Zhang H, Lin J, Feng C, Iqbal J. Biomarkers in autism spectrum disorders: Current progress. Clin Chim Acta 2020; 502:41-54. [DOI: 10.1016/j.cca.2019.12.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022]
|
20
|
The biopsychology of autism spectrum disorder: Theory, methods, and evidence. Biol Psychol 2019; 148:107770. [PMID: 31525392 DOI: 10.1016/j.biopsycho.2019.107770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 11/22/2022]
|