1
|
Thermostable cellulose saccharifying microbial enzymes: Characteristics, recent advances and biotechnological applications. Int J Biol Macromol 2021; 188:226-244. [PMID: 34371052 DOI: 10.1016/j.ijbiomac.2021.08.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/19/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022]
Abstract
Cellulases play a promising role in the bioconversion of renewable lignocellulosic biomass into fermentable sugars which are subsequently fermented to biofuels and other value-added chemicals. Besides biofuel industries, they are also in huge demand in textile, detergent, and paper and pulp industries. Low titres of cellulase production and processing are the main issues that contribute to high enzyme cost. The success of ethanol-based biorefinery depends on high production titres and the catalytic efficiency of cellulases functional at elevated temperatures with acid/alkali tolerance and the low cost. In view of their wider application in various industrial processes, stable cellulases that are active at elevated temperatures in the acidic-alkaline pH ranges, and organic solvents and salt tolerance would be useful. This review provides a recent update on the advances made in thermostable cellulases. Developments in their sources, characteristics and mechanisms are updated. Various methods such as rational design, directed evolution, synthetic & system biology and immobilization techniques adopted in evolving cellulases with ameliorated thermostability and characteristics are also discussed. The wide range of applications of thermostable cellulases in various industrial sectors is described.
Collapse
|
2
|
Xu J, Xu R, Jia M, Su Y, Zhu W. Metatranscriptomic analysis of colonic microbiota's functional response to different dietary fibers in growing pigs. Anim Microbiome 2021; 3:45. [PMID: 34217374 PMCID: PMC8254964 DOI: 10.1186/s42523-021-00108-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 06/23/2021] [Indexed: 01/30/2023] Open
Abstract
Background Dietary fibers are widely considered to be beneficial to health as they produce nutrients through gut microbial fermentation while facilitating weight management and boosting gut health. To date, the gene expression profiles of the carbohydrate active enzymes (CAZymes) that respond to different types of fibers (raw potato starch, RPS; inulin, INU; pectin, PEC) in the gut microbes of pigs are not well understood. Therefore, we investigated the functional response of colonic microbiota to different dietary fibers in pigs through metatranscriptomic analysis. Results The results showed that the microbial composition and CAZyme structure of the three experimental groups changed significantly compared with the control group (CON). Based on a comparative analysis with the control diet, RPS increased the abundance of Parabacteroides, Ruminococcus, Faecalibacterium and Alloprevotella but decreased Sutterella; INU increased the relative abundance of Fusobacterium and Rhodococcus but decreased Bacillus; and PEC increased the relative abundance of the Streptococcus and Bacteroidetes groups but decreased Clostridium, Clostridioides, Intestinibacter, Gemmiger, Muribaculum and Vibrio. The gene expression of CAZymes GH8, GH14, GH24, GH38, GT14, GT31, GT77 and GT91 downregulated but that of GH77, GH97, GT3, GT10 and GT27 upregulated in the RPS diet group; the gene expression of AA4, AA7, GH14, GH15, GH24, GH26, GH27, GH38, GH101, GT26, GT27 and GT38 downregulated in the INU group; and the gene expression of PL4, AA1, GT32, GH18, GH37, GH101 and GH112 downregulated but that of CE14, AA3, AA12, GH5, GH102 and GH103 upregulated in the PEC group. Compared with the RPS and INU groups, the composition of colonic microbiota in the PEC group exhibited more diverse changes with the variation of CAZymes and Streptococcus as the main contributor to CBM61, which greatly promoted the digestion of pectin. Conclusion The results of this exploratory study provided a comprehensive overview of the effects of different fibers on nutrient digestibility, gut microbiota and CAZymes in pig colon, which will furnish new insights into the impacts of the use of dietary fibers on animal and human health. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-021-00108-1.
Collapse
Affiliation(s)
- Jie Xu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rongying Xu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Menglan Jia
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yong Su
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China. .,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
3
|
Benedetti M, Barera S, Longoni P, Guardini Z, Herrero Garcia N, Bolzonella D, Lopez‐Arredondo D, Herrera‐Estrella L, Goldschmidt‐Clermont M, Bassi R, Dall’Osto L. A microalgal-based preparation with synergistic cellulolytic and detoxifying action towards chemical-treated lignocellulose. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:124-137. [PMID: 32649019 PMCID: PMC7769238 DOI: 10.1111/pbi.13447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/19/2020] [Accepted: 06/28/2020] [Indexed: 05/28/2023]
Abstract
High-temperature bioconversion of lignocellulose into fermentable sugars has drawn attention for efficient production of renewable chemicals and biofuels, because competing microbial activities are inhibited at elevated temperatures and thermostable cell wall degrading enzymes are superior to mesophilic enzymes. Here, we report on the development of a platform to produce four different thermostable cell wall degrading enzymes in the chloroplast of Chlamydomonas reinhardtii. The enzyme blend was composed of the cellobiohydrolase CBM3GH5 from C. saccharolyticus, the β-glucosidase celB from P. furiosus, the endoglucanase B and the endoxylanase XynA from T. neapolitana. In addition, transplastomic microalgae were engineered for the expression of phosphite dehydrogenase D from Pseudomonas stutzeri, allowing for growth in non-axenic media by selective phosphite nutrition. The cellulolytic blend composed of the glycoside hydrolase (GH) domain GH12/GH5/GH1 allowed the conversion of alkaline-treated lignocellulose into glucose with efficiencies ranging from 14% to 17% upon 48h of reaction and an enzyme loading of 0.05% (w/w). Hydrolysates from treated cellulosic materials with extracts of transgenic microalgae boosted both the biogas production by methanogenic bacteria and the mixotrophic growth of the oleaginous microalga Chlorella vulgaris. Notably, microalgal treatment suppressed the detrimental effect of inhibitory by-products released from the alkaline treatment of biomass, thus allowing for efficient assimilation of lignocellulose-derived sugars by C. vulgaris under mixotrophic growth.
Collapse
Affiliation(s)
- Manuel Benedetti
- Dipartimento di BiotecnologieUniversità di VeronaVeronaItaly
- Present address:
Dipartimento MESVAUniversità dell'AquilaCoppitoAQItaly
| | - Simone Barera
- Dipartimento di BiotecnologieUniversità di VeronaVeronaItaly
| | - Paolo Longoni
- Faculty of ScienceInstitute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
| | - Zeno Guardini
- Dipartimento di BiotecnologieUniversità di VeronaVeronaItaly
| | | | | | - Damar Lopez‐Arredondo
- StelaGenomics MexicoS de RL de CVIrapuato, GuanajuatoMexico
- Institute of Genomics for Crop Abiotic Stress ToleranceTexas Tech UniversityLubbockTXUSA
| | - Luis Herrera‐Estrella
- Laboratorio Nacional de Genómica para la BiodiversidadCentro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalIrapuato, GuanajuatoMexico
- Institute of Genomics for Crop Abiotic Stress ToleranceTexas Tech UniversityLubbockTXUSA
| | | | - Roberto Bassi
- Dipartimento di BiotecnologieUniversità di VeronaVeronaItaly
| | - Luca Dall’Osto
- Dipartimento di BiotecnologieUniversità di VeronaVeronaItaly
| |
Collapse
|
4
|
Benedetti M, Vecchi V, Guardini Z, Dall’Osto L, Bassi R. Expression of a Hyperthermophilic Cellobiohydrolase in Transgenic Nicotiana tabacum by Protein Storage Vacuole Targeting. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1799. [PMID: 33353085 PMCID: PMC7767180 DOI: 10.3390/plants9121799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/30/2020] [Accepted: 12/15/2020] [Indexed: 02/01/2023]
Abstract
Plant expression of microbial Cell Wall Degrading Enzymes (CWDEs) is a valuable strategy to produce industrial enzymes at affordable cost. Unfortunately, the constitutive expression of CWDEs may affect plant fitness to variable extents, including developmental alterations, sterility and even lethality. In order to explore novel strategies for expressing CWDEs in crops, the cellobiohydrolase CBM3GH5, from the hyperthermophilic bacterium Caldicellulosiruptor saccharolyticus, was constitutively expressed in N. tabacum by targeting the enzyme both to the apoplast and to the protein storage vacuole. The apoplast targeting failed to isolate plants expressing the recombinant enzyme despite a large number of transformants being screened. On the opposite side, the targeting of the cellobiohydrolase to the protein storage vacuole led to several transgenic lines expressing CBM3GH5, with an enzyme yield of up to 0.08 mg g DW-1 (1.67 Units g DW-1) in the mature leaf tissue. The analysis of CBM3GH5 activity revealed that the enzyme accumulated in different plant organs in a developmental-dependent manner, with the highest abundance in mature leaves and roots, followed by seeds, stems and leaf ribs. Notably, both leaves and stems from transgenic plants were characterized by an improved temperature-dependent saccharification profile.
Collapse
Affiliation(s)
- Manuel Benedetti
- Dipartimento di Medicina Clinica, Sanità Pubblica, Scienze della Vita e dell’Ambiente, Università dell’Aquila, Piazzale Salvatore Tommasi 1, 67100 L’Aquila, Italy;
| | - Valeria Vecchi
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy; (V.V.); (Z.G.); (L.D.)
| | - Zeno Guardini
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy; (V.V.); (Z.G.); (L.D.)
| | - Luca Dall’Osto
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy; (V.V.); (Z.G.); (L.D.)
| | - Roberto Bassi
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy; (V.V.); (Z.G.); (L.D.)
| |
Collapse
|
5
|
Singh N, Mathur AS, Gupta RP, Barrow CJ, Tuli DK, Puri M. Enzyme systems of thermophilic anaerobic bacteria for lignocellulosic biomass conversion. Int J Biol Macromol 2020; 168:572-590. [PMID: 33309672 DOI: 10.1016/j.ijbiomac.2020.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 11/17/2022]
Abstract
Economic production of lignocellulose degrading enzymes for biofuel industries is of considerable interest to the biotechnology community. While these enzymes are widely distributed in fungi, their industrial production from other sources, particularly by thermophilic anaerobic bacteria (growth Topt ≥ 60 °C), is an emerging field. Thermophilic anaerobic bacteria produce a large number of lignocellulolytic enzymes having unique structural features and employ different schemes for biomass degradation, which can be classified into four systems namely; 'free enzyme system', 'cell anchored enzymes', 'complex cellulosome system', and 'multifunctional multimodular enzyme system'. Such enzymes exhibit high specific activity and have a natural ability to withstand harsh bioprocessing conditions. However, achieving a higher production of these thermostable enzymes at current bioprocessing targets is challenging. In this review, the research opportunities for these distinct enzyme systems in the biofuel industry and the associated technological challenges are discussed. The current status of research findings is highlighted along with a detailed description of the categorization of the different enzyme production schemes. It is anticipated that high temperature-based bioprocessing will become an integral part of sustainable bioenergy production in the near future.
Collapse
Affiliation(s)
- Nisha Singh
- Centre for Chemistry and Biotechnology, Deakin University, Waurn Ponds, Victoria 3217, Australia; DBT-IOC Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad 121007, India
| | - Anshu S Mathur
- DBT-IOC Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad 121007, India
| | - Ravi P Gupta
- DBT-IOC Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad 121007, India
| | - Colin J Barrow
- Centre for Chemistry and Biotechnology, Deakin University, Waurn Ponds, Victoria 3217, Australia
| | - Deepak K Tuli
- DBT-IOC Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad 121007, India
| | - Munish Puri
- Centre for Chemistry and Biotechnology, Deakin University, Waurn Ponds, Victoria 3217, Australia; Medical Biotechnology, Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide 5042, Australia.
| |
Collapse
|
6
|
Guerrero EB, de Villegas RMD, Soria MA, Santangelo MP, Campos E, Talia PM. Characterization of two GH5 endoglucanases from termite microbiome using synthetic metagenomics. Appl Microbiol Biotechnol 2020; 104:8351-8366. [DOI: 10.1007/s00253-020-10831-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
|
7
|
Giovannoni M, Gramegna G, Benedetti M, Mattei B. Industrial Use of Cell Wall Degrading Enzymes: The Fine Line Between Production Strategy and Economic Feasibility. Front Bioeng Biotechnol 2020; 8:356. [PMID: 32411686 PMCID: PMC7200985 DOI: 10.3389/fbioe.2020.00356] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022] Open
Abstract
Cell Wall Degrading Enzymes (CWDEs) are a heterogeneous group of enzymes including glycosyl-hydrolases, oxidoreductases, lyases, and esterases. Microbes with degrading activities toward plant cell wall polysaccharides are the most relevant source of CWDEs for industrial applications. These organisms secrete a wide array of CWDEs in amounts strictly necessary for their own sustenance, nonetheless the production of CWDEs from wild type microbes can be increased at large-scale by using optimized fermentation strategies. In the last decades, advances in genetic engineering allowed the expression of recombinant CWDEs also in lab-domesticated organisms such as E. coli, yeasts and plants, dramatically increasing the available options for the large-scale production of CWDEs. The optimization of a CWDE-producing biofactory is a hard challenge that biotechnologists tackle by testing different expression strategies and expression-hosts. Although both the yield and production costs are critical factors to produce biomolecules at industrial scale, these parameters are often disregarded in basic research. This review presents the main characteristics and industrial applications of CWDEs directed toward the cell wall of plants, bacteria, fungi and microalgae. Different biofactories for CWDE expression are compared in order to highlight strengths and weaknesses of each production system and how these aspects impact the final enzyme cost and, consequently, the economic feasibility of using CWDEs for industrial applications.
Collapse
Affiliation(s)
- Moira Giovannoni
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giovanna Gramegna
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Manuel Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Benedetta Mattei
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
8
|
Ma L, Aizhan R, Wang X, Yi Y, Shan Y, Liu B, Zhou Y, Lü X. Cloning and characterization of low-temperature adapted GH5-CBM3 endo-cellulase from Bacillus subtilis 1AJ3 and their application in the saccharification of switchgrass and coffee grounds. AMB Express 2020; 10:42. [PMID: 32140794 PMCID: PMC7058755 DOI: 10.1186/s13568-020-00975-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/21/2020] [Indexed: 01/27/2023] Open
Abstract
Endocellulase is a key cellulase for cellulosic material pretreatment in the industry by hydrolyzing long cellulose chains into short chains. To investigate the endocellulase characteristics from Bacillus subtilis 1AJ3, and increase its production yield, this paper cloned an endocellulase gene denoted CEL-5A from strain 1AJ3 and expressed in E. coli BL21 (DE3). The CEL-5A gene was sequenced with a full-length of 1500 bp, encoding a totally of 500 amino acids, and containing two domains: the GH5 family catalytic domain (CD) and the CBM3 family cellulose-binding domain (CBD). Recombinant endocellulase Cel-5A with a His-tag was purified of the Ni-NTA column, and SDS-PAGE results demonstrated that Cel-5A exhibited a molecular weight of 56.4 kDa. The maximum enzyme activity of Cel-5A was observed at pH 4.5 and 50 °C. Moreover, it was active over the broad temperature region of 30–60 °C, and stable within the pH range of 4.5–10.0. In addition, Co2+ was able to increase enzyme activity, while the majority of metal ions demonstrated stable enzyme activity under low- concentration. The substrate specificity of Cel-5A exhibited a high specific activity on the β-1,3-1,4 glucan linkage from barley. The Michaelis–Menten constant and the maximum velocity of the recombinant Cel-5A for CMC-Na were determined as 14.87 mg/mL and 19.19 μmol/min/mg, respectively. When Cel-5A was applied to the switchgrass and coffee grounds, its color became lighter and the biomass was observed to loosen following hydrolyzation. The saccharification rate reached 12% of the total weight of switchgrass in 20 h. These properties highlight the potential application of Cel-5A as an endocellulase in the pretreatment of biomass, for example, in the coffee grounds/waste, and related industries.
Collapse
|
9
|
Chu Y, Hao Z, Wang K, Tu T, Huang H, Wang Y, Bai YG, Wang Y, Luo H, Yao B, Su X. The GH10 and GH48 dual-functional catalytic domains from a multimodular glycoside hydrolase synergize in hydrolyzing both cellulose and xylan. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:279. [PMID: 31827607 PMCID: PMC6892212 DOI: 10.1186/s13068-019-1617-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/23/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Regarding plant cell wall polysaccharides degradation, multimodular glycoside hydrolases (GHs) with two catalytic domains separated by one or multiple carbohydrate-binding domains are rare in nature. This special mode of domain organization endows the Caldicellulosiruptor bescii CelA (GH9-CBM3c-CBM3b-CBM3b-GH48) remarkably high efficiency in hydrolyzing cellulose. CbXyn10C/Cel48B from the same bacterium is also such an enzyme which has, however, evolved to target both xylan and cellulose. Intriguingly, the GH10 endoxylanase and GH48 cellobiohydrolase domains are both dual functional, raising the question if they can act synergistically in hydrolyzing cellulose and xylan, the two major components of plant cell wall. RESULTS In this study, we discovered that CbXyn10C and CbCel48B, which stood for the N- and C-terminal catalytic domains, respectively, cooperatively released much more cellobiose and cellotriose from cellulose. In addition, they displayed intramolecular synergy but only at the early stage of xylan hydrolysis by generating higher amounts of xylooligosaccharides including xylotriose, xylotetraose, and xylobiose. When complex lignocellulose corn straw was used as the substrate, the synergy was found only for cellulose but not xylan hydrolysis. CONCLUSION This is the first report to reveal the synergy between a GH10 and a GH48 domain. The synergy discovered in this study is helpful for understanding how C. bescii captures energy from these recalcitrant plant cell wall polysaccharides. The insight also sheds light on designing robust and multi-functional enzymes for plant cell wall polysaccharides degradation.
Collapse
Affiliation(s)
- Yindi Chu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 China
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 5# Dong Dan San Tiao, Beijing, 100005 China
| | - Zhenzhen Hao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 China
| | - Kaikai Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 China
| | - Tao Tu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 China
| | - Huoqing Huang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 China
| | - Yuan Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 China
| | - Ying Guo Bai
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 China
| | - Yaru Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 China
| | - Huiying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 China
| | - Xiaoyun Su
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 China
| |
Collapse
|
10
|
Green Production and Biotechnological Applications of Cell Wall Lytic Enzymes. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9235012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
: Energy demand is constantly growing, and, nowadays, fossil fuels still play a dominant role in global energy production, despite their negative effects on air pollution and the emission of greenhouse gases, which are the main contributors to global warming. An alternative clean source of energy is represented by the lignocellulose fraction of plant cell walls, the most abundant carbon source on Earth. To obtain biofuels, lignocellulose must be efficiently converted into fermentable sugars. In this regard, the exploitation of cell wall lytic enzymes (CWLEs) produced by lignocellulolytic fungi and bacteria may be considered as an eco-friendly alternative. These organisms evolved to produce a variety of highly specific CWLEs, even if in low amounts. For an industrial use, both the identification of novel CWLEs and the optimization of sustainable CWLE-expressing biofactories are crucial. In this review, we focus on recently reported advances in the heterologous expression of CWLEs from microbial and plant expression systems as well as some of their industrial applications, including the production of biofuels from agricultural feedstock and of value-added compounds from waste materials. Moreover, since heterologous expression of CWLEs may be toxic to plant hosts, genetic strategies aimed in converting such a deleterious effect into a beneficial trait are discussed.
Collapse
|
11
|
Construction and characterization of bifunctional cellulases: Caldicellulosiruptor-sourced endoglucanase, CBM, and exoglucanase for efficient degradation of lignocellulose. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107363] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Genomic and physiological analyses reveal that extremely thermophilic Caldicellulosiruptor changbaiensis deploys uncommon cellulose attachment mechanisms. J Ind Microbiol Biotechnol 2019; 46:1251-1263. [PMID: 31392469 DOI: 10.1007/s10295-019-02222-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/01/2019] [Indexed: 10/26/2022]
Abstract
The genus Caldicellulosiruptor is comprised of extremely thermophilic, heterotrophic anaerobes that degrade plant biomass using modular, multifunctional enzymes. Prior pangenome analyses determined that this genus is genetically diverse, with the current pangenome remaining open, meaning that new genes are expected with each additional genome sequence added. Given the high biodiversity observed among the genus Caldicellulosiruptor, we have sequenced and added a 14th species, Caldicellulosiruptor changbaiensis, to the pangenome. The pangenome now includes 3791 ortholog clusters, 120 of which are unique to C. changbaiensis and may be involved in plant biomass degradation. Comparisons between C. changbaiensis and Caldicellulosiruptor bescii on the basis of growth kinetics, cellulose solubilization and cell attachment to polysaccharides highlighted physiological differences between the two species which are supported by their respective gene inventories. Most significantly, these comparisons indicated that C. changbaiensis possesses uncommon cellulose attachment mechanisms not observed among the other strongly cellulolytic members of the genus Caldicellulosiruptor.
Collapse
|
13
|
Expression of naturally ionic liquid-tolerant thermophilic cellulases in Aspergillus niger. PLoS One 2017; 12:e0189604. [PMID: 29281693 PMCID: PMC5744941 DOI: 10.1371/journal.pone.0189604] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/29/2017] [Indexed: 12/03/2022] Open
Abstract
Efficient deconstruction of plant biomass is a major barrier to the development of viable lignocellulosic biofuels. Pretreatment with ionic liquids reduces lignocellulose recalcitrance to enzymatic hydrolysis, increasing yields of sugars for conversion into biofuels. However, commercial cellulases are not compatible with many ionic liquids, necessitating extensive water washing of pretreated biomass prior to hydrolysis. To circumvent this issue, previous research has demonstrated that several thermophilic bacterial cellulases can efficiently deconstruct lignocellulose in the presence of the ionic liquid, 1-ethyl-3-methylimadizolium acetate. As promising as these enzymes are, they would need to be produced at high titer in an industrial enzyme production host before they could be considered a viable alternative to current commercial cellulases. Aspergillus niger has been used to produce high titers of secreted enzymes in industry and therefore, we assessed the potential of this organism to be used as an expression host for these ionic liquid-tolerant cellulases. We demonstrated that 29 of these cellulases were expressed at detectable levels in a wild-type strain of A. niger, indicating a basic level of compatibility and potential to be produced at high levels in a host engineered to produce high titers of enzymes. We then profiled one of these enzymes in detail, the β-glucosidase A5IL97, and compared versions expressed in both A. niger and Escherichia coli. This comparison revealed the enzymatic activity of A5IL97 purified from E. coli and A. niger is equivalent, suggesting that A. niger could be an excellent enzyme production host for enzymes originally characterized in E. coli, facilitating the transition from the laboratory to industry.
Collapse
|
14
|
Recombinant thermo-alkali-stable endoglucanase of Myceliopthora thermophila BJA (rMt-egl): Biochemical characteristics and applicability in enzymatic saccharification of agro-residues. Int J Biol Macromol 2017; 104:107-116. [DOI: 10.1016/j.ijbiomac.2017.05.167] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 05/13/2017] [Accepted: 05/30/2017] [Indexed: 11/17/2022]
|
15
|
Bifunctional recombinant cellulase-xylanase (rBhcell-xyl) from the polyextremophilic bacterium Bacillus halodurans TSLV1 and its utility in valorization of renewable agro-residues. Extremophiles 2016; 20:831-842. [PMID: 27558695 DOI: 10.1007/s00792-016-0870-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/08/2016] [Indexed: 01/31/2023]
Abstract
The thermostable bifunctional CMCase and xylanase encoding gene (rBhcell-xyl) from Bacillus halodurans TSLV1 has been expressed in Escherichia coli. The recombinant E. coli produced rBhcell-xyl (CMCase 2272 and 910 U L-1 xylanase). The rBhcell-xyl is a ~62-kDa monomeric protein with temperature and pH optima of 60 °C and 6.0 with T1/2 of 7.0 and 3.5 h at 80 °C for CMCase and xylanase, respectively. The apparent K m values (CMC and Birchwood xylan) are 3.8 and 3.2 mg mL-1. The catalytic efficiency (k cat/K m ) values of xylanase and CMCase are 657 and 171 mL mg-1 min-1, respectively. End-product analysis confirmed that rBhcell-xyl is a unique endo-acting enzyme with exoglucanase activity. The rBhcell-xyl is a GH5 family enzyme possessing single catalytic module and carbohydrate binding module. The action of rBhcell-xyl on corn cobs and wheat bran liberated reducing sugars, which can be fermented to bioethanol and fine biochemicals.
Collapse
|
16
|
Park SH, Ong RG, Sticklen M. Strategies for the production of cell wall-deconstructing enzymes in lignocellulosic biomass and their utilization for biofuel production. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1329-44. [PMID: 26627868 PMCID: PMC5063159 DOI: 10.1111/pbi.12505] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/23/2015] [Accepted: 11/02/2015] [Indexed: 05/18/2023]
Abstract
Microbial cell wall-deconstructing enzymes are widely used in the food, wine, pulp and paper, textile, and detergent industries and will be heavily utilized by cellulosic biorefineries in the production of fuels and chemicals. Due to their ability to use freely available solar energy, genetically engineered bioenergy crops provide an attractive alternative to microbial bioreactors for the production of cell wall-deconstructing enzymes. This review article summarizes the efforts made within the last decade on the production of cell wall-deconstructing enzymes in planta for use in the deconstruction of lignocellulosic biomass. A number of strategies have been employed to increase enzyme yields and limit negative impacts on plant growth and development including targeting heterologous enzymes into specific subcellular compartments using signal peptides, using tissue-specific or inducible promoters to limit the expression of enzymes to certain portions of the plant or certain times, and fusion of amplification sequences upstream of the coding region to enhance expression. We also summarize methods that have been used to access and maintain activity of plant-generated enzymes when used in conjunction with thermochemical pretreatments for the production of lignocellulosic biofuels.
Collapse
Affiliation(s)
- Sang-Hyuck Park
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Rebecca Garlock Ong
- Department of Chemical Engineering and Materials Science, DOE Great Lakes Bioenergy Research Center, Michigan State University, Lansing, MI, USA
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI, USA
| | - Mariam Sticklen
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
17
|
Expression of Heterologous Cellulases in Thermotoga sp. Strain RQ2. BIOMED RESEARCH INTERNATIONAL 2015; 2015:304523. [PMID: 26273605 PMCID: PMC4529897 DOI: 10.1155/2015/304523] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 01/21/2015] [Accepted: 02/06/2015] [Indexed: 11/18/2022]
Abstract
The ability of Thermotoga spp. to degrade cellulose is limited due to a lack of exoglucanases. To address this deficiency, cellulase genes Csac_1076 (celA) and Csac_1078 (celB) from Caldicellulosiruptor saccharolyticus were cloned into T. sp. strain RQ2 for heterologous overexpression. Coding regions of Csac_1076 and Csac_1078 were fused to the signal peptide of TM1840 (amyA) and TM0070 (xynB), resulting in three chimeric enzymes, namely, TM1840-Csac_1078, TM0070-Csac_1078, and TM0070-Csac_1076, which were carried by Thermotoga-E. coli shuttle vectors pHX02, pHX04, and pHX07, respectively. All three recombinant enzymes were successfully expressed in E. coli DH5α and T. sp. strain RQ2, rendering the hosts with increased endo- and/or exoglucanase activities. In E. coli, the recombinant enzymes were mainly bound to the bacterial cells, whereas in T. sp. strain RQ2, about half of the enzyme activities were observed in the culture supernatants. However, the cellulase activities were lost in T. sp. strain RQ2 after three consecutive transfers. Nevertheless, this is the first time heterologous genes bigger than 1 kb (up to 5.3 kb in this study) have ever been expressed in Thermotoga, demonstrating the feasibility of using engineered Thermotoga spp. for efficient cellulose utilization.
Collapse
|
18
|
Peng X, Qiao W, Mi S, Jia X, Su H, Han Y. Characterization of hemicellulase and cellulase from the extremely thermophilic bacterium Caldicellulosiruptor owensensis and their potential application for bioconversion of lignocellulosic biomass without pretreatment. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:131. [PMID: 26322125 PMCID: PMC4552416 DOI: 10.1186/s13068-015-0313-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/13/2015] [Indexed: 05/08/2023]
Abstract
BACKGROUND Pretreatment is currently the common approach for improving the efficiency of enzymatic hydrolysis on lignocellulose. However, the pretreatment process is expensive and will produce inhibitors such as furan derivatives and phenol derivatives. If the lignocellulosic biomass can efficiently be saccharified by enzymolysis without pretreatment, the bioconversion process would be simplified. The genus Caldicellulosiruptor, an obligatory anaerobic and extreme thermophile can produce a diverse set of glycoside hydrolases (GHs) for deconstruction of lignocellulosic biomass. It gives potential opportunities for improving the efficiency of converting native lignocellulosic biomass to fermentable sugars. RESULTS Both of the extracellular (extra-) and intracellular (intra-) enzymes of C. owensensis cultivated on corncob xylan or xylose had cellulase (including endoglucanase, cellobiohydrolase and β-glucosidase) and hemicellulase (including xylanase, xylosidase, arabinofuranosidase and acetyl xylan esterase) activities. The enzymes of C. owensensis had high ability for degrading hemicellulose of native corn stover and corncob with the conversion rates of xylan 16.7 % and araban 60.0 %. Moreover, they had remarkable synergetic function with the commercial enzyme cocktail Cellic CTec2 (Novoyzmes). When the native corn stover and corncob were respectively, sequentially hydrolyzed by the extra-enzymes of C. owensensis and CTec2, the glucan conversion rates were 31.2 and 37.9 %,which were 1.7- and 1.9-fold of each control (hydrolyzed by CTec2 alone), whereas the glucan conversion rates of the steam-exploded corn stover and corncob hydrolyzed by CTec2 alone on the same loading rate were 38.2 and 39.6 %, respectively. These results show that hydrolysis by the extra-enzyme of C. owensensis made almost the same contribution as steam-exploded pretreatment on degradation of native lignocellulosic biomass. A new process for saccharification of lignocellulosic biomass by sequential hydrolysis is demonstrated in the present research, namely hyperthermal enzymolysis (70-80 °C) by enzymes of C. owensensis followed with mesothermal enzymolysis (50-55 °C) by commercial cellulase. This process has the advantages of no sugar loss, few inhibitors generation and consolidated with sterilization. CONCLUSIONS The enzymes of C. owensensis demonstrated an enhanced ability to degrade the hemicellulose of native lignocellulose. The pretreatment and detoxification steps may be removed from the bioconversion process of the lignocellulosic biomass by using the enzymes from C. owensensis.
Collapse
Affiliation(s)
- Xiaowei Peng
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Weibo Qiao
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Shuofu Mi
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Xiaojing Jia
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Hong Su
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Yejun Han
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Apte AA, Senger RS, Fong SS. Designing novel cellulase systems through agent-based modeling and global sensitivity analysis. Bioengineered 2014; 5:243-53. [PMID: 24830736 DOI: 10.4161/bioe.29160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Experimental techniques allow engineering of biological systems to modify functionality; however, there still remains a need to develop tools to prioritize targets for modification. In this study, agent-based modeling (ABM) was used to build stochastic models of complexed and non-complexed cellulose hydrolysis, including enzymatic mechanisms for endoglucanase, exoglucanase, and β-glucosidase activity. Modeling results were consistent with experimental observations of higher efficiency in complexed systems than non-complexed systems and established relationships between specific cellulolytic mechanisms and overall efficiency. Global sensitivity analysis (GSA) of model results identified key parameters for improving overall cellulose hydrolysis efficiency including: (1) the cellulase half-life, (2) the exoglucanase activity, and (3) the cellulase composition. Overall, the following parameters were found to significantly influence cellulose consumption in a consolidated bioprocess (CBP): (1) the glucose uptake rate of the culture, (2) the bacterial cell concentration, and (3) the nature of the cellulase enzyme system (complexed or non-complexed). Broadly, these results demonstrate the utility of combining modeling and sensitivity analysis to identify key parameters and/or targets for experimental improvement.
Collapse
Affiliation(s)
- Advait A Apte
- Department of Biological Systems Engineering; Virginia Tech; Blacksburg, VA USA
| | - Ryan S Senger
- Department of Biological Systems Engineering; Virginia Tech; Blacksburg, VA USA
| | - Stephen S Fong
- Department of Chemical and Life Science Engineering; Virginia Commonwealth University; Richmond, VA USA
| |
Collapse
|
20
|
Blumer-Schuette SE, Brown SD, Sander KB, Bayer EA, Kataeva I, Zurawski JV, Conway JM, Adams MWW, Kelly RM. Thermophilic lignocellulose deconstruction. FEMS Microbiol Rev 2014; 38:393-448. [DOI: 10.1111/1574-6976.12044] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 08/20/2013] [Accepted: 08/28/2013] [Indexed: 11/28/2022] Open
|
21
|
Cloning and expression of β-1, 4-endoglucanase gene from Bacillus subtilis isolated from soil long term irrigated with effluents of paper and pulp mill. Microbiol Res 2014; 169:693-8. [PMID: 24636744 DOI: 10.1016/j.micres.2014.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/15/2014] [Accepted: 02/16/2014] [Indexed: 11/22/2022]
Abstract
A strain of Bacillus subtilis IARI-SP-1 isolated from soil long term irrigated with effluents of paper and pulp mill showed high β-1, 4-endoglucanase (2.5 IU/ml) but low activity of β-1, 4-exoglucanase (0.8 IU/ml) and β-glucosidase (0.084 IU/ml). The β-1, 4-endoglucanase gene of IARI-SP-1 was amplified using degenerate primers designed based on sequences already available in NCBI GenBank. A full length gene of β-1, 4-endonuclease consisting of 1499 nucleotides was identified through sequence analysis of the amplified product. The ORF encoded for a protein of 500 amino acids with a predicted molecular weight of 55 kDa. The gene was cloned in pET-28a and over expressed in Escherichia coli BL21 (DE3). In comparison to wild strain (B. subtilis), the transformed E. coli exhibited four times increase in cellulase production. Higher enzyme activity was observed in supernatant (8.2 IU/ml) than cell pellet (2.8 IU/ml) suggesting more extracellular production of β-1, 4-endoglucanase. SDS-PAGE and CMC plate assay also confirmed the overproduction by the transformed E. coli. The pH and temperature optima of expressed β-1, 4-endoglucanase enzyme was identical to that of wild strain and was 8 and 50-60 °C, respectively.
Collapse
|
22
|
Alvarez TM, Paiva JH, Ruiz DM, Cairo JPLF, Pereira IO, Paixão DAA, de Almeida RF, Tonoli CCC, Ruller R, Santos CR, Squina FM, Murakami MT. Structure and function of a novel cellulase 5 from sugarcane soil metagenome. PLoS One 2013; 8:e83635. [PMID: 24358302 PMCID: PMC3866126 DOI: 10.1371/journal.pone.0083635] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 11/04/2013] [Indexed: 11/26/2022] Open
Abstract
Cellulases play a key role in enzymatic routes for degradation of plant cell-wall polysaccharides into simple and economically-relevant sugars. However, their low performance on complex substrates and reduced stability under industrial conditions remain the main obstacle for the large-scale production of cellulose-derived products and biofuels. Thus, in this study a novel cellulase with unusual catalytic properties from sugarcane soil metagenome (CelE1) was isolated and characterized. The polypeptide deduced from the celE1 gene encodes a unique glycoside hydrolase domain belonging to GH5 family. The recombinant enzyme was active on both carboxymethyl cellulose and β-glucan with an endo-acting mode according to capillary electrophoretic analysis of cleavage products. CelE1 showed optimum hydrolytic activity at pH 7.0 and 50 °C with remarkable activity at alkaline conditions that is attractive for industrial applications in which conventional acidic cellulases are not suitable. Moreover, its three-dimensional structure was determined at 1.8 Å resolution that allowed the identification of an insertion of eight residues in the β8-α8 loop of the catalytic domain of CelE1, which is not conserved in its psychrophilic orthologs. This 8-residue-long segment is a prominent and distinguishing feature of thermotolerant cellulases 5 suggesting that it might be involved with thermal stability. Based on its unconventional characteristics, CelE1 could be potentially employed in biotechnological processes that require thermotolerant and alkaline cellulases.
Collapse
Affiliation(s)
- Thabata M Alvarez
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brazil
| | - Joice H Paiva
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brazil
| | - Diego M Ruiz
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brazil
| | - João Paulo L F Cairo
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brazil
| | - Isabela O Pereira
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brazil
| | - Douglas A A Paixão
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brazil
| | - Rodrigo F de Almeida
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brazil
| | - Celisa C C Tonoli
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brazil
| | - Roberto Ruller
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brazil
| | - Camila R Santos
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brazil
| | - Fabio M Squina
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brazil
| | - Mario T Murakami
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brazil
| |
Collapse
|
23
|
McAndrew RP, Park JI, Heins RA, Reindl W, Friedland GD, D'haeseleer P, Northen T, Sale KL, Simmons BA, Adams PD. From soil to structure, a novel dimeric β-glucosidase belonging to glycoside hydrolase family 3 isolated from compost using metagenomic analysis. J Biol Chem 2013; 288:14985-92. [PMID: 23580647 DOI: 10.1074/jbc.m113.458356] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A recent metagenomic analysis sequenced a switchgrass-adapted compost community to identify enzymes from microorganisms that were specifically adapted to switchgrass under thermophilic conditions. These enzymes are being examined as part of the pretreatment process for the production of "second-generation" biofuels. Among the enzymes discovered was JMB19063, a novel three-domain β-glucosidase that belongs to the GH3 (glycoside hydrolase 3) family. Here, we report the structure of JMB19063 in complex with glucose and the catalytic variant D261N crystallized in the presence of cellopentaose. JMB19063 is first structure of a dimeric member of the GH3 family, and we demonstrate that dimerization is required for catalytic activity. Arg-587 and Phe-598 from the C-terminal domain of the opposing monomer are shown to interact with bound ligands in the D261N structure. Enzyme assays confirmed that these residues are absolutely essential for full catalytic activity.
Collapse
Affiliation(s)
- Ryan P McAndrew
- Joint BioEnergy Institute, Emeryville, California 94608, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Tran CTH, Nosworthy NJ, Kondyurin A, McKenzie DR, Bilek MMM. CelB and β-glucosidase immobilization for carboxymethyl cellulose hydrolysis. RSC Adv 2013. [DOI: 10.1039/c3ra43666g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
25
|
Enhanced expression of an endoglucanase in Bacillus subtilis by using the sucrose-inducible sacB promoter and improved properties of the recombinant enzyme. Protein Expr Purif 2012; 83:164-8. [DOI: 10.1016/j.pep.2012.03.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 03/23/2012] [Accepted: 03/24/2012] [Indexed: 11/23/2022]
|
26
|
A thermophilic ionic liquid-tolerant cellulase cocktail for the production of cellulosic biofuels. PLoS One 2012; 7:e37010. [PMID: 22649505 PMCID: PMC3359315 DOI: 10.1371/journal.pone.0037010] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 04/11/2012] [Indexed: 11/19/2022] Open
Abstract
Generation of biofuels from sugars in lignocellulosic biomass is a promising alternative to liquid fossil fuels, but efficient and inexpensive bioprocessing configurations must be developed to make this technology commercially viable. One of the major barriers to commercialization is the recalcitrance of plant cell wall polysaccharides to enzymatic hydrolysis. Biomass pretreatment with ionic liquids (ILs) enables efficient saccharification of biomass, but residual ILs inhibit both saccharification and microbial fuel production, requiring extensive washing after IL pretreatment. Pretreatment itself can also produce biomass-derived inhibitory compounds that reduce microbial fuel production. Therefore, there are multiple points in the process from biomass to biofuel production that must be interrogated and optimized to maximize fuel production. Here, we report the development of an IL-tolerant cellulase cocktail by combining thermophilic bacterial glycoside hydrolases produced by a mixed consortia with recombinant glycoside hydrolases. This enzymatic cocktail saccharifies IL-pretreated biomass at higher temperatures and in the presence of much higher IL concentrations than commercial fungal cocktails. Sugars obtained from saccharification of IL-pretreated switchgrass using this cocktail can be converted into biodiesel (fatty acid ethyl-esters or FAEEs) by a metabolically engineered strain of E. coli. During these studies, we found that this biodiesel-producing E. coli strain was sensitive to ILs and inhibitors released by saccharification. This cocktail will enable the development of novel biomass to biofuel bioprocessing configurations that may overcome some of the barriers to production of inexpensive cellulosic biofuels.
Collapse
|