1
|
Ghosh N, Biswas AR, Chakraborty A, Ganguli A. Mixed-species Pseudomonas biofilms: a novel and sustainable strategy for malachite green dye decolorization and detoxification. Folia Microbiol (Praha) 2025:10.1007/s12223-024-01238-0. [PMID: 39747794 DOI: 10.1007/s12223-024-01238-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 12/21/2024] [Indexed: 01/04/2025]
Abstract
This study investigated the application of mixed biofilms formed by two Pseudomonas strains (NAA22 and NAA23) for bio-decolorization of malachite green (MG) dye. The isolated strains displayed biofilm formation and MG decolorization capabilities. Mixed biofilms exhibited significantly greater biofilm formation and MG decolorization (94.3%) compared to individual strains, suggesting synergistic interactions. This decolorization efficiency surpassed previously reported values for single strain decolorization. The mixed biofilms tolerated a broad range of temperatures (20-40 °C) and pH (5-9), with optimal decolorization at neutral or slightly acidic conditions (pH7.0). Enzyme analysis revealed laccase, NADH-DCIP reductase, and azoreductase as key contributors to MG decolorization, with significantly higher activity in mixed biofilms. Importantly, the bio-decolorization process transformed MG into non-phytotoxic compounds, demonstrated by seed germination and growth assays. These findings propose a promising and environmentally safe approach for MG bioremediation using mixed Pseudomonas biofilms.
Collapse
Affiliation(s)
- Nabanita Ghosh
- Department of Microbiology, Techno India University, West Bengal EM-4 Sector-V, Salt Lake City, Kolkata, West Bengal, 700091, India
| | - Arup Ratan Biswas
- Department of Chemistry, Techno India University, West Bengal EM-4 Sector-V, Salt Lake City, Kolkata, West Bengal, 700091, India
| | - Arindam Chakraborty
- Department of Microbiology, Techno India University, West Bengal EM-4 Sector-V, Salt Lake City, Kolkata, West Bengal, 700091, India
| | - Arnab Ganguli
- Department of Microbiology, Techno India University, West Bengal EM-4 Sector-V, Salt Lake City, Kolkata, West Bengal, 700091, India.
| |
Collapse
|
2
|
El Awady ME, El-Shall FN, Mohamed GE, Abd-Elaziz AM, Abdel-Monem MO, Hassan MG. Exploring the decolorization efficiency and biodegradation mechanisms of different functional textile azo dyes by Streptomyces albidoflavus 3MGH. BMC Microbiol 2024; 24:210. [PMID: 38877404 PMCID: PMC11179346 DOI: 10.1186/s12866-024-03347-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/22/2024] [Indexed: 06/16/2024] Open
Abstract
Efficiently mitigating and managing environmental pollution caused by the improper disposal of dyes and effluents from the textile industry is of great importance. This study evaluated the effectiveness of Streptomyces albidoflavus 3MGH in decolorizing and degrading three different azo dyes, namely Reactive Orange 122 (RO 122), Direct Blue 15 (DB 15), and Direct Black 38 (DB 38). Various analytical techniques, such as Fourier Transform Infrared (FTIR) spectroscopy, High-Performance Liquid Chromatography (HPLC), and Gas Chromatography-Mass Spectrometry (GC-MS) were used to analyze the degraded byproducts of the dyes. S. albidoflavus 3MGH demonstrated a strong capability to decolorize RO 122, DB 15, and DB 38, achieving up to 60.74%, 61.38%, and 53.43% decolorization within 5 days at a concentration of 0.3 g/L, respectively. The optimal conditions for the maximum decolorization of these azo dyes were found to be a temperature of 35 °C, a pH of 6, sucrose as a carbon source, and beef extract as a nitrogen source. Additionally, after optimization of the decolorization process, treatment with S. albidoflavus 3MGH resulted in significant reductions of 94.4%, 86.3%, and 68.2% in the total organic carbon of RO 122, DB 15, and DB 38, respectively. After the treatment process, we found the specific activity of the laccase enzyme, one of the mediating enzymes of the degradation mechanism, to be 5.96 U/mg. FT-IR spectroscopy analysis of the degraded metabolites showed specific changes and shifts in peaks compared to the control samples. GC-MS analysis revealed the presence of metabolites such as benzene, biphenyl, and naphthalene derivatives. Overall, this study demonstrated the potential of S. albidoflavus 3MGH for the effective decolorization and degradation of different azo dyes. The findings were validated through various analytical techniques, shedding light on the biodegradation mechanism employed by this strain.
Collapse
Affiliation(s)
- Mohamed E El Awady
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, El- Buhouth St. 33, Dokki, Cairo, Egypt
| | - Fatma N El-Shall
- Dyeing, Printing and Textile Auxiliary Department, National Research Centre, El-Buhouth St. 33, Dokki, Cairo, 12622, Egypt
| | - Ghada E Mohamed
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, 13518, Egypt
| | - Ahmed M Abd-Elaziz
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, El-Buhouth St. 33, Dokki, Cairo, Egypt
| | - Mohamed O Abdel-Monem
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, 13518, Egypt.
| | - Mervat G Hassan
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, 13518, Egypt
| |
Collapse
|
3
|
Dutta S, Adhikary S, Bhattacharya S, Roy D, Chatterjee S, Chakraborty A, Banerjee D, Ganguly A, Nanda S, Rajak P. Contamination of textile dyes in aquatic environment: Adverse impacts on aquatic ecosystem and human health, and its management using bioremediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120103. [PMID: 38280248 DOI: 10.1016/j.jenvman.2024.120103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/29/2024]
Abstract
Textile dyes are the burgeoning environmental contaminants across the world. They might be directly disposed of from textile industries into the aquatic bodies, which act as the direct source for the entire ecosystem, ultimately impacting the human beings. Hence, it is essential to dissect the potential adverse outcomes of textile dye exposure on aquatic plants, aquatic fauna, terrestrial entities, and humans. Analysis of appropriate literature has revealed that textile dye effluents could affect the aquatic biota by disrupting their growth and reproduction. Various aquatic organisms are targeted by textile dye effluents. In such organisms, these chemicals affect their development, behavior, and induce oxidative stress. General populations of humans are exposed to textile dyes via the food chain and drinking contaminated water. In humans, textile dyes are biotransformed into electrophilic intermediates and aromatic amines by the enzymes of the cytochrome family. Textile dyes and their biotransformed products form the DNA and protein adducts at sub-cellular moiety. Moreover, these compounds catalyze the production of free radicals and oxidative stress, and trigger the apoptotic cascades to produce lesions in multiple organs. In addition, textile dyes modulate epigenetic factors like DNA methyltransferase and histone deacetylase to promote carcinogenesis. Several bioremediation approaches involving algae, fungi, bacteria, biomembrane filtration techniques, etc., have been tested and some other hybrid systems are currently under investigation to treat textile dye effluents. However, many such approaches are at the trial stage and require further research to develop more efficient, cost-effective, and easy-to-handle techniques.
Collapse
Affiliation(s)
- Sohini Dutta
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Satadal Adhikary
- Post Graduate Department of Zoology, A.B.N. Seal College, Cooch Behar, West Bengal, India
| | | | - Dipsikha Roy
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Sovona Chatterjee
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Aritra Chakraborty
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Diyasha Banerjee
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Abhratanu Ganguly
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Sayantani Nanda
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Prem Rajak
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| |
Collapse
|
4
|
Sompark C, Damrianant S, Sakkayawong N. Phytotoxicity and genotoxicity study of reactive red 141 dye on mung bean (Vigna radiata (L.) Wilczek) seedlings. Mol Biol Rep 2024; 51:51. [PMID: 38165511 DOI: 10.1007/s11033-023-08917-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/17/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Reactive Red (RR) 141 dye is widely used in various industrial applications, but its environmental impact remains a growing concern. In this study, the phytotoxic and genotoxic effects of RR 141 dye on mung bean seedlings (Vigna radiata (L.) Wilczek) were investigated, serving as a model for potential harm to plant systems. METHODS AND RESULTS Short-term (14 days) and long-term (60 days) experiments in paddy soil pot culture exposed mung bean seedlings to RR 141 dye. The dye delayed germination and hindered growth, significantly reducing germination percentage and seedling vigor index (SVI) at concentrations of 50 and 100 ml/L. In short-term exposure, plumule and radical lengths dose-dependently decreased, while long-term exposure affected plant length and grain weight, leaving pod-related parameters unaffected. To evaluate genotoxicity, high annealing temperature-random amplified polymorphic DNA (HAT-RAPD) analysis was employed with five RAPD primers having 58-75% GC content. It detected polymorphic band patterns, generating 116 bands (433 to 2857 bp) in plant leaves exposed to the dye. Polymorphisms indicated the appearance/disappearance of DNA bands in both concentrations, with decreased genomic template stability (GTS) values suggesting DNA damage and mutation. CONCLUSION These findings demonstrate that RR 141 dye has a significant impact on genomic template stability (GTS) and exhibits phytotoxic and genotoxic responses in mung bean seedlings. This research underscores the potential of RR 141 dye to act as a harmful agent within plant model systems, highlighting the need for further assessment of its environmental implications.
Collapse
Affiliation(s)
- Chalermwoot Sompark
- Postharvest and Processing Research and Development Division, Department of Agriculture, Ladyao, Chatuchack, Bangkok, 10900, Thailand
| | - Somchit Damrianant
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Rangsit Centre, Khlong Nueng, Klong Luang, Pathum Thani, 12120, Thailand
| | - Niramol Sakkayawong
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Rangsit Centre, Khlong Nueng, Klong Luang, Pathum Thani, 12120, Thailand.
| |
Collapse
|
5
|
Kanwal A, Rehman R, Imran M, Samin G, Jahangir MM, Ali S. Phytoremediative adsorption methodologies to decontaminate water from dyes and organic pollutants. RSC Adv 2023; 13:26455-26474. [PMID: 37674490 PMCID: PMC10478504 DOI: 10.1039/d3ra02104a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023] Open
Abstract
Persistent organic pollutants and dyes cause major problems during ecofriendly wastewater treatment. To overcome this huge problem, several techniques have been considered and in practice for the safe disposal of organic pollutants in recent years; some of them are discussed and compared herein. This review focuses on new trends for wastewater treatment and compares them with certain other techniques alongside their pros and cons; adsorption is considered the safest among them. Adsorbents derived from agri-wastes have good capacity for the removal of these contaminants owing to their great sorption capacity, high reusability, easy operation, etc. Sometimes they need some modifications for the removal of dyes, which are also discussed in this review. This capacity of adsorbents to chelate dye molecules can be affected by factors, such as pH, the concentration of dyes and adsorbents, and temperature of the system. pH has direct influence on the ionization potential and charge on the outer surface of adsorbents. The findings on isotherms, kinetics, and desorption of plant waste-based biomaterials that are safe for the ecosystem and user friendly and are used for hazardous contaminant removal from water are summarized in this review. Finally, conclusions and future perspectives are presented, and some other materials, such as CNTs and MOFs, are also discussed as efficient adsorbents for eliminating dyes from wastewater. Finally, it is predicted that the adsorption of dyes is a more feasible solution for this dye pollution problem.
Collapse
Affiliation(s)
- Ayesha Kanwal
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab Quaid-e-Azam Campus Lahore-54590 Pakistan
| | - Rabia Rehman
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab Quaid-e-Azam Campus Lahore-54590 Pakistan
| | - Muhammad Imran
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab Quaid-e-Azam Campus Lahore-54590 Pakistan
| | - Ghufrana Samin
- Department of Basic Sciences and Humanities, University of Engineering and Technology (Lahore) Faisalabad Campus Pakistan
| | | | - Saadat Ali
- University of Engineering and Technology Taxila Pakistan
| |
Collapse
|
6
|
Liaqat I, Khalid A, Rubab S, Rashid F, Latif AA, Naseem S, Bibi A, Khan BN, Ansar W, Javed A, Afzaal M, Summer M, Majid S, Ali S, Aftab MN. In Vitro Biofilm-Mediated Biodegradation of Pesticides and Dye-Contaminated Effluents Using Bacterial Biofilms. Microorganisms 2023; 11:2163. [PMID: 37764007 PMCID: PMC10535849 DOI: 10.3390/microorganisms11092163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/04/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Overuse of pesticides in agricultural soil and dye-polluted effluents severely contaminates the environment and is toxic to animals and humans making their removal from the environment essential. The present study aimed to assess the biodegradation of pesticides (cypermethrin (CYP) and imidacloprid (IMI)), and dyes (malachite green (MG) and Congo red (CR)) using biofilms of bacteria isolated from pesticide-contaminated soil and dye effluents. Biofilms of indigenous bacteria, i.e., Bacillus thuringiensis 2A (OP554568), Enterobacter hormaechei 4A (OP723332), Bacillus sp. 5A (OP586601), and Bacillus cereus 6B (OP586602) individually and in mixed culture were tested against CYP and IMI. Biofilms of indigenous bacteria i.e., Lysinibacillus sphaericus AF1 (OP589134), Bacillus sp. CF3 (OP589135) and Bacillus sp. DF4 (OP589136) individually and in mixed culture were tested for their ability to degrade dyes. The biofilm of a mixed culture of B. thuringiensis + Bacillus sp. (P7) showed 46.2% degradation of CYP compared to the biofilm of a mixed culture of B. thuringiensis + E. hormaechei + Bacillus sp. + B. cereus (P11), which showed significantly high degradation (70.0%) of IMI. Regarding dye biodegradation, a mixed culture biofilm of Bacillus sp. + Bacillus sp. (D6) showed 86.76% degradation of MG, which was significantly high compared to a mixed culture biofilm of L. sphaericus + Bacillus sp. (D4) that degraded only 30.78% of CR. UV-VIS spectroscopy revealed major peaks at 224 nm, 263 nm, 581 nm and 436 nm for CYP, IMI, MG and CR, respectively, which completely disappeared after treatment with bacterial biofilms. Fourier transform infrared (FTIR) analysis showed the appearance of new peaks in degraded metabolites and disappearance of a peak in the control spectrum after biofilm treatment. Thin layer chromatography (TLC) analysis also confirmed the degradation of CYP, IMI, MG and CR into several metabolites compared to the control. The present study demonstrates the biodegradation potential of biofilm-forming bacteria isolated from pesticide-polluted soil and dye effluents against pesticides and dyes. This is the first report demonstrating biofilm-mediated bio-degradation of CYP, IMI, MG and CR utilizing soil and effluent bacterial flora from Multan and Sheikhupura, Punjab, Pakistan.
Collapse
Affiliation(s)
- Iram Liaqat
- Microbiology Laboratory, Department of Zoology, Government College University, Lahore 54000, Pakistan; (W.A.); (M.S.); (S.M.)
| | - Awais Khalid
- Department of Physics, Hazara University, Mansehra 21300, Pakistan;
| | - Saima Rubab
- Department of Pharmacognosy, Lahore Pharmacy College, Lahore Medical & Dental College, Lahore 53400, Pakistan;
| | - Farzana Rashid
- Department of Zoology, Lahore College for Women University, Lahore 54000, Pakistan; (F.R.); (A.A.L.)
| | - Asma Abdul Latif
- Department of Zoology, Lahore College for Women University, Lahore 54000, Pakistan; (F.R.); (A.A.L.)
| | - Sajida Naseem
- Department of Zoology, University of Education, Lower Mall Campus, Lahore 54000, Pakistan
| | - Asia Bibi
- Department of Zoology, The Women University, Multan 66000, Pakistan;
| | - Bushra Nisar Khan
- Institute of Zoology, University of the Punjab, Lahore 54590, Pakistan
| | - Waiza Ansar
- Microbiology Laboratory, Department of Zoology, Government College University, Lahore 54000, Pakistan; (W.A.); (M.S.); (S.M.)
| | - Arshad Javed
- Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Pattoki 55300, Pakistan;
| | - Muhammad Afzaal
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan;
| | - Muhammad Summer
- Microbiology Laboratory, Department of Zoology, Government College University, Lahore 54000, Pakistan; (W.A.); (M.S.); (S.M.)
| | - Samia Majid
- Microbiology Laboratory, Department of Zoology, Government College University, Lahore 54000, Pakistan; (W.A.); (M.S.); (S.M.)
| | - Sikander Ali
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan (M.N.A.)
| | - Muhammad Nauman Aftab
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan (M.N.A.)
| |
Collapse
|
7
|
Tizazu S, Tesfaye G, Wang A, Guadie A, Andualem B. Microbial diversity, transformation and toxicity of azo dye biodegradation using thermo-alkaliphilic microbial consortia. Heliyon 2023; 9:e16857. [PMID: 37313163 PMCID: PMC10258453 DOI: 10.1016/j.heliyon.2023.e16857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023] Open
Abstract
In this research, the transformation and toxicity of Reactive Red 141 and 239 biodegraded under anaerobic-aerobic conditions as well as metagenomic analysis of Reactive Red 239 degrading microbial consortia collected from Shala Hot spring were investigated. Toxicity of dyes before treatment and after treatment on three plants, fish and microorganisms were done. A halotolerant and thermo-alkaliphilic bacterial consortia decolorizing azo dyes (>98% RR 141 and > 96% RR 239 in 7 h) under optimum conditions of salt concentration (0.5%), temperature (55 °C) and pH (9), were used. Toxicity effect of untreated dyes and treated dyes in Tomato > Beetroot > Cabbage plants, while the effect was Leuconostoc mesenteroides > Lactobacillus plantarum > Escherichia coli in microorganisms. Among fishes, the toxicity effect was highest in Oreochromis niloticus followed by Cyprinus carpio and Clarias gariepinus. The three most dominant phyla that could be in charge of decolorizing RR 239 under anaerobic-aerobic systems were Bacteroidota (22.6-29.0%), Proteobacteria (13.5-29.0%), and Chloroflexi (8.8-23.5%). At class level microbial community structure determination, Bacteroidia (18.9-27.2%), Gammaproteobacteria (11.0-15.8%), Alphaproteobacteria (2.5-5.0%) and Anaerolineae (17.0-21.9%) were dominant classes. The transformation of RR 141 and RR 239 into amine compounds were proposed via high performance liquid chromatography-mass spectroscopy (HPLC/MS) and fourier transform infrared spectroscopy (FT-IR). Overall, dye containing wastewaters treated under anaerobic-aerobic systems using thermo-alkaliphilic microbial consortia were found to be safe to agricultural (fishes and vegetables) purposes.
Collapse
Affiliation(s)
- Samson Tizazu
- Biotechnology Stream, Biology Department, Natural and Computational Sciences' College, Arba Minch University, Arba Minch 21, Ethiopia
| | - Getaneh Tesfaye
- Biotechnology Stream, Biology Department, Natural and Computational Sciences' College, Arba Minch University, Arba Minch 21, Ethiopia
| | - Aijie Wang
- Research Center for Eco-Environmental Sciences' Key Laboratory of Environmental Biotechnology, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Awoke Guadie
- Biotechnology Stream, Biology Department, Natural and Computational Sciences' College, Arba Minch University, Arba Minch 21, Ethiopia
- Research Center for Eco-Environmental Sciences' Key Laboratory of Environmental Biotechnology, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Berhanu Andualem
- Department of Industrial Biotechnology, Institute of Biotechnology, Gondar University, Gondar 196, Ethiopia
| |
Collapse
|
8
|
Yu X, Mao C, Zong S, Khan A, Wang W, Yun H, Zhang P, Shigaki T, Fang Y, Han H, Li X. Transcriptome analysis reveals self-redox mineralization mechanism of azo dyes and novel decolorizing hydrolases in Aspergillus tabacinus LZ-M. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 325:121459. [PMID: 36934962 DOI: 10.1016/j.envpol.2023.121459] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Bio-degradation is the most affordable method of azo dye decontamination, while its drawbacks such as aromatic amines accumulation and low degradation efficiency must be overcome. In this study, a novel mechanism of azo dye degradation by a fungus was discovered. At a concentration of 400 mg/L, the decolorization efficiency of Acid Red 73 (AR73) by Aspergillus tabacinus LZ-M was 90.28%. Metabolite analysis and transcriptome sequencing analysis revealed a self-redox process of AR73 degradation, where the electrons generated in carbon oxidation were transferred to the reduction of -C-N = and -NN. The metabolites, 2-hydroxynaphthalene and N-phenylnitrous amide were mineralized into CO2 through catechol pathway and a glycolytic process. Furthermore, the mineralization ratio of dye was computed to be 31.8% by the carbon balance and electron balance. By using comparative transcriptome, a novel decoloring enzyme Ord95 was discovered in unknown genes through gene cloning. It hydrolyzed AR73 into 2-hydroxynaphthalene and N-phenylnitrous amide, containing a glutathione S-transferase domain with three arginines as key active sites. Here the new mechanism of azo dye degradation was discovered with identification of a novel enzyme in Aspergillus tabacinus LZ-M.
Collapse
Affiliation(s)
- Xuan Yu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China
| | - Chunlan Mao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China
| | - Simin Zong
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China
| | - Wenxue Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China
| | - Hui Yun
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China
| | - Peng Zhang
- Key Laboratory for Resources Utilization Technoloy of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou, 730020, Gansu, China
| | - Toshiro Shigaki
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yitian Fang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huawen Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
9
|
El-Liethy MA, Hemdan BA, El-Taweel GE. New insights for tracking bacterial community structures in industrial wastewater from textile factories to surface water using phenotypic, 16S rRNA isolates identifications and high-throughput sequencing. Acta Trop 2023; 238:106806. [PMID: 36574894 DOI: 10.1016/j.actatropica.2022.106806] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/13/2022] [Accepted: 12/24/2022] [Indexed: 12/26/2022]
Abstract
Industrial wastewater can possibly change the microbial ecological environment. There are few studies that focus on the bacterial variety in textile wastewater effluents and after combination with domestic wastewater. Thus, this study aimed to determine dye degrading bacteria from textile wastewater and environmental water samples using cultural method followed by phenotypic using BIOLOG and genotypic identification (16S rRNA) for dye degrading isolates identifications. Moreover, the bacterial communities in three textile and four environmental samples using Illumina MiSeq high-throughput sequencing were investigated. The findings revealed that in textile water samples, the ratio of dye-degrading bacteria (DDB) to total bacterial counts (TBC) was 27%. The identified DDB genera by 16S rRNA based on the cultural approach were Citrobacter spp., Klebsiella spp., Enterobacter spp., Pseudomonas spp., and Aeromonas spp. Regarding to the metagenomics analyses, the environmental samples had 5,598 Operational Toxanomic Units (OTUs) more than textile wastewater samples (1,463 OTUs). Additionally, the most abundant phyla in the textile wastewater were Proteobacteria (24.45-94.83%), Bacteriodetes (0.5-44.84%) and Firmicutes (3.72-67.40%), while, Proteobacteria (30.8-76.3%), bacteroidetes (8.5-50%) and Acentobacteria (0.5-23.12%) were the most abundant phyla in the environmental samples. The maximum abundant bacteria at species level in environmental samples were Aquabacterium parvum (36.71%), Delftia tsuruhatensis (17.61%), Parabacteriodes chartae (15.39%) and Methylorubrum populi (7.51%) in El-Rahawy Drain water (RDW), River Nile water (RNW), wastewater (RWW) from WWTP in Zennin and El-Rahawy Drain sediment (RDS), respectively, whereas the maximum abundant bacteria at species level in textile wastewater were Alkalibacterium pelagium (34.11%), Enterobacter kobei (26.09%) and Chryseobacterium montanum (16.93%) in factory 1 (HBT) sample, SHB sample (before mixing with domestic wastewater) and SHB sample (after mixing with domestic wastewater), respectively. In conclusion, the microbial communities in textile wastewaters are similar to those in environmental samples at the phylum level but distinct at the genus and species levels because they are exposed to a wider range of environmental circumstances.
Collapse
Affiliation(s)
- Mohamed Azab El-Liethy
- Environmental Microbiology Laboratory, Water Pollution Research Department, National Research Centre, Dokki, Giza 12622, Egypt.
| | - Bahaa A Hemdan
- Environmental Microbiology Laboratory, Water Pollution Research Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Gamila E El-Taweel
- Environmental Microbiology Laboratory, Water Pollution Research Department, National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
10
|
Mushtaq S, Shafiq M, Tariq MR, Sami A, Nawaz-ul-Rehman MS, Bhatti MHT, Haider MS, Sadiq S, Abbas MT, Hussain M, Shahid MA. Interaction between bacterial endophytes and host plants. FRONTIERS IN PLANT SCIENCE 2023; 13:1092105. [PMID: 36743537 PMCID: PMC9890182 DOI: 10.3389/fpls.2022.1092105] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/22/2022] [Indexed: 05/14/2023]
Abstract
Endophytic bacteria are mainly present in the plant's root systems. Endophytic bacteria improve plant health and are sometimes necessary to fight against adverse conditions. There is an increasing trend for the use of bacterial endophytes as bio-fertilizers. However, new challenges are also arising regarding the management of these newly discovered bacterial endophytes. Plant growth-promoting bacterial endophytes exist in a wide host range as part of their microbiome, and are proven to exhibit positive effects on plant growth. Endophytic bacterial communities within plant hosts are dynamic and affected by abiotic/biotic factors such as soil conditions, geographical distribution, climate, plant species, and plant-microbe interaction at a large scale. Therefore, there is a need to evaluate the mechanism of bacterial endophytes' interaction with plants under field conditions before their application. Bacterial endophytes have both beneficial and harmful impacts on plants but the exact mechanism of interaction is poorly understood. A basic approach to exploit the potential genetic elements involved in an endophytic lifestyle is to compare the genomes of rhizospheric plant growth-promoting bacteria with endophytic bacteria. In this mini-review, we will be focused to characterize the genetic diversity and dynamics of endophyte interaction in different host plants.
Collapse
Affiliation(s)
- Sehrish Mushtaq
- Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Shafiq
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Rizwan Tariq
- Department of Food Science, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Adnan Sami
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Shah Nawaz-ul-Rehman
- Virology Lab, Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad Pakistan, Faisalabad, Pakistan
| | | | | | - Saleha Sadiq
- Institute of Biochemistry, Biotechnology, and Bioinformatics (IBBB), The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Taqqi Abbas
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Mujahid Hussain
- Horticultural Science Department, North Florida Research and Education Center, University of Florida/IFAS, Quincy, FL, United States
| | - Muhammad Adnan Shahid
- Horticultural Science Department, North Florida Research and Education Center, University of Florida/IFAS, Quincy, FL, United States
| |
Collapse
|
11
|
Tizazu S, Tesfaye G, Andualem B, Wang A, Guadie A. Evaluating the potential of thermo-alkaliphilic microbial consortia for azo dye biodegradation under anaerobic-aerobic conditions: Optimization and microbial diversity analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116235. [PMID: 36113293 DOI: 10.1016/j.jenvman.2022.116235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Wastewaters in textile industry are mainly characterized by higher pH, color, salt and chemical oxygen demand (COD) values, which are environmentally undesirable. Among these textile effluent characteristics, color removal is the most challenging task. In this study, the potential of Rift Valley halotolerant and thermo-alkaliphilic microbial consortia (collected from Shala hot spring located in Ethiopia) for azo dye biodegradation under anaerobic-aerobic conditions were evaluated. Optimization and microbial diversity analysis were done using Reactive Red 141. Under optimum conditions of pH (9), temperature (55 °C), salinity (0.5%), and nutrients, microbial consortia can remove >98% color and 92.7 ± 7.3% COD under anaerobic and aerobic conditions, respectively. In addition, the consortia was capable of decolorizing initial dye concentrations of 100-1000 mg/L, and various dye types including Everzol Blue LX, RY 84, RR 239, RB 198 and RY 700. The 16S rRNA gene sequence results showed that Bacteroidetes (25.3%) > Proteobacteria (21.0%) > Chloroflexi (18.5%) > Halobacterota (6.2%) dominant phyla. Based on the findings, non-color effluent adapted Rift Valley halotolerant and thermo-alkaliphilic bacterial consortia can be a potential candidate for bioremediation of textile and other industries characterized by higher salinity, temperature and pH.
Collapse
Affiliation(s)
- Samson Tizazu
- Arba Minch University, College of Natural and Computational Sciences, Department of Biology, Biotechnology Stream, Arba Minch 21, Ethiopia
| | - Getaneh Tesfaye
- Arba Minch University, College of Natural and Computational Sciences, Department of Biology, Biotechnology Stream, Arba Minch 21, Ethiopia
| | - Berhanu Andualem
- Gondar University, Institute of Biotechnology, Department of Industrial Biotechnology, Gondar, 196, Ethiopia
| | - Aijie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Awoke Guadie
- Arba Minch University, College of Natural and Computational Sciences, Department of Biology, Biotechnology Stream, Arba Minch 21, Ethiopia; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China.
| |
Collapse
|
12
|
Singh AL, Chaudhary S, Kumar S, Kumar A, Singh A, Yadav A. Biodegradation of Reactive Yellow-145 azo dye using bacterial consortium: A deterministic analysis based on degradable Metabolite, phytotoxicity and genotoxicity study. CHEMOSPHERE 2022; 300:134504. [PMID: 35398073 DOI: 10.1016/j.chemosphere.2022.134504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/14/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Azo dyes are used at larger-scale as coloring agent in the textile industry. It generates a huge amount of dye containing wastewater and its toxicity threatens all kinds of life and also impacts human beings. At present, more impetus is being given to the biological treatment of dye effluent because of its azoreductase enzyme action to break down azo bond which leads to decolorization and degradation of dye. Bacterial consortium of E. asburiae and E. cloacae (1:1 ratio) was used for degradation and decolorization of Reactive Yellow-145 (RY-145) dye. The optimization of dye concentration, temperature, pH, and media has been carried out to determine the conditions required for maximum degradation and decolorization. The mixed consortium (10%) has shown 98.78% decolorization of RY-145 dye under static condition at 500 mgL-1 concentration, 35 °C and pH 7.0 at 12 h contact period. FTIR analysis showed formation of new functional groups in the treated dye, such as O-H stretch at 1361 cm-1, C-H stretch at 890 cm-1, N-H stretch at 1598 cm-1 and aromatic C-H at 671 cm-1 revealing degradation of dye. Biodegraded metabolites of RY-145 dye were identified through GC-MS analysis that includes 2-Cyclohexen-1-ol, 5-Nitroso-2, 4, 6-triaminopyrimidine, Octahydroquinoline-9-hydroxyperoxide, Tetramethyl-2-hexadecen-1-ol, 9-Octadecanoic acid, methyl ester and Hexadecanoic acid, methyl ester, respectively which have industrial applications. Cyclohexane was used in gasoline and adhesive while Octahydroquinoline-9-hydroxyperoxide and 5-Nitroso-2, 4, 6-triaminopyrimidine were used in manufacturing drugs. Tetramethyl-2-hexadecen-1-ol, 9-Octadecanoic acid, methyl ester and Hexadecanoic acid, methyl ester are antimicrobial and antioxidant. Phytotoxicity test also showed non-toxic effects of treated dye on germination of Cicer arietinum and Vigna radiata seeds. Similarly, genotoxicity study indicated less toxic effects of biodegraded dye products on Mitotic index (MI) and cell division of Allium cepa.
Collapse
Affiliation(s)
- Asha Lata Singh
- Bioremediation Lab., Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Sneha Chaudhary
- Bioremediation Lab., Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, Maharashtra, India
| | - Aniruddha Kumar
- Bioremediation Lab., Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | | | | |
Collapse
|
13
|
Qiu H, Shen F, Yin A, Liu J, Wu B, Li Y, Xiao Y, Hai J, Xu B. Biodegradation and Detoxification of Azo Dyes by Halophilic/Halotolerant Microflora Isolated From the Salt Fields of Tibet Autonomous Region China. Front Microbiol 2022; 13:877151. [PMID: 35620106 PMCID: PMC9127808 DOI: 10.3389/fmicb.2022.877151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/11/2022] [Indexed: 12/03/2022] Open
Abstract
This study aimed to decolorize azo dyes in high-salt industrial wastewater under high-salt and low oxygen conditions using extreme halophilic/halotolerant bacteria screened from the salt fields of Tibet, which consisted of Enterococcus, unclassified Enterobacteriaceae, Staphylococcus, Bacillus, and Kosakonia. Under the optimal conditions, 600 mg/l Congo red, Direct Black G (DBG), Amaranth, methyl red, and methyl orange could be completely decolorized in 24, 8, 8, 12, and 12 h, respectively. When the DBG concentration was 600 mg/l, NADH–DCIP, laccase, and azo reductase were confirmed to be the primary reductase and oxidase during the degradation process, and the degradation pathways were verified. The microflora could not only tolerate changes in salt concentrations of 0–80 g/l, but also displayed strong degradative ability. Under high-salt concentrations (≥ 60 g/l NaCl), NADH–DCIP reductase was primarily used to decolorize the azo dye. However, under low salt concentrations (≤ 40 g/l NaCl), azo reductase began to function, and manganese peroxidase and lignin peroxidase could cooperate to participate in DBG degradation. Additionally, the halophilic/halophilic microflora was shown to convert the toxic DBG dye to metabolites of low toxicity based on phytotoxicity analysis, and a new mechanism for the microflora to degrade DBG was proposed based on intermediates identified by liquid chromatography-mass spectrometry (LC–MS). This study revealed that the halophilic/halophilic microflora has effective ecological and industrial value for treating wastewater from the textile industry.
Collapse
Affiliation(s)
- Hulin Qiu
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Fengfei Shen
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Aiguo Yin
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Jiaxian Liu
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Biyu Wu
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Ying Li
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Yunyi Xiao
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Jinping Hai
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Bo Xu
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| |
Collapse
|
14
|
Microbial Degradation of Azo Dyes: Approaches and Prospects for a Hazard-Free Conversion by Microorganisms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084740. [PMID: 35457607 PMCID: PMC9026373 DOI: 10.3390/ijerph19084740] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022]
Abstract
Azo dyes have become a staple in various industries, as colors play an important role in consumer choices. However, these dyes pose various health and environmental risks. Although different wastewater treatments are available, the search for more eco-friendly options persists. Bioremediation utilizing microorganisms has been of great interest to researchers and industries, as the transition toward greener solutions has become more in demand through the years. This review tackles the health and environmental repercussions of azo dyes and its metabolites, available biological approaches to eliminate such dyes from the environment with a focus on the use of different microorganisms, enzymes that are involved in the degradation of azo dyes, and recent trends that could be applied for the treatment of azo dyes.
Collapse
|
15
|
Rajashekarappa KK, Mahadevan GD, Neelagund SE, Sathynarayana M, Vijaya D, Mulla SI. Decolorization of amaranth RI and fast red E azo dyes by thermophilic Geobacillus thermoleovoransKNG 112. JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY 2022; 97:482-489. [DOI: 10.1002/jctb.6834] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/23/2021] [Indexed: 11/24/2024]
Abstract
AbstractBACKGROUNDAccumulation of industrial dyes in wastewater creates not only environmental problems, but also medical and aesthetic problems. Removal of synthetic dyes from contaminated hot textile industrial discharge is a fundamental issue. Herein, the microbial decolorization of azo dyes amaranth RI and fast red E was studied. The decolorization process was studied in terms of various physicochemical and analytical parameters.RESULTSThe azo dye decolorization efficiency was improved with beef extract and maltose as nitrogen and carbon sources, respectively. At 55 °C, Geobacillus thermoleovorans KNG 112 showed the maximum decolorization for both amaranth RI and fast red E at pH 7 and 8, respectively. Fourier transform infrared spectral analysis revealed the formation of amide, nitrosamine, aromatic and carbonyl compounds, alkyne, alkane, alcohol and alkyl halide groups after dye decolorization. Mixed dye (amaranth RI and fast red E) decolorization resulted in formation of various alkyl acetals, amines (nitrosamines, secondary and tertiary amines) azo groups and alkyl chloride. Furthermore, phytotoxic effect of azo dyes on the germination of fenugreek and green gram showed no inhibitory effects; however, more and rapid germination compared to the control group was observed.CONCLUSIONSThe results lead to the conclusion that the optimization of G. thermoleovorans KNG 112 for removal of azo dyes could have applications in decontamination of hot industrial discharges. © 2021 Society of Chemical Industry (SCI).
Collapse
Affiliation(s)
| | | | | | - Madhuri Sathynarayana
- Department of Biochemistry, Jnanasahyadri Kuvempu University, Shankaraghatta Shivamogga 577451 India
| | - Divya Vijaya
- Department of Biotechnology, Jnanasahyadri Kuvempu University, Shankaraghatta Shivamogga 577451 India
| | - Sikandar I Mulla
- Department of Biochemistry, School of Applied Sciences REVA University Bangalore India
| |
Collapse
|
16
|
Nabilah B, Purnomo AS, Rizqi HD, Putro HS, Nawfa R. The effect of Ralstonia pickettii bacterium addition on methylene blue dye biodecolorization by brown-rot fungus Daedalea dickinsii. Heliyon 2022; 8:e08963. [PMID: 35243083 PMCID: PMC8860926 DOI: 10.1016/j.heliyon.2022.e08963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 01/10/2022] [Accepted: 02/10/2022] [Indexed: 10/31/2022] Open
Abstract
Methylene blue (MB) is one of synthetic dyes that is used in the textile industry which is difficult to degrade in nature. Previously, the brown-rot fungus (BRF) Daedalea dickinsii had shown a good ability to degrade MB, however, the decolorization ability was relatively still low and had a long period of incubation. Therefore, improvement of process is needed to increase the ability of D. dickinsii to decolorize MB. In this study, the effect of Ralstonia pickettii bacterium addition on MB biodecolorization by the BRF D. dickinsii in potato dextrose broth (PDB) medium was investigated. The amount of R. picketti that was added to the culture of D. dickinsii were 2, 4, 6, 8, and 10 mL (1 mL ≈ 1.39 × 108 CFU). The cultures had ability to decolorize MB (100 mg/L) at 30 °C after 7 days incubation. The highest percentage of MB biodecolorization was obtained at addition of 10 mL of R. pickettii approximately 89%, while biodecolorization process by particularly D. dickinsii was approximately 17%. The MB degradation metabolites by mixed cultures of D. dickinsii and 10 mL of R. pickettii were Azure A, thionine, glucose-MB, C12H11N3SO6 and C12H13N3O6. This study indicated that the addition of R. pickettii could enhance MB biodecolorization by fungus D. dickinsii. Besides that, this study also indicated that mixed cultures of D. dickinsii and R. pickettii has great potential for high efficiency, fast and cheap dye wastewater treatment.
Collapse
|
17
|
Barathi S, Aruljothi KN, Karthik C, Padikasan IA, Ashokkumar V. Biofilm mediated decolorization and degradation of reactive red 170 dye by the bacterial consortium isolated from the dyeing industry wastewater sediments. CHEMOSPHERE 2022; 286:131914. [PMID: 34418664 DOI: 10.1016/j.chemosphere.2021.131914] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/06/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
Reactive dyes are extensively used in a plethora of industries, which in turn release toxic wastes into the environment. The textile dye waste remediation is crucial as it may contain several toxic elements. The utilization of bacterial consortium for bioremediation has acquired consideration, over the utilization of single strains. In this study, a microbial consortium containing three bacterial sp. (Bacillus subtilis, Brevibacillus borstelensis and Bacillus firmus) was tested for its degrading ability of the textile RR 170 dye. The bacterial consortium degraded the dye effectively at lower concentrations and the efficiency decreased as the dye concentration increased. SEM analysis revealed that, with dye treatment, the consortium appeared as tightly packed clumps with rough cell surface and were able to produce EPS and biofilms. EPS production was higher at 40 mg/l, 100 mg/l and 200 mg/l of the dye treatment conditions. Interestingly, the maximum biofilm formation was observed only at 40 μg/ml of the dye treatment, which indicates that RR 170 dye concentration affects the biofilm formation independent of EPS levels. The UV-vis spectroscopy, HPLC, FTIR and 2D-FTIR analyses confirmed the decolorization and biodegradation of RR 170 dye by the bacterial consortium. Toxicological studies performed with the dye and their degraded products in Allium cepa root cells revealed that, whereas the RR 170 dye induced genotoxic stress, the degraded dye products showed no significant genotoxic effects in root cells. Together, the investigated bacterial consortium decolorized and degraded the RR 170 dye resulting in metabolites that are non-toxic to the living cells.
Collapse
Affiliation(s)
- Selvaraj Barathi
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, People's Republic of China; Plant and Microbial Biotechnology Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem, 636 011, Tamil Nadu, India.
| | - K N Aruljothi
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, India
| | - Chinnannan Karthik
- College of Agriculture and Biotechnology, Institute of Crop Science, Zhejiang University, China
| | - Indra Arulselvi Padikasan
- Plant and Microbial Biotechnology Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - Veeramuthu Ashokkumar
- Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand; Department of Energy and Environmental Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| |
Collapse
|
18
|
Biju LM, Pooshana V, Kumar PS, Gayathri KV, Ansar S, Govindaraju S. Treatment of textile wastewater containing mixed toxic azo dye and chromium (VI) BY haloalkaliphilic bacterial consortium. CHEMOSPHERE 2022; 287:132280. [PMID: 34571446 DOI: 10.1016/j.chemosphere.2021.132280] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/02/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Scientific empowerment in this century created a positive and negative impact on the ecosystem's biotic and abiotic components. The current scenario of emerging recalcitrant pollutants in the environment is encountered using various remediation approaches are enforced and applied. The need for mineralization of the toxic pollutants to non - toxic forms accomplished the application of microbes (bacteria, fungi and algae) and plants individually or in a combined manner. The current research on the removal of pollutants from synthetic textile wastewater containing 1200 ppm concentration of mixed azo dyes -Reactive red (RR), Reactive Brown (RB) & Reactive Black (RBl) and 300 ppm Cr (VI) metal using haloalkaliphilic bacterial strains LBKVG1, LBKVG2, LBKVG3 & LBKVG4 in a Moving Bed Biofilm Reactor (MBBR), showed decolorization of 82 ± 0.5% of mixed azo dyes and degradation 56 ± 0.5% of Cr (VI) metal at 37 °C and pH 8.5 in the fifth day of the study. The isolated bacterial strains in the consortium were molecularly and morphologically characterized by 16SrRNA sequencing and SEM analysis. FT-IR and GC-MS analysis scrutinized the metabolites obtained. The findings suggest the degradation of hazardous pollutants even at higher concentrations and attempt to decolourize the mixed azo dyes simultaneously using the eco-friendly bacterial consortium.
Collapse
Affiliation(s)
- Leena Merlin Biju
- Department of Biotechnology, Stella Maris College (Autonomous), Chennai, 600083, India; Department of Microbiology, Kumararani Meena Muthiah College of Arts & Science, India
| | - V Pooshana
- Department of Biotechnology, Stella Maris College (Autonomous), Chennai, 600083, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603 110, India.
| | - K Veena Gayathri
- Department of Biotechnology, Stella Maris College (Autonomous), Chennai, 600083, India.
| | - Sabah Ansar
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | | |
Collapse
|
19
|
Al-Tohamy R, Sun J, Khalil MA, Kornaros M, Ali SS. Wood-feeding termite gut symbionts as an obscure yet promising source of novel manganese peroxidase-producing oleaginous yeasts intended for azo dye decolorization and biodiesel production. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:229. [PMID: 34863263 PMCID: PMC8645103 DOI: 10.1186/s13068-021-02080-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/18/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND The ability of oxidative enzyme-producing micro-organisms to efficiently valorize organic pollutants is critical in this context. Yeasts are promising enzyme producers with potential applications in waste management, while lipid accumulation offers significant bioenergy production opportunities. The aim of this study was to explore manganese peroxidase-producing oleaginous yeasts inhabiting the guts of wood-feeding termites for azo dye decolorization, tolerating lignocellulose degradation inhibitors, and biodiesel production. RESULTS Out of 38 yeast isolates screened from wood-feeding termite gut symbionts, nine isolates exhibited high levels of extracellular manganese peroxidase (MnP) activity ranged between 23 and 27 U/mL after 5 days of incubation in an optimal substrate. Of these MnP-producing yeasts, four strains had lipid accumulation greater than 20% (oleaginous nature), with Meyerozyma caribbica SSA1654 having the highest lipid content (47.25%, w/w). In terms of tolerance to lignocellulose degradation inhibitors, the four MnP-producing oleaginous yeast strains could grow in the presence of furfural, 5-hydroxymethyl furfural, acetic acid, vanillin, and formic acid in the tested range. M. caribbica SSA1654 showed the highest tolerance to furfural (1.0 g/L), 5-hydroxymethyl furfural (2.5 g/L) and vanillin (2.0 g/L). Furthermore, M. caribbica SSA1654 could grow in the presence of 2.5 g/L acetic acid but grew moderately. Furfural and formic acid had a significant inhibitory effect on lipid accumulation by M. caribbica SSA1654, compared to the other lignocellulose degradation inhibitors tested. On the other hand, a new MnP-producing oleaginous yeast consortium designated as NYC-1 was constructed. This consortium demonstrated effective decolorization of all individual azo dyes tested within 24 h, up to a dye concentration of 250 mg/L. The NYC-1 consortium's decolorization performance against Acid Orange 7 (AO7) was investigated under the influence of several parameters, such as temperature, pH, salt concentration, and co-substrates (e.g., carbon, nitrogen, or agricultural wastes). The main physicochemical properties of biodiesel produced by AO7-degraded NYC-1 consortium were estimated and the results were compared to those obtained from international standards. CONCLUSION The findings of this study open up a new avenue for using peroxidase-producing oleaginous yeasts inhabiting wood-feeding termite gut symbionts, which hold great promise for the remediation of recalcitrant azo dye wastewater and lignocellulosic biomass for biofuel production.
Collapse
Affiliation(s)
- Rania Al-Tohamy
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, China
| | - Jianzhong Sun
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, China.
| | - Maha A Khalil
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Michael Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, University Campus, 1 Karatheodori Str, 26504, Patras, Greece
- INVALOR: Research Infrastructure for Waste Valorization and Sustainable Management, University Campus, 26504, Patras, Greece
| | - Sameh Samir Ali
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, China.
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
20
|
Si J, Wu Y, Ma HF, Cao YJ, Sun YF, Cui BK. Selection of a pH- and temperature-stable laccase from Ganoderma australe and its application for bioremediation of textile dyes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113619. [PMID: 34467865 DOI: 10.1016/j.jenvman.2021.113619] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/06/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
By virtue of screening, purification, and properties characterization, this study captures a new pH- and temperature-stable laccase, designated Galacc-F, from Ganoderma australe for dye bioremediating applications. The enzyme was purified to homogeneity by salt precipitation, ionic exchange, and size exclusion chromatography with a final specific activity of 22.214 U mg-1, yielding a purification fold of 23.989 and recovery of 38.44%. Its molecular weight was estimated to be 48.0 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, zymography, Sephadex G-100 column, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, which confirmed its monomeric nature. Galacc-F exhibited high levels of activity and stability over wide ranges of pH (5.0-8.0) and temperature (10-60 °C), which are highly valuable properties in industrial processes. Broad substrate specificity was observed, wherein a better affinity was found for 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) with a low value of Km (164.137 μM) and higher kcat/Km ratio (1.663 s-1 μM-1). Activity was stimulated by Cu2+ and β-mercaptoethanol but inhibited by ethylenediaminetetraacetic acid, diethylpyrocarbonate, iodoacetic acid, phenylmethylsulfonyl fluoride, and Hg2+, indicating that Galacc-F is a metalloprotease containing a typical histidine-cysteine-serine catalytic triad. It had high tolerance to surfactants, oxidants, and salts. Additionally, a fabricated protocol for native Galacc-F immobilization onto Fe3O4@Chitosan composite nanoparticles using glutaraldehyde as a crosslinker was developed. Most importantly, the enzyme was determined to be ideal for use in efficient treatment of dye effluents as compared with the laccases requiring redox mediators.
Collapse
Affiliation(s)
- Jing Si
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Yi Wu
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Hong-Fei Ma
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Yong-Jia Cao
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Yi-Fei Sun
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Bao-Kai Cui
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
21
|
Khan S, Bhardwaj U, Iqbal HMN, Joshi N. Synergistic role of bacterial consortium to biodegrade toxic dyes containing wastewater and its simultaneous reuse as an added value. CHEMOSPHERE 2021; 284:131273. [PMID: 34216920 DOI: 10.1016/j.chemosphere.2021.131273] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 02/05/2023]
Abstract
The current environmental research has fascinated the sustainable exploitation of mix bacterial consortium to biodegrade the environmentally-related toxic compounds, including hazardous synthetic dyes. Based on the existing literature evidence, textile and other industrial waste effluents pollute the natural water bodies. Textile effluent contains synthetic dyes which are liberated in the environment without proper treatment. The presence of toxic dyes added to the textile effluents undoubtedly affects the flora and fauna as that untreated water is used for irrigation by local farmers. Many conventional and biological methods are in action for the treatment of wastewater. Physical and chemical processes are expensive as compared to microbial treatments. The use of microbial consortia generates efficient results. Wastewater is a valuable resource, however, up to 80% of wastewater is released to different water matrices. This discernment needs to change for a better tomorrow. In this context, herein, we present a robust microbial-assisted treatment and simultaneously reuse of the treated wastewater as an added value to induce plant growth. Thus, the microbial approach for textile waste treatment release by-product after degradation should be non-toxic for the environment. In the present study, the toxicity of synthetic textile dye named Reactive Red 120, Reactive Orange 122, Reactive Yellow 160, and Reactive Blue 19 was investigated using a bioassay method with plant species namely Sorghum bicolor. Plate and Pot experiment was conducted with respect to untreated Azo dyes, degraded metabolites obtained from single bacteria, and consortium. Efficient Seed germination (89%), shoot length (12.4 cm), root length (15.6 cm) of the plants were observed for bacterial consortium degraded metabolites exposed seeds after comparing with the control. The degraded metabolite also increases protein (45.56 mg/g) and sugar (3.15 mg/g) contents. Bioremediation of various textile industrial effluents saves the ecosystem from the harmful effects of hazardous dyes. The biological decolorization of the textile azo dyes was investigated under co-metabolic conditions. The degraded metabolites can be used to enhance crop productivity and for commercial application. This mandates the current and future research to develop economically feasible and environmentally sustainable wastewater treatment practices.
Collapse
Affiliation(s)
- Shellina Khan
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, 332311, Sikar, Rajasthan, India
| | - Uma Bhardwaj
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, 332311, Sikar, Rajasthan, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| | - Navneet Joshi
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, 332311, Sikar, Rajasthan, India.
| |
Collapse
|
22
|
Ujang FA, Roslan AM, Osman NA, Norman A, Idris J, Farid MAA, Halmi MIE, Gozan M, Hassan MA. Removal behaviour of residual pollutants from biologically treated palm oil mill effluent by Pennisetum purpureum in constructed wetland. Sci Rep 2021; 11:18257. [PMID: 34521938 PMCID: PMC8440592 DOI: 10.1038/s41598-021-97789-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 08/27/2021] [Indexed: 02/08/2023] Open
Abstract
The reason for such enormous efforts in palm oil mill effluent research would be what has been singled out as one of the major sources of pollution in Malaysia, and perhaps the most costly and complex waste to manage. Palm oil mill final discharge, which is the treated effluent, will usually be discharged to nearby land or river since it has been the least costly way to dispose of. Irrefutably, the quality level of the treated effluent does not always satisfy the surface water quality in conformity to physicochemical characteristics. To work on improving the treated effluent quality, a vertical surface-flow constructed wetland system was designed with Pennisetum purpureum (Napier grass) planted on the wetland floor. The system effectively reduced the level of chemical oxygen demand by 62.2 ± 14.3%, total suspended solid by 88.1 ± 13.3%, ammonia by 62.3 ± 24.8%, colour by 66.6 ± 13.19%, and tannin and lignin by 57.5 ± 22.3%. Heat map depicted bacterial diversity and relative abundance in life stages from the wetland soil, whereby bacterial community associated with the pollutant removal was found to be from the families Anaerolineaceae and Nitrosomonadaceae, and phyla Cyanobacteria and Acidobacteria.
Collapse
Affiliation(s)
- Farhana Aziz Ujang
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, UPM Serdang, Selangor, Malaysia
| | - Ahmad Muhaimin Roslan
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, UPM Serdang, Selangor, Malaysia.
| | - Nurul Atiqah Osman
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, UPM Serdang, Selangor, Malaysia
| | - Ashreen Norman
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, UPM Serdang, Selangor, Malaysia
| | - Juferi Idris
- Faculty of Chemical Engineering, College of Engineering, Universiti Teknologi MARA (UiTM), Sarawak Branch, Samarahan Campus, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Mohammed Abdillah Ahmad Farid
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, UPM Serdang, Selangor, Malaysia
| | - Mohd Izuan Effendi Halmi
- Department of Soil Management, Faculty of Agriculture, Universiti Putra Malaysia (UPM), 43400, UPM Serdang, Selangor, Malaysia
| | - Misri Gozan
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus Baru UI, Depok, Jawa Barat, 16424, Indonesia
| | - Mohd Ali Hassan
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, UPM Serdang, Selangor, Malaysia
| |
Collapse
|
23
|
Danouche M, Ferioun M, Bahafid W, El Ghachtouli N. Mycoremediation of azo dyes using Cyberlindnera fabianii yeast strain: Application of designs of experiments for decolorization optimization. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1402-1416. [PMID: 33331006 DOI: 10.1002/wer.1499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/07/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
This study investigated the dye decolorization capacity of three yeast strains. Cyberlindnera fabianii was shortlisted for its high decolorization capacity and was further tested on various azo dyes. Based on the color of the biomass, and the UV-Vis analysis, Acid Red 14 was selected as a model dye, to examine the enzymatic biodegradation. The results showed significant increase in the intracellular and extracellular activities of laccase, tyrosinase, manganese peroxidase, and azoreductase. Phytotoxicity assessment indicated that the AR14 biodegradation by-products were not phytotoxic compared to the original dye molecules. Regarding the decolorization optimization, the screening of factors using the Plackett-Burman design showed that pH, dye concentration, and shaking speed had significant effects. These factors and their combined effect were evaluated using response surface methodology with the Box-Behnken model. The pH was the most significant factor, followed by dye concentration. The analysis of the contour plot and the 3D response surface diagram showed that the decolorization was inversely proportional to the increase in the initial dye concentration, but proportional to the initial pH and shaking speed. At optimal conditions (pH = 5.154, AR14 = 50 mg/L), C. fabianii could decolorize more than 97% of AR14 within 12 hr. PRACTITIONER POINTS: Cyberlindnera fabianii is a successful candidate for dye mycoremediation. Oxidase and reductase are the key enzymes involved in the biodegradation of azo dyes. By-products of Acid red 14 biodegradation are not phytoxic compared to the original dye. Design of experience tools enables to determine optimum conditions for efficient decolorization.
Collapse
Affiliation(s)
- Mohammed Danouche
- Green Biotechnology Center, MAScIR (Moroccan Foundation for Advanced Science, Innovation and Research), Rabat, Morocco
- Microbial Biotechnology and Bioactive Molecules Laboratory, Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Mohamed Ferioun
- Microbial Biotechnology and Bioactive Molecules Laboratory, Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Wifak Bahafid
- Microbial Biotechnology and Bioactive Molecules Laboratory, Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Naima El Ghachtouli
- Microbial Biotechnology and Bioactive Molecules Laboratory, Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
24
|
Mandragutti T, Dokka MK, Panchagnula B, Godi S. Molecular characterization of marine bacterial isolates of Visakhapatnam coast-efficacy in dye decolorization and bioremediation of cadmium. J Genet Eng Biotechnol 2021; 19:87. [PMID: 34132923 PMCID: PMC8208438 DOI: 10.1186/s43141-021-00189-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/01/2021] [Indexed: 11/23/2022]
Abstract
Background Microbial community is one of the diversified communities of the marine environment. Studies have shown that microorganisms isolated from the marine environment are metabolically active and have adapted to life in the ocean. The marine microorganisms use various survival strategies to combat heavy metal stress and decolorization of various textile dyes, thus playing an important role in the bioremediation of cadmium and degradation of textile dyes. The present study deals with the isolation and 16S rRNA molecular characterization of M3 and M8 bacterial strains isolated from marine water samples collected from Visakhapatnam harbor. M3 and M8 isolates were also checked for their efficacy in the removal of cadmium and decolorization of various textile dyes from the environment. Results The water sample was subjected to tube dilution method to isolate bacterial strains, and ten different isolates were screened. The biochemical tests were performed for the isolates to prove their validity and 16S rRNA molecular sequencing and phylogenetic analysis for species identification. Out of interest, two bacterial strains, namely, M3 and M8 were subjected to 16S rRNA molecular sequencing and phylogenetic analysis and were identified as Bacillus subtilis and Pseudomonas resinovorans. The two bacterial strains showed promising dye degradation property when checked with nine different textile dyes of wavelength ranging from 400 to 600 nm and removal of cadmium from the growth medium. Conclusion The present study demonstrates the isolates M3 and M8 to be potential strains having dye decolorization and bioremediation of cadmium applications. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-021-00189-0.
Collapse
Affiliation(s)
- Teja Mandragutti
- Department of Biotechnology, Andhra University, Visakhapatnam, 530 003, India.
| | - Muni Kumar Dokka
- Department of Biochemistry, Andhra University, Visakhapatnam, 530 003, India
| | - Bindiya Panchagnula
- Department of Biotechnology, Andhra University, Visakhapatnam, 530 003, India
| | - Sudhakar Godi
- Department of Human Genetics, Andhra University, Visakhapatnam, 530 003, India
| |
Collapse
|
25
|
Mohanty SS, Kumar A. Enhanced degradation of anthraquinone dyes by microbial monoculture and developed consortium through the production of specific enzymes. Sci Rep 2021; 11:7678. [PMID: 33828207 PMCID: PMC8027401 DOI: 10.1038/s41598-021-87227-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/24/2021] [Indexed: 11/09/2022] Open
Abstract
The current study investigates the decolorization of Indanthrene Blue RS dye and the optimization of process parameters needed for effective decolorization by the bacterial consortium. The pure culture of strain TS8, PMS, and NCH has been isolated from the textile wastewater sample collected from local textile processing units outlet and dye contaminated soil from Odisha, India. A bacterial consortium-BP of Bacillus flexus TS8 (BF), Proteus mirabilis PMS (PM), and Pseudomonas aeruginosa NCH (PA) were developed. The physicochemical parameters were optimized to attain maximum decolorization efficacy. Degradation of Indanthrene Blue RS and the formation of metabolites were confirmed through UV-vis spectroscopy, FT-IR, and GC-MS analysis. The developed consortium-BP showed an enhanced decolorization of Indanthrene Blue RS dye with an Average decolorization rate of 11,088 µg h-1 within 9 h compared to the individual strains under aerobic conditions. The supplementation of agricultural residual wastes showed increased decolorization efficiency of consortium-BP. Higher reduction in TOC and COD removal (≥ 80%) determined the mineralization of Indanthrene Blue RS by consortium-BP. Significant induction of various oxidoreductive enzymes in consortium-BP compared to that of Individual strains indicates their involvement in the overall decolorization and degradation process, with the higher protein concentration in the intracellular enzymes. Studies on the phytotoxicity effect revealed the non-toxic nature of the degraded products formed on mineralization of Indanthrene Blue RS by consortium-BP. This study represents a new approach for enhanced biodegradation using consortium-BP in treating textile wastewaters containing anthraquinone dyes.
Collapse
Affiliation(s)
- Swati Sambita Mohanty
- Department of Chemical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India.
| | - Arvind Kumar
- Department of Chemical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| |
Collapse
|
26
|
Ekanayake MS, Udayanga D, Wijesekara I, Manage P. Phytoremediation of synthetic textile dyes: biosorption and enzymatic degradation involved in efficient dye decolorization by Eichhornia crassipes (Mart.) Solms and Pistia stratiotes L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:20476-20486. [PMID: 33410027 DOI: 10.1007/s11356-020-11699-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
The effectiveness of four aquatic floating plants: Eichhornia crassipes, Pistia stratiotes, Lemna minor, Salvinia sp., and a submerged plant Hydrilla sp. on decolorization and detoxification of five structurally different textile dyes: CI Direct Blue 201 (DB 201), Cibacron Blue FR, Cibanone Gold Yellow RK, Vat Green FFB, and Moxilon Blue GRL were studied. The E. crassipes and P. stratiotes showed complete decolorization of all the dyes tested, while Salvinia sp. (79-86%), L. minor (16-24%), and Hydrilla sp. (6-13%) were recorded as the least tolerance for all the dyes even after 14 days of incubation. Therefore, E. crassipes and P. stratiotes were selected for further studies using DB 201 as the model dye. E. crassipes and P. stratiotes showed complete decolorization of DB 201 at 48 and 84 h of incubation, respectively, and decolorization was well effective in the pH range 6-9. The crude extract of intracellular enzymes obtained from the roots of E. crassipes (46%) and P. stratiotes (20%) showed significant involvement on decolorization of DB 201, compared with the activity of crude extracellular extract and isolated endophytic bacteria and fungi (p ≤ 0.05). Further, 18 and 22% of biosorption of DB 201 dye were recorded by E. crassipes and P. stratiotes, respectively, suggesting that decolorization mechanisms of DB 201 dye by E. crassipes and P. stratiotes were based on biosorption and intracellular enzyme activities. The FTIR spectra and seed germination assay confirmed biodegradation and detoxification of DB 201 dye by E. crassipes and P. stratiotes plants along with complete color removal. Thus, present study confers the potential applicability of E. crassipes and P. stratiotes plants for textile dye removal and release to the environment without further treatment.
Collapse
Affiliation(s)
- Manavi Sulakkana Ekanayake
- Centre for Water Quality and Algae Research, Department of Zoology, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
- Faculty of Graduate Studies, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Dhanushka Udayanga
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Isuru Wijesekara
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Pathmalal Manage
- Centre for Water Quality and Algae Research, Department of Zoology, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
- Faculty of Graduate Studies, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
| |
Collapse
|
27
|
Zhang Y, Ren J, Wang Q, Wang S, Li S, Li H. Oxidation characteristics and degradation potential of a dye-decolorizing peroxidase from Bacillus amyloliquefaciens for crystal violet dye. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.107930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
28
|
Bioremedial approach of Pseudomonas stutzeri SPM-1 for textile azo dye degradation. Arch Microbiol 2021; 203:2669-2680. [PMID: 33713141 DOI: 10.1007/s00203-021-02258-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 10/21/2022]
Abstract
The optimization of the bacterium Pseudomonas stutzeri SPM-1, obtained from textile wastewater dumping sites of Surat, Gujarat was studied for the degradation of the textile azo dye Procion Red-H3B. The strain showed significant activities of azoreductase (95%), laccase (76%) and NADH-DCIP reductase (88%) at 12, 10 and 8 h of growth, respectively, indicating the evidence for reductive cleavage of the dye. The optimization was carried on phenanthrene enrichment medium followed by exposing it to variable environmental factors and nutritional sources. The complete decolourization of dye (50 mg/L) happened within 20 h of incubation at pH 8 and temperature 32 ± 0.2 °C under microaerophilic condition. Decolourization was monitored with the shifting of absorbance peak in UV-Vis spectrophotometry and HPLC analysis. The changes in the functional groups were confirmed by the presence of new peaks in FT-IR data. GC-MS analysis helped in recognizing the degraded dye compounds thus elucidating the proposed pathway for Procion Red-H3B. The potential of bioremediation process was completed by phytotoxicity test using two plants Vigna radiata and Cicer arietinum. Our study concludes that the strain Pseudomonas stutzeri SPM-1, with its rapid decolourization efficiency holds noteworthy prospective in industrial application for textile wastewater treatment.
Collapse
|
29
|
Biological Treatment of Real Textile Effluent Using Aspergillus flavus and Fusarium oxysporium and Their Consortium along with the Evaluation of Their Phytotoxicity. J Fungi (Basel) 2021; 7:jof7030193. [PMID: 33803129 PMCID: PMC8001397 DOI: 10.3390/jof7030193] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
Twenty-one fungal strains were isolated from dye-contaminated soil; out of them, two fungal strains A2 and G2-1 showed the highest decolorization capacity for real textile effluent and were, hence, identified as Aspergillus flavus and Fusarium oxysporium based on morphological and molecular methods. The highest decolorization percentage of 78.12 ± 2.1% was attained in the biotreatment with fungal consortium followed by A. flavus and F. oxysporium separately with removal percentages of 54.68 ± 1.2% and 52.41 ± 1.0%, respectively. Additionally, ultraviolet-visible spectroscopy of the treated effluent showed that a maximum peak (λmax) of 415 nm was reduced as compared with the control. The indicators of wastewater treatment efficacy, namely total dissolved solids, total suspended solids, conductivity, biological oxygen demand, and chemical oxygen demand with removal percentages of 78.2, 78.4, 58.2, 78.1, and 77.6%, respectively, demonstrated a considerable decrease in values due to fungal consortium treatment. The reduction in peak and mass area along with the appearance of new peaks in GC-MS confirms a successful biodegradation process. The toxicity of treated textile effluents on the seed germination of Vicia faba was decreased as compared with the control. The shoot length after irrigation with effluents treated by the fungal consortium was 15.12 ± 1.01 cm as compared with that treated by tap-water, which was 17.8 ± 0.7 cm. Finally, we recommended the decrease of excessive uses of synthetic dyes and utilized biological approaches for the treatment of real textile effluents to reuse in irrigation of uneaten plants especially with water scarcity worldwide.
Collapse
|
30
|
Chaturvedi A, Rai BN, Singh RS, Jaiswal RP. A Computational Approach to Incorporate Metabolite Inhibition in the Growth Kinetics of Indigenous Bacterial Strain Bacillus subtilis MN372379 in the Treatment of Wastewater Containing Congo Red Dye. Appl Biochem Biotechnol 2021; 193:2128-2144. [PMID: 33665772 DOI: 10.1007/s12010-021-03538-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/26/2021] [Indexed: 11/27/2022]
Abstract
A rigorous knowledge of the bacterial growth kinetics is essential for the scaling-up and optimization of biodegradation process conditions in a bioreactor. Although a great deal of literature is available on the modeling of bacterial growth kinetics considering the inhibition at high substrate-loading, the inhibition caused by toxic metabolic byproducts was not accounted in the bacterial growth kinetics. This work primarily aimed at developing a parametric bacterial growth model to account for metabolite inhibition, indicated by a decelerating log-phase growth, which was rarely discussed in the previous studies. An efficient azo-dye degrading bacterium (Bacillus subtilis MN372379) was isolated from the sludge-waste nearby a carpet-dyeing unit. The isolated bacterial strain was used to decolorize the simulated wastewater containing Congo red dye. This study proposed a computational approach to calculate specific bacterial growth rate time-averaged over the entire sigmoidal log phase (including the decelerating phase) for incorporating the effect of metabolite-inhibition, in contrast to the conventional studies where only the initial part (accelerating) of log phase was considered. The nature of metabolite inhibition was also determined and found to be non-competitive. Next, the computed time-averaged specific bacterial growth rate was incorporated into three substrate inhibition models to account for both, the metabolite and substrate inhibitions, and subsequently their kinetic parameters were also determined. Finally, the initial dye concentration and inoculum size were optimized to yield maximum dye utilization rate. This study paves the way for predicting bacterial growth kinetic with improved accuracy to enable a better optimization of bioreactors at the industrial scale.
Collapse
Affiliation(s)
- Anuj Chaturvedi
- Department of Chemical Engineering & Technology, Indian Institute of Technology (IIT), BHU, Varanasi, 221005, India
| | - Birendra N Rai
- Department of Chemical Engineering & Technology, Indian Institute of Technology (IIT), BHU, Varanasi, 221005, India
| | - Ram S Singh
- Department of Chemical Engineering & Technology, Indian Institute of Technology (IIT), BHU, Varanasi, 221005, India
| | - Ravi P Jaiswal
- Department of Chemical Engineering & Technology, Indian Institute of Technology (IIT), BHU, Varanasi, 221005, India.
| |
Collapse
|
31
|
Ali SS, Al-Tohamy R, Koutra E, El-Naggar AH, Kornaros M, Sun J. Valorizing lignin-like dyes and textile dyeing wastewater by a newly constructed lipid-producing and lignin modifying oleaginous yeast consortium valued for biodiesel and bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123575. [PMID: 32791477 DOI: 10.1016/j.jhazmat.2020.123575] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/24/2020] [Accepted: 07/22/2020] [Indexed: 05/07/2023]
Abstract
Construction of a multipurpose yeast consortium suitable for lipid production, textile dye/effluent removal and lignin valorization is critical for both biorefinery and bioremediation. Therefore, a novel oleaginous consortium, designated as OYC-Y.BC.SH has been developed using three yeast cultures viz. Yarrowia sp. SSA1642, Barnettozyma californica SSA1518 and Sterigmatomyces halophilus SSA1511. The OYC-Y.BC.SH was able to grow on different carbon sources and accumulate lipids, with its highest lipid productivity (1.56 g/L/day) and lipase activity (170.3 U/mL) exhibited in xylose. The total saturated fatty acid content was 36.09 %, while the mono-unsaturated and poly-unsaturated fatty acids were 45.44 and 18.30 %, respectively, making OYC-Y.BC.SH valuable for biodiesel production. The OYC-Y.BC.SH showed its highest decolorization efficiency of Red HE3B dye (above 82 %) in presence of sorghum husk as agricultural co-substrate, suggesting its feasibility for simultaneous lignin valorization. The significant higher performance of OYC-Y.BC.SH on decolorizing the real dyeing effluent sample at pH 8.0 suggests its potential and suitability for degrading most of the wastewater textile effluents. Clearly, toxicological studies underline the additional advantage of using OYC-Y.BC.SH for bioremediation of industrial dyeing effluents in terms of decolorization and detoxification. A possible mechanism of Red HE3B biodegradation and ATP synthesis was also proposed.
Collapse
Affiliation(s)
- Sameh Samir Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Eleni Koutra
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, 26504, Patras, Greece
| | - Amal H El-Naggar
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Michael Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, 26504, Patras, Greece; INVALOR: Research Infrastructure for Waste Valorization and Sustainable Management, University Campus, 26504, Patras, Greece
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
32
|
Microbial degradation of Procion Red by Pseudomonas stutzeri. Sci Rep 2021; 11:3075. [PMID: 33542307 PMCID: PMC7862368 DOI: 10.1038/s41598-021-82494-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/20/2021] [Indexed: 11/08/2022] Open
Abstract
The bacterium Pseudomonas stutzeri SPM-1, obtained from textile wastewater dumping sites of Surat, Gujarat was studied for the degradation of the textile azo dye Procion Red-H3B. The optimization was carried on the phenanthrene enrichment medium followed by exposing it to variable environmental factors and nutritional sources. The complete decolorization of dye (50 mg/L) happened within 20 h of incubation at pH 8 and temperature 32 ± 0.2 °C under microaerophilic conditions. Decolourization was monitored with the shifting of absorbance peak in UV-Vis spectrophotometry and HPLC analysis. The physicochemical studies of effluent before and after the treatment revealed 85%, 90%, and 65% decline in BOD, COD, and TOC levels. The strain showed significant activities of azoreductase (95%), laccase (76%), and NADH-DCIP reductase (88%) at 12 h, 10 h, and 8 h of growth respectively indicating evidence for reductive cleavage of the dye. The changes in the functional groups were confirmed by the presence of new peaks in FT-IR data. GC-MS analysis helped in recognizing the degraded dye compounds thus elucidating the proposed pathway for degradation of Procion Red-H3B. The potential of the bioremediation process was concluded by a phytotoxicity test using two plants, Vigna radiata and Cicer arietinum. Our study demonstrates that the strain Pseudomonas stutzeri SPM-1 has rapid decolorization efficiency and holds a noteworthy perspective in industrial application for textile wastewater treatment.
Collapse
|
33
|
PÉrez-Osorio G, HernÁndez-GÓmez FDR, Arriola-Morales J, Castillo-Morales M, Mendoza-HernÁndez JC. Blue dye degradation in an aqueous medium by a combined photocatalytic and bacterial biodegradation process. Turk J Chem 2021; 44:180-193. [PMID: 33488151 PMCID: PMC7751818 DOI: 10.3906/kim-1902-33] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 11/27/2019] [Indexed: 11/22/2022] Open
Abstract
This paper aimed at implementing a treatment system for polluted water with textile dyes, starting with a photocatalytic decomposition process using sunlight as a source of energy and continuing with a bacterial biodegradation process, in order to reach degradation percentages higher than those obtained using only one of the processes mentioned above. When water treatment with the dye in the combined system was over, an acute ecotoxicity test was performed to make sure that toxic metabolites were not produced due to biodegradation. Solophenyl Blue azoic dye, and Erionyl Blue and Terasil Blue anthraquinone dye-colored solutions were treated with the Pd/Al
80
Ce
10
Zr
10
catalyst in a solar collector for the photocatalytic process. On the other hand, the waste dye, which was obtained from photocatalysis with a bacterial consortium from polluted areas by metals and hydrocarbons in aerobic conditions, was inoculated for biodegradation. Biodegradation was obtained for the dyes after both processes as 90.91% for the Solophenyl Blue azoic dye, and 87.80% and 87.94%, respectively, for the Erionyl Blue and Terasil Blue anthraquinone dyes. After the degradation processes, it was proven, via an ecotoxicity test with
Daphnia magna
, that toxic metabolites had not been produced.
Collapse
Affiliation(s)
- Gabriela PÉrez-Osorio
- Faculty of Chemical Engineering, Benemérita Universidad Autónoma de Puebla, Puebla México
| | | | | | | | | |
Collapse
|
34
|
Bera SP, Tank SK. Screening and identification of newly isolated Pseudomonas sp. for biodegrading the textile azo dye C.I. Procion Red H-3B. J Appl Microbiol 2020; 130:1949-1959. [PMID: 33145923 DOI: 10.1111/jam.14920] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 11/27/2022]
Abstract
AIM To test the potential of a newly isolated strain of Pseudomonas sp., and its optimization for carrying out bioremediation of textile azo dye Procion Red H-3B. METHOD The isolation of the bacterial strain was done from a textile waste dumping site, followed by screening techniques to study the decolourization of an azo dye. The isolated pure culture was selected by its ability to form clear zones. The biochemical tests gave partial confirmation of the isolates, and the phylogenic analysis made the complete confirmation by 16S rRNA sequencing. RESULT The identified strain belongs to the genus Pseudomonas. The phylogenic analysis confirmed that the strain belongs to Pseudomonas stutzeri. The culture exhibited maximum decolourization at pH between 6 and 8, the optimum at pH 7·5 and 37°C temperature. A maximum of 96% discolouration was observed at 50 mg l-1 of initial dye concentration after 24 h of incubation period. At a dye concentration equally or greater than 600 mg l-1 , the colour removal was drastically decreased to 30%. The use of fructose at 1% (w/v) and peptone 0·5% (w/v) concentration for 24 h of incubation, as carbon and nitrogen source, showed luxuriant decolourization. The results showed that the Pseudomonas sp. holds immense potential in treating textile effluents containing the dye Procion red H-3B. CONCLUSION Pseudomonas is a known organism in bioremediation of various textile dyes but not much has being reported about the role of P. stutzeri in the bioremediation of azo dyes. This study revealed the immense potential of this strain in degrading the azo dyes. SIGNIFICANCE AND IMPACT OF THE STUDY The strain shows prospective for industrial application in the field of textile wastewater treatment. Bioremediation is comparatively cheaper and more effective treatment, thus holds promising future for a cleaner environment.
Collapse
Affiliation(s)
- S P Bera
- Department of Biosciences, Veer Narmad South Gujarat University, Surat, Gujarat, India
| | - S K Tank
- Department of Biosciences, Veer Narmad South Gujarat University, Surat, Gujarat, India
| |
Collapse
|
35
|
Rathour RK, Sharma V, Rana N, Bhatia RK, Bhatt AK. Bioremediation of Simulated Textile Effluent by an Efficient Bio-catalyst Purified from a Novel Pseudomonas fluorescence LiP-RL5. ACTA ACUST UNITED AC 2020. [DOI: 10.2174/2212796814666200406100247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Microbial degradation of highly stable textile dyes, using lignin peroxidase,
is an eco-friendly, less expensive and much advantageous in comparison to the
chemical method.
Objective:
Biodegradation potential of lignin peroxidase (LiP), from Pseudomonas fluorescens
LiP-RL5, was enhanced after optimization and purification so as to use it as a potential
bioresource for the treatment of textile effluent.
Methods:
LiP producing bacterial isolate was primarily screened by methylene blue assay
followed by LiP assay. The standard protocol was used for purification of lignin peroxidase
and purified LiP was finally used for degradation of textile dyes.
Results:
57 bacterial isolates were screened for lignin peroxidase activity. Isolate LiP-RL5
showed maximum activity (19.8 ±0.33 %) in terms of methylene blue reduction in comparison
to others. Biochemical and molecular characterization of LiP-RL5 showed 99 % similarity
with P. fluorescens. Lignin peroxidase activity was increased by 50 % after optimization
of cultural conditions. Maximum enhancement in the activity was achieved when peptone
was used as a nitrogen source. LiP from P. fluorescens LiP-RL5 was further purified up to 2
folds. SDS-PAGE analysis revealed a single protein band of approximately 40 kDa. Enzyme
also showed high catalytic efficiency with Km= 6.94 mM and Vmax= 78.74 μmol/ml/min. Purified
enzyme was able to decolorize the simulated textile effluent up to 45.05 ±0.28 % after
40 minutes.
Conclusion:
: High catalytic efficiency of purified LiP from P. fluorescens LiP-RL5 suggests
its utility as a potential candidate for biodegradation of toxic dyes in the industrial effluent,
which could be successfully utilized for wastewater treatment at commercial level.
Collapse
Affiliation(s)
- Ranju K. Rathour
- Department of Biotechnology, Himachal Pradesh University, Gyan Path, Summer hill, Shimla- 171005, India
| | - Vaishali Sharma
- Department of Biotechnology, Himachal Pradesh University, Gyan Path, Summer hill, Shimla- 171005, India
| | - Nidhi Rana
- Department of Biotechnology, Himachal Pradesh University, Gyan Path, Summer hill, Shimla- 171005, India
| | - Ravi K. Bhatia
- Department of Biotechnology, Himachal Pradesh University, Gyan Path, Summer hill, Shimla- 171005, India
| | - Arvind K. Bhatt
- Department of Biotechnology, Himachal Pradesh University, Gyan Path, Summer hill, Shimla- 171005, India
| |
Collapse
|
36
|
Baena-Baldiris D, Montes-Robledo A, Baldiris-Avila R. Franconibacter sp., 1MS: A New Strain in Decolorization and Degradation of Azo Dyes Ponceau S Red and Methyl Orange. ACS OMEGA 2020; 5:28146-28157. [PMID: 33163797 PMCID: PMC7643201 DOI: 10.1021/acsomega.0c03786] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/05/2020] [Indexed: 05/15/2023]
Abstract
The aim of the present study is focused on the decolorization and degradation of azo dyes Ponceau S Red and Methyl Orange by a bacterial strain isolated from the gold mining district of San Martin de Loba, South of Bolivar (Colombia) sediment samples and identified as Franconibacter sp. 1MS (GenBank: MT568543) based on phenotypic and genotypic methods. A higher percentage of decolorization at 100 mg/L concentration, 37 °C, and pH 7 was recorded at 120 h of incubation period for both dyes. The UV-vis, Fourier transform infrared spectroscopy, and gas chromatography-mass spectrometry analysis of the original dyes and their degraded metabolites confirmed that the decolorization was due to degradation. The proposed metabolic pathways for biodegradation of both dyes have been elucidated, which showed the formation of five intermediate metabolites, namely, N,N-dimethylbenzyl-1,4-diamine, sulfonamide, 1,4-diaminobenzene, 2,5-diaminobenzenesulfonic acid, and 1-amino-2-naphthol, which are not only highly toxic but also be able to be converted through metabolic activation into mutagenic, carcinogenic, and/or teratogenic species. The phytotoxicity studies of the original dye and degraded metabolites were tested on Phaseolus vulgaris and divulged that the degraded metabolites have toxic effects. An effective phytostimulation was observed in Ponceau S Red, which could be attributed to its capacity for enrichment of the culture medium with essential nutrients, a favorable environment for the growth of the plant.
Collapse
Affiliation(s)
- Dayana Baena-Baldiris
- Clinical
and Environmental Microbiology Group. Faculty of Natural and Exact
Sciences, San Pablo Campus, University of
Cartagena, Cartagena 130005, Colombia
| | - Alfredo Montes-Robledo
- Clinical
and Environmental Microbiology Group. Faculty of Natural and Exact
Sciences, San Pablo Campus, University of
Cartagena, Cartagena 130005, Colombia
| | - Rosa Baldiris-Avila
- Clinical
and Environmental Microbiology Group. Faculty of Natural and Exact
Sciences, San Pablo Campus, University of
Cartagena, Cartagena 130005, Colombia
- CIPTEC
Group. Faculty of Engineering, Comfenalco
Technological University Foundation, Cartagena 130015, Colombia
| |
Collapse
|
37
|
Chen G, An X, Feng L, Xia X, Zhang Q. Genome and transcriptome analysis of a newly isolated azo dye degrading thermophilic strain Anoxybacillus sp. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:111047. [PMID: 32888598 DOI: 10.1016/j.ecoenv.2020.111047] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Understanding azo dye degrading enzymes and the encoding of their functional genes is crucial for the elucidation of their molecular mechanisms. In this study, a thermophilic strain capable of degrading azo dye was isolated from the soil near a textile dye manufacturing factory. Based on its morphological, physiological and biochemical properties, as well as 16S rRNA gene sequence analysis, the strain was identified as Anoxybacillus sp. PDR2. The decolorization ratios of 100-600 mg/L Direct Black G (DBG) by strain PDR2 reached 82.12-98.39% within 48 h of dyes. Genome analysis revealed that strain PDR2 contains a circular chromosome of 3791144 bp with a G + C content of 42.48%. The genetic basis of azo dye degradation by strain PDR2 and its capacity to adapt to harsh environments, were further elucidated through bioinformatics analysis. RNA-Seq and qRT-PCR technology confirmed that NAD(P)H-flavin reductase, 2Fe-2S ferredoxin and NAD(P)-dependent ethanol dehydrogenase genes expressed by strain PDR2, were the key genes involved in DBG degradation. The combination of genome and transcriptome analysis was utilized to explore the key genes of strain PDR2 involved in azo dye biodegradation, with these findings providing a valuable theoretical basis for the practical treatment of azo dye wastewater.
Collapse
Affiliation(s)
- Guotao Chen
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, China; Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xuejiao An
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, China; Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Linlin Feng
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, China; Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiang Xia
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, China; Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qinghua Zhang
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, China; Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
38
|
Ali SS, Al-Tohamy R, Xie R, El-Sheekh MM, Sun J. Construction of a new lipase- and xylanase-producing oleaginous yeast consortium capable of reactive azo dye degradation and detoxification. BIORESOURCE TECHNOLOGY 2020; 313:123631. [PMID: 32540694 DOI: 10.1016/j.biortech.2020.123631] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 05/07/2023]
Abstract
A new oleaginous yeast consortium Y-BC-SH which stands for molecularly identified species Yarrowia sp., Barnettozyma californica and Sterigmatomyces halophilus was successfully constructed in this study. This multipurpose oleaginous yeast consortium was developed based on its higher ability to accumulate large amounts of lipids in the form of triacylglycerol, grow on xylose, produce lipase and xylanase and it could rapidly decolorize and degrade commonly-used textile reactive azo dyes. The specific enzyme activities of lipase, xylanase, xylan esterase, β-xylosidase, CMCase, β-glucosidase and cellobiohydrolase produced by Y-BC-SH were significantly higher than that of individual strains. As chemical oxygen demand reduction had occurred in the dye mixture solutions, it was evidence of their color removal and mineralization by Y-BC-SH. The significant induction of oxidoreductive enzymes by Y-BC-SH was probably due to the coordinated metabolic interactions of the individual strains. Phytotoxicity assay confirmed that metabolites generated after dye degradation by Y-BC-SH are non-toxic.
Collapse
Affiliation(s)
- Sameh Samir Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Rongrong Xie
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | | | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
39
|
Yang J, Zhang Y, Wang S, Li S, Wang Y, Wang S, Li H. Biodegradation of crystal violet mediated by CotA from Bacillus amyloliquefaciens. J Biosci Bioeng 2020; 130:347-351. [DOI: 10.1016/j.jbiosc.2020.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 01/26/2023]
|
40
|
Barathi S, Aruljothi KN, Karthik C, Padikasan IA. Optimization for enhanced ecofriendly decolorization and detoxification of Reactive Blue160 textile dye by Bacillus subtilis. ACTA ACUST UNITED AC 2020; 28:e00522. [PMID: 32963974 PMCID: PMC7490544 DOI: 10.1016/j.btre.2020.e00522] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 06/28/2020] [Accepted: 08/28/2020] [Indexed: 12/22/2022]
Abstract
The bacterial strain capable of decolorization and detoxification of the Reactive Blue 160 dye was isolated from a dye waste disposal site of Tirupur textile industries. The bacterial strain was screened and selected based on its decolorization capability of RB 160dye, which was identified as Bacillus subtilis by 16S rRNA sequencing. The strain was tested for the decolorization potential under different physio-chemical experimental conditions (pH, temperature, agitation, non-agitation) and observed a complete decolorization at pH 7 and 35 °C under shaking condition within 48 h of time. The enzymes such as, Lignin peroxidase, azoreductase and NADH-DCI were significantly induced in the strain during the decolorization of RB160 dye. Phytotoxicity and microbial toxicity studies revealed that the decolorized product of RB160 dye is less toxic to the plants and microbes. Thus, our results recommend the prospective use of B subtilis in bioremediation of RB160 dye.
Collapse
Affiliation(s)
- Selvaraj Barathi
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Plant and Microbial Biotechnology Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - K N Aruljothi
- Department of GeneticEngineering, SRM Institute of Science and Technology, India
| | - Chinnannan Karthik
- College of Agriculture and Biotechnology, Institute of Crop Science, Zhejiang University, China
| | - Indra Arulselvi Padikasan
- Plant and Microbial Biotechnology Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem, 636 011, Tamil Nadu, India
| |
Collapse
|
41
|
Fithri L, Puspaningsih NNT, Asmarani O, Ni'matuzahroh, Fitrah Dewi GD, Arizandy RY. Characterization of Fungal Laccase Isolated from oil palm empty fruit bunches (OPEFB) and Its Degradation from The Agriculture Waste. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101676] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Reddy S, Osborne JW. Biodegradation and biosorption of Reactive Red 120 dye by immobilized Pseudomonas guariconensis: Kinetic and toxicity study. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1230-1241. [PMID: 32150781 DOI: 10.1002/wer.1319] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
Reactive dyes are pernicious pollutants in textile effluent, which are to be treated passably before discharging into the environment. In the present study, a potential dye degrading bacterial strain Pseudomonas guariconensis was isolated from paddy rhizosphere and was characterized by 16S rRNA gene sequencing. The biodegradation ability of the strain was evaluated by time-based study with immobilized bacterial cells in calcium alginate biocarrier matrix and also with free cells. The results indicated that the strain exhibited maximum degradation of 91% when immobilized in the biocarrier matrix. The enzymatic study revealed the production of oxidoreductase enzymes. The degraded products were identified as 2-amino-3-phenylpropanoic acid and benzoquinone by gas chromatography-mass spectroscopy (GC-MS) analysis, and a degradative pathway was derived based on the enzymatic profile. A packed bed column was designed using P. guariconensis VITSAJ5 immobilized in calcium alginate beads as a biosorbent for the removal of Reactive Red 120. The immobilized bacterial cells exhibited 87% uptake of RR120, whereas the nonimmobilized bacterial cells exhibited a maximum uptake of 37%. The phytotoxicity analysis by seed germination assay revealed an enhanced plumule and radicle length, indicating the nontoxic byproducts after the treatment of Reactive Red 120 by VITSAJ5 compared to the untreated Reactive Red 120 solution. PRACTITIONER POINTS: Current study is the first report on Pseudomonas guariconensis capable of degrading reactive dyes (Reactive Red 120) It was observed that the degradation potential was maximum when cells were immobilized with Ca-Ag biocarrier matrix Breakdown metabolism of Reactive Red 120 was derived through pathway prediction Employing immobilized bacteria in a packed bed column found to possess a prominent biosorption ability on the matrix enhancing the degradation process Toxic reactive dye was converted into nontoxic compounds, evidenced by phytotoxicity studies.
Collapse
Affiliation(s)
- Swarnkumar Reddy
- Biomolecules Lab, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Jabez W Osborne
- Biomolecules Lab, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
43
|
Implementation of Floating Treatment Wetlands for Textile Wastewater Management: A Review. SUSTAINABILITY 2020. [DOI: 10.3390/su12145801] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The textile industry is one of the most chemically intensive industries, and its wastewater is comprised of harmful dyes, pigments, dissolved/suspended solids, and heavy metals. The treatment of textile wastewater has become a necessary task before discharge into the environment. The textile effluent can be treated by conventional methods, however, the limitations of these techniques are high cost, incomplete removal, and production of concentrated sludge. This review illustrates recent knowledge about the application of floating treatment wetlands (FTWs) for remediation of textile wastewater. The FTWs system is a potential alternative technology for textile wastewater treatment. FTWs efficiently removed the dyes, pigments, organic matter, nutrients, heavy metals, and other pollutants from the textile effluent. Plants and bacteria are essential components of FTWs, which contribute to the pollutant removal process through their physical effects and metabolic process. Plants species with extensive roots structure and large biomass are recommended for vegetation on floating mats. The pollutant removal efficiency can be enhanced by the right selection of plants, managing plant coverage, improving aeration, and inoculation by specific bacterial strains. The proper installation and maintenance practices can further enhance the efficiency, sustainability, and aesthetic value of the FTWs. Further research is suggested to develop guidelines for the selection of right plants and bacterial strains for the efficient remediation of textile effluent by FTWs at large scales.
Collapse
|
44
|
|
45
|
Zeyad MT, Kumar M, Malik A. Mutagenicity, genotoxicity and oxidative stress induced by pesticide industry wastewater using bacterial and plant bioassays. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2019; 24:e00389. [PMID: 31763201 PMCID: PMC6864361 DOI: 10.1016/j.btre.2019.e00389] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 12/25/2022]
Abstract
Atomic absorption spectrophotometer and gas chromatography analysis revealed the presence of heavy metals, organochlorine and organophosphate pesticides in industrial wastewater. XAD, Dichloromethane and n-Hexane extracted wastewater were analysed for genotoxic potential using Ames Salmonella/mammalian microsome test. The XAD concentrated sample displayed remarkable mutagenic activity compared to solvent assisted liquid-liquid extraction. Strain TA98 was found utmost sensitive towards all extracts. Wastewater induced chromosomal aberrations in roots of Allium cepa showed significant (p < 0.05) decrease in mitotic index. Seeds of Vigna radiata germinated on soft agar plates treated with different concentration of wastewater showed significant reduction in germination (52 %), seedling vigor index (76 %), radicle length (56 %), plumule length (47 %), biomass of radicle (64 %) and plumule (57%) at highest wastewater concentration. Propidium iodide stained V. radiata roots showed oxidative stress induced by wastewater under CLS microscopy. Further, genotoxicity of wastewater was confirmed by plasmid nicking assay using pBR322 plasmid.
Collapse
Affiliation(s)
- Mohammad Tarique Zeyad
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, UP-202002, India
| | - Murugan Kumar
- National Bureau of Agriculturally Important Microorganisms, Kushmaur, Mau, UP-275103, India
| | - Abdul Malik
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, UP-202002, India
| |
Collapse
|
46
|
Agrawal K, Verma P. Biodegradation of synthetic dye Alizarin Cyanine Green by yellow laccase producing strain Stropharia sp. ITCC-8422. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101291] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
47
|
Hossen MZ, Hussain ME, Hakim A, Islam K, Uddin MN, Azad AK. Biodegradation of reactive textile dye Novacron Super Black G by free cells of newly isolated Alcaligenes faecalis AZ26 and Bacillus spp obtained from textile effluents. Heliyon 2019; 5:e02068. [PMID: 31338473 PMCID: PMC6626096 DOI: 10.1016/j.heliyon.2019.e02068] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 05/25/2019] [Accepted: 07/08/2019] [Indexed: 11/25/2022] Open
Abstract
Bacteria were isolated from effluents of textile industries and screened by their capability to decolorize at least one of eight reactive dyes used in the textile industries. Three isolates having the capability to decolorize the highest number of dyes with more than 25% of decolorization were identified as Alcaligenes faecalis AZ26, Bacillus cereus AZ27 and Bacillus sp. AZ28 based on morphological, cultural, biochemical characteristics, and 16S rDNA sequence analysis. The decolorization capability of these three bacterial isolates was optimized under different physicochemical conditions by using Novacron Super Black G (NSB-G), one of the eight reactive dyes commonly used in textile industries. These bacterial isolates grew well in the presence of up to 500 mg L−1 of NSB-G and showed decolorization of approximately 90% at 200 mg L−1 of NSB-G after 96 h of cultivation at 37 °C and pH 8.0 under static condition. Decolorization of NSB-G by the bacterial isolates was investigated using UV-VIS spectrophotometry and Fourier Transform Infrared Spectroscopy (FTIR) analysis. The UV-visible absorbance spectra and the FTIR spectrum of the decolorized NSB-G significantly differed from those of the parent dye, indicating that the NSB-G was degraded by the bacterial isolates. High decolorization extent supports the notion that the bacterial isolates reported herein might have potential in the biological treatment of dyeing mill effluents.
Collapse
Affiliation(s)
- Md Zobaidul Hossen
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Md Eleus Hussain
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Al Hakim
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Kamrul Islam
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Md Nizam Uddin
- Department of Chemistry, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Abul Kalam Azad
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| |
Collapse
|
48
|
Amini B, Otadi M, Partovinia A. Statistical modeling and optimization of Toluidine Red biodegradation in a synthetic wastewater using Halomonas strain Gb. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2019; 17:319-330. [PMID: 31297214 PMCID: PMC6582210 DOI: 10.1007/s40201-019-00350-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/06/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Synthetic dye wastewater is a group of environmental pollutants that are widely used in some industries like textile, printing, dyeing and etc. Traditional treatment methods for wastewaters containing synthetic dyes are considered as expensive and time consuming approaches due to the chemical stability of these pollutants. Therefore, in recent years, biodegradation by means of capable microorganisms has been considered as an effective way to remove these pollutants. Hence, the present study has aimed at examining the decolorization of Toluidine Red (C.I. no.12120), which is an oil soluble azo dye, as the sole sources of carbon and energy from a synthetic dye wastewater by the halophilic Halomonas strain Gb bacterium. In order to model, optimize, and investigate the individual factors affecting the biodegradation capacity of this dye by Halomonas strain Gb, for the first time response surface methodology (RSM) and central composite design (CCD) were applied. METHODS In this research, statistical modeling and optimization were performed by Design Expert software version 10 and the degradation capacity was considered by carrying out 30 tests using RSM method. For this purpose, the effect of 4 variables included dye concentration (10-30 ppm), salt concentration (2-10%), pH (5.5-9.5), and temperature (20-40) at different times of 2nd, 4th, and 10th days have been studied. Then, a second-order function was presented for the amount of dye removal in terms of the four selected variables, based on statistical modeling. RESULTS According to the obtained results and analysis of variance, all main variables were found to be significantly effective on the biodegradation capacity. With regard to the results, the highest amount of biodegradation between different days was 81% and observed at the 4th day, while the optimum conditions for the maximum biodegradation of this time has been determined at pH of 6.5, temperature of 35 °C, and salt and dye concentrations were equivalent to 4% and 25 ppm, respectively. There is 11% relative error between the experimental and predicted results in the selected experiments, which confirms the reliability of the obtained correlation for calculating the decolorization capacity. CONCLUSION In accordance with the results, the proposed model can provide a good prediction of the effect of different conditions on the biodegradation of Toluidine Red, and the optimization results in this study have been consistent with the previous studies conducted with the IP8 and D2 strains by the OFAT method. Moreover, the proposed model may help in better understanding the impact of main effects and interaction between variables on the dye removal. Overall, the results indicated that the halophilic bacterium used in dye removal can be more effective in high-salinity environments.
Collapse
Affiliation(s)
- Baharnaz Amini
- Department of Chemical Engineering, Faculty of Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Otadi
- Department of Chemical Engineering, Faculty of Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ali Partovinia
- Faculty of New Technologies Engineering, Zirab Campus, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
49
|
Masarbo RS, Niranjana SR, Monisha TR, Nayak AS, Karegoudar TB. Efficient decolorization and detoxification of sulphonated azo dye Ponceau 4R by using single and mixed bacterial consortia. BIOCATAL BIOTRANSFOR 2019. [DOI: 10.1080/10242422.2019.1568414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Ramesh S. Masarbo
- Department of Biochemistry, Gulbarga University, Kalaburagi, Karnataka, India
| | - S. R. Niranjana
- Department of Biotechnology, University of Mysore, Mysuru, Karnataka, India
| | - T. R. Monisha
- Department of Biochemistry, Gulbarga University, Kalaburagi, Karnataka, India
| | - Anand S. Nayak
- Department of Biochemistry, Gulbarga University, Kalaburagi, Karnataka, India
| | - T. B. Karegoudar
- Department of Biochemistry, Gulbarga University, Kalaburagi, Karnataka, India
| |
Collapse
|
50
|
Extracellular Fungal Peroxidases and Laccases for Waste Treatment: Recent Improvement. RECENT ADVANCEMENT IN WHITE BIOTECHNOLOGY THROUGH FUNGI 2019. [DOI: 10.1007/978-3-030-25506-0_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|