1
|
Jayakumar M, Gindaba GT, Gebeyehu KB, Periyasamy S, Jabesa A, Baskar G, John BI, Pugazhendhi A. Bioethanol production from agricultural residues as lignocellulosic biomass feedstock's waste valorization approach: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163158. [PMID: 37001650 DOI: 10.1016/j.scitotenv.2023.163158] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/13/2023] [Accepted: 03/26/2023] [Indexed: 05/17/2023]
Abstract
Bioenergy is becoming very popular, drawing attention as a renewable energy source that may assist in managing growing energy costs, besides possibly affording revenue to underprivileged farmers and rural populations worldwide. Bioethanol made from agricultural residual-biomass provides irreplaceable environmental, socioeconomic, and strategic benefits and can be considered as a safe and cleaner liquid fuel alternative to traditional fossil fuels. There is a significant advancement made at the bench scale towards fuel ethanol production from agricultural lignocellulosic materials (ALCM). These process technologies include pretreatment of ALCM biomass employment of cellulolytic enzymes for depolymerizing carbohydrate polymers into fermentable sugars to effectively achieve it by applying healthy fermentative microbes for bioethanol generation. Amongst all the available process methods, weak acid hydrolysis followed by enzymatic hydrolysis process technique. Recovering higher proficient celluloses is more attractive in terms of economic benefits and long-term environmental effects. Besides, the state of ALCM biomass based bioethanol production methods is discussed in detail, which could make it easier for the scientific and industrial communities to utilize agricultural leftovers properly.
Collapse
Affiliation(s)
- Mani Jayakumar
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, Haramaya, Dire Dawa, Ethiopia.
| | - Gadissa Tokuma Gindaba
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, Haramaya, Dire Dawa, Ethiopia
| | | | - Selvakumar Periyasamy
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Abdisa Jabesa
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, Haramaya, Dire Dawa, Ethiopia
| | - Gurunathan Baskar
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai 600119, India
| | - Beula Isabel John
- Department of Energy and Environment, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu, India
| | - Arivalagan Pugazhendhi
- University Centre for Research & Development, Department of Civil Engineering, Chandigarh University, Mohali-140103, India; School of Engineering, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
2
|
Noguchi T, Nishiyama R, Shimokawa T, Yamada K, Kagawa Y. Simultaneous production of cellobiose and xylobiose from alkali-treated bagasse using cellulase secreted by Fe-ion-irradiated Trichoderma reesei mutant. J Biosci Bioeng 2022; 134:491-495. [PMID: 36220721 DOI: 10.1016/j.jbiosc.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/05/2022]
Abstract
Cellobiose and xylobiose are disaccharides composed of two glucose or xylose units with β-1,4 linkages. This study aimed to isolate a Trichoderma reesei mutant that lacks β-glucosidase and β-xylosidase activities for the simultaneous production of these disaccharides. Mutagenesis using Fe-ion beam resulted in a mutant strain, T. reesei T1640; the cellulase production in this strain was as high as that in the parent strain. Genomic analysis revealed that T1640 lost both the β-glucosidase and β-xylosidase activities owing to the translocation of the responsible genes. Hydrolysis of alkali-treated bagasse using the enzymes from T1640 leads to high yields (365 mg/g-biomass) and ratios (72.7% of the total sugars) of cellobiose and xylobiose.
Collapse
Affiliation(s)
- Takuya Noguchi
- New Frontiers Research Laboratory, Toray Industries, Inc., 6-10-1 Tebiro, Kamakura, Kanagawa 248-8555, Japan
| | - Ryuji Nishiyama
- New Frontiers Research Laboratory, Toray Industries, Inc., 6-10-1 Tebiro, Kamakura, Kanagawa 248-8555, Japan
| | - Takashi Shimokawa
- National Institutes of Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan
| | - Katsushige Yamada
- New Frontiers Research Laboratory, Toray Industries, Inc., 6-10-1 Tebiro, Kamakura, Kanagawa 248-8555, Japan
| | - Yusuke Kagawa
- New Frontiers Research Laboratory, Toray Industries, Inc., 6-10-1 Tebiro, Kamakura, Kanagawa 248-8555, Japan.
| |
Collapse
|
3
|
RANİ P, BANSAL M, PATHAK VV. Biogas Production from Wheat Straw using Textile Industrial Wastewater by Co-digestion Process: Experimental and Kinetic Study. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2022. [DOI: 10.18596/jotcsa.1009483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
4
|
Li M, Jiang B, Wu W, Wu S, Yang Y, Song J, Ahmad M, Jin Y. Current understanding and optimization strategies for efficient lignin-enzyme interaction: A review. Int J Biol Macromol 2022; 195:274-286. [PMID: 34883164 DOI: 10.1016/j.ijbiomac.2021.11.188] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 11/29/2022]
Abstract
From energy perspective, with abundant polysaccharides (45-85%), the renewable lignocellulosic is recognized as the 2nd generation feedstock for bioethanol and bio-based products production. Enzymatic hydrolysis is a critical pathway to yield fermentable monosaccharides from pretreated substrates of lignocellulose. Nevertheless, the lignin presence in lignocellulosic substrates leads to the low substrate enzymatic digestibility ascribed to the nonproductive adsorption. It has been reported that the water-soluble lignin (low molecular weight, sulfonated/sulfomethylated and graft polymer) enhance the rate of enzymatic digestibility, however, the catalytic mechanism of lignin-enzyme interaction remains elusive. In this review, optimization strategies for enzymatic hydrolysis based on the lignin structural modification, enzyme engineering, and different additives are critically reviewed. Lignin-enzyme interaction mechanism is also discussed (lignin and various cellulases). In addition, the mathematical models and simulation of lignin, cellulose and enzyme aims for promoting an integrated biomass-conversion process for sustainable production of value-added biofuels.
Collapse
Affiliation(s)
- Mohan Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, China
| | - Bo Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, China; Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjuan Wu
- Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Shufang Wu
- Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Yiqin Yang
- Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Junlong Song
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, China; Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Mehraj Ahmad
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, China; Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, China; Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
5
|
Yamagishi K, Ike M, Gau M, Tokuyasu K. Evaluation of the Enzymatic Saccharification Efficiency of an Energy Crop, Erianthus arundinaceus, Pretreated with Ca(OH) 2 Using both Countercurrent Washing System and pH Adjustment by Nonpressurized CO 2. J Appl Glycosci (1999) 2021; 68:63-67. [PMID: 34759770 PMCID: PMC8575653 DOI: 10.5458/jag.jag.jag-2021_0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/16/2021] [Indexed: 11/20/2022] Open
Abstract
Erianthus arundinaceus (ER) is greatly appreciated among domestic energy crops in Japan for the production of fermentable sugars from lignocellulosic polysaccharides. In this study, we developed an efficient Ca(OH)2-based pretreatment of both stems and leaves of ER at ambient temperature with the addition of a washing step for enzymatic saccharification. The recoveries of glucans and xylans in the pretreated ER after four countercurrent washing cycles were 91 and 76 %, respectively, the former being considerably higher than that of rice straw (RS) (72 %). Their saccharification ratios in the washed sample under the pressure of 1 atm CO2 were 80 and 92.5 %, respectively. The application of this simple sugar production process from ER would further support the domestic bioprocess development. ER is also foreseen to provide the additional feedstock favorable for harvesting from winter to spring in Japan, preventing a risk for feedstock shortage generated by single harvesting such as RS.
Collapse
Affiliation(s)
- Kenji Yamagishi
- Bioresource Conversion Unit, Food Research Institute, National Agriculture and Food Research Organization
| | - Masakazu Ike
- Bioresource Conversion Unit, Food Research Institute, National Agriculture and Food Research Organization
| | | | - Ken Tokuyasu
- Bioresource Conversion Unit, Food Research Institute, National Agriculture and Food Research Organization
| |
Collapse
|
6
|
Olatunji KO, Ahmed NA, Ogunkunle O. Optimization of biogas yield from lignocellulosic materials with different pretreatment methods: a review. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:159. [PMID: 34281615 PMCID: PMC8287798 DOI: 10.1186/s13068-021-02012-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/09/2021] [Indexed: 05/10/2023]
Abstract
Population increase and industrialization has resulted in high energy demand and consumptions, and presently, fossil fuels are the major source of staple energy, supplying 80% of the entire consumption. This has contributed immensely to the greenhouse gas emission and leading to global warming, and as a result of this, there is a tremendous urgency to investigate and improve fresh and renewable energy sources worldwide. One of such renewable energy sources is biogas that is generated by anaerobic fermentation that uses different wastes such as agricultural residues, animal manure, and other organic wastes. During anaerobic digestion, hydrolysis of substrates is regarded as the most crucial stage in the process of biogas generation. However, this process is not always efficient because of the domineering stableness of substrates to enzymatic or bacteria assaults, but substrates' pretreatment before biogas production will enhance biogas production. The principal objective of pretreatments is to ease the accessibility of the enzymes to the lignin, cellulose, and hemicellulose which leads to degradation of the substrates. Hence, the use of pretreatment for catalysis of lignocellulose substrates is beneficial for the production of cost-efficient and eco-friendly process. In this review, we discussed different pretreatment technologies of hydrolysis and their restrictions. The review has shown that different pretreatments have varying effects on lignin, cellulose, and hemicellulose degradation and biogas yield of different substrate and the choice of pretreatment technique will devolve on the intending final products of the process.
Collapse
Affiliation(s)
- Kehinde Oladoke Olatunji
- Department of Mechanical Engineering Science, Faculty of Engineering and Built Environment, University of Johannesburg, Johannesburg, South Africa.
| | - Noor A Ahmed
- Department of Mechanical Engineering Science, Faculty of Engineering and Built Environment, University of Johannesburg, Johannesburg, South Africa
| | - Oyetola Ogunkunle
- Department of Mechanical Engineering Science, Faculty of Engineering and Built Environment, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
7
|
Yamagishi K, Ike M, Tanaka A, Tokuyasu K. The RURAL (reciprocal upgrading for recycling of ash and lignocellulosics) process: A simple conversion of agricultural resources to strategic primary products for the rural bioeconomy. BIORESOURCE TECHNOLOGY REPORTS 2020; 12:100574. [PMID: 33052323 PMCID: PMC7543756 DOI: 10.1016/j.biteb.2020.100574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 11/16/2022]
Abstract
Rice straw (RS), an agricultural resource for lignocellulosic biorefineries, can deteriorate when sun-drying is ineffective. Poultry litter ash (PLA) has been considered as a renewable phosphorus source for crops but is highly alkaline. Here, a simple process was developed for their reciprocal upgrading. RS, PLA, and water were mixed for wet storage and alkali pretreatment of the RS at 25 °C for 14 d, and solid-solid separation was performed to obtain PLA-treated RS (PT-RS) and RS-treated PLA (RT-PLA). PT-RS was susceptible to enzymatic saccharification, and 65.5-68.6% of total sugar residues in PT-RS was converted to lactic acid by its nonsterile application for simultaneous saccharification and fermentation using Bacillus coagulans. RT-PLA exhibited 1.8-points lower pH and a more sensitive response of phosphorus solubilization to acid than those of PLA. This process could thus provide a breakthrough for the rural bioeconomy by manufacturing two strategic primary products for various commercial bioproducts.
Collapse
Affiliation(s)
- Kenji Yamagishi
- Bioresource Conversion Unit, Division of Food Biotechnology, Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba 305-8642, Japan
| | - Masakazu Ike
- Bioresource Conversion Unit, Division of Food Biotechnology, Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba 305-8642, Japan
| | - Akihiro Tanaka
- Biomass Utilization Group, Division of Crop Production Systems, Central Region Agricultural Research Center, National Agriculture and Food Research Organization, 2-1-18 Kannondai, Tsukuba 305-8666, Japan
| | - Ken Tokuyasu
- Bioresource Conversion Unit, Division of Food Biotechnology, Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba 305-8642, Japan
| |
Collapse
|
8
|
Bioethanol production from cereal crops and lignocelluloses rich agro-residues: prospects and challenges. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03471-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
9
|
Utilization of waste straw and husks from rice production: A review. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2020. [DOI: 10.1016/j.jobab.2020.07.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
10
|
Ike M, Tokuyasu K. Control of pH by CO 2 Pressurization for Enzymatic Saccharification of Ca(OH) 2 -Pretreated Rice Straw in the Presence of CaCO 3. J Appl Glycosci (1999) 2020; 67:59-62. [PMID: 34354529 PMCID: PMC8294032 DOI: 10.5458/jag.jag.jag-2019_0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/07/2020] [Indexed: 10/31/2022] Open
Abstract
The aim of this study was to investigate the effect of pH control by CO 2 pressurization on the enzymatic hydrolysis of herbaceous feedstock in the calcium capturing by carbonation (CaCCO) process for fermentable sugar production. The pH of the slurry of 5 % (w/w) Ca(OH) 2 -pretreated/CO 2 -neutralized rice straw could be controlled between 5.70 and 6.38 at 50 °C by changing the CO 2 partial pressure ( p CO 2 ) from 0.1 to 1.0 MPa. A mixture of fungal enzyme preparations, namely, Trichoderma reesei cellulases/hemicellulases and Aspergillus niger β-glucosidase, indicated that pH 5.5-6.0 is optimal for solubilizing sugars from Ca(OH) 2 -pretreated rice straw. Enzymatic saccharification of pretreated rice straw under various p CO 2 conditions revealed that the highest soluble sugar yields were obtained at p CO 2 0.4 MPa and over, which is consistent with the expected pH at the p CO 2 without enzymes and demonstrates the effectiveness of pH control by CO 2 pressurization.
Collapse
Affiliation(s)
- Masakazu Ike
- 1 Food Resource Division, Food Research Institute, National Agriculture and Food Research Organization (NARO)
| | - Ken Tokuyasu
- 1 Food Resource Division, Food Research Institute, National Agriculture and Food Research Organization (NARO)
| |
Collapse
|
11
|
Review of Solvents Based on Biomass for Mitigation of Wax Paraffin in Indonesian Oilfield. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9245499] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This paper presents a review of the expectations and challenges of using biomass in the prevention and slowing of paraffin wax deposition that takes place during the crude oil production process. The inhibition of the deposition process involves the use of solvents from biomass that are generally available around the crude oil production field. The processes used to scale down the precipitation of wax include mixing crude oil with the manufacturer’s solvent composed of toluene and xylene. The goal is to assess solvents sourced from biomass that are capable to slow down the wax deposition process. Wax appearance temperature is an important characteristic to evaluate the possible wax precipitation of a given fluid. Wax precipitation can be reduced by using some chemical additives, often called the pour point depressant. This additive is expected to be produced from local biomass which can compete with solvents currently produced on the market.
Collapse
|
12
|
|
13
|
Guan D, Zhao R, Li Y, Sakakibara Y, Ike M, Tokuyasu K. Reusable Floating Beads with Immobilized Xylose-Fermenting Yeast Cells for Simultaneous Saccharification and Fermentation of Lime-Pretreated Rice Straw. J Appl Glycosci (1999) 2019; 66:21-28. [PMID: 34354516 PMCID: PMC8056895 DOI: 10.5458/jag.jag.jag-2018_0006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/27/2018] [Indexed: 12/02/2022] Open
Abstract
Novel bioreactor beads for simultaneous saccharification and fermentation (SSF) of lime-pretreated rice straw (RS) into ethanol were prepared. Genetically modified Saccharomycescerevisiae cells expressing genes encoding xylose reductase, xylitol dehydrogenase, and xylulokinase were immobilized in calcium alginate beads containing inorganic lightweight filler particles to reduce specific gravity. For SSF experiments, the beads were floated in slurry composed of lime-pretreated RS and enzymes and incubated under CO2 atmosphere to reduce the pH for saccharification and fermentation. Following this reaction, beads were readily picked up from the upper part of the slurry and were directly transferred to the next vessel with slurry. After 240 h of incubation, ethanol production by the beads was equivalent to that by free cells, a trend that was repeated in nine additional runs, with slightly improved ethanol yields. Slurry with pre-saccharified lime-pretreated RS was subjected to SSF with floating beads for 168 h. Although higher cell concentrations in beads resulted in more rapid initial ethanol production rates, with negligible diauxic behavior for glucose and xylose utilization, no improvement in the ethanol yield was observed. A fermentor-scale SSF experiment with floating beads was successfully performed twice, with repeated use of the beads, resulting in the production of 40.0 and 39.7 g/L ethanol. There was no decomposition of the beads during agitation at 60 rpm. Thus, this bioreactor enables reuse of yeast cells for efficient ethanol production by SSF of lignocellulosic feedstock, without the need for instruments for centrifugation or filtration of whole slurry.
Collapse
Affiliation(s)
- Di Guan
- 1 Food Research Institute, National Agriculture and Food Research Organization
| | - Rui Zhao
- 1 Food Research Institute, National Agriculture and Food Research Organization
| | - Yuan Li
- 1 Food Research Institute, National Agriculture and Food Research Organization
| | | | - Masakazu Ike
- 1 Food Research Institute, National Agriculture and Food Research Organization
| | - Ken Tokuyasu
- 1 Food Research Institute, National Agriculture and Food Research Organization
| |
Collapse
|
14
|
Yamagishi K, Ike M, Guan D, Tokuyasu K. Washing Lime-Pretreated Rice Straw with Carbonated Water Facilitates Calcium Removal and Sugar Recovery in Subsequent Enzymatic Saccharification. J Appl Glycosci (1999) 2019; 66:11-19. [PMID: 34354515 PMCID: PMC8056894 DOI: 10.5458/jag.jag.jag-2018_0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/13/2018] [Indexed: 11/26/2022] Open
Abstract
Generally, Ca(OH)2 pretreatment of lignocellulosics for fermentable sugar recovery requires a subsequent washing step for calcium removal and pH control for optimized saccharification. However, washing Ca(OH)2-pretreated feedstock with water is considered problematic because of the low solubility of Ca(OH)2 and its adsorption to biomass. In this study, we estimated the availability of carbonated water for calcium removal from the slurry of Ca(OH)2-pretreated rice straw (RS). We tested two kinds of countercurrent washing sequences, four washings exclusively with water (W4) and two washings with water and subsequent two washings with carbonated water (W2C2). The ratios of calcium removal from pretreatment slurry after washing were 64.2 % for the W4 process and 92.1 % for the W2C2 process. In the W2C2 process, 49 % of the initially added calcium was recovered as CaO by calcination. In enzymatic saccharification tests under a CO2 atmosphere at 1.5 atm, in terms of recovery of both glucose and xylose, pretreated, feedstock washed through the W2C2 process surpassed that washed through the W4 process, which could be attributed to the pH difference during saccharification: 5.6 in the W2C2 process versus 6.3 in the W4 process. Additionally, under an unpressurized CO2 atmosphere at 1 atm, the feedstock washed through the W2C2 process released 78.5 % of total glucose residues and 90.0 % of total xylose residues. Thus, efficient removal of calcium from pretreatment slurry would lead to not only the recovery of added calcium but also the proposal of a new, simple saccharification system to be used under an unpressurized CO2 atmosphere condition.
Collapse
Affiliation(s)
- Kenji Yamagishi
- 1 Bioresource Conversion Unit, Food Research Institute, National Agriculture and Food Research Organization
| | - Masakazu Ike
- 1 Bioresource Conversion Unit, Food Research Institute, National Agriculture and Food Research Organization
| | - Di Guan
- 1 Bioresource Conversion Unit, Food Research Institute, National Agriculture and Food Research Organization
| | - Ken Tokuyasu
- 1 Bioresource Conversion Unit, Food Research Institute, National Agriculture and Food Research Organization
| |
Collapse
|
15
|
|
16
|
Huang J, Xia T, Li G, Li X, Li Y, Wang Y, Wang Y, Chen Y, Xie G, Bai FW, Peng L, Wang L. Overproduction of native endo-β-1,4-glucanases leads to largely enhanced biomass saccharification and bioethanol production by specific modification of cellulose features in transgenic rice. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:11. [PMID: 30636971 PMCID: PMC6325865 DOI: 10.1186/s13068-018-1351-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/29/2018] [Indexed: 05/03/2023]
Abstract
BACKGROUND Genetic modification of plant cell walls has been implemented to reduce lignocellulosic recalcitrance for biofuel production. Plant glycoside hydrolase family 9 (GH9) comprises endo-β-1,4-glucanase in plants. Few studies have examined the roles of GH9 in cell wall modification. In this study, we independently overexpressed two genes from GH9B subclasses (OsGH9B1 and OsGH9B3) and examined cell wall features and biomass saccharification in transgenic rice plants. RESULTS Compared with the wild type (WT, Nipponbare), the OsGH9B1 and OsGH9B3 transgenic rice plants, respectively, contained much higher OsGH9B1 and OsGH9B3 protein levels and both proteins were observed in situ with nonspecific distribution in the plant cells. The transgenic lines exhibited significantly increased cellulase activity in vitro than the WT. The OsGH9B1 and OsGH9B3 transgenic plants showed a slight alteration in three wall polymer compositions (cellulose, hemicelluloses, and lignin), in their stem mechanical strength and biomass yield, but were significantly decreased in the cellulose degree of polymerization (DP) and lignocellulose crystalline index (CrI) by 21-22%. Notably, the crude cellulose substrates of the transgenic lines were more efficiently digested by cellobiohydrolase (CBHI) than those of the WT, indicating the significantly increased amounts of reducing ends of β-1,4-glucans in cellulose microfibrils. Finally, the engineered lines generated high sugar yields after mild alkali pretreatments and subsequent enzymatic hydrolysis, resulting in the high bioethanol yields obtained at 22.5% of dry matter. CONCLUSIONS Overproduction of OsGH9B1/B3 enzymes should have specific activity in the postmodification of cellulose microfibrils. The increased reducing ends of β-1,4-glucan chains for reduced cellulose DP and CrI positively affected biomass enzymatic saccharification. Our results demonstrate a potential strategy for genetic modification of cellulose microfibrils in bioenergy crops.
Collapse
Affiliation(s)
- Jiangfeng Huang
- Biomass and Bioenergy Research Centre, College of Plant Science and Technology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070 China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, Guangxi University, Nanning, 530004 China
| | - Tao Xia
- Biomass and Bioenergy Research Centre, College of Plant Science and Technology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Guanhua Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070 China
| | - Xianliang Li
- College of Bioengineering, Jingchu University of Technology, Jingmen, 448000 China
| | - Ying Li
- Biomass and Bioenergy Research Centre, College of Plant Science and Technology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yanting Wang
- Biomass and Bioenergy Research Centre, College of Plant Science and Technology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Youmei Wang
- Biomass and Bioenergy Research Centre, College of Plant Science and Technology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yuanyuan Chen
- Biomass and Bioenergy Research Centre, College of Plant Science and Technology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Guosheng Xie
- Biomass and Bioenergy Research Centre, College of Plant Science and Technology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Feng-Wu Bai
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Liangcai Peng
- Biomass and Bioenergy Research Centre, College of Plant Science and Technology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Lingqiang Wang
- Biomass and Bioenergy Research Centre, College of Plant Science and Technology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
17
|
Chang M, Li D, Wang W, Chen D, Zhang Y, Hu H, Ye X. Comparison of sodium hydroxide and calcium hydroxide pretreatments on the enzymatic hydrolysis and lignin recovery of sugarcane bagasse. BIORESOURCE TECHNOLOGY 2017; 244:1055-1058. [PMID: 28851160 DOI: 10.1016/j.biortech.2017.08.101] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 06/07/2023]
Abstract
Sodium hydroxide (NaOH) and calcium hydroxide (Ca(OH)2) respectively dissolved in water and 70% glycerol were applied to treat sugarcane bagasse (SCB) under the condition of 80°C for 2h. NaOH solutions could remove more lignin and obtain higher enzymatic hydrolysis efficiency of SCB than Ca(OH)2 solutions. Compared with the alkali-water solutions, the enzymatic hydrolysis of SCB treated in NaOH-glycerol solution decreased, while that in Ca(OH)2-glycerol solution increased. The lignin in NaOH-water pretreatment liquor could be easily recovered by calcium chloride (CaCl2) at room temperature, but that in Ca(OH)2-water pretreatment liquor couldn't. NaOH pretreatment is more suitable for facilitating enzymatic hydrolysis and lignin recovery of SCB than Ca(OH)2 pretreatment.
Collapse
Affiliation(s)
- Menglei Chang
- College of Materials Science and Energy Engineering, Foshan University, Foshan, Guangdong 528000, PR China
| | - Denian Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, Guangdong 510640, PR China
| | - Wen Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, Guangdong 510640, PR China.
| | - Dongchu Chen
- College of Materials Science and Energy Engineering, Foshan University, Foshan, Guangdong 528000, PR China
| | - Yuyuan Zhang
- College of Materials Science and Energy Engineering, Foshan University, Foshan, Guangdong 528000, PR China
| | - Huawen Hu
- College of Materials Science and Energy Engineering, Foshan University, Foshan, Guangdong 528000, PR China
| | - Xiufang Ye
- College of Materials Science and Energy Engineering, Foshan University, Foshan, Guangdong 528000, PR China
| |
Collapse
|
18
|
Jiang D, Ge X, Zhang Q, Zhou X, Chen Z, Keener H, Li Y. Comparison of sodium hydroxide and calcium hydroxide pretreatments of giant reed for enhanced enzymatic digestibility and methane production. BIORESOURCE TECHNOLOGY 2017; 244:1150-1157. [PMID: 28867429 DOI: 10.1016/j.biortech.2017.08.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 06/07/2023]
Abstract
NaOH pretreatment with leachate reuse and Ca(OH)2 pretreatment were compared for improved enzymatic digestibility and biogas production from giant reed, a promising energy crop. The NaOH pretreatment with leachate reuse increased glucose yields during enzymatic hydrolysis by 2.6-fold, and methane yields during anaerobic digestion by 1.4- to 1.6-fold. However, NaOH pretreatment had a negative net benefit (i.e., revenue from increased energy production minus chemical cost). Pretreatment with 7-20% Ca(OH)2 not only improved glucose yield and methane yield by up to 2.3-fold and 1.4-fold, respectively, but also obtained a net benefit of $1.1-5.8/tonne dry biomass. Thus, Ca(OH)2 pretreatment was shown to be more feasible than NaOH pretreatment for biogas production from giant reed.
Collapse
Affiliation(s)
- Danping Jiang
- Department of Food, Agricultural and Biological Engineering, The Ohio State University/Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691-4096, United States; Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Agricultural Ministry, Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Xumeng Ge
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Agricultural Ministry, Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China; Quasar Energy Group, 2705 Selby Road, Wooster, OH 44691, United States.
| | - Quanguo Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Agricultural Ministry, Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Xuehua Zhou
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Agricultural Ministry, Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhou Chen
- Department of Food, Agricultural and Biological Engineering, The Ohio State University/Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691-4096, United States
| | - Harold Keener
- Department of Food, Agricultural and Biological Engineering, The Ohio State University/Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691-4096, United States
| | - Yebo Li
- Quasar Energy Group, 2705 Selby Road, Wooster, OH 44691, United States
| |
Collapse
|
19
|
Kumar AK, Sharma S. Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. BIORESOUR BIOPROCESS 2017; 4:7. [PMID: 28163994 PMCID: PMC5241333 DOI: 10.1186/s40643-017-0137-9] [Citation(s) in RCA: 355] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/10/2017] [Indexed: 11/22/2022] Open
Abstract
Lignocellulosic feedstock materials are the most abundant renewable bioresource material available on earth. It is primarily composed of cellulose, hemicellulose, and lignin, which are strongly associated with each other. Pretreatment processes are mainly involved in effective separation of these complex interlinked fractions and increase the accessibility of each individual component, thereby becoming an essential step in a broad range of applications particularly for biomass valorization. However, a major hurdle is the removal of sturdy and rugged lignin component which is highly resistant to solubilization and is also a major inhibitor for hydrolysis of cellulose and hemicellulose. Moreover, other factors such as lignin content, crystalline, and rigid nature of cellulose, production of post-pretreatment inhibitory products and size of feed stock particle limit the digestibility of lignocellulosic biomass. This has led to extensive research in the development of various pretreatment processes. The major pretreatment methods include physical, chemical, and biological approaches. The selection of pretreatment process depends exclusively on the application. As compared to the conventional single pretreatment process, integrated processes combining two or more pretreatment techniques is beneficial in reducing the number of process operational steps besides minimizing the production of undesirable inhibitors. However, an extensive research is still required for the development of new and more efficient pretreatment processes for lignocellulosic feedstocks yielding promising results.
Collapse
Affiliation(s)
- Adepu Kiran Kumar
- Bioconversion Technology Division, Sardar Patel Renewable Energy Research Institute, Vallabh Vidyanagar, Anand, 388 120 Gujarat India
| | - Shaishav Sharma
- Bioconversion Technology Division, Sardar Patel Renewable Energy Research Institute, Vallabh Vidyanagar, Anand, 388 120 Gujarat India
| |
Collapse
|
20
|
Sustainable Production of Chemicals and Energy Fuel Precursors from Lignocellulosic Fractions. BIOFUELS 2017. [DOI: 10.1007/978-981-10-3791-7_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
21
|
Shiroma R, Li Y, Park JY, Wu L, Kaneko S, Takai T, Gau M, Ike M, Tokuyasu K. Evaluation of Two Sets of Sorghum Bagasse Samples as the Feedstock for Fermentable Sugar Recovery via the Calcium Capturing by Carbonation (CaCCO) Process. J Appl Glycosci (1999) 2016; 63:77-85. [PMID: 34354486 PMCID: PMC8056918 DOI: 10.5458/jag.jag.jag-2016_007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/24/2016] [Indexed: 11/02/2022] Open
Abstract
Sorghum bagasse samples from two sets (n6 and bmr6; n18 and bmr18) of wild-type and corresponding "brown midrib" (bmr) mutant strains of sweet sorghum were evaluated as the feedstock for fermentable sugar recovery via the calcium capturing by carbonation (CaCCO) process, which involves Ca(OH)2 pretreatment of bagasse with subsequent neutralization with CO2 for enzymatic saccharification. Saccharification tests under various pretreatment conditions of the CaCCO process at different Ca(OH)2 concentrations, temperatures or residence periods indicated that bmr strains are more sensitive to the pretreatment than their counterparts are. It is expected that variant bmr6 is more suitable for glucose recovery than its wild-type counterpart because of the higher glucan content and better glucose recovery with less severe pretreatment. Meanwhile, bmr18showed higher scores of glucose recovery than its counterpart did, only at low pretreatment severity, and did not yield higher sugar recovery under the more severe conditions. The trend was similar to that of xylose recovery data from the two bmr strains. The advantages of bmr strains were also proven by means of simultaneous saccharification and fermentation of CaCCO-pretreated bagasse samples by pentose-fermenting yeast strain Candida shehatae Cs 4R. The amounts needed for production of 1 L of ethanol from n6, bmr6, n18, and bmr18samples were estimated as 4.11, 3.46, 4.03, and 3.95 kg, respectively. The bmr strains seem to have excellent compatibility with the CaCCO process for ethanol production, and it is expected that integrated research from the feedstock to bioprocess may result in breakthroughs for commercialization.
Collapse
Affiliation(s)
- Riki Shiroma
- 1 Carbohydrate Laboratory, Food Resource Division, National Food Research Institute, National Agriculture and Food Research Organization (NARO).,2 Department of Subtropical Biochemistry and Biotechnology, Faculty of Agriculture, University of Ryukyus
| | - Yuan Li
- 1 Carbohydrate Laboratory, Food Resource Division, National Food Research Institute, National Agriculture and Food Research Organization (NARO)
| | - Jeung-Yil Park
- 1 Carbohydrate Laboratory, Food Resource Division, National Food Research Institute, National Agriculture and Food Research Organization (NARO)
| | - Long Wu
- 1 Carbohydrate Laboratory, Food Resource Division, National Food Research Institute, National Agriculture and Food Research Organization (NARO)
| | - Satoshi Kaneko
- 2 Department of Subtropical Biochemistry and Biotechnology, Faculty of Agriculture, University of Ryukyus
| | - Tomoyuki Takai
- 3 Forage Crop Breeding Unit, National Agricultural Research Center for Kyushu Okinawa Region, NARO
| | - Mitsuru Gau
- 3 Forage Crop Breeding Unit, National Agricultural Research Center for Kyushu Okinawa Region, NARO
| | - Masakazu Ike
- 1 Carbohydrate Laboratory, Food Resource Division, National Food Research Institute, National Agriculture and Food Research Organization (NARO)
| | - Ken Tokuyasu
- 1 Carbohydrate Laboratory, Food Resource Division, National Food Research Institute, National Agriculture and Food Research Organization (NARO)
| |
Collapse
|
22
|
Velmurugan R, Incharoensakdi A. Proper ultrasound treatment increases ethanol production from simultaneous saccharification and fermentation of sugarcane bagasse. RSC Adv 2016. [DOI: 10.1039/c6ra17792a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To improve the saccharification and fermentation processes, proper ultrasound was applied which resulted in the presence of cellulase complex with improved β-glucosidase ratio leading to enhanced overall ethanol yield.
Collapse
|
23
|
Sebayang AH, Masjuki HH, Ong HC, Dharma S, Silitonga AS, Mahlia TMI, Aditiya HB. A perspective on bioethanol production from biomass as alternative fuel for spark ignition engine. RSC Adv 2016. [DOI: 10.1039/c5ra24983j] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The increasing fuel consumption of fossil fuels has led to the development of alternative fuels for the future.
Collapse
Affiliation(s)
- A. H. Sebayang
- Department of Mechanical Engineering
- Faculty of Engineering
- University of Malaya
- 50603 Kuala Lumpur
- Malaysia
| | - H. H. Masjuki
- Department of Mechanical Engineering
- Faculty of Engineering
- University of Malaya
- 50603 Kuala Lumpur
- Malaysia
| | - Hwai Chyuan Ong
- Department of Mechanical Engineering
- Faculty of Engineering
- University of Malaya
- 50603 Kuala Lumpur
- Malaysia
| | - S. Dharma
- Department of Mechanical Engineering
- Faculty of Engineering
- University of Malaya
- 50603 Kuala Lumpur
- Malaysia
| | - A. S. Silitonga
- Department of Mechanical Engineering
- Faculty of Engineering
- University of Malaya
- 50603 Kuala Lumpur
- Malaysia
| | - T. M. I. Mahlia
- Department of Mechanical Engineering
- Universiti Tenaga Nasional
- 43000 Kajang
- Malaysia
| | - H. B. Aditiya
- Department of Mechanical Engineering
- Universiti Tenaga Nasional
- 43000 Kajang
- Malaysia
- Department of Mechanical Engineering
| |
Collapse
|
24
|
Silveira MHL, Morais ARC, da Costa Lopes AM, Olekszyszen DN, Bogel-Łukasik R, Andreaus J, Pereira Ramos L. Current Pretreatment Technologies for the Development of Cellulosic Ethanol and Biorefineries. CHEMSUSCHEM 2015; 8:3366-90. [PMID: 26365899 DOI: 10.1002/cssc.201500282] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 06/03/2015] [Indexed: 05/08/2023]
Abstract
Lignocellulosic materials, such as forest, agriculture, and agroindustrial residues, are among the most important resources for biorefineries to provide fuels, chemicals, and materials in such a way to substitute for, at least in part, the role of petrochemistry in modern society. Most of these sustainable biorefinery products can be produced from plant polysaccharides (glucans, hemicelluloses, starch, and pectic materials) and lignin. In this scenario, cellulosic ethanol has been considered for decades as one of the most promising alternatives to mitigate fossil fuel dependence and carbon dioxide accumulation in the atmosphere. However, a pretreatment method is required to overcome the physical and chemical barriers that exist in the lignin-carbohydrate composite and to render most, if not all, of the plant cell wall components easily available for conversion into valuable products, including the fuel ethanol. Hence, pretreatment is a key step for an economically viable biorefinery. Successful pretreatment method must lead to partial or total separation of the lignocellulosic components, increasing the accessibility of holocellulose to enzymatic hydrolysis with the least inhibitory compounds being released for subsequent steps of enzymatic hydrolysis and fermentation. Each pretreatment technology has a different specificity against both carbohydrates and lignin and may or may not be efficient for different types of biomasses. Furthermore, it is also desirable to develop pretreatment methods with chemicals that are greener and effluent streams that have a lower impact on the environment. This paper provides an overview of the most important pretreatment methods available, including those that are based on the use of green solvents (supercritical fluids and ionic liquids).
Collapse
Affiliation(s)
- Marcos Henrique Luciano Silveira
- CEPESQ, Research Center in Applied Chemistry, Department of Chemistry, Federal University of Paraná, Curitiba, PR, 81531-970, Brazil
| | - Ana Rita C Morais
- Unit of Bioenergy, National Laboratory of Energy and Geology, 1649-038, Lisbon, Portugal
- LAQV/REQUIMTE, Department of Chemistry, Faculty of Science and Technology, New University of Lisbon, 2829-516, Caparica, Portugal
| | - Andre M da Costa Lopes
- Unit of Bioenergy, National Laboratory of Energy and Geology, 1649-038, Lisbon, Portugal
- LAQV/REQUIMTE, Department of Chemistry, Faculty of Science and Technology, New University of Lisbon, 2829-516, Caparica, Portugal
| | | | - Rafał Bogel-Łukasik
- Unit of Bioenergy, National Laboratory of Energy and Geology, 1649-038, Lisbon, Portugal.
| | - Jürgen Andreaus
- Department of Chemistry, Regional University of Blumenau, Blumenau, SC, 89012 900, Brazil.
| | - Luiz Pereira Ramos
- CEPESQ, Research Center in Applied Chemistry, Department of Chemistry, Federal University of Paraná, Curitiba, PR, 81531-970, Brazil.
- INCT Energy and Environment (INCT E&A), Department of Chemistry, Federal University of Paraná.
| |
Collapse
|
25
|
Kurian JK, Gariepy Y, Orsat V, Raghavan GSV. Comparison of steam-assisted versus microwave-assisted treatments for the fractionation of sweet sorghum bagasse. BIORESOUR BIOPROCESS 2015. [DOI: 10.1186/s40643-015-0059-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
26
|
Zainuddin N, Abd Rahman KH, Razak Shaari A, Mohd Yusof SJH. Isolation of Potential Alkaliphilic Cellulase-Producer Strains from Limestone Area of Perlis. APPLIED MECHANICS AND MATERIALS 2015; 754-755:1054-1058. [DOI: 10.4028/www.scientific.net/amm.754-755.1054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Alkaliphilic cellulases-producer fungi were isolated from soil of limestone areas in Perlis. The potential strain was isolated by soil dilution plate method on enriched selective medium using CMC as substrate at different pH levels. Eleven isolates of different morphological colonies were screened using the hydrolysis capacity test by Gram’s iodine. Out of eleven colonies, five showed positive results as the hydrolysis zone formed. BK1 showed the highest hydrolysis capacity among all sample strains for every pH levels. Eventually, four strains were selected to be further explored as cellulolytic fungi for the production of alkaline cellulase in the future.
Collapse
|
27
|
Koyama Y, Zhao R, Ike M, Tokuyasu K. Candida utilis assimilates oligomeric sugars in rice straw hydrolysate via the Calcium-Capturing-by-Carbonation (CaCCO) process for glutathione- and cell-biomass production. BIORESOURCE TECHNOLOGY 2014; 172:413-417. [PMID: 25241674 DOI: 10.1016/j.biortech.2014.08.097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/22/2014] [Accepted: 08/23/2014] [Indexed: 06/03/2023]
Abstract
Rice-straw hydrolysate (RSH) prepared via the CaCCO (Calcium Capturing by Carbonation) process contains not only monosaccharides but also significant amounts of oligosaccharides. In this study, a glutathione-producing yeast, Candida utilis NBRC 0626, was found to assimilate those oligosaccharides. The yields of reduced glutathione (GSH) and dry cell weight (DCW) per consumed sugars in a medium with RSH after 72h incubation were 10.1mg/g-sugars and 0.49g/g-sugars, respectively. The yields were comparative to those in a medium containing a model monosaccharide mix, suggesting that the assimilated oligosaccharides contribute to additional GSH and DCW production. Glycosyl linkage analysis indicated that the yeast could cleave xylose-, galactose-, and arabinose residues as well as glucose residues at the non-reducing ends. After 72h incubation, 99.1% of the total glucose residues and 84.2% of the total xylose residues in RSH were depleted. Thus the yeast could be applied for efficient utilization of lignocellulosic hydrolysates.
Collapse
Affiliation(s)
- Yoshiyuki Koyama
- National Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Rui Zhao
- National Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Masakazu Ike
- National Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Ken Tokuyasu
- National Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan.
| |
Collapse
|
28
|
Singh J, Suhag M, Dhaka A. Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods: a review. Carbohydr Polym 2014; 117:624-631. [PMID: 25498680 DOI: 10.1016/j.carbpol.2014.10.012] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 10/02/2014] [Accepted: 10/05/2014] [Indexed: 10/24/2022]
Abstract
Lignocellulosic materials can be explored as one of the sustainable substrates for bioethanol production through microbial intervention as they are abundant, cheap and renewable. But at the same time, their recalcitrant structure makes the conversion process more cumbersome owing to their chemical composition which adversely affects the efficiency of bioethanol production. Therefore, the technical approaches to overcome recalcitrance of biomass feedstock has been developed to remove the barriers with the help of pretreatment methods which make cellulose more accessible to the hydrolytic enzymes, secreted by the microorganisms, for its conversion to glucose. Pretreatment of lignocellulosic biomass in cost effective manner is a major challenge to bioethanol technology research and development. Hence, in this review, we have discussed various aspects of three commonly used pretreatment methods, viz., steam explosion, acid and alkaline, applied on various lignocellulosic biomasses to augment their digestibility alongwith the challenges associated with their processing.
Collapse
Affiliation(s)
- Joginder Singh
- Laboratory of Environmental Biotechnology, Department of Botany, A. I. Jat H. M. College, Rohtak 124001, Haryana, India.
| | - Meenakshi Suhag
- Institute of Environmental Studies, Kurukshetra University, Kurukshetra 136119, Haryana, India.
| | - Anil Dhaka
- PNRS Government College, Rohtak 124001, Haryana, India.
| |
Collapse
|
29
|
Toquero C, Bolado S. Effect of four pretreatments on enzymatic hydrolysis and ethanol fermentation of wheat straw. Influence of inhibitors and washing. BIORESOURCE TECHNOLOGY 2014; 157:68-76. [PMID: 24531149 DOI: 10.1016/j.biortech.2014.01.090] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/18/2014] [Accepted: 01/21/2014] [Indexed: 05/16/2023]
Abstract
Pretreatment is essential in the production of alcohol from lignocellulosic material. In order to increase enzymatic sugar release and bioethanol production, thermal, dilute acid, dilute basic and alkaline peroxide pretreatments were applied to wheat straw. Compositional changes in pretreated solid fractions and sugars and possible inhibitory compounds released in liquid fractions were analysed. SEM analysis showed structural changes after pretreatments. Enzymatic hydrolysis and fermentation by Pichia stipitis of unwashed and washed samples from each pretreatment were performed so as to compare sugar and ethanol yields. The effect of the main inhibitors found in hydrolysates (formic acid, acetic acid, 5-hydroxymethylfurfural and furfural) was first studied through ethanol fermentations of model media and then compared to real hydrolysates. Hydrolysates of washed alkaline peroxide pretreated biomass provided the highest sugar concentrations, 31.82g/L glucose, and 13.75g/L xylose, their fermentation yielding promising results, with ethanol concentrations reaching 17.37g/L.
Collapse
Affiliation(s)
- Cristina Toquero
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Silvia Bolado
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain.
| |
Collapse
|
30
|
Roy P, Dutta A. Life cycle assessment of ethanol derived from sawdust. BIORESOURCE TECHNOLOGY 2013; 150:407-411. [PMID: 23993286 DOI: 10.1016/j.biortech.2013.08.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/05/2013] [Accepted: 08/07/2013] [Indexed: 06/02/2023]
Abstract
The life cycle of ethanol derived from sawdust by enzymatic hydrolysis process is evaluated to determine if environmentally preferable and economically viable ethanol can be produced. Two scenarios are considered to estimate net energy consumption, greenhouse gas (GHG) emission and production costs. The estimated net energy consumption, GHG emission and production costs are 12.29-13.37 MJ/L, 0.75-0.92 kg CO2 e/L and about $0.98-$1.04/L, respectively depending on the scenarios of this study. The result confirmed that environmental benefit can be gained with present technologies; however, economic viability remains doubtful unless Feed-in Tariff (FiT) is considered. The production cost of ethanol reduces to $0.5/L, if FiT is considered to be $0.025/MJ. This study indicates that the implementation of FiT program for ethanol industry not only helps Ontario mitigate GHG emissions, but may also attract more investment and create rural employment opportunities.
Collapse
Affiliation(s)
- Poritosh Roy
- School of Engineering, University of Guelph, Ontario N1G 2W1, Canada.
| | | |
Collapse
|
31
|
Zhao R, Yun MS, Shiroma R, Ike M, Guan D, Tokuyasu K. Integration of a phenolic-acid recovery step in the CaCCO process for efficient fermentable-sugar recovery from rice straw. BIORESOURCE TECHNOLOGY 2013; 148:422-427. [PMID: 24077151 DOI: 10.1016/j.biortech.2013.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/02/2013] [Accepted: 09/03/2013] [Indexed: 06/02/2023]
Abstract
An advanced sugar-platform bioprocess for lignocellulosic feedstocks by adding a phenolic-acid (PA: p-coumaric acid and ferulic acid) recovery step to the CaCCO process was designed. For efficient PA extraction, pretreatment was 95°C for 2h, producing a yield of 7.30 g/kg-dry rice straw (65.2% of total ester-linked PAs) with insignificant effects on saccharification. PAs were readily recovered in solution during the repeated washings of solids, and the glucose yield, after 72-h saccharification of the washed solids, was significantly improved from 65.9% to 70.3-72.7%, suggesting the removal of potential enzyme inhibitors. The promotion of xylose yield was insignificant, probably due to 13.1-17.8% loss of xylose residues after washing(s). This new bioprocess, termed the SRB (simultaneous recovery of by-products)-CaCCO process, would effectively produce fermentable sugars and other valuables from feedstocks, strengthening the platform in both economic and environmental terms.
Collapse
Affiliation(s)
- Rui Zhao
- National Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Gu F, Wang W, Jing L, Jin Y. Sulfite-formaldehyde pretreatment on rice straw for the improvement of enzymatic saccharification. BIORESOURCE TECHNOLOGY 2013; 142:218-224. [PMID: 23743425 DOI: 10.1016/j.biortech.2013.04.127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 04/29/2013] [Accepted: 04/30/2013] [Indexed: 06/02/2023]
Abstract
Rice straw is one of the most abundant agricultural residues in China. It is considered as a promising raw material for bioethanol production. In this work, rice straw was pretreated by sodium sulfite-formaldehyde (SF) for improving enzymatic saccharification. The SF pretreatment, using proven technology and industrialized equipment, showed efficient delignification selectivity and high carbohydrates retention in pretreated solid. The highest sugar yields of 79.0%, 88.8% and 71.1% for total sugar, glucan and xylan, respectively were obtained at an enzyme loading of 40 FPU/g-substrate after the raw material pretreated with 12% sodium sulfite at 160°C. About 75% of lignin was dissolved in pretreatment spent liquor and 78% of silica was retained in the residue of enzymatic hydrolysis. The results proved sulfite-formaldehyde as a promising pretreatment for the production of bioethanol as well as potential high value added by-products of silica nanoparticles and lignosulfonate.
Collapse
Affiliation(s)
- Feng Gu
- Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China.
| | | | | | | |
Collapse
|
33
|
Wang X, Ike M, Shiroma R, Tokuyasu K, Sakakibara Y. Expression of neutral β-glucosidase from Scytalidium thermophilum in Candida glabrata for ethanol production from alkaline-pretreated rice straw. J Biosci Bioeng 2013; 116:362-5. [PMID: 23597919 DOI: 10.1016/j.jbiosc.2013.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/22/2013] [Accepted: 03/09/2013] [Indexed: 10/27/2022]
Abstract
We successfully expressed the neutral β-glucosidase (BGL4) from Scytalidium thermophilum in the thermotolerant yeast Candida glabrata. Compared to the strain expressing Aspergillus acidic β-glucosidase (BGL1), the BGL4-expressing strain showed a higher cellobiose fermentation ability at pH 6.0 and 40°C, leading to a higher ethanol production from alkaline-pretreated rice straw.
Collapse
Affiliation(s)
- Xiaohui Wang
- National Food Research Institute, National Agriculture and Food Research Organization (NARO), 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | | | | | | | | |
Collapse
|
34
|
Hideno A, Kawashima A, Endo T, Honda K, Morita M. Ethanol-based organosolv treatment with trace hydrochloric acid improves the enzymatic digestibility of Japanese cypress (Chamaecyparis obtusa) by exposing nanofibers on the surface. BIORESOURCE TECHNOLOGY 2013; 132:64-70. [PMID: 23395739 DOI: 10.1016/j.biortech.2013.01.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 05/25/2023]
Abstract
The effects of adding trace acids in ethanol based organosolv treatment were investigated to increase the enzymatic digestibility of Japanese cypress. A high glucose yield (60%) in the enzymatic hydrolysis was obtained by treating the sample at 170 °C for 45 min in 50% ethanol liquor containing 0.4% hydrochloric acid. Moreover, the enzymatic digestibility of the treated sample was improved to ∼70% by changing the enzyme from acremonium cellulase to Accellerase1500. Field emission scanning electron microscopy revealed the presence of lignin droplets and partial cellulose nanofibers on the surface of the treated sample. Simultaneous saccharification and fermentation of the treated samples using thermotolerant yeast (Kluyveromyces marxianus NBRC1777) was tested. A high ethanol concentration (22.1 g/L) was achieved using the EtOH50/W50/HCl0.4-treated sample compared with samples from other treatments.
Collapse
Affiliation(s)
- Akihiro Hideno
- Senior Research Fellow Center, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan.
| | | | | | | | | |
Collapse
|
35
|
Controlled preparation of cellulases with xylanolytic enzymes from Trichoderma reesei (Hypocrea jecorina) by continuous-feed cultivation using soluble sugars. Biosci Biotechnol Biochem 2013; 77:161-6. [PMID: 23291768 DOI: 10.1271/bbb.120696] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The objective of this study was to develop an efficient production system for cellulase preparation with a high level of xylanolytic enzymes using soluble carbon sources. When xylose and arabinose were simultaneously fed with glucose and cellobiose, a mutant of Trichoderma reesei, M3-1, showed sufficient levels of cellulolytic and xylanolytic activities, indicating that xylose and arabinose are good inducers for the production of xylanolytic enzymes. In a continuous feeding experiment using glucose/cellobiose and glucose/xylose/cellobiose, cellulase preparations with various levels of xylanolytic enzymes were obtained by altering the feeding solutions and the timing of their addition. The volumetric production rates for xylanolytic activities at the glucose/xylose/cellobiose-feeding phase were significantly higher than at the glucose/cellobiose-feeding phase, while those for cellulolytic activities were comparable under the two conditions. Thus the composition of the enzyme preparation produced by the mutant was readily controlled by varying the inducers and the pattern of their addition, facilitating the tailored production of enzymes in a diversity of bioconversion processes.
Collapse
|
36
|
Deutschmann R, Dekker RF. From plant biomass to bio-based chemicals: Latest developments in xylan research. Biotechnol Adv 2012; 30:1627-40. [DOI: 10.1016/j.biotechadv.2012.07.001] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 06/12/2012] [Accepted: 07/01/2012] [Indexed: 11/26/2022]
|
37
|
Watanabe I, Miyata N, Ando A, Shiroma R, Tokuyasu K, Nakamura T. Ethanol production by repeated-batch simultaneous saccharification and fermentation (SSF) of alkali-treated rice straw using immobilized Saccharomyces cerevisiae cells. BIORESOURCE TECHNOLOGY 2012; 123:695-8. [PMID: 22939189 DOI: 10.1016/j.biortech.2012.07.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/13/2012] [Accepted: 07/16/2012] [Indexed: 05/26/2023]
Abstract
Repeated-batch simultaneous saccharification and fermentation (SSF) of alkali-treated rice straw using immobilized yeast was developed to produce ethanol. Saccharomyces cerevisiae cells were immobilized by entrapping in photocrosslinkable resin beads, and we evaluated the possibility of its reuse and ethanol production ability. In batch SSF of 20% (w/w) rice straw, the ethanol yields based on the glucan content of the immobilized cells were slightly low (76.9% of the theoretical yield) compared to free cells (85.2% of the theoretical yield). In repeated-batch SSF of 20% (w/w) rice straw, stable ethanol production of approx. 38gL(-1) and an ethanol yield of 84.7% were obtained. The immobilizing carrier could be reused without disintegration or any negative effect on ethanol production ability.
Collapse
Affiliation(s)
- Itsuki Watanabe
- National Food Research Institute, National Agriculture and Food Research Organization (NARO), 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Yang L, Cao J, Jin Y, Chang HM, Jameel H, Phillips R, Li Z. Effects of sodium carbonate pretreatment on the chemical compositions and enzymatic saccharification of rice straw. BIORESOURCE TECHNOLOGY 2012; 124:283-291. [PMID: 22989656 DOI: 10.1016/j.biortech.2012.08.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Revised: 08/09/2012] [Accepted: 08/10/2012] [Indexed: 06/01/2023]
Abstract
The effects of sodium carbonate (Na(2)CO(3)) pretreatment on the chemical compositions and enzymatic saccharification of rice straw were investigated. The enzymatic digestibility of rice straw is enhanced after pretreatment since pretreated solids show significant delignification with high sugar availability. During pretreatment, an increasing temperature and Na(2)CO(3) charge leads to enhanced delignification, whereas an increased degradation of polysaccharides as well, of which xylan acts more susceptible than glucan. The sugar recovery of enzymatic hydrolysis goes up rapidly with the total titratable alkali (TTA) increasing from 0% to 8%, and then it reaches a plateau. The highest sugar recovery of rice straw after pretreatment, 71.7%, 73.2%, and 76.1% for total sugar, glucan, and xylan, respectively, is obtained at 140°C, TTA 8% and cellulase loading of 20 FPU/g-cellulose. In this condition, the corresponding delignification ratio of pretreated solid is 41.8%, while 95% of glucan and 76% of xylan are conserved.
Collapse
Affiliation(s)
- Linfeng Yang
- Jiangsu Provincial Key Laboratory of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China.
| | | | | | | | | | | | | |
Collapse
|
39
|
Tanimura A, Nakamura T, Watanabe I, Ogawa J, Shima J. Isolation of a novel strain of Candida shehatae for ethanol production at elevated temperature. SPRINGERPLUS 2012; 1:27. [PMID: 23961357 PMCID: PMC3725896 DOI: 10.1186/2193-1801-1-27] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 10/02/2012] [Indexed: 11/10/2022]
Abstract
Considering the cost-effectiveness of bioethanol production, there is a need for a yeast strain which can convert glucose and xylose into ethanol at elevated temperatures. We succeeded in isolating a yeast strain, designated strain ATY839, which was capable of ethanolic fermentation at temperatures above those previously reported for yeasts able to ferment both glucose and xylose. Strain ATY839 was capable of producing a substantial amount of ethanol at up to 37°C from 2% glucose or 2% xylose. The results of a phylogenetic analysis suggest that strain ATY839 belongs to Candida shehatae. In additional, ethanol production from rice straw by strain ATY839 was examined. Compared with the control strains (Saccharomyces cerevisiae NBRC 0224, Scheffersomyces stipitis NBRC 10063, and C. shehatae ATCC 22984), strain ATY839 produced more ethanol in SSF even at 37°C. The theoretical maximum yield of strain ATY839 was 71.6% at 24 h. Thus, strain ATY839 is considered to be the most tolerant to high temperature of the C. shehatae strains.
Collapse
Affiliation(s)
- Ayumi Tanimura
- Research Division of Microbial Sciences, Kyoto University, Kitashirakawa Oiwake-Cho, Sakyo-ku, Kyoto, 606-8502 Japan
| | | | | | | | | |
Collapse
|
40
|
Shiroma R, Park JY, Arakane M, Ishikawa S, Terajima Y, Ike M, Tokuyasu K. Readily-milled fraction of wet sugarcane bagasse as an advanced feedstock for monosaccharide production via the RT-CaCCO process. BIORESOURCE TECHNOLOGY 2012; 116:529-532. [PMID: 22578412 DOI: 10.1016/j.biortech.2012.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 03/31/2012] [Accepted: 04/03/2012] [Indexed: 05/31/2023]
Abstract
The RT-CaCCO process for enzymatic saccharification was applied to readily-milled fractions of wet sugarcane bagasse. Wet bagasse immediately after juice extraction was crushed with shark-mill blades to prepare two fractions referred to as readily-milled (RF) and hardly-milled fraction (HF). Monosaccharide recoveries from RFs via the RT-CaCCO process were 1.03-1.21 times higher than those from HFs. Moreover, when the wet weight ratio of RF/HF was adjusted to 2/8, the hexose recovery from RF was 90.9%, which was 1.3 times higher than that of the wet bagasse before fractionation. The results show that this process can be used for efficient monosaccharide recovery from RF of wet bagasse. In addition, the process can be adapted to more fibrous HF for multiple uses such as fuel for boilers and fibers for particleboards.
Collapse
Affiliation(s)
- Riki Shiroma
- Carbohydrate Laboratory, National Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Matsuki J, Park JY, Shiroma R, Ike M, Yamamoto K, Tokuyasu K. Effect of lime treatment and subsequent carbonation on gelatinization and saccharification of starch granules. STARCH-STARKE 2012. [DOI: 10.1002/star.201100152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
42
|
Preparation of hemicellulolic oligosaccharides from Chamaecyparis obtuse (Hinoki) slurry using commercial enzymes. Front Chem Sci Eng 2012. [DOI: 10.1007/s11705-012-1280-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
43
|
Roy P, Orikasa T, Tokuyasu K, Nakamura N, Shiina T. Evaluation of the life cycle of bioethanol produced from rice straws. BIORESOURCE TECHNOLOGY 2012; 110:239-244. [PMID: 22342582 DOI: 10.1016/j.biortech.2012.01.094] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 01/14/2012] [Accepted: 01/18/2012] [Indexed: 05/31/2023]
Abstract
This study evaluated the life cycle of bioethanol produced by enzymatic hydrolysis of rice straw. Net energy consumption, CO(2) emission and production costs were estimated to determine whether environmentally preferable and economically viable bioethanol can be produced from rice straws. Two varieties of rice straw (Koshihikari and Leafstar), three energy scenarios (F-E-RH: Fuel-Electricity-Residues used for Heat; F-E-RE: Fuel-Electricity-Residues used to generate Electricity; F-RE: Fuel-Residues used to generate Electricity) and three types of primary energy (heavy oil; LNG: liquefied natural gas; agri-residues) were considered. The net energy consumption, CO(2) emission and production costs were estimated to be 10.0-17.6MJ/L, -0.5 to 1.6kg/L and 84.9-144.3¥/L (1 US$≈100¥), respectively, depending on the feedstock and scenarios of this study. A shift in energy scenarios or in the type of primary energy (heavy oil to LNG or agri-residues) not only reduces emissions and production costs of bioethanol from rice straw, but may also reduce the fluctuation in production cost over time and risk on investment, which would encourage more investment in this sector.
Collapse
Affiliation(s)
- Poritosh Roy
- School of Engineering, University of Guelph, Ontario, N1G 2W1, Canada.
| | | | | | | | | |
Collapse
|
44
|
Improved Ethanol and Reduced Xylitol Production from Glucose and Xylose Mixtures by the Mutant Strain of Candida shehatae ATCC 22984. Appl Biochem Biotechnol 2012; 166:1781-90. [DOI: 10.1007/s12010-012-9586-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 01/23/2012] [Indexed: 10/14/2022]
|
45
|
Hideno A, Inoue H, Yanagida T, Tsukahara K, Endo T, Sawayama S. Combination of hot compressed water treatment and wet disk milling for high sugar recovery yield in enzymatic hydrolysis of rice straw. BIORESOURCE TECHNOLOGY 2012; 104:743-8. [PMID: 22130080 DOI: 10.1016/j.biortech.2011.11.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 11/02/2011] [Accepted: 11/03/2011] [Indexed: 05/23/2023]
Abstract
Rice straw has attracted significant interest in Japan as a potential raw material for biorefineries. Combination of hot-compressed water treatment (HCWT) and wet disk milling (WDM) was investigated to improve the enzymatic digestibility of rice straw and enhance sugar recovery yield. Rice straw, cut to <3 mm, was autoclaved at 121, 135, and 150 °C for 60 min, and subsequently treated by wet disk milling. WDM with HCWT at 135 °C for 60 min produced maximum xylose and glucose yields of 79% and 90%, respectively, at 10 FPU/g-substrate cellulase loading. Autoclaving at 150 °C leaked a 35% arabinose effluence in the liquid phase. Hydrolysis via WDM with HCWT required a lower enzyme loading (5 FPU/g-substrate) than either pretreatment process in isolation for >70% xylose and 80% glucose yield. Economical analysis indicate that enzymes cost for ethanol production is reduced by 19-67% by WDM with HCWT.
Collapse
Affiliation(s)
- Akihiro Hideno
- Biomass Technology Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 737-0046, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Matsuki J, Shiroma R, Ike M, Tokuyasu K. Improvement of the RT-CaCCO Process for Efficient Glucose Recovery from Starch-rich Whole-crop Rice. J Appl Glycosci (1999) 2012. [DOI: 10.5458/jag.jag.jag-2012_005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
47
|
Genotypic variations in non-structural carbohydrate and cell-wall components of the stem in rice, sorghum, and sugar vane. Biosci Biotechnol Biochem 2011; 75:1104-12. [PMID: 21670528 DOI: 10.1271/bbb.110009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We evaluated genetic variations in the non-structural carbohydrate (NSC) and the cell-wall components of stem in rice, sorghum, and sugar cane to assess the potential suitability of these gramineous crops for bioethanol production. For NSC, the maximum soluble sugar concentration was highest in sugar cane, followed by sorghum with sucrose. The major NSC in rice was starch, but there were wide variations in the starch to soluble sugar ratios among the cultivars. The total concentration of cell-wall components was negatively correlated with the NSC concentration, indicating competition for carbon sources. Among the cell-wall components, lignin was relatively stable within each group. The major sugar species composing hemicellulose was xylose in all crop groups, but there were differences in composition, with a higher fraction of arabinose and glucose in rice as compared to the other crops. In rice, there was less lignin than in sorghum or sugar cane; this might be advantageous for the efficient saccharification of cellulose.
Collapse
|
48
|
Park JY, Ike M, Arakane M, Shiroma R, Li Y, Arai-Sanoh Y, Kondo M, Tokuyasu K. DiSC (direct saccharification of culms) process for bioethanol production from rice straw. BIORESOURCE TECHNOLOGY 2011; 102:6502-6507. [PMID: 21498073 DOI: 10.1016/j.biortech.2011.03.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 03/18/2011] [Accepted: 03/19/2011] [Indexed: 05/30/2023]
Abstract
A simple process (the direct-saccharification-of-culms (DiSC) process) to produce ethanol from rice straw culms, accumulating significant amounts of soft carbohydrates (SCs: glucose, fructose, sucrose, starch and β-1,3-1,4-glucan) was developed. This study focused on fully mature culms of cv. Leafstar, containing 69.2% (w/w of dried culms) hexoses from SCs and cellulose. Commercially-available wind-separation equipment successfully prepared a culm-rich fraction with a SC recovery of 83.1% (w/w) from rice straw flakes (54.1% of total weight of rice straw). The fraction was suspended in water (20%, w/w) for starch liquefaction, and the suspension was subjected to a simultaneous saccharification and fermentation with yeast, yielding 5.6% (w/v) ethanol (86% of the theoretical yield from whole hexoses in the fraction) after 24h fermentation. Thus, the DiSC process produced highly-concentrated ethanol from rice straw in a one vat process without any harsh thermo-chemical pretreatments.
Collapse
Affiliation(s)
- Jeung-yil Park
- National Food Research Institute, National Agriculture and Food Research Organization (NARO), 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Li Y, Park JY, Shiroma R, Tokuyasu K. Bioethanol production from rice straw by a sequential use of Saccharomyces cerevisiae and Pichia stipitis with heat inactivation of Saccharomyces cerevisiae cells prior to xylose fermentation. J Biosci Bioeng 2011; 111:682-6. [DOI: 10.1016/j.jbiosc.2011.01.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/06/2011] [Accepted: 01/31/2011] [Indexed: 10/18/2022]
|
50
|
Brodeur G, Yau E, Badal K, Collier J, Ramachandran KB, Ramakrishnan S. Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Res 2011; 2011:787532. [PMID: 21687609 PMCID: PMC3112529 DOI: 10.4061/2011/787532] [Citation(s) in RCA: 268] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2010] [Accepted: 03/18/2011] [Indexed: 11/20/2022] Open
Abstract
Overcoming the recalcitrance (resistance of plant cell walls to deconstruction) of lignocellulosic biomass is a key step in the production of fuels and chemicals. The recalcitrance is due to the highly crystalline structure of cellulose which is embedded in a matrix of polymers-lignin and hemicellulose. The main goal of pretreatment is to overcome this recalcitrance, to separate the cellulose from the matrix polymers, and to make it more accessible for enzymatic hydrolysis. Reports have shown that pretreatment can improve sugar yields to higher than 90% theoretical yield for biomass such as wood, grasses, and corn. This paper reviews different leading pretreatment technologies along with their latest developments and highlights their advantages and disadvantages with respect to subsequent hydrolysis and fermentation. The effects of different technologies on the components of biomass (cellulose, hemicellulose, and lignin) are also reviewed with a focus on how the treatment greatly enhances enzymatic cellulose digestibility.
Collapse
Affiliation(s)
- Gary Brodeur
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32312, USA
| | - Elizabeth Yau
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32312, USA
| | - Kimberly Badal
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32312, USA
| | - John Collier
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32312, USA
| | - K. B. Ramachandran
- Department of Biotechnology, Indian Institute of Technology, Chennai 600036, India
| | - Subramanian Ramakrishnan
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32312, USA
| |
Collapse
|