1
|
Nilsson C, Karlsson S, Allard B, von Kronhelm T. Phosphorus speciation in sewage sludge and their ashes after incineration as a function of treatment processes. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2025; 43:378-385. [PMID: 38819926 PMCID: PMC11874579 DOI: 10.1177/0734242x241252913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/11/2024] [Indexed: 06/02/2024]
Abstract
Phosphorus (P) is a key component in agricultural fertilizers, but it is also a scarce resource, why its recycling has been thoroughly investigated and one promising resources is sewage sludge. Because of stricter regulations in terms of sludge disposal, thermal treatment (e.g. incineration) has become an attractive option. The incineration process alters the chemical speciation of P in favour to calcium-associated (apatite, apatite phosphorus (AP)) species, which is preferred for P recovery. In order to achieve qualitatively transformation, it is important to identify limiting or promoting factors. This study reports on the impact of iron, aluminium and calcium on the transformation of iron- and aluminium-phosphate (NAIP) to AP species, assessed by studying sludge and ash from 10 municipal wastewater treatment plants in Sweden. The effect of iron and aluminium added in the treatment processes was also evaluated. The obtained results show that high calcium concentration favours formation of AP species in both sludge and ashes, whereas high concentration of iron and aluminium favours formation of NAIP species in the sludge. The transformation from NAIP to AP species is hampered by aluminium, irrespectively of its origin, whereas no such correlations could be seen for iron. Therefore, in order to enable efficient P recovery from sewage sludge ash, the amount of aluminium added in the treatment process, as well as its concentration in influent streams to the treatment plants, must be limited.
Collapse
Affiliation(s)
- Charlotte Nilsson
- MTM Research Centre, Örebro University, Örebro, Sweden
- Fortum Waste Solutions AB, Kumla, Sweden
| | | | - Bert Allard
- MTM Research Centre, Örebro University, Örebro, Sweden
| | | |
Collapse
|
2
|
Mahmood M, Wang J, Mehmood S, Ahmed W, Ayyoub A, Seleiman MF, Elrys AS, Elnahal ASM, Mustafa A, Wei X, Li W. Influence of drought stress on phosphorus dynamics and maize growth in tropical ecosystems. BMC PLANT BIOLOGY 2025; 25:62. [PMID: 39825253 PMCID: PMC11740595 DOI: 10.1186/s12870-025-06092-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025]
Abstract
Drought has a significant impact on ecosystem functions, especially on the biogeochemical cycling of phosphorus (P), which is a crucial nutrient for plant growth and productivity. Despite its importance, the effects of different drought scenarios on soil P cycling and availability remain poorly understood in previous studies. This study simulated drought conditions in tropical soils using maize as a test crop under varying field capacity (FC) levels (100%, 80%, 60%, 40%, and 20%) over a 60-day pot experiment. P uptake and plant biomass decreased significantly lower FC level. P uptake was highest at FC100 (5 g kg-¹) and lowest at FC20 (3.5 g kg-¹). Similarly, biomass was greatest at FC100 (70 g plant-¹) and declined to 35 g plant-¹ at FC20, underscoring the adverse effects of drought on P availability and growth. The results showed a substantial increase in calcium-associated P (HClD-Pi), reaching 45% at FC20. Conversely, labile inorganic P fractions (NaHCO₃-Pi and NaOH-Pi) decreased significantly, from 14.73 to 6.2 mg kg-¹ and 29.4 to 17.7 mg kg-¹, respectively, in FC20 compared to FC100. Organic P fractions (NaHCO₃-Po, NaOH-Po) increased by 6 and 2.4 times, respectively, under lower FC treatments, while HClc-Po was also elevated under drier conditions. These transformations were attributed to changes in soil pH and calcium content, favoring the stabilization of P as HClD-Pi. Drought disrupted the replenishment of inorganic P in the soil solution, reducing bioavailability, though phosphatase activity enhanced organic P release. Pearson's correlation analysis revealed positive associations between labile and moderately labile P fractions (NaHCO₃-Pi, NaOH-Pi, HClD-Pi) and soil elements (Ca, Al, Fe). RDA highlighted a positive link between phosphatase activity and reduced labile P, while P uptake and biomass were strongly associated with labile and moderately labile P fractions. These findings demonstrate drought's significant impact on P bioavailability, soil P cycling, and nutrient dynamics.
Collapse
Affiliation(s)
- Mohsin Mahmood
- Center for Eco-Environment Restoration of Hainan Province, School of Ecology, Hainan University, Haikou, 570228, China
- Hainan University, Haikou, 570228, China
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010020, China
| | - Jujie Wang
- Langfang Polytechnic Institute, Hebei, 065001, China
| | - Sajid Mehmood
- Center for Eco-Environment Restoration of Hainan Province, School of Ecology, Hainan University, Haikou, 570228, China
- Hainan University, Haikou, 570228, China
| | - Waqas Ahmed
- Center for Eco-Environment Restoration of Hainan Province, School of Ecology, Hainan University, Haikou, 570228, China
- Hainan University, Haikou, 570228, China
| | - Anam Ayyoub
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Mahmoud F Seleiman
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Ahmed Salah Elrys
- Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
- Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Giessen, Germany
| | - Ahmed S M Elnahal
- Plant Pathology Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Adnan Mustafa
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xiuwen Wei
- Research Academy of Environmental Sciences, Haikou City, 571199, China.
| | - Weidong Li
- Center for Eco-Environment Restoration of Hainan Province, School of Ecology, Hainan University, Haikou, 570228, China.
- Hainan University, Haikou, 570228, China.
| |
Collapse
|
3
|
Zhang Q, Tang T, Cui G, Wang Z, Liu Y. Pressurized electro-osmotic dewatering treatment of sludge: focusing on the influences on nutrients for agricultural application. ENVIRONMENTAL TECHNOLOGY 2024; 45:4805-4819. [PMID: 37970842 DOI: 10.1080/09593330.2023.2283090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/09/2023] [Indexed: 11/19/2023]
Abstract
Sewage sludge requires effective dewatering and high nutrients retention before disposal for agricultural application. Pressurized electro-osmotic dewatering (PEOD) process with low energy consumption can effectively remove water from sludge, but the influences of PEOD process on nutrients for agricultural application still lacks in-depth research. In this study, the influences of PEOD process on nutrients for agricultural application were investigated, including organic matter, nitrogen, phosphorus, potassium and silicon contents. Layered experiments were conducted to investigate the layered variation of nutrients in sludge and to understand the potential change mechanisms. The experimental results showed that PEOD process caused small losses (<10%) of organic matter and total phosphorus (TP) in sludge, but caused 11.2-18.4% loss of total nitrogen (TN). PEOD process also caused 18.6-27.0% loss of total potassium (TK) and over 80% loss of available potassium in sludge, and could weaken the potential salt damage during the agricultural application of sludge. Furthermore, the available phosphorus content of sludge in the anode area increased significantly after the PEOD process, indicating that PEOD process could enhance the phosphorus bioavailability of sludge in the anode area. Besides, PEOD process caused a slight loss of silicon components in sludge, but improved the long-term silicon dissolution and release ability of sludge. This work could expand the knowledge about the influences of PEOD process on sludge nutrients and provide scientific guidance for the agricultural application of PEOD sludge.
Collapse
Affiliation(s)
- Qiming Zhang
- College of Environmental Sciences and Engineering, Peking University, Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing, People's Republic of China
| | - Tian Tang
- College of Environmental Sciences and Engineering, Peking University, Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing, People's Republic of China
| | - Guodong Cui
- College of Environmental Sciences and Engineering, Peking University, Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing, People's Republic of China
| | - Zheng Wang
- College of Environmental Sciences and Engineering, Peking University, Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing, People's Republic of China
| | - Yangsheng Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing, People's Republic of China
| |
Collapse
|
4
|
Qiang H, Liu Z, Yin X, Guo Z, Duan Y, Liu W, Yue X, Zhou A. Efficient phosphate and hydrogen recovery from sludge fermentation liquid by sacrificial iron anode in electro-fermentation system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121110. [PMID: 38733846 DOI: 10.1016/j.jenvman.2024.121110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/22/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Electro-fermentation (EF) has been extensively studied for recovering hydrogen and phosphorus from waste activated sludge (WAS), while was limited for the further application due to the low hydrogen yield and phosphorus recovery efficiency. This study proposed an efficient strategy for hydrogen and vivianite recovery from the simulated sludge fermentation liquid by sacrificial iron anode in EF. The optimum hydrogen productivity and the utilization efficiency of short chain fatty acids (SCFAs) reached 45.2 mmol/g COD and 77.6% at 5 d in pH 8. Phosphate removal efficiency achieved at 90.8% at 2 d and the high crystallinity and weight percentage of vivianite (84.8%) was obtained. The functional microbes, i.e., anaerobic fermentative bacteria, electrochemical active bacteria, homo-acetogens and iron-reducing bacteria were highly enriched and the inherent interaction between the microbial consortia and environmental variables was thoroughly explored. This work may provide a theoretical basis for energy/resource recovery from WAS in the further implementation.
Collapse
Affiliation(s)
- Haifeng Qiang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Zhihong Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Shanxi Academy of Advanced Research and Innovation, Taiyuan, 030006, China.
| | - Xiaoyun Yin
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Zhengtong Guo
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yanqing Duan
- Department of Environmental and Safety Engineering, Taiyuan Institute of Technology, Taiyuan, 030800, China
| | - Wenzong Liu
- Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030000, China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030000, China.
| |
Collapse
|
5
|
Hu Y, Guo J, An D, Qian Y, Chen J, Zhou Z. Phosphorus recovery from sewage sludge via Mg-air battery system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171805. [PMID: 38508262 DOI: 10.1016/j.scitotenv.2024.171805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
A pressing issue in contemporary society is the resource scarcity of phosphorus. Operating on the principle of electrochemical reactions between Mg as the anode and oxygen from air as the cathode, Mg-air batteries (MAB) have been employed to provide new prospects for phosphorus recovery in struvite form. Different phosphorus concentrations and reaction time impact struvite generation in MAB systems; however, the exact mechanism has rarely been investigated. We investigated how varying the initial phosphorus concentration and the reaction time affects phosphorus recovery, electricity generation, and the efficiency of struvite production in MAB. Additionally, we examine the impact of solid carbon sources on phosphorus transformation in sludge. The findings revealed that the incorporation of solid carbon sources facilitated the release of phosphate by changing phosphorus speciation. The electrolyte derived from the conditioned sludge filtrate exhibited a remarkable phosphorus removal efficiency of 91.7 % within 1 h, yielding the highest struvite purity of ∼70 %, whereas that using raw sludge filtrate or extending the reaction time was found to be less effective, even reducing struvite formation. Furthermore, different electrolytes influence the system's ability to passivate anode, and electrolytes with higher phosphorus concentrations have better electricity production performance. The results by Visual MINTEQ model confirmed that longer reaction times and lower initial phosphorus concentrations can negatively affect struvite formation by introducing Mg3(PO4)2 and Mg(OH)2. The integration of agricultural waste as carbon sources with MAB for phosphorus recovery represents a potential methodology for struvite recuperation from sewage sludge, thereby heralding a sustainable strategy for resource recovery.
Collapse
Affiliation(s)
- Yue Hu
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200238, China
| | - Jun Guo
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200238, China
| | - Dong An
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200238, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Yunkun Qian
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200238, China
| | - Jie Chen
- Shanghai Environment Group Co., Ltd, Shanghai 200120, China
| | - Zhanghua Zhou
- Shanghai Youlian Zhuyuan First Sewage Treatment Investment Development Co., Ltd, Shanghai 200125, China
| |
Collapse
|
6
|
Deng S, Liu J, Yang X, Sun D, Wang A, van Loosdrecht MCM, Cheng X. Release of phosphorus through pretreatment of waste activated sludge differs essentially from that of carbon and nitrogen resources: Comparative analysis across four wastewater treatment facilities. BIORESOURCE TECHNOLOGY 2024; 396:130423. [PMID: 38341045 DOI: 10.1016/j.biortech.2024.130423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/14/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
The accumulation of phosphorus in activated sludge in wastewater treatment plants (WWTPs) provides potential for phosphorus recovery from sewage. This study delves into the potential for releasing phosphorus from waste activated sludge through two distinct treatment methods-thermal hydrolysis and pH adjustment. The investigation was conducted with activated sludge sourced from four WWTPs, each employing distinct phosphorus removal strategies. The findings underscore the notably superior efficacy of pH adjustment in solubilizing sludge phosphorus compared to the prevailing practice of thermal hydrolysis, widely adopted to enhance sludge digestion. The reversibility of phosphorus release within pH fluctuations spanning 2 to 12 implies that the release of sludge phosphorus can be attributed to the dissolution of phosphate precipitates. Alkaline sludge treatment induced the concurrent liberation of COD, nitrogen, and phosphorus through alkaline hydrolysis of sludge biomass and the dissolution of iron or aluminium phosphates, offering potential gains in resource recovery and energy efficiency.
Collapse
Affiliation(s)
- Shaoyu Deng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Jiaqi Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Xiaofan Yang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Dezhi Sun
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Aijie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, the Netherlands
| | - Xiang Cheng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
7
|
Yuan H, Zhang Y, Chen Z, Cai S, Zhang Z, Yang P, Peng S, Yu J, Wang D, Zhang W. Molecular transformation pathway and bioavailability of organic phosphorus in sewage sludge under vermicomposting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167796. [PMID: 37838053 DOI: 10.1016/j.scitotenv.2023.167796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Phosphorus reclamation from sewage sludge is essential for sustainable phosphorus management, as large quantities of phosphorus afflux into wastewater treatment plants and are finally enriched in sewage sludge via phosphorus removal technologies. Meanwhile, vermicomposting is a cost-effective biotechnique for sludge stabilization. This work unveiled the molecular transformation pathway and bioavailability of organic phosphorus (OP) in sludge under vermicomposting with solution 31P NMR, FT-ICR MS and enzymatic hydrolysis assay. In conclusion, vermicomposting transformed OP in two stages. In stage I (day 0 to 14), macromolecule CHONP such as phospholipids, phosphoproteins and nucleic acid were decomposed into orthophosphate and high bioavailability OP including flavin mononucleotide, flavin mononucleotide hydrate and N6-isopentenyladenosine 5'-monophosphate under the action of earthworm intestinal flora. This resulted in the bioavailability of OP reaching a maximum of 13.58 mg/L on day 14. In stage II (day 14 to 28), the enzyme in vermicompost began to dominate the transformation of OP. Under the catalysis of phosphate, high bioavailability orthophosphate monoester was decomposed into orthophosphate. Nitrogen-containing aromatic OP polymerization produced humic acid-like OP under the catalysis of ligase. And phytic acid-like OP were produced under the catalysis of transferase. These led to the OP bioavailability decreasing to 5.60 mg/L on day 28. This work provides a new perspective on sludge phosphorus recovery and use.
Collapse
Affiliation(s)
- Hao Yuan
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Yu Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Zexu Chen
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Siying Cai
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Ziwei Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Peng Yang
- School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin 132012, Jilin, China
| | - Siwei Peng
- Datang Environment Industry Group Co., Ltd, Beijing 100097, China
| | - Junxia Yu
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430074, China
| | - Dongsheng Wang
- Department of environmental engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Weijun Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
8
|
Saoudi MA, Dabert P, Ponthieux A, Vedrenne F, Daumer ML. Correlation between phosphorus removal technologies and phosphorus speciation in sewage sludge: focus on iron-based P removal technologies. ENVIRONMENTAL TECHNOLOGY 2023; 44:2091-2103. [PMID: 35019813 DOI: 10.1080/09593330.2021.2023222] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/20/2021] [Indexed: 05/30/2023]
Abstract
Phosphorus recovery from sewage sludge as secondary raw materials or as a direct P-rich fertiliser is one of the top frontrunner solutions to tackle Phosphorus (P) scarcity and depletion. However, the efficiency of this P recovery process greatly depends on its phosphorus dissolution potential, which in return relies on the phosphorus speciation in the sewage sludge. This article investigates the potential correlation between P speciation in sewage sludge and the iron-based P removal technologies used in sewage treatment plants (STP) through an innovative sequential extraction method based on the SEDEX method that distinguishes quantitatively between ferrous bound phosphate and ferric bound phosphate. XRD and SEM-EDX were also used to characterise P and Fe species in the studied sludge qualitatively. Principal component analysis showed that the sludge characterised by P bound to ferric iron (as the dominant P fraction) are mostly correlated with sludge produced from the CPR process (chemical phosphorus removal) and primary sludge. Moreover, sludge with a non-negligible amount of P bound to ferrous iron were correlated with sludge from the mixed EBPR-CPR process (Enhanced Biological P Removal assisted with CPR). However, Vivianite was only found in CPR sludge with Fe/P molar ratio higher than 0.6.
Collapse
|
9
|
Wang L, Zhou J, Jia Q, Ma X, Zhao Y, Gong L, Zhang H. Anaerobic digestion of hydrothermally pretreated dewatered sewage sludge: effects of process conditions on methane production and the fate of phosphorus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:66767-66780. [PMID: 37099108 DOI: 10.1007/s11356-023-26990-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/09/2023] [Indexed: 05/25/2023]
Abstract
The hydrothermal pretreatment (HTP) characteristics and the fate of phosphorus (P) and anaerobic digestion (AD) performance of dewatered sewage sludge (DSS) were investigated at different hydrothermal conditions. The maximum methane yield reached 241 mL CH4/g COD when the hydrothermal conditions were 200 °C-2 h-10% (A4), and the yield was 78.28% higher than that without pretreatment (A0) and 29.62% higher than that of the initial hydrothermal conditions (A1, 140 °C-1 h-5%). Proteins, polysaccharides, and volatile fatty acids (VFAs) were the main hydrothermal products of DSS. 3D-EEM analysis revealed that tyrosine, tryptophan proteins, and fulvic acids decreased after HTP, but the content of humic acid-like substances increased, and this phenomenon was more noticeable after AD. Solid-organic P was converted into liquid-P during the hydrothermal process, and nonapatite inorganic P was converted into organic P during AD. All samples achieved positive energy balance, and the energy balance of A4 was 10.50 kJ/g VS. Microbial analysis showed that the composition of the anaerobic microbial degradation community changed as the sludge organic composition was altered. Results showed that the HTP improved the anaerobic digestion of DSS.
Collapse
Affiliation(s)
- Luyu Wang
- School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, 53, Zhengzhou Road, Qingdao, 266042, Shandong Province, China
| | - Jun Zhou
- School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, 53, Zhengzhou Road, Qingdao, 266042, Shandong Province, China
| | - Qinwei Jia
- School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, 53, Zhengzhou Road, Qingdao, 266042, Shandong Province, China
| | - Xiaofan Ma
- School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, 53, Zhengzhou Road, Qingdao, 266042, Shandong Province, China
| | - Yuhang Zhao
- School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, 53, Zhengzhou Road, Qingdao, 266042, Shandong Province, China
| | - Lei Gong
- School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, 53, Zhengzhou Road, Qingdao, 266042, Shandong Province, China.
| | - Haonan Zhang
- School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, 53, Zhengzhou Road, Qingdao, 266042, Shandong Province, China
| |
Collapse
|
10
|
Li H, Hu Y, Liu G, Sheng J, Zhang W, Zhao H, Kang H, Zhou X. Responses of biomass accumulation and nutrient utilization along a phosphorus supply gradient in Leymus chinensis. Sci Rep 2023; 13:5660. [PMID: 37024558 PMCID: PMC10079846 DOI: 10.1038/s41598-023-31402-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/10/2023] [Indexed: 04/08/2023] Open
Abstract
Phosphorus (P) deficiencies are widespread in calcareous soils. The poor availability of nitrogen (N) and P in soils often restricts crop growth. However, the effects of P addition on plant growth and plant nutrient transport changes during the establishment of Leymus chinensis fields in Xinjiang are not clear. We investigated the responses of Leymus chinensis biomass and nutrient absorption and utilization to changes in soil N and P by adding P (0, 15.3, 30.6, and 45.9 kg P ha-1 year-1) with basally applied N fertilizer (150 kg N ha-1 year-1). The results showed that (a) Principal component analysis (PCA) of biomass, nutrient accumulation, soil available P, and soil available N during the different periods of Leymus chinensis growth showed that their cumulative contributions during the jointing and harvest periods reached 95.4% and 88%, respectively. (b) Phosphorus use efficiency (PUE) increased with the increase of P fertilizer gradient and then decreased and the maximum PUE was 13.14% under moderate P addition. The accumulation of biomass and nutrients in Leymus chinensis can be effectively improved by the addition of P fertilizer at 30.6 kg ha-1. Different P additions either moderately promoted or excessively inhibited Leymus chinensis growth and nutrient utilization.
Collapse
Affiliation(s)
- Huijun Li
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
- The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, 712100, Shanxi, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yutong Hu
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China.
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Urumqi, 830052, Xinjiang, China.
| | - Gongshe Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jiandong Sheng
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Urumqi, 830052, Xinjiang, China
| | - Wentai Zhang
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Urumqi, 830052, Xinjiang, China
| | - Hongmei Zhao
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Urumqi, 830052, Xinjiang, China
| | - Hongliang Kang
- State Key Laboratory of Erosion and Dryland Agriculture On the Loess Plateaus, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China
| | - Xiaoguo Zhou
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Urumqi, 830052, Xinjiang, China
| |
Collapse
|
11
|
Lv J, Liu B, Gong L, Chen X, Tian L, Li Y, Jiang J. Sludge disintegration and phosphorus migration in anaerobic fermentation of waste activated sludge by the addition of EDTA-2Na. ENVIRONMENTAL TECHNOLOGY 2023; 44:1145-1155. [PMID: 34666628 DOI: 10.1080/09593330.2021.1996466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
The effects of the addition of EDTA-2Na on sludge disintegration and phosphorus (P) migration during anaerobic fermentation (AF) of waste activated sludge (WAS) are investigated. The efficiency of sludge disintegration was positively correlated with the dose of EDTA-2Na from 0.5-2.0 g/g SS, and an enormous quantity of P was liberated into the aqueous phase, accompanied by sludge disintegration. The proper dose of EDTA-2Na for P release from WAS was 1.5 g/g SS, with an orthophosphate concentration of 394.72 mg/L. P release was more consistent with the pseudo second-order kinetic model. The migration of P species during AF with EDTA-2Na addition was also studied. Orthophosphate was the main species in both of the liquid phase and the loosely bound extracellular polymeric substances (EPS), but organic P (OP) was much more abundant in tightly bound EPS. Inorganic P (IP) was the dominant P speciation in the solid and was mainly distributed in the fraction of non-apatite IP, which accounted for more than 62.8% of IP in the presence of EDTA-2Na. In addition, both IP and OP in the solid contributed to the accumulation of P and the former was outperformed. Furthermore, the increased total dissolved P mainly came from cells. However, the fermented sludge tended to be smaller and to have low compressibility, which is detrimental to its further treatment.
Collapse
Affiliation(s)
- Jinghua Lv
- School of Environment, Henan Normal University, Xinxiang, People's Republic of China
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, People's Republic of China
- Henan Key Laboratory for Environmental Pollution Control, Xinxiang, People's Republic of China
- International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Xinxiang, People's Republic of China
| | - Bingru Liu
- School of Environment, Henan Normal University, Xinxiang, People's Republic of China
| | - Li Gong
- School of Environment, Henan Normal University, Xinxiang, People's Republic of China
| | - Xingyue Chen
- School of Environment, Henan Normal University, Xinxiang, People's Republic of China
| | - Linlin Tian
- School of Environment, Henan Normal University, Xinxiang, People's Republic of China
| | - Yunbei Li
- School of Environment, Henan Normal University, Xinxiang, People's Republic of China
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, People's Republic of China
- Henan Key Laboratory for Environmental Pollution Control, Xinxiang, People's Republic of China
- International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Xinxiang, People's Republic of China
| | - Jishao Jiang
- School of Environment, Henan Normal University, Xinxiang, People's Republic of China
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, People's Republic of China
- Henan Key Laboratory for Environmental Pollution Control, Xinxiang, People's Republic of China
- International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Xinxiang, People's Republic of China
| |
Collapse
|
12
|
Li X, Shen S, Xu Y, Guo T, Dai H, Lu X. Mining phosphorus from waste streams at wastewater treatment plants: a review of enrichment, extraction, and crystallization methods. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28407-28421. [PMID: 36680723 DOI: 10.1007/s11356-023-25388-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Two interrelated problems exist: the non-renewability of phosphate rock as a resource and the excess phosphate in the water system lead to eutrophication. Removal and recovery of phosphorus (P) from waste streams at wastewater treatment plants (WWTPs) is one of the promising solutions. This paper reviews strategies for P recovery from waste streams in WWTPs are reviewed, and the main P recovery processes were broken down into three parts: enrichment, extraction, and crystallization. On this basis, the present P recovery technology was summarized and compared. The choice of P recovery technology depends on the process of sewage treatment and sludge treatment. Most P recovery processes can meet the financial requirements since the recent surge in phosphate rock prices. The safety requirements of P recovery products add a high cost to toxic substance removal, so it is necessary to control the discharge of toxic substances such as heavy metals and persistent organic pollutants from the source.
Collapse
Affiliation(s)
- Xiang Li
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China
| | - Shuting Shen
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China
| | - Yuye Xu
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China
| | - Ting Guo
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China
| | - Hongliang Dai
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, No. 2 Mengxi Road, Zhenjiang, 212018, China
| | - Xiwu Lu
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China.
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China.
| |
Collapse
|
13
|
Hu D, Zhang C, Zhang Y. Comparison of different pretreatment methods on phosphorus release and recovery as struvite from excess sludge. ENVIRONMENTAL TECHNOLOGY 2023; 44:161-169. [PMID: 34432613 DOI: 10.1080/09593330.2021.1967459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Recovering phosphorus (P) from excess sludge of wastewater treatment plants (WWTPs) has attracted considerable attention. An efficient P release method is undoubtedly critical for a satisfactory recovery performance. In this study, the effectiveness of three sludge pretreatment methods, i.e. anaerobic digestion (AD), EDTA-anaerobic digestion (EA) and ultrasound combined with EA (U-EA), on P release and struvite recovery from excess sludge was investigated. The results showed that different pretreatment methods resulted in the different characteristics of P release and recovery. For P release, the highest P release rate (57.14% of sludge total phosphorus, TP) was achieved by U-EA pretreatment, followed by EA and AD. Furthermore, U-EA was beneficial for sludge disintegration and reduction, by which the mixed liquor suspended solids (MLVSS) reduction rate reached 42.00% at a specific energy of 110,000 kJ/kg TS. For the P recovery (in the form of struvite), there was only a little difference in the optimal conditions and P recovery rate (89.29-94.49% of TP in the supernatant). AD pretreatment was beneficial for the purity of products and achieved the highest struvite purity (85.14%), followed by EA (80.95%) and U-EA (77.56%). In summary, the highest recovery rate of TP from excess sludge (53.50% of sludge TP) and struvite yield (26.10 mg/gSS) was obtained by U-EA.
Collapse
Affiliation(s)
- Dexiu Hu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, People's Republic of China
| | - Cong Zhang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, People's Republic of China
| | - Yan Zhang
- Shannxi Branch of China National Geological Exploration Center of Building Materials Industry, Xi'an, People's Republic of China
| |
Collapse
|
14
|
Zhang H, Zhang SS, Zhang W, Zhu L, Li YP, Pan Y. Biomineralization and AHLs-guided quorum sensing enhanced phosphorus recovery in the alternating aerobic/anaerobic biofilm system under metal ion stress. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116583. [PMID: 36308955 DOI: 10.1016/j.jenvman.2022.116583] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/07/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
The alternating aerobic/anaerobic biofilm system had been applied for phosphorus (P) enrichment and recovery because of the advantage of low energy consumption and high efficiency. The metal ions and N-acyl-L-homoserine lactones (AHLs) in system were studied to better clarify the mechanism of P uptake/release under metal ion stress. The results indicated that the increase of metal ions stimulated the release of AHLs, and AHLs-guided quorum sensing (QS) enhanced P uptake. Moreover, biomineralization could stimulate the increase of P content in biofilm (Pbiofilm). Meanwhile, some ortho-p was converted to short-chain poly-p in extracellular polymer substance (EPS), and others were transferred into cell through EPS to synthesize poly-p. With the Pbiofilm increased, more P could be absorbed/released due to the shift in the metabolic model of polyphosphate accumulating organisms (PAOs). The release of AHLs between microorganisms was also inhibited when PAOs reached the state of P saturation (75.6 ± 2.5 mg/g SS), which meant that the effect of signaling function would tend to stabilize, and the 169.2 ± 2.6 mg/L P concentration in the enriched solution was obtained due to the P release was inhibited. Moreover, P was rapidly transferred to the new enriched solution after the P was recovered, and PAOs restored its capability of P uptake/release. In addition, 31P-NMR analysis demonstrated that EPS played a major role in PAOs compared to cell, and inorganic phosphorus (IP) played an essential role in the uptake/release of P compared to organic phosphorus (OP). Furthermore, the microbiological analysis showed that Candidatus Accumulibacter was positively correlated with AHLs (P < 0.05). This study provided essential support for clarifying the P metabolism mechanism of PAOs.
Collapse
Affiliation(s)
- Hao Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | | | - Wei Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Liang Zhu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| | - Yi-Ping Li
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| | - Yang Pan
- School of Environmental Science and Engineering, Suzhou University of Scienceand Technology, Suzhou, 215009, China
| |
Collapse
|
15
|
Ha TH, Mahasti NN, Lu MC, Huang YH. Ammonium-Nitrogen recovery as Struvite from swine wastewater using various magnesium sources. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Nilsson C, Sjöberg V, Grandin A, Karlsson S, Allard B, von Kronhelm T. Phosphorus speciation in sewage sludge from three municipal wastewater treatment plants in Sweden and their ashes after incineration. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2022; 40:1267-1276. [PMID: 34920692 DOI: 10.1177/0734242x211065231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Given the high efficiency in phosphorus removal at municipal wastewater treatment plants (MMWWTP), sewage sludge constitutes a promising resource for phosphorus (P) recovery. Sewage sludge is, however, a complex matrix and its direct use as fertiliser is limited by its content of metals/metalloids and organic pollutants. In order to increase its usability as a potential resource of P, there is a need for increased knowledge on phosphorus speciation in these matrices. The sludge composition is highly influenced by local conditions (i.e. wastewater composition and treatment method), and it is therefore important to study sludge from several MMWWTPs. In this study, three different protocols for sequential extraction were utilised to investigate the chemical speciation of phosphorus in sludge from three different MMWWTP sludges in Sweden, as well as in corresponding ashes following incineration. The results showed that the total amounts of phosphorus ranged from 26 to 32 mg g-1 sludge (dry weight), of which 79-94% was inorganically bound (IP). In the sludge, 21-30% of the IP was associated with calcium (Ca-P), which is the preferred species for fertiliser production. Following incineration, this fraction increased to 54-56%, mainly due to transformation of iron-associated phosphorus (Fe-P), while aluminium-associated species of phosphorus (Al-P) remained unaltered. The results from this study confirm that incineration is a suitable treatment for sewage sludge in terms of potential phosphorus recovery.
Collapse
Affiliation(s)
- Charlotte Nilsson
- MTM Research Centre, Örebro University, Örebro, Sweden
- Fortum Waste Solutions AB, Kumla, Sweden
| | | | - Anna Grandin
- MTM Research Centre, Örebro University, Örebro, Sweden
| | | | - Bert Allard
- MTM Research Centre, Örebro University, Örebro, Sweden
| | | |
Collapse
|
17
|
Deng H, Liu H, Jin M, Xiao H, Yao H. Phosphorus transformation during the carbonaceous skeleton assisted thermal hydrolysis of sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154252. [PMID: 35247403 DOI: 10.1016/j.scitotenv.2022.154252] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
On the basis of the carbonaceous skeleton assisted thermal hydrolysis that we proposed to achieve efficient sludge dewatering, this work further explored phosphorus (P) transformation in the process. The results showed that during independent thermal hydrolysis in the temperature range of 120-240 °C, organic-P was first decomposed into soluble-P and particulate-P in liquid, and then combined with Ca, Fe, and Al to form more apatite-P (AP) and less non-apatite inorganic-P (NAIP). When the skeleton assisted the sludge thermal hydrolysis, the turning point of the hydrolysis temperature would reduce from 180 °C to 150 °C, at which the liquid-P began to decrease and the organic-P generally decomposed. Moreover, the increment in the content of AP halved while that of NAIP doubled compared to that in the process without the carbonaceous skeleton. These effects come from the exogenous components introduced by adding the skeleton, which were different from the sludge. Compared with the P-rich compound and metal elements that tend to bond with phosphate introduced by the skeleton, hemicellulose as a main organic component played a leading role in the different P transformations of AP and NAIP. The hemicellulose slightly increased the acidity of sludge products, thereby inhibiting AP production and promoting the production of recyclable NAIP. Overall, the carbonaceous skeleton assisted thermal hydrolysis was beneficial for P recovery with a very low filtrate loss rate.
Collapse
Affiliation(s)
- Hongping Deng
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Department of New Energy Science and Engineering, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huan Liu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Department of New Energy Science and Engineering, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Minghao Jin
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Han Xiao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Department of New Energy Science and Engineering, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hong Yao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
18
|
Petriglieri F, Petersen JF, Peces M, Nierychlo M, Hansen K, Baastrand CE, Nielsen UG, Reitzel K, Nielsen PH. Quantification of Biologically and Chemically Bound Phosphorus in Activated Sludge from Full-Scale Plants with Biological P-Removal. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5132-5140. [PMID: 35358387 PMCID: PMC9022429 DOI: 10.1021/acs.est.1c02642] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/08/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Phosphorus (P) is present in activated sludge from wastewater treatment plants in the form of metal salt precipitates, extracellular polymeric substances, or bound into the biomass, for example, as intracellular polyphosphate (poly-P). Several methods for a reliable quantification of the different P-fractions have recently been developed, and this study combines them to obtain a comprehensive P mass-balance of activated sludge from four enhanced biological phosphate removal (EBPR) plants. Chemical characterization by ICP-OES and sequential P fractionation showed that chemically bound P constituted 38-69% of total P, most likely in the form of Fe, Mg, or Al minerals. Raman microspectroscopy, solution state 31P NMR, and 31P MAS NMR spectroscopy applied before and after anaerobic P-release experiments, were used to quantify poly-P, which constituted 22-54% of total P and was found in approximately 25% of all bacterial cells. Raman microspectroscopy in combination with fluorescence in situ hybridization was used to quantify poly-P in known polyphosphate-accumulating organisms (PAO) (Tetrasphaera, Candidatus Accumulibacter, and Dechloromonas) and other microorganisms known to possess high level of poly-P, such as the filamentous Ca. Microthrix. Interestingly, only 1-13% of total P was stored by unidentified PAO, highlighting that most PAOs in the full-scale EBPR plants investigated are known.
Collapse
Affiliation(s)
- Francesca Petriglieri
- Center
for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| | - Jette F. Petersen
- Center
for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| | - Miriam Peces
- Center
for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| | - Marta Nierychlo
- Center
for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| | - Kamilla Hansen
- Center
for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| | - Cecilie E. Baastrand
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Ulla Gro Nielsen
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Kasper Reitzel
- Department
of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Per Halkjær Nielsen
- Center
for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| |
Collapse
|
19
|
Gbouri I, Yu F, Wang X, Wang J, Cui X, Hu Y, Yan B, Chen G. Co-Pyrolysis of Sewage Sludge and Wetland Biomass Waste for Biochar Production: Behaviors of Phosphorus and Heavy Metals. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052818. [PMID: 35270520 PMCID: PMC8909961 DOI: 10.3390/ijerph19052818] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/01/2023]
Abstract
Large amounts of sewage sludge (SS) and wetland plant wastes are generated in the wastewater treatment system worldwide. The conversion of these solid wastes into biochar through co-pyrolysis could be a promising resource utilization scheme. In this study, biochar was prepared by co-pyrolysis of SS and reed (Phragmites australis, RD) using a modified muffle furnace device under different temperatures (300, 500, and 700 °C) and with different mixing ratios (25, 50, and 75 wt.% RD). The physicochemical properties of biochar and the transformation behaviors of phosphorus (P) and heavy metals during the co-pyrolysis process were studied. Compared with single SS pyrolysis, the biochar derived from SS-RD co-pyrolysis had lower yield and ash content, higher pH, C content, and aromatic structure. The addition of RD could reduce the total P content of biochar and promote the transformation from non-apatite inorganic phosphorus (NAIP) to apatite phosphorus (AP). In addition, co-pyrolysis also reduced the content and toxicity of heavy metals in biochar. Therefore, co-pyrolysis could be a promising strategy to achieve the simultaneous treatment of SS and RD, as well as the production of value-added biochar.
Collapse
Affiliation(s)
- Ilham Gbouri
- Tianjin Key Laboratory of Biomass Waste Utilization, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (I.G.); (F.Y.); (X.W.); (J.W.); (B.Y.); (G.C.)
| | - Fan Yu
- Tianjin Key Laboratory of Biomass Waste Utilization, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (I.G.); (F.Y.); (X.W.); (J.W.); (B.Y.); (G.C.)
- Institute of Energy and Power Engineering, Zhejiang University of Technology, Hangzhou 310023, China;
| | - Xutong Wang
- Tianjin Key Laboratory of Biomass Waste Utilization, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (I.G.); (F.Y.); (X.W.); (J.W.); (B.Y.); (G.C.)
| | - Junxia Wang
- Tianjin Key Laboratory of Biomass Waste Utilization, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (I.G.); (F.Y.); (X.W.); (J.W.); (B.Y.); (G.C.)
| | - Xiaoqiang Cui
- Tianjin Key Laboratory of Biomass Waste Utilization, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (I.G.); (F.Y.); (X.W.); (J.W.); (B.Y.); (G.C.)
- Correspondence:
| | - Yanjun Hu
- Institute of Energy and Power Engineering, Zhejiang University of Technology, Hangzhou 310023, China;
| | - Beibei Yan
- Tianjin Key Laboratory of Biomass Waste Utilization, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (I.G.); (F.Y.); (X.W.); (J.W.); (B.Y.); (G.C.)
| | - Guanyi Chen
- Tianjin Key Laboratory of Biomass Waste Utilization, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (I.G.); (F.Y.); (X.W.); (J.W.); (B.Y.); (G.C.)
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China
| |
Collapse
|
20
|
Yu B, Xiao X, Wang J, Hong M, Deng C, Li YY, Liu J. Enhancing phosphorus recovery from sewage sludge using anaerobic-based processes: Current status and perspectives. BIORESOURCE TECHNOLOGY 2021; 341:125899. [PMID: 34523558 DOI: 10.1016/j.biortech.2021.125899] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic-based processes are green and sustainable technologies for phosphorus (P) recovery from sewage sludges economically and are promising in practical application. However, the P release efficiency is always not satisfied. In this paper, the P release mechanisms (regarding to different P species) from sewage sludge using anaerobic-based processes are systematically summarized. The obstacles of P release and the updated achievements of enhancing P release from sewage sludges are analyzed and discussed. It can be concluded that different P species can release from sewage sludge via different anaerobic-based processes. Extracellular polymeric substances and excessive metal ions are the two main limiting factors to P release. Acid fermentation and anaerobic fermentation with sulfate reduction could be two promising ways, with P release efficiencies of up to 64% and 63%. Based on the summarization and discussion, perspectives on practical application of P recovery from sewage sludge using anaerobic-based processes are proposed.
Collapse
Affiliation(s)
- Bohan Yu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Xiangmin Xiao
- Cangzhou Water Supply and Drainage Group Company Limited, 15 West Jiuhe Road, Canghzou, Hebei Province 061001, China
| | - Jianwei Wang
- Cangzhou Water Supply and Drainage Group Company Limited, 15 West Jiuhe Road, Canghzou, Hebei Province 061001, China
| | - Meng Hong
- Cangzhou Water Supply and Drainage Group Company Limited, 15 West Jiuhe Road, Canghzou, Hebei Province 061001, China
| | - Chao Deng
- Cangzhou Water Supply and Drainage Group Company Limited, 15 West Jiuhe Road, Canghzou, Hebei Province 061001, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China.
| |
Collapse
|
21
|
Yu B, Luo J, Xie H, Yang H, Chen S, Liu J, Zhang R, Li YY. Species, fractions, and characterization of phosphorus in sewage sludge: A critical review from the perspective of recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147437. [PMID: 33971595 DOI: 10.1016/j.scitotenv.2021.147437] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/10/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Phosphorus recovery from municipal sewage sludge is a promising way to alleviate the shortage of phosphorus resources. However, the recovery efficiency and cost depend greatly on phosphorus species and fractions in different sewage sludges, i.e., waste activated sludge and chemically enhanced primary sludge. In this review, the phosphorous (sub-)species and fractions in waste activated sludge and chemically enhanced primary sludge are systematically overviewed and compared. The factors affecting phosphorus fractions, including wastewater treatment process, as well as sludge treatment methods and conditions are summarized and discussed; it is found that phosphorus removal method and sludge treatment process are the dominant factors. The characterization methods of phosphorus species and fractions in sewage sludge are reviewed; non-destructive extraction of poly-P and microscopic IP characterization need more attention. Anaerobic fermentation is the preferable solution to achieve advanced phosphorus release both from waste activated sludge and chemically enhanced primary sludge, because it can make phosphorus species and fractions more suitable for recovery. A post low strength acid extraction after anaerobic fermentation is recommended to facilitate phosphorous release and improve the total recovery rate.
Collapse
Affiliation(s)
- Bohan Yu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Jinghuan Luo
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Huanhuan Xie
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Huan Yang
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Shanping Chen
- Shagnhai Environmental & Sanitary Engineering Design Institute Co., Ltd, No.11, Lane 345, Shilong Road, Shanghai 200232, PR China
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China.
| | - Ruina Zhang
- Shagnhai Environmental & Sanitary Engineering Design Institute Co., Ltd, No.11, Lane 345, Shilong Road, Shanghai 200232, PR China.
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
22
|
Yang M, Chen J, Wang X, Sun Y, Xu Y, Liu Q. Enhancement of phosphorus release from waste activated sludge by electrochemical treatment. ENVIRONMENTAL TECHNOLOGY 2021; 42:3698-3706. [PMID: 32134366 DOI: 10.1080/09593330.2020.1739145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
The enhancement of phosphorus (P) released from waste activated sludge (WAS) by electrochemical treatment was investigated in this study. Results showed that the concentration of orthophosphate (ortho-P) and organic phosphorus (OP) in liquid both increased after electrochemical treatment. The ortho-P and OP concentration reached a maximum of 5.020 and 1.888 mg/L under the optimal condition respectively (voltage of 4.5 V and time of 60 min), which were 2.86 and 4.93 times higher than that in raw sludge. Meanwhile, the role of extracellular polymeric substances (EPS) in this process was also studied. The variation trends of P-release in tightly bound EPS (TB-EPS) and loosely bound EPS (LB-EPS) were different. In TB-EPS, the concentration of total phosphorus (TP) and ortho-P decreased when the voltage increased. In contrast, the concentration of TP and ortho-P in LB-EPS increased and reached the maximum under the optimal condition. Released metal ions (Ca, Mg, Fe, and Al) had some effects on P-release both in liquid and EPS, which indicated that EPS played an important role. SCOD and TSS revealed that the disintegration of sludge was also enhanced by electrochemical treatment. Additionally, the P fractions in sludge phase suggested that OP was more likely to be released in liquid phase.
Collapse
Affiliation(s)
- Min Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, People's Republic of China
| | - Jingyan Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, People's Republic of China
| | - Xin Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, People's Republic of China
| | - Ying Sun
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, People's Republic of China
| | - Yunfeng Xu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, People's Republic of China
| | - Qiang Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, People's Republic of China
| |
Collapse
|
23
|
Zhao J, Hou T, Lei Z, Shimizu K, Zhang Z. Performance and stability of biogas recirculation-driven anaerobic digestion system coupling with alkali addition strategy for sewage sludge treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:146966. [PMID: 33866180 DOI: 10.1016/j.scitotenv.2021.146966] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/22/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Wastewater treatment plants are particularly challenging with the treatment and disposal of sewage sludge produced from the treatment units due to its high costs and environmental hazards. In this study, a biogas recirculation-driven anaerobic digestion (AD) system was developed with upward shear force being provided by biogas recirculation coupled with the alkali addition strategy, targeting biogas upgrading, sludge stabilization, and sludge flocculation simultaneously, thus reducing the sludge management costs. Compared to the conventional AD system, the novel biogas recirculation-driven AD system could achieve biogas upgrading with 10% higher CH4 content. Besides, the combination of NaOH and Ca(OH)2 addition strategy obviously improved sludge settleability and dewaterability compared to the single NaOH addition strategy. Owing to the attraction between negatively charged sludge particles and Ca2+ ions, the available Ca2+ in the former AD system may facilitate the re-flocculation and P immobilization in solid digestate, fix partial CO2 with less CO2 emission, and bridge with some sludge flocs. Moreover, 12.6% lower net cost for sludge management was achieved by this biogas recirculation-driven AD system together with the combination alkali addition strategy, which is regarded as a promising integrated multi-purpose system for sludge treatment.
Collapse
Affiliation(s)
- Jiamin Zhao
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Tingting Hou
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kazuya Shimizu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
24
|
Böger B, Wacht M, Leuck M, de O Vilhena R, Riese M, Fischer K. Inhibition of the activated sludge-associated enzyme phosphatase by transition metal oxyanions. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:2629-2639. [PMID: 34115618 DOI: 10.2166/wst.2021.172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Organic esters of phosphoric acid and other organophosphorous compounds are enzymatically hydrolyzed during wastewater treatment by microbial phosphoesterases, especially by phosphomonoesterase (phosphatase). For physiological reasons, the enzyme is inhibited by its main inorganic reaction product, ortho-phosphate. It is known that oxyanions of transition metals, resembling the molecular topology of ortho-phosphate, e.g. vanadate and tungstate, are more potent inhibitors for microbial alkaline phosphatase than phosphate. To proof this effect for activated sludge, a multitude of samples from a communal wastewater treatment plant was exposed at pH values from 7.00 to 8.50 to tungstate, vanadate, and molybdate. Inhibition effects were determined by a sensitive fluorimetric microplate assay and characteristic parameters (IC50 and IC20 concentrations) were deduced from modelled dose-response functions. Mean inhibitor concentrations (in brackets: ranges) causing 50% inactivation (IC50) at pH 7.50 were 2.5 (1.3-4.1) μM tungstate, 2.9 (1.6-5.5) μM vanadate, and 41.4 (33.6-56.7) μM molybdate. Vanadate and tungstate concentrations between 0.6 and 0.7 μM provoked a 20% (IC20) inhibition. The inhibition efficiency of tungstate and molybdate decreased with increasing pH, whereas vanadate reacted pH independently. These results underline the necessity to consider enzyme inhibition assessing the limitations and potentials of biological wastewater treatment processes.
Collapse
Affiliation(s)
- Beatriz Böger
- Pharmaceutical Sciences Postgraduate Program of Federal University of Paraná, Department of Pharmacy, Federal University of Paraná, Curitiba, Brazil
| | - Marion Wacht
- Department of Analytical and Ecological Chemistry, University of Trier, Behringstr. 21, D-54296 Trier, Germany E-mail:
| | - Michaela Leuck
- Department of Analytical and Ecological Chemistry, University of Trier, Behringstr. 21, D-54296 Trier, Germany E-mail:
| | - Raquel de O Vilhena
- Pharmaceutical Sciences Postgraduate Program of Federal University of Paraná, Department of Pharmacy, Federal University of Paraná, Curitiba, Brazil
| | - Maria Riese
- Department of Analytical and Ecological Chemistry, University of Trier, Behringstr. 21, D-54296 Trier, Germany E-mail:
| | - Klaus Fischer
- Department of Analytical and Ecological Chemistry, University of Trier, Behringstr. 21, D-54296 Trier, Germany E-mail:
| |
Collapse
|
25
|
Shi Y, Chen Z, Cao Y, Fan J, Clark JH, Luo G, Zhang S. Migration and transformation mechanism of phosphorus in waste activated sludge during anaerobic fermentation and hydrothermal conversion. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123649. [PMID: 32823030 DOI: 10.1016/j.jhazmat.2020.123649] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/25/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
This study investigated migration and transformation mechanism of P in waste activated sludge (WAS) during anaerobic fermentation (AF) process and the subsequent hydrothermal conversion (HTC) process. Control of pH during the AF processes was found to be significant, whereby the use of acidic (pH = 5.5) or alkaline conditions (pH = 9.5) facilitated the release of either apatite phosphorus (AP) or non-apatite inorganic phosphorus (NAIP) and organic phosphorus, respectively. At the same pH of 9.5, NaOH promoted the transfer of P into liquid phase, and P in the solid phase was mainly in the form of NAIP. In contrast, Ca(OH)2 enhanced the incorporation of P into the solid products, with the P mainly in the form of AP. The subsequent HTC process promoted the NAIP transferred to AP, and the bioavailability of P in the HTC solid products was decreased. The P K-edge X-ray absorption near edge structure analysis provided detailed information about the phosphates. It demonstrated that the conversion of Ca8H2PO4·6.5H2O to Ca5(PO4)3·OH was facilitated by HTC under the alkaline condition. This study sheds lights on transformation mechanism of P speciations during AF and HTC processes, which would provide fundamental information for effective utilization of P in bio-wastes.
Collapse
Affiliation(s)
- Yan Shi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, PR China; Green Chemistry Center of Excellence, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Zheng Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, PR China
| | - Yang Cao
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, PR China
| | - Jiajun Fan
- Green Chemistry Center of Excellence, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - James H Clark
- Green Chemistry Center of Excellence, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; Shanghai Technical Service Platformfor Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China.
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; Shanghai Technical Service Platformfor Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China.
| |
Collapse
|
26
|
Dong X, Zhao Z, Yang X, Lei Z, Shimizu K, Zhang Z, Lee DJ. Response and recovery of mature algal-bacterial aerobic granular sludge to sudden salinity disturbance in influent wastewater: Granule characteristics and nutrients removal/accumulation. BIORESOURCE TECHNOLOGY 2021; 321:124492. [PMID: 33316698 DOI: 10.1016/j.biortech.2020.124492] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
The impact of sudden salinity (1-3%) disturbance in influent wastewater on mature algal-bacterial aerobic granular sludge (AGS) was investigated, in addition to its recovery possibility when salinity disturbance was removed. Results show that the mature algal-bacterial AGS with less filamentous could maintain its good settleability with sludge volume index below 41 mL/g when wastewater salinity was increased to 3%, in which loosely bound extracellular polymeric substances might play an important role. Under this condition, the granule system achieved slightly lower dissolved organic carbon removal (from 97% to 94%), while the removals of ammonia nitrogen, total nitrogen and total phosphorus were remarkably decreased from ~100%, 66% and 70% to 23%, 16% and 38%, respectively. However, the organics and nutrients removals could be recovered immediately when the salinity disturbance was removed from the influent. P bioavailability, on the other hand, kept almost stable (93-97%) in the AGS during the examination period.
Collapse
Affiliation(s)
- Xiaochuan Dong
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Ziwen Zhao
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Xiaojing Yang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| | - Kazuya Shimizu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
27
|
Tuszynska A, Czerwionka K, Obarska-Pempkowiak H. Phosphorus concentration and availability in raw organic waste and post fermentation products. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 278:111468. [PMID: 33152546 DOI: 10.1016/j.jenvman.2020.111468] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/26/2020] [Accepted: 09/30/2020] [Indexed: 05/15/2023]
Abstract
The aim of the study was to determine the mobility of phosphorus forms in raw organic waste and from the solid and liquid fractions of digestate. To achieve the purpose of this study, the components (including livestock manure, agricultural waste, food waste, sewage sludge) and their post fermentation products were considered. Subsequently, the effect of the fermentation process on the mobility of phosphorus forms in post-fermentation fractions (solid and liquid) was investigated. Then, the evaluation of the fertilising potential of digestate fractions was assessed. The available organic and inorganic phosphorus forms were determined according to the Standards in Measurements and Testing (SMT) Programme extraction protocol and according to the acid molybdate spectrophotometric method. It has been shown that phosphorus in digestates occurred mainly in inorganic forms with Fe, Al, Mn, Mg and Ca ions. Its proportion in relation to total phosphorus ranged from 80 to 90%. The lowest phosphorus content was found in digestate from the fermentation of agricultural and food waste (fruit and vegetables), while digestate from livestock manure and sewage sludge fermentation was rich in phosphorus. It was shown that the solid fractions of digestate represented from 30 to 70% of highly labile phosphorus (i.e. phosphorus with organic matter and in bonds with Al, Fe, Mg and Mn oxides and hydroxides) in relation to total phosphorus. However, the share of labile phosphorus forms in the liquid fraction of digestates was much higher and accounted for 80-90% of the total phosphorus.
Collapse
Affiliation(s)
- Agnieszka Tuszynska
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Narutowicza 11/12, 80-233, Gdansk, Poland
| | - Krzysztof Czerwionka
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Narutowicza 11/12, 80-233, Gdansk, Poland.
| | - Hanna Obarska-Pempkowiak
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Narutowicza 11/12, 80-233, Gdansk, Poland
| |
Collapse
|
28
|
Hu S, Zhao W, Hu J, Liu B, Wang D, Zhu Q, Yang J, Hou H. Integration of electrochemical and calcium hypochlorite oxidation for simultaneous sludge deep dewatering, stabilization and phosphorus fixation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:141408. [PMID: 32858289 DOI: 10.1016/j.scitotenv.2020.141408] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/23/2020] [Accepted: 07/30/2020] [Indexed: 05/15/2023]
Abstract
A hybrid electrochemical process with Ca(ClO)2 addition for simultaneous sludge dewaterability, stabilization and phosphorus fixation was proposed. Under optimal conditions (150 mg/g VS Ca(ClO)2, 15 V), the capillary suction time (CST) and specific resistance to filtration (SRF) were decreased by 88% and 92%, respectively. Efficient sludge stabilization with E. coli colonies of less than 1000 MPN/g TS was achieved. Phosphorus of 99% was removed from the filtrate and successfully fixed in the sludge cake and on the electrode surface. The integration of electrochemical and hypochlorite oxidation could effectively degrade the tightly bound extracellular polymeric substances (TB-EPS) structure with a total organic carbon (TOC) reduction of 52%. Besides, the disintegration of microbial cell envelopes was also achieved, with a reduction of living cell fraction of 98%. Furthermore, system pH could be maintained at near neutral (7.45) and the conversion of Fe(II) to Fe(III) was also facilitated with the addition of Ca(ClO)2, resulting in improved electrocoagulation process for enhanced sludge dewatering and phosphorus fixation. The multifunctional effects were achieved with the cooperated extracellular electrooxidation for EPS destruction and the active chlorine for intracellular microbial cell disintegration. This research provides a promising strategy for integrated sludge treatment and recycling for possible land utilization.
Collapse
Affiliation(s)
- Shaogang Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei 430074, PR China
| | - Wenjin Zhao
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, PR China
| | - Jingping Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei 430074, PR China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Bingchuan Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei 430074, PR China
| | - Dongliang Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei 430074, PR China
| | - Qian Zhu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei 430074, PR China
| | - Jiakuan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei 430074, PR China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Huijie Hou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei 430074, PR China.
| |
Collapse
|
29
|
Mazzini S, Borgonovo G, Scaglioni L, Bedussi F, D'Imporzano G, Tambone F, Adani F. Phosphorus speciation during anaerobic digestion and subsequent solid/liquid separation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139284. [PMID: 32450400 DOI: 10.1016/j.scitotenv.2020.139284] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/28/2020] [Accepted: 05/06/2020] [Indexed: 05/10/2023]
Abstract
This study aims to investigate the effect of anaerobic digestion (AD) on P species and how the different species are distributed in the digestate and digestate fractions, i.e. liquid and solid fractions. To do so, six full scale AD plants were used in this work and representative biomass samples were collected for investigation. P fractionation proceeded by adopting fractionation protocols consisting in step-by-step extraction with different solvents, (i.e. NaHCO3, HCl and NaOH-EDTA). Subsequently P species in the different fractions were identified by using 31PNMR. On average, AD did not substantially affect P speciation that depended on the P-fraction content of feeds. A high NaHCO3 fraction content in the ingestate determined, also, a high content of this fraction in the digestate, with consequently lower contents of both P-HCl and P-NaOH-EDTA, i.e. digestate P-fraction contents represented an inheritance of P speciation in the ingestate. A feed effect was observed in single plants. Highest pig/cow slurry content in the feeds seemed to decrease readily soluble P (extracted with NaHCO3) content and increased P associated with both organic matter and amorphous Fe/Al in the digestate. Again, using a large amount of digestate in the feed increased P-soluble content in the digestate. 31P NMR analyses revealed that inorganic P compounds dominated the spectra of all biomasses and fractions, with orthophosphate as the predominant species. When present, organic phosphorus compounds were typically represented by monophosphate esters, DNA and phospholipids, with a predominance of monophosphate esters.
Collapse
Affiliation(s)
- Stefania Mazzini
- Department of Food, Environmental and Nutritional Sciences, Division of Chemistry and Molecular Biology, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Gigliola Borgonovo
- Department of Food, Environmental and Nutritional Sciences, Division of Chemistry and Molecular Biology, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Leonardo Scaglioni
- Department of Food, Environmental and Nutritional Sciences, Division of Chemistry and Molecular Biology, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Floriana Bedussi
- Ricicla Group Labs, Dipartimento di Scienze Agrarie e Ambientali, Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Giuliana D'Imporzano
- Ricicla Group Labs, Dipartimento di Scienze Agrarie e Ambientali, Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Fulvia Tambone
- Ricicla Group Labs, Dipartimento di Scienze Agrarie e Ambientali, Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy.
| | - Fabrizio Adani
- Ricicla Group Labs, Dipartimento di Scienze Agrarie e Ambientali, Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| |
Collapse
|
30
|
Wang L, Li Z, Ma J, Liu X, Liu Y. Migration and transformation of phosphorus in waste activated sludge during ozonation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:30315-30322. [PMID: 32458303 DOI: 10.1007/s11356-020-08972-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
For phosphorus (P) recovery from waste activated sludge (WAS), the most important step is to release P into the solution. This study aimed to explore the migration and transformation of P in WAS during ozonation based on the Standards Measurements and Testing Program analysis. The results showed that WAS contained 7.10% P element and could be selected as potential substitution of phosphate rock. Inorganic phosphorus (IP) was the major P fraction in raw WAS (68.10%), and non-apatite inorganic phosphorus (NAIP) occupied 62.40% of IP. Ozonation facilitated the P application in agriculture as the bio-available P in the solid phase increased by 23.63% at ozone dosage 0.20 gO3/gSS. The highest concentration of total phosphorus in liquid (TP(L)) (40.68 mg/L) was achieved at ozone dosage 0.20 gO3/gSS, and 89.62% of TP(L) was PO43--P, which was easy to be recovered by struvite precipitation. The contributions of different P fractions in solid phase to TP(L) were related to ozone dosage. The analysis of P mass balance suggested that the optimum ozone dosage for P recovery was 0.15 O3/gSS.
Collapse
Affiliation(s)
- Lingxiao Wang
- School of Civil Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
- Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, 050018, China
| | - Zaixing Li
- Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, 050018, China
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Jun Ma
- Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, 050018, China
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Xiaoshuai Liu
- Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, 050018, China
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Yanfang Liu
- Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, 050018, China.
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China.
| |
Collapse
|
31
|
Cydzik-Kwiatkowska A, Nosek D. Biological release of phosphorus is more efficient from activated than from aerobic granular sludge. Sci Rep 2020; 10:11076. [PMID: 32632171 PMCID: PMC7338368 DOI: 10.1038/s41598-020-67896-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/15/2020] [Indexed: 01/01/2023] Open
Abstract
Sewage sludge is a rich source of phosphorus. The kinetics of orthophosphate release and the efficiency of phosphorus recovery from aerobic granular sludge (GS) and activated sludge (AS) were compared at external organics (F) to biomass (M) ratios that ranged from 0 to 0.10. Changes in the F/M ratio affected orthophosphates release from AS to a greater extent than their release from GS. On average, increasing the F/M ratio by 0.02 increased the rate of phosphorus release from AS and GS by 2.12 and 1.75 mg P/(L h), respectively. Phosphorus release was highest at an F/M ratio of 0.04 (114.03 and 60.71 mg P/L from AS and GS, respectively). The efficiency of phosphorus recovery from AS ranged from 51.3 to 56.1%; the efficiency of its recovery from GS ranged from 32.8 to 37.5%. From GS, mostly inorganic phosphorus was released (about 8.5 mg/g MLSS), most of which was NAIP, i.e. phosphorus bound to Fe, Mn and Al. At a stoichiometric dose of MgO to PO43−, the precipitation efficiency was 30.13% ± 4.51 with uncontrolled pH and reached 81.73% ± 0.17 at a controlled pH of 10.
Collapse
Affiliation(s)
- Agnieszka Cydzik-Kwiatkowska
- Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, Słoneczna 45 G, 10-709, Olsztyn, Poland
| | - Dawid Nosek
- Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, Słoneczna 45 G, 10-709, Olsztyn, Poland.
| |
Collapse
|
32
|
Simoes F, Colston R, Rosa-Fernandes C, Vale P, Stephenson T, Soares A. Predicting the potential of sludge dewatering liquors to recover nutrients as struvite biominerals. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2020; 3:100052. [PMID: 36159601 PMCID: PMC9488103 DOI: 10.1016/j.ese.2020.100052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 05/31/2023]
Abstract
Phosphorus and nutrient recovery from wastewater as mineral salts can support local replenishment of fertilisers and reduce mining, contributing to the circular economy. Wastewater and related streams are rich in nutrients, however; there is need to develop bio-based processes to recover them. This study investigates the fractions of phosphorus (P) used by Brevibacterium antiquum to form struvite biominerals (bio-struvite) in wastewater sludge dewatering liquors. After 72h of incubation, 25.6 mg P/L were recovered as bio-struvite from 12.4 mg P/L organic plus condensed P and 13.2 mg P/L of ortho-phosphate. The potential of sludge dewatering liquors to recover nutrients as struvite was investigated by characterising ten types of sludge liquors (originating from primary, secondary sludge, feed to anaerobic digester and digestate, from 3 types of wastewater treatment plants) for their P fractions together with other parameters relevant for B. antiquum growth. Results indicated that liquors obtained from primary sludge, feed to anaerobic digesters and digestate were the most suitable to produce bio-struvite, as these were found to frequently have a high content of organic and condensed P, between to 276-732 mg P/L. Liquors, from all the investigated sites, presented a higher potential for bio-struvite production than with conventional struvite precipitation. This study demonstrated that B. antiquum could convert organic and condensed P into bio-struvite, and this opens up a completely new way to recover forms of phosphorus that are not typically available for nutrient recovery in a single process.
Collapse
Affiliation(s)
- Francisco Simoes
- Cranfield Water Science Institute, Cranfield University, Cranfield, MK43 0AL, UK
| | - Robert Colston
- Cranfield Water Science Institute, Cranfield University, Cranfield, MK43 0AL, UK
| | | | - Peter Vale
- Technology and Development, Severn Trent Water Ltd, Avon House, St. Martins Road, Coventry, CV3 6PR, UK
| | - Tom Stephenson
- Cranfield Water Science Institute, Cranfield University, Cranfield, MK43 0AL, UK
| | - Ana Soares
- Cranfield Water Science Institute, Cranfield University, Cranfield, MK43 0AL, UK
| |
Collapse
|
33
|
Huang W, Gong B, He L, Wang Y, Zhou J. Intensified nutrients removal in a modified sequencing batch reactor at low temperature: Metagenomic approach reveals the microbial community structure and mechanisms. CHEMOSPHERE 2020; 244:125513. [PMID: 32050330 DOI: 10.1016/j.chemosphere.2019.125513] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/08/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Abstract
To achieve efficient biological nutrients removal at low temperature, a modified sequencing batch reactor (SBR) was developed at 10 °C by extending sludge retention time (SRT), shortening aerobic stage and compensating anoxic stage. The average removal rates of ammonium (NH4+-N), total nitrogen (TN) and total phosphorus (TP) were 98.82%, 94.12% and 96.04%, respectively. Variation of carbon source in a typical cycle demonstrated the maximum synthesis of poly-β-hydroxybutyrate (PHB) (60 mg/L) occurred after feast period. Furthermore, the TP in sludge reached 50.4 mg/g mixed liquor suspended solids (MLSS) (78.4% was inorganic phosphorus and 21.6% was organic phosphorus) after 120 days of operation, indicating an excellent P-accumulating capacity was achieved in this system. Ammonia oxidizing bacteria (AOB) activity inhibition test verified both AOB and ammonia oxidizing archaea (AOA) were involved in ammonia-oxidizing process and the latter accounted for 17%-19%. Metagenomic-based taxonomy revealed the dominant genera were Candidatus Accumulibacter (12.18%), Dechloromonas (7.54%), Haliangium (6.69%) and Candidatus Contendobacter (3.40%). As described from the denitrifying genes perspective, with the exception of nitrite reduction (performed by denitrifiers), denitrifying phosphorus-accumulating organisms (DPAOs) played a leading role in denitrification pathway, showing that poly-β-hydroxyalkanoates (PHA)-driven nutrients removal was the dominate process.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Benzhou Gong
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Lei He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Yingmu Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China.
| |
Collapse
|
34
|
Xu Q, Xiao K, Wang H, Wu Q, Liang S, Yu W, Hou H, Liu B, Hu J, Yang J. Insight into effects of organic and inorganic phosphorus speciations on phosphorus removal efficiency in secondary effluent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11736-11748. [PMID: 31975007 DOI: 10.1007/s11356-020-07774-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
Most previous studies of phosphorus (P) removal focused on investigation of the soluble, and particulate P, but ignoring the difference between organic and inorganic P. In this study, the effects of various flocculants, namely polyacrylamide (PAM) and polyaluminum chloride (PAC), on flocculation efficiency in different P speciations (organic and inorganic P) were investigated. A modified method to differentiate between organic and inorganic P content in secondary effluent samples was developed. The results showed that P speciation based on organic/inorganic P (Pearson's correlation R = 0.915, p < 0.05) was more effective than those based on soluble/particulate P (p > 0.05) in evaluating the P content in secondary effluents. The liquid 31P nuclear magnetic resonance measurements results indicated that PAM was more effective in removing organic P (phosphonates and orthophosphate monoesters) rather than inorganic P. However, PAC was more effective in removing inorganic P (particularly orthophosphate) rather than organic P. Based on the modeled results of a response surface methodology (RSM), doses of PAM and PAC were optimized for secondary effluent containing different amounts of organic and inorganic P from the two typical wastewater treatment plants (WWTPs) in Wuhan city, China.
Collapse
Affiliation(s)
- Qi Xu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, Hubei, China
| | - Keke Xiao
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, Hubei, China.
| | - Hui Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, Hubei, China
| | - Qiongxiang Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, Hubei, China
| | - Sha Liang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, Hubei, China
| | - Wenbo Yu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, Hubei, China
| | - Huijie Hou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, Hubei, China
| | - Bingchuan Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, Hubei, China
| | - Jingping Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, Hubei, China
| | - Jiakuan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, Hubei, China.
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Luoyu Road 1037, Wuhan, 430074, Hubei, China.
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, Hubei, China.
| |
Collapse
|
35
|
Yang H, Liu J, Hu P, Zou L, Li YY. Carbon source and phosphorus recovery from iron-enhanced primary sludge via anaerobic fermentation and sulfate reduction: Performance and future application. BIORESOURCE TECHNOLOGY 2019; 294:122174. [PMID: 31563737 DOI: 10.1016/j.biortech.2019.122174] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/14/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Anaerobic fermentation and sulfate reduction (AF-SR) was firstly used for recovery of carbon sources and phosphorus from Fe-enhanced primary sludge (Fe-sludge). With FeCl3 dosage of 30 mg Fe/L, 63.0% of the chemical oxygen demand (COD) and 97.3% of the phosphorus were concentrated from sewage into Fe-sludge. Batch anaerobic fermentation tests of Fe-sludge with and without sulfate addition (AF-SR and control) were performed. The results showed that volatile fatty acid concentrations of the control and AF-SR were 211.0 and 270.2 mg COD/g volatile suspended solids, respectively. Furthermore, 33.2% (control) and 56.2% (AF-SR) of the total phosphorus in Fe-sludge was released. The recovery performances of carbon source and phosphorus were calculated based on struvite precipitation. The available carbon source of the AF-SR system was 44.5% higher than that of the control. A novel integrated wastewater and sludge treatment process based on chemically enhanced primary sedimentation and AF-SR is proposed for future application.
Collapse
Affiliation(s)
- Huan Yang
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China.
| | - Peishan Hu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Lianpei Zou
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
36
|
Li C, Li Q, Wang Z, Ji G, Zhao H, Gao F, Su M, Jiao J, Li Z, Li H. Environmental fungi and bacteria facilitate lecithin decomposition and the transformation of phosphorus to apatite. Sci Rep 2019; 9:15291. [PMID: 31653926 PMCID: PMC6814757 DOI: 10.1038/s41598-019-51804-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 10/04/2019] [Indexed: 01/30/2023] Open
Abstract
Organophosphorus compounds (OP) are stable P source in nature, and can increase eutrophication risk in waterbodies. Lecithin was the most difficult OP to be broken down. In this study, two typical phosphate-solubilizing microorganisms, Aspergillus niger and Acinetobacter sp., were applied to evaluate their ability to decompose both inorganic phosphates and lecithin. A. niger and Acinetobacter sp. could solubilize calcium phosphates by secreting various organic acids, e.g., oxalic and formic acids. The fungus, A. niger, shows significantly higher ability of solubilizing these inorganic phosphates than Acinetobacter sp., primarily due to its secretion of abundant oxalic acid. However, the bacterium, Acinetobacter sp., could secrete more acid phosphatase than A. niger for lecithin decomposition, i.e., 9300 vs. 8500 μmol L-1 h-1. Moreover, after addition of CaCl2, the released P from lecithin was transformed to stable chlorapatite in the medium. To the contrast, Ca cations inclined to form calcium oxalate (rather than stable phosphate mineral) after the incubation of A. niger, as it induced relatively acidic environment after breaking down lecithin. Therefore, this work sheds light on the bright future of applying bacteria and Ca cations in OP pollutant management.
Collapse
Affiliation(s)
- Chunkai Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Qisheng Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zhipeng Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Guanning Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - He Zhao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Fei Gao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Mu Su
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jiaguo Jiao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, Jiangsu, 210014, China.
| | - Zhen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Huixin Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, Jiangsu, 210014, China
| |
Collapse
|
37
|
Bashir A, Wang L, Deng S, Liu J, Tian J, Qiu B, Cheng X. Phosphorus release during alkaline treatment of waste activated sludge from wastewater treatment plants with Al salt enhanced phosphorus removal: Speciation and mechanism clarification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:87-93. [PMID: 31229832 DOI: 10.1016/j.scitotenv.2019.06.207] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 06/09/2023]
Abstract
Chemical phosphorus removal (CPR) is being increasingly adopted in wastewater treatment plants (WWTPs) to enhance P elimination to comply with stringent discharge limits. However, strategies to recover P enriched in the produced waste activated sludge (WAS) are not well developed. In this study, we investigated the release of P in WAS from three WWTPs employing Al salt enhanced CPR by alkaline treatment. We also monitored P mobilization by tracking the dynamics of P fractions and species, the dissolution of major metals, and sludge cell integrities as pH was altered. The level of aqueous total phosphorus (TPaq) in the sludge increased significantly to >200 mg/L (from <11 mg/L in the raw sludge) as the pH was increased to 12, with the majority being PO4-Paq especially at high pHs. The dominance of non-apatite inorganic phosphorus (NAIP) in the sludge-P, a good correlation observed between aqueous PO4-P and aqueous Al, and the reversibility of P mobilization all suggest that the dissolution of Al-bound P was largely responsible for the sludge-P release. Sludge cell integrity, on the other hand, was not closely correlated with TPaq concentrations. Although the level of TP released in this study is among the highest, a more efficient strategy still needs to be developed to further enhance sludge-P release when TP content in the sludge mixture (TPmx) is considered (TPmx was >800 mg/L in this work).
Collapse
Affiliation(s)
- Amna Bashir
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Lingyue Wang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Shaoyu Deng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Jiaqi Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Jingbao Tian
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Bin Qiu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Xiang Cheng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China; Water Research Center, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
38
|
Liang S, Chen H, Zeng X, Li Z, Yu W, Xiao K, Hu J, Hou H, Liu B, Tao S, Yang J. A comparison between sulfuric acid and oxalic acid leaching with subsequent purification and precipitation for phosphorus recovery from sewage sludge incineration ash. WATER RESEARCH 2019; 159:242-251. [PMID: 31100578 DOI: 10.1016/j.watres.2019.05.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/05/2019] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
Wet chemical approach is widely applied for P extraction from incinerated sewage sludge ash (ISSA) due to the relatively simple process and low lost. In this study, H2SO4 and H2C2O4 were compared to recover P from ISSA through three steps of acid leaching, cation exchange resin (CER) purification and precipitation. Transformations of P speciation and mineral phases in ISSA from 600 to 900 °C were studied. The results showed that the ISSA samples were mainly composed of inorganic P (IP), and part of non-apatite IP (NAIP, mainly AlPO4) would transform to apatite P (AP, Ca3(PO4)2) with the increase in temperature. The ratio of NAIP to IP dropped from 71.9% at 600 °C to 53.7% at 900 °C. Effect of acid concentration on the leaching efficiency of P from the ISSA samples incinerated at different temperatures by H2SO4 and H2C2O4 was investigated, and the leaching behaviors of key elements of P, Ca, Al and Fe were compared. H2C2O4 exhibited a better performance than H2SO4 for the leaching efficiency of P. Severe sintering of ash particles occurred at temperature >800 °C inhibited the P leaching by H2SO4. During CER purification, the impurity elements in the H2SO4 leachate were easily removed by CER, whereas the Al and Fe elements in the H2C2O4 leachate were hardly removed due to the formation of anionic complexes between Al3+/Fe3+ and oxalic ions. Finally, high-purity struvite product was synthesized from the purified H2SO4 leachate, which could be directly utilized as a fertilizer with negligible environmental risk. Amorphous aluminum and iron hydroxyphosphates were obtained from the H2C2O4 leachate. This study provides insights for P recovery from ISSA samples by different acid leaching systems.
Collapse
Affiliation(s)
- Sha Liang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Haoming Chen
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xiaohui Zeng
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Zhibin Li
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Wenbo Yu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, China.
| | - Keke Xiao
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Jingping Hu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Huijie Hou
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Bingchuan Liu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Shuangyi Tao
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Jiakuan Yang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| |
Collapse
|
39
|
Shi Y, Luo G, Rao Y, Chen H, Zhang S. Hydrothermal conversion of dewatered sewage sludge: Focusing on the transformation mechanism and recovery of phosphorus. CHEMOSPHERE 2019; 228:619-628. [PMID: 31059960 DOI: 10.1016/j.chemosphere.2019.04.109] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 04/07/2019] [Accepted: 04/14/2019] [Indexed: 06/09/2023]
Abstract
The recovery of phosphorus from sewage sludge was critical due to the depletion of phosphate ore. The present research aims to identify the phosphorus speciation and reveal the phosphorus transformation mechanism of dewatered sewage sludge during hydrothermal conversion (HTC) process, as well as to achieve the high efficiency recovery of phosphorus. Multiple analysis of SMT method, VK diagram, XANES and NMR showed that most phosphorus (>80%) was transferred to the hydrochar and presented as inorganic phosphorus (IP) after the HTC process. A dehydration trend was observed of the HTC process with the increase of sub-critical temperature. Ca-associated phosphorus increased significantly as the temperature increased. The Pyro-P gradually transformed to Ortho-P with the increase of HTC temperature and disappeared at 320 °C. The addition of HCl (6.13 and 12.3 mmol/g) in the HTC process resulted in a high percentage (>80%) of phosphorus transferred to the aqueous phase, and the bioavailability of the residual phosphorus increased significantly. The recovery rate of phosphorus could achieve 98.37% at the pH of 7.52, with the struvite purity of 90.41%. The results of this study provide new insights into the selective transfer of phosphorus in dewatered sludge by HTC process, in addition to some efficient ways for the utilisation of the HTC products.
Collapse
Affiliation(s)
- Yan Shi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Yue Rao
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China
| | - Huihui Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
40
|
Cosgun S, Semerci N. Combined and individual applications of ozonation and microwave treatment for waste activated sludge solubilization and nutrient release. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 241:76-83. [PMID: 30986664 DOI: 10.1016/j.jenvman.2019.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 03/16/2019] [Accepted: 04/01/2019] [Indexed: 05/15/2023]
Abstract
This study focused on the separate and combined applications of ozonation and microwave treatment to enhance the phosphorus and ammonia release from waste activated sludge. Twenty-six batch experiments were run with or without acidic (pH 2) and alkaline (pH 10) pretreatments and different ozone dosages. Also, microwave post-treatments were applied to enhance phosphorus release efficiency. Results showed that ozonation is an effective technology for solubilization and release without any pre or post-treatment, reactive phosphorus content increased from 1.9 to 3.6 mg PO4-P/g MLSSin (89.5% increase) with 19.4% COD release. Alkaline pretreatment enhanced sludge solubilization and phosphorus release at most (23.9% COD release and 152.6% PO4-P increase); however, decreases in ammonia, calcium and magnesium concentrations pointed out a loss of a part of released phosphorus, due to struvite or apatite precipitation. Acidic pretreatment reduced the sludge solubilization during ozonation (10% COD release) but prevented the uncontrolled precipitation and enhanced the phosphorus release (115.8% PO4-P increase). For microwave treatment, acid pretreated sludge showed higher release than alkaline pretreated or neutral sludge. Among different process combinations, acid pretreatment/ozonation/microwave experiments have shown the highest sludge solubilization and nutrient release (48% COD release and 579% PO4-P increase); however, the difference between acid pretreatment/microwave and acid pretreatment/ozonation/microwave was not significant in terms of phosphorus release (479% PO4-P increase, p = 0.082). Thus, pH 2/microwave may be a cost-effective and feasible alternative for nutrient recovery from waste sludge. For struvite precipitation, pH 8.5 were determined as optimum level. Also using fine struvite particles as seed increased struvite precipitation efficiency.
Collapse
Affiliation(s)
- Sevil Cosgun
- Department of Environmental Engineering, Marmara University, 34722, Kadikoy, Istanbul, Turkey.
| | - Neslihan Semerci
- Department of Environmental Engineering, Marmara University, 34722, Kadikoy, Istanbul, Turkey
| |
Collapse
|
41
|
Wang H, Yang SC, Cai W, Liu W, Wang A. Enhanced organic matter and nutrient release from waste activated sludge using ultrasound and surfactant synergetic pre-treatment. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.01.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
42
|
Zeng F, Jin W, Zhao Q. Temperature effect on extracellular polymeric substances (EPS) and phosphorus accumulating organisms (PAOs) for phosphorus release of anaerobic sludge. RSC Adv 2019; 9:2162-2171. [PMID: 35516154 PMCID: PMC9059762 DOI: 10.1039/c8ra10048a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/08/2019] [Indexed: 12/28/2022] Open
Abstract
Phosphorus (P) is an essential element for living organisms and anaerobic sludge is an attractive source for P recovery. Anaerobic P release depends on both phosphorus-accumulating organisms (PAOs) and extracellular polymeric substances (EPS). However, the P release contributed by the microbial cells and EPS was not addressed completely and the effect of temperature on the mechanism of P release and transformation was rarely considered. This study, therefore, investigated the effects of temperature on the P fraction and the relationship between PAOs metabolic pathway and EPS reaction using the Standards in Measurements and Testing (SMT) protocol and the 31P nuclear magnetic resonance (31P-NMR) experiments. Experimental results showed that the temperature not only affected the metabolism of PAOs, but also significantly influenced the EPS components and the hydrolysis of EPS-associated polyphosphate (poly-P). And the P release mainly occurred due to biological mechanisms with a conversion from non-reactive P (NRP) in both intracellular and extracellular substances to reactive P (RP) fractions. The highest concentration of total P in the supernatant (TPL) occurred at 15 °C, and the TPL release from the solid to liquid phase was better fitted with pseudo-second-order kinetic model. More organic P in the sludge (OPs) released from the sludge phase at 35 °C would convert into inorganic P (IPs) and non-apatite inorganic phosphorus (NAIPs) was the most labile P fraction for P release. The hydrolysis of EPS-associated poly-P was enhanced by higher temperatures with the degradation of the long-chain poly-P by PAOs. Meanwhile, a lower temperature could obviously improve the P release because the dominance of PAOs would potentially shift to GAOs with the increase of temperature. But the very-low temperature (5 °C) was not beneficial for the P release and suppressed the microbial activities.
Collapse
Affiliation(s)
- Fanzhe Zeng
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology Harbin 150090 China +86-45186283017
| | - Wenbiao Jin
- School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen 518055 China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology Harbin 150090 China +86-45186283017
| |
Collapse
|
43
|
Hu P, Liu J, Wu L, Zou L, Li YY, Xu ZP. Simultaneous release of polyphosphate and iron-phosphate from waste activated sludge by anaerobic fermentation combined with sulfate reduction. BIORESOURCE TECHNOLOGY 2019; 271:182-189. [PMID: 30268013 DOI: 10.1016/j.biortech.2018.09.117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/18/2018] [Accepted: 09/21/2018] [Indexed: 06/08/2023]
Abstract
Iron is widely used in sewage treatment systems and enriched into waste activated sludge (WAS), which is difficult and challenging to phosphorus (P) release and recovery. This study investigated simultaneous release performance of polyphosphate and iron-phosphate from iron-rich sludge via anaerobic fermentation combined with sulfate reduction (AF-SR) system. Batch tests were performed, with results showing that AF-SR system conducted a positive effect due to the relatively low solubility of ferrous sulfide in comparison with ferric phosphate precipitates. Simulation study was performed to investigate the total P release potential from actual waste activated sludge, finding that about 70% of the total P could release with the optimized pH of 7.0-8.0 and the theoretical S2-/Fe2+ molar ratio of 1.0. A potential new blueprint of a wastewater treatment plant based on AF-SR system, towards P, N recovery and Fe, S, C recycle, was finally proposed.
Collapse
Affiliation(s)
- Peishan Hu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China.
| | - Liang Wu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Lianpei Zou
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yu-You Li
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Zhi Ping Xu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China; ARC Centre of Excellence for Functional Nanomaterials, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
44
|
Zhao Z, Yang X, Cai W, Lei Z, Shimizu K, Zhang Z, Utsumi M, Lee DJ. Response of algal-bacterial granular system to low carbon wastewater: Focus on granular stability, nutrients removal and accumulation. BIORESOURCE TECHNOLOGY 2018; 268:221-229. [PMID: 30081281 DOI: 10.1016/j.biortech.2018.07.114] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/22/2018] [Accepted: 07/23/2018] [Indexed: 06/08/2023]
Abstract
The effect of influent chemical oxygen demand to nitrogen (COD/N) ratio on the granular stability, nutrients removal and accumulation of the algal-bacterial AGS was investigated. Two sequencing batch reactors were operated under different influent COD/N ratio, i.e., R1 (control, COD/N = 8) and R2: (COD/N = 8, 4, 2, and 1 through stepwise decrease of COD). Results showed that the integrity coefficient of the granules in R2 stabilized at 0.7-5.4% during the whole operation. Significantly enhanced dissolved inorganic carbon (DIC) uptake and the faster growth of algae indicated the great potential for reduction in greenhouse gases (GHGs) emission by using the algal-bacterial AGS system. The algal-bacterial AGS biomass contained high phosphorus (P) and N contents as well as extremely high P bioavailability (up to 98%) which could be easily used for resource recovery. Loosely bound extracellular polymeric substances (LB-EPS) might be the key factor to control the deterioration of granular stability in this system.
Collapse
Affiliation(s)
- Ziwen Zhao
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Xiaojing Yang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Wei Cai
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| | - Kazuya Shimizu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Motoo Utsumi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
45
|
Cai W, Jin M, Zhao Z, Lei Z, Zhang Z, Adachi Y, Lee DJ. Influence of ferrous iron dosing strategy on aerobic granulation of activated sludge and bioavailability of phosphorus accumulated in granules. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.biteb.2018.03.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Zhang J, Tian Y, Zhang J. Release of phosphorus from sewage sludge during ozonation and removal by magnesium ammonium phosphate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:23794-23802. [PMID: 28866811 DOI: 10.1007/s11356-017-0037-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/25/2017] [Indexed: 06/07/2023]
Abstract
The release rule of phosphorus from sewage sludge during ozonation and removal by the magnesium ammonium phosphate (MAP) method were investigated. The results showed that the concentrations of total phosphorus in aqueous phase (TP(A)) and orthophosphate (PO43--P) in ozonized sludge supernatant rose obviously with increasing ozone dose when ozone dose was below 61.2 mg O3/gSS then almost kept constant. The TP(A) and PO43--P contents in the ozonized sludge supernatant were 70.9 and 63.3 mg/L when ozone dose was 61.2 mg O3/gSS, respectively. Total phosphorus in the sludge solid (TP(S)) was mostly distributed in inorganic phosphorus (IP) (more than 81.5% of TP(S)), and non-apatite inorganic phosphorus (NAIP) was the major component of IP in the sludge (more than 78.7% of IP) during ozonation. The release contribution (RC) of IP to TP(A) accounted for over 73.9%. The optimized conditions for the removal of phosphorus from ozonized sludge supernatant were set at an initial Mg2+/PO43--P molar ratio of 1.8, pH 9.5, and reaction time of 5 min, under which the removal efficiencies of TP(A) and PO43--P were 43.1 and 52.2%, respectively.
Collapse
Affiliation(s)
- Jian Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Jun Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
47
|
Wu L, Zhang C, Hu H, Liu J, Duan T, Luo J, Qian G. Phosphorus and short-chain fatty acids recovery from waste activated sludge by anaerobic fermentation: Effect of acid or alkali pretreatment. BIORESOURCE TECHNOLOGY 2017; 240:192-196. [PMID: 28343862 DOI: 10.1016/j.biortech.2017.03.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 06/06/2023]
Abstract
Waste activated sludge (WAS) was pretreated by acid or alkali to enhance the anaerobic fermentation (AF) for phosphorus (P) and short-chain fatty acids (SCFAs) release into the liquid simultaneously. With acid pretreatment, the released total P concentration achieved 120mg/L, which was 71.4% higher than that with alkali pretreatment. In addition, alkali pretreatment enhanced organic P release with about 35.3% of organic P in the solid being converted to inorganic P, while little had changed with acid pretreatment. The results also showed that acid and alkali pretreatment enhanced SCFAs production by 15.3 and 12.5times, respectively. Acid pretreatment could be preferred for simultaneous recovery of P and SCFAs by AF.
Collapse
Affiliation(s)
- Liang Wu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Cheng Zhang
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Hui Hu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China.
| | - Tengfei Duan
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Jinghuan Luo
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Guangren Qian
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| |
Collapse
|
48
|
Ye Y, Ngo HH, Guo W, Liu Y, Li J, Liu Y, Zhang X, Jia H. Insight into chemical phosphate recovery from municipal wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 576:159-171. [PMID: 27783934 DOI: 10.1016/j.scitotenv.2016.10.078] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/11/2016] [Accepted: 10/11/2016] [Indexed: 05/24/2023]
Abstract
Phosphate plays an irreplaceable role in the production of fertilizers. However, its finite availability may not be enough to satisfy increasing demands for the fertilizer production worldwide. In this scenario, phosphate recovery can effectively alleviate this problem. Municipal wastewater has received high priority to recover phosphate because its quantity is considerable. Therefore, phosphate recovery from municipal wastewater can bring many benefits such as relieving the burden of increasing production of fertilizers and reduction in occurrence of eutrophication caused by the excessive concentration of phosphate in the released effluent. The chemical processes are the most widely applied in phosphate recovery in municipal wastewater treatment because they are highly stable and efficient, and simple to operate. This paper compares chemical technologies for phosphate recovery from municipal wastewater. As phosphate in the influent is transferred to the liquid and sludge phases, a technical overview of chemical phosphate recovery in both phases is presented with reference to mechanism, efficiency and the main governing parameters. Moreover, an analysis on their applications at plant-scale is also presented. The properties of recovered phosphate and its impact on crops and plants are also assessed with a discussion on the economic feasibility of the technologies.
Collapse
Affiliation(s)
- Yuanyao Ye
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia; Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Jixiang Li
- Shanghai Advanced Research Institute, Chinese Academy of Science, Zhangjiang Hi-Tech Park, Pudong, Shanghai, China.
| | - Yi Liu
- Shanghai Advanced Research Institute, Chinese Academy of Science, Zhangjiang Hi-Tech Park, Pudong, Shanghai, China
| | - Xinbo Zhang
- Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Hui Jia
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin, 300387, China
| |
Collapse
|
49
|
He ZW, Tang CC, Wang L, Guo ZC, Zhou AJ, Sun D, Liu WZ, Wang AJ. Transformation and release of phosphorus from waste activated sludge upon combined acid/alkaline treatment. RSC Adv 2017. [DOI: 10.1039/c7ra03696e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Acid-alkaline treatment increased phosphorus release from waste activated sludge, and the potentially recoverable phosphorus accounted for 54.7% of the total phosphorus.
Collapse
Affiliation(s)
- Zhang-Wei He
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology (SKLUWRE, HIT)
- Harbin
- China
| | - Cong-Cong Tang
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology (SKLUWRE, HIT)
- Harbin
- China
| | - Ling Wang
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology (SKLUWRE, HIT)
- Harbin
- China
| | - Ze-Chong Guo
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology (SKLUWRE, HIT)
- Harbin
- China
| | - Ai-Juan Zhou
- College of Environmental Science and Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- China
| | - Dan Sun
- Ocean College
- Zhejiang University
- Zhoushan
- China
| | - Wen-Zong Liu
- Key Laboratory of Environmental Biotechnology
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology (SKLUWRE, HIT)
- Harbin
- China
- Key Laboratory of Environmental Biotechnology
| |
Collapse
|
50
|
He ZW, Liu WZ, Wang L, Tang CC, Guo ZC, Yang CX, Wang AJ. Clarification of phosphorus fractions and phosphorus release enhancement mechanism related to pH during waste activated sludge treatment. BIORESOURCE TECHNOLOGY 2016; 222:217-225. [PMID: 27718404 DOI: 10.1016/j.biortech.2016.10.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/30/2016] [Accepted: 10/02/2016] [Indexed: 05/24/2023]
Abstract
This study aimed to clarify phosphorus (P) fractions in waste activated sludge (WAS) and explore release performance and enhancement mechanism of different P species related to pH. Results showed that inorganic P (IP) was the major P fraction in raw sludge (87.86% of total solid P), and non-apatite inorganic P (NAIP), the most labile P forms, occupied 81.30% of IP, suggesting that WAS could be selected as potential substitution of phosphate rock. The optimized acid and alkaline conditions were pH=4 and pH=12 for molybdate reactive P accumulation, increased by 311.20mg/L and 479.18mg/L compared to raw sludge, which were 3.80 and 5.84 times higher than that of control, respectively. The mechanism study demonstrated that high pH promoted NAIP release, and apatite P was sensitive to low pH. Moreover, the releasable and recoverable P depended on both fractions of different P species in sludge and pH adjustment for sludge treatment.
Collapse
Affiliation(s)
- Zhang-Wei He
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), 202 Haihe Road, Harbin 150090, China
| | - Wen-Zong Liu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
| | - Ling Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), 202 Haihe Road, Harbin 150090, China
| | - Cong-Cong Tang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), 202 Haihe Road, Harbin 150090, China
| | - Ze-Chong Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), 202 Haihe Road, Harbin 150090, China
| | - Chun-Xue Yang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), 202 Haihe Road, Harbin 150090, China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), 202 Haihe Road, Harbin 150090, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China.
| |
Collapse
|