1
|
Machhirake NP, Vanapalli KR, Kumar S, Mohanty B. Biohydrogen from waste feedstocks: An energy opportunity for decarbonization in developing countries. ENVIRONMENTAL RESEARCH 2024; 252:119028. [PMID: 38685297 DOI: 10.1016/j.envres.2024.119028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
In developing economies, the decarbonization of energy sector has become a global priority for sustainable and cleaner energy system. Biohydrogen production from renewable sources of waste biomass is a good source of energy incentive that reduces the pollution. Biohydrogen has a high calorific value and emits no emissions, producing both energy security and environmental sustainability. Biohydrogen production technologies have become one of the main renewable sources of energy. The present paper entails the role of biohydrogen recovered from waste biomasses like agricultural waste (AW), organic fraction of municipal solid waste (OFMSW), food processing industrial waste (FPIW), and sewage sludge (SS) as a promising solution. The main sources of increasing yield percentage of biohydrogen generation from waste feedstock using different technologies, and process parameters are also emphasized in this review. The production paths for biohydrogen are presented in this review article, and because of advancements in R and D, biohydrogen has gained viability as a biofuel for the future and discusses potential applications in power generation, transportation, and industrial processes, emphasizing the versatility and potential for integration into existing energy infrastructure. The investigation of different biochemical technologies and methods for producing biohydrogen, including anaerobic digestion (AD), dark fermentation (DF), photo fermentation (PF), and integrated dark-photo fermentation (IDPF), has been overviewed. This analysis also discusses future research, investment, and sustainable energy options transitioning towards a low-carbon future, as well as potential problems, economic impediments, and policy-related issues with the deployment of biohydrogen in emerging nations.
Collapse
Affiliation(s)
| | - Kumar Raja Vanapalli
- Department of Civil Engineering, National Institute of Technology, Mizoram, 796 012, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India.
| | - Bijayananda Mohanty
- Department of Civil Engineering, National Institute of Technology, Mizoram, 796 012, India
| |
Collapse
|
2
|
Ali SS, Al-Tohamy R, Elsamahy T, Sun J. Harnessing recalcitrant lignocellulosic biomass for enhanced biohydrogen production: Recent advances, challenges, and future perspective. Biotechnol Adv 2024; 72:108344. [PMID: 38521282 DOI: 10.1016/j.biotechadv.2024.108344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/17/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
Biohydrogen (Bio-H2) is widely recognized as a sustainable and environmentally friendly energy source, devoid of any detrimental impact on the environment. Lignocellulosic biomass (LB) is a readily accessible and plentiful source material that can be effectively employed as a cost-effective and sustainable substrate for Bio-H2 production. Despite the numerous challenges, the ongoing progress in LB pretreatment technology, microbial fermentation, and the integration of molecular biology techniques have the potential to enhance Bio-H2 productivity and yield. Consequently, this technology exhibits efficiency and the capacity to meet the future energy demands associated with the valorization of recalcitrant biomass. To date, several pretreatment approaches have been investigated in order to improve the digestibility of feedstock. Nevertheless, there has been a lack of comprehensive systematic studies examining the effectiveness of pretreatment methods in enhancing Bio-H2 production through dark fermentation. Additionally, there is a dearth of economic feasibility evaluations pertaining to this area of research. Thus, this review has conducted comparative studies on the technological and economic viability of current pretreatment methods. It has also examined the potential of these pretreatments in terms of carbon neutrality and circular economy principles. This review paves the way for a new opportunity to enhance Bio-H2 production with technological approaches.
Collapse
Affiliation(s)
- Sameh S Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
3
|
Nagaraju TV, Sri Bala G, Bonthu S, Mantena S. Modelling biochemical oxygen demand in a large inland aquaculture zone of India: Implications and insights. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167386. [PMID: 37769733 DOI: 10.1016/j.scitotenv.2023.167386] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/10/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Water quality surveillance is tough, and a specific timely management is necessary for the inland aquaculture ponds and ecology as well. Real time quality monitoring involves the study of numerous parameters includes physical (turbidity, temperature, and specific conductivity), chemical (pH, calcium, manganese, chlorides, iron, biochemical oxygen demand), and biological (bacteria and algae). It is also crucial to recognize the inter-dependence among the parameters. Alternatively, these relationships can be predicted with statistical and numerical modelling. Organic strength parameter 5-day biochemical oxygen demand (BOD) is a significant parameter to evaluate since its impact is very high on the quality of water, aquatic life, and other biological concerns. This study focuses on the prediction of BOD using six traditional and four boosting algorithms considering ten input physicochemical attributes. The attributes were fine-tuned for highly precise predictions by removing extreme values from the data set using data outlier treatment. The prediction results are compared using performance metrics such as coefficient of determination (R2), root mean square error (RMSE), mean square error (MSE), and mean absolute error (MAE). The findings revealed that boosting algorithms outperform the results of traditional models with the highest prediction accuracy. Among the boosting algorithms, eXtreme Gradient Boosting algorithm (XGBM) is found highly appropriate for the inland aquaculture waters with R2 = 0.95, RMSE = 0.31, MSE = 0.09, MAE = 0.1. Finally, this study provides a systematic evaluation of the BOD in the aquaculture waters and has a significant contribution to water management and eco-balance.
Collapse
Affiliation(s)
- T Vamsi Nagaraju
- Department of Civil Engineering, SRKR Engineering College, India; Centre for Clean and Sustainable Environment, SRKR Engineering College, India.
| | - G Sri Bala
- Department of Civil Engineering, SRKR Engineering College, India; Centre for Clean and Sustainable Environment, SRKR Engineering College, India
| | - Sridevi Bonthu
- Department of Computer Science and Engineering, Vishnu Institute of Technology, India
| | - Sireesha Mantena
- Department of Geo-Engineering, College of Engineering, Andhra University, India
| |
Collapse
|
4
|
Construction of a Rhodobacter sphaeroides Strain That Efficiently Produces Hydrogen Gas from Acetate without Poly(β-Hydroxybutyrate) Accumulation: Insight into the Role of PhaR in Acetate Metabolism. Appl Environ Microbiol 2022; 88:e0050722. [PMID: 35670584 DOI: 10.1128/aem.00507-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The purple nonsulfur phototrophic bacterium Rhodobacter sphaeroides produces hydrogen gas (H2) from acetate. An approach to improve the H2 production is preventing accumulation of an intracellular energy storage molecule known as poly(β-hydroxybutyrate) (PHB), which competes with H2 production for reducing power. However, disruption of PHB biosynthesis has been reported to severely impair the acetate assimilation depending on the genetic backgrounds and/or culture conditions. To solve this problem, we analyzed the relationship between PHB accumulation and acetate metabolism in R. sphaeroides. Gene deletion analyses based on the wild-type strain revealed that among the two polyhydroxyalkanoate synthase genes in the genome, phaC1, but not phaC2, is essential for PHB accumulation, and the phaC1 deletion mutant exhibited slow growth with acetate. On the other hand, a strain with the deletion of phaC1 together with phaR, which encodes a transcriptional regulator capable of sensing PHB accumulation, exhibited growth comparable to that of the wild-type strain despite no accumulation of PHB. These results suggest that PHB accumulation is required for normal growth with acetate by altering the expression of genes under the control of phaR. This hypothesis was supported by a transcriptome sequencing (RNA-seq) analysis revealing that phaR is involved in the regulation of the ethylmalonyl coenzyme A pathway for acetate assimilation. Consistent with these findings, deletion of phaC1 in a genetically engineered H2-producing strain resulted in lower H2 production from acetate due to growth defects, whereas deletion of phaR together with phaC1 restored growth with acetate and increased H2 production from acetate without PHB accumulation. IMPORTANCE This study provides a novel approach for increasing the yield of photofermentative H2 production from acetate by purple nonsulfur phototrophic bacteria. This study further suggests that polyhydroxyalkanoate is not only a storage substance for carbon and energy in bacteria, but may also act as a signaling molecule that mediates bacterial metabolic adaptations to specific environments. This notion will be helpful for understanding the physiology of polyhydroxyalkanoate-producing bacteria, as well as for their metabolic engineering via synthetic biology.
Collapse
|
5
|
Iqbal K, Saxena A, Pande P, Tiwari A, Chandra Joshi N, Varma A, Mishra A. Microalgae-bacterial granular consortium: Striding towards sustainable production of biohydrogen coupled with wastewater treatment. BIORESOURCE TECHNOLOGY 2022; 354:127203. [PMID: 35462016 DOI: 10.1016/j.biortech.2022.127203] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Anthropogenic activities have drastically affected the environment, leading to increased waste accumulation in atmospheric bodies, including water. Wastewater treatment is an energy-consuming process and typically requires thousands of kilowatt hours of energy. This enormous energy demand can be fulfilled by utilizing the microbial electrolysis route to breakdown organic pollutants in wastewater which produces clean water and biohydrogen as a by-product of the reaction. Microalgae are the promising microorganism for the biohydrogen production, and it has been investigated that the interaction between microalgae and bacteria can be used to boost the yield of biohydrogen. Consortium of algae and bacteria resulting around 50-60% more biohydrogen production compared to the biohydrogen production of algae and bacteria separately. This review summarises the recent development in different microalgae-bacteria granular consortium systems successfully employed for biohydrogen generation. We also discuss the limitations in biohydrogen production and factors affecting its production from wastewater.
Collapse
Affiliation(s)
- Khushboo Iqbal
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida 201301, India
| | - Abhishek Saxena
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Priyanshi Pande
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida 201301, India
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Naveen Chandra Joshi
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida 201301, India
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida 201301, India
| | - Arti Mishra
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida 201301, India.
| |
Collapse
|
6
|
Agyekum EB, Nutakor C, Agwa AM, Kamel S. A Critical Review of Renewable Hydrogen Production Methods: Factors Affecting Their Scale-Up and Its Role in Future Energy Generation. MEMBRANES 2022; 12:173. [PMID: 35207094 PMCID: PMC8880752 DOI: 10.3390/membranes12020173] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 11/28/2022]
Abstract
An increase in human activities and population growth have significantly increased the world's energy demands. The major source of energy for the world today is from fossil fuels, which are polluting and degrading the environment due to the emission of greenhouse gases. Hydrogen is an identified efficient energy carrier and can be obtained through renewable and non-renewable sources. An overview of renewable sources of hydrogen production which focuses on water splitting (electrolysis, thermolysis, and photolysis) and biomass (biological and thermochemical) mechanisms is presented in this study. The limitations associated with these mechanisms are discussed. The study also looks at some critical factors that hinders the scaling up of the hydrogen economy globally. Key among these factors are issues relating to the absence of a value chain for clean hydrogen, storage and transportation of hydrogen, high cost of production, lack of international standards, and risks in investment. The study ends with some future research recommendations for researchers to help enhance the technical efficiencies of some production mechanisms, and policy direction to governments to reduce investment risks in the sector to scale the hydrogen economy up.
Collapse
Affiliation(s)
- Ephraim Bonah Agyekum
- Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin, 19 Mira Street, 620002 Ekaterinburg, Russia
| | - Christabel Nutakor
- Department of Biochemistry and Forensic Science, C. K. Tedam University of Technology and Applied Sciences, Navrongo P.O. Box 24, Ghana; or
| | - Ahmed M. Agwa
- Department of Electrical Engineering, College of Engineering, Northern Border University, Arar 1321, Saudi Arabia
- Prince Faisal bin Khalid bin Sultan Research Chair in Renewable Energy Studies and Applications (PFCRE), Northern Border University, Arar 1321, Saudi Arabia
| | - Salah Kamel
- Electrical Engineering Department, Faculty of Engineering, Aswan University, Aswan 81542, Egypt;
| |
Collapse
|
7
|
Kumar Sharma A, Kumar Ghodke P, Manna S, Chen WH. Emerging technologies for sustainable production of biohydrogen production from microalgae: A state-of-the-art review of upstream and downstream processes. BIORESOURCE TECHNOLOGY 2021; 342:126057. [PMID: 34597808 DOI: 10.1016/j.biortech.2021.126057] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Biohydrogen (BioH2) is considered as one of the most environmentally friendly fuels and a strong candidate to meet the future demand for a sustainable source of energy. Presently, the production of BioH2 from photosynthetic organisms has raised a lot of hopes in the fuel industry. Moreover, microalgal-based BioH2 synthesis not only helps to combat current global warming by capturing greenhouse gases but also plays a key role in wastewater treatment. Hence, this manuscript provides a state-of-the-art review of the upstream and downstream BioH2 production processes. Different metabolic routes such as direct and indirect photolysis, dark fermentation, photofermentation, and microbial electrolysis are covered in detail. Upstream processes (e.g. growth techniques, growth media) also have a great impact on BioH2 productivity and economics, which is also explored. Technical and scientific obstacles of microalgae BioH2 systems are finally addressed, allowing the technology to become more innovative and commercial.
Collapse
Affiliation(s)
- Amit Kumar Sharma
- Department of Chemistry, Centre for Alternate and Renewable Energy Research, R&D, University of Petroleum & Energy Studies (UPES), School of Engineering, Energy Acres Building, Bidholi, Dehradun 248007, Uttarakhand, India
| | - Praveen Kumar Ghodke
- Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode 673601, Kerala, India
| | - Suvendu Manna
- Department of Health Safety, Environment and Civil Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan.
| |
Collapse
|
8
|
Microbial Fuel Cell United with Other Existing Technologies for Enhanced Power Generation and Efficient Wastewater Treatment. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112210777] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nowadays, the world is experiencing an energy crisis due to extensive globalization and industrialization. Most of the sources of renewable energy are getting depleted, and thus, there is an urge to locate alternative routes to produce energy efficiently. Microbial fuel cell (MFC) is a favorable technology that utilizes electroactive microorganisms acting as a biocatalyst at the anode compartment converting organic matter present in sewage water for bioelectricity production and simultaneously treating wastewater. However, there are certain limitations with a typical stand-alone MFC for efficient energy recovery and its practical implementation, including low power output and high cost associated with treatment. There are various modifications carried out on MFC for eliminating the limitations of a stand-alone MFC. Examples of such modification include integration of microbial fuel cell with capacitive deionization technology, forward osmosis technology, anaerobic digester, and constructed wetland technology. This review describes various integrated MFC systems along with their potential application on an industrial scale for wastewater treatment, biofuel generation, and energy production. As a result, such integration of MFCs with existing systems is urgently needed to address the cost, fouling, durability, and sustainability-related issues of MFCs while also improving the grade of treatment received by effluent.
Collapse
|
9
|
Abstract
Food is a precious commodity, and its production can be resource-intensive [...]
Collapse
|
10
|
Sharma S, Basu S, Shetti NP, Aminabhavi TM. Waste-to-energy nexus for circular economy and environmental protection: Recent trends in hydrogen energy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136633. [PMID: 32019020 DOI: 10.1016/j.scitotenv.2020.136633] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/20/2019] [Accepted: 01/09/2020] [Indexed: 05/06/2023]
Abstract
The energy demand has increased exponentially worldwide owing to the continuously growing population and urbanization. The conventional fossil fuels are unable to satiate this requirement causing price inflation and significant environmental damage due to unrestrained emission of greenhouse gases. The focus now has shifted towards alternative, economical, renewable and green sources of energy such as hydrogen to deal with this bottle-neck. Hydrogen is a clean energy-source having high energy content (122 kJ/g). Recently, biological methods for the hydrogen production have attracted much attention because traditional methods are expensive, energy-exhaustive and not eco-friendly. The employment of biological methods promises utilization of waste or low-value materials for producing energy and building waste-to-energy nexus. Around 94% of the waste is discarded precariously in India and waste generation is growing at an alarming rate of 1.3% per year. The "waste-to-energy" techniques follow 'Reuse, Reduce, Recycle, Recovery and Reclamation' system solving three subjects at once; waste-management, energy-demand and environmental concern. Moreover, these methods have easy operability, cost-effectiveness and they help to shift from linear to circular model of economy for sustainable development. Biological processing of waste materials like agricultural discard (lignocellulosic biomass), food-waste and industrial discharge can be used for biohydrogen production. Dark and photo fermentation are the chief biological processes for the transformation of organic substrates to hydrogen. Dark fermentation is the acidogenic fermentation of carbohydrate-rich materials without light and oxygen. Clostridia, Enterobacter and Bacillus spp. are appropriate heterotrophic bacteria for dark fermentation. Various pretreatment methods like heat treatment, acid or base treatment, ultrasonication, aeration, electroporation, etc., can be applied on inoculums to increase H2 producing bacteria eventually improving the hydrogen yield. However, only around 33% of COD in organic materials is transformed to H2 by this method. Photofermentation by the photosynthetic non-sulfur bacteria (PNS) converts organic substrate to H2 and CO2 in the presence of nitrogenase enzyme in ammonium-limited and anoxygenic conditions. Rhodobacter or Rhodopseudomonas strains have been widely examined in this regard. But these methods are only able to produce H2 with a poor yield. Combining dark and photofermentation is a noteworthy alternative for procuring enhanced hydrogen yields. Two-stage sequential method utilizes volatile fatty acids accumulated as byproducts after dark fermentation (in the first stage) for photofermentation by suitable bacteria (in the second stage). A proper investigation of the dark fermenter effluents is required before using them as a substrate for photo-fermentation. In a single-stage dark and photofermentation, co-culture of anaerobic and PNS bacteria in a single reactor is carried out for obtaining improved yield. The single stage system is comparatively inexpensive and less laborious; moreover, a limited requirement for an intermediate dilution stage is necessary. Economic analysis of hydrogen production showed that H2 production by the present methods, save pyrolysis, is reasonably higher than the conventional approaches of fuel production. Probable routes to make H2 production more cost-effective are reducing the cost of photobioreactor, installing proper storage system, etc. A constructive effort in the area of research and development of biological approaches of H2 production technologies is vital. The commercial viability of biohydrogen production is imperative for accomplishment of circular economy system and sustainable development.
Collapse
Affiliation(s)
- Surbhi Sharma
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Soumen Basu
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, India.
| | - Nagaraj P Shetti
- Center for Electrochemical Science and Materials, Department of Chemistry, K.L.E. Institute of Technology, Hubballi 580 030, Karnataka, India.
| | - Tejraj M Aminabhavi
- Pharmaceutical Engineering, SET's of Pharmacy, Dharwad 580 002, Karnataka, India
| |
Collapse
|
11
|
Chandrasekhar K, Kumar S, Lee BD, Kim SH. Waste based hydrogen production for circular bioeconomy: Current status and future directions. BIORESOURCE TECHNOLOGY 2020; 302:122920. [PMID: 32029301 DOI: 10.1016/j.biortech.2020.122920] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/24/2020] [Accepted: 01/25/2020] [Indexed: 05/08/2023]
Abstract
The present fossil fuel-based energy sector has led to significant industrial growth. On the other hand, the dependence on fossil fuels leads to adverse impact on the environment through releases of greenhouse gases. In this scenario, one possible substitute is biohydrogen, an eco-friendly energy carrier as high-energy produces. The substrates rich in organic compounds like organic waste/wastewater are very useful for improved hydrogen generation through the dark fermentation. Thus, this review article, initially, the status of biohydrogen production from organic waste and various strategies to enhance the process efficiency are concisely discussed. Then, the practical confines of biohydrogen processes are thoroughly discussed. Also, alternate routes such as multiple process integration approach by adopting biorefinery concept to increase overall process efficacy are considered to address industrial-level applications. To conclude, future perspectives besides with possible ways of transforming dark fermentation effluent to biofuels and biochemicals, which leads to circular bioeconomy, are discussed.
Collapse
Affiliation(s)
- K Chandrasekhar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440 020, India
| | - Byung-Don Lee
- Institute of Chemical and Environmental Process, JEONJIN ENTECH,.LTD, Busan 46729, Republic of Korea
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
12
|
Sampath P, Brijesh, Reddy KR, Reddy CV, Shetti NP, Kulkarni RV, Raghu AV. Biohydrogen Production from Organic Waste – A Review. Chem Eng Technol 2020. [DOI: 10.1002/ceat.201900400] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- P. Sampath
- Dayananda Sagar College of EngineeringDepartment of Chemical Engineering 560078 Bengaluru Karnataka India
| | - Brijesh
- Ramaiah Institute of TechnologyDepartment of Chemical Engineering 560054 Bengaluru Karnataka India
| | - Kakarla Raghava Reddy
- The University of SydneySchool of Chemical and Biomolecular Engineering NSW 2006 Sydney Australia
| | - C. Venkata Reddy
- Yeungnam UniversitySchool of Mechanical Engineering 712-749 Gyeongsan South Korea
| | - Nagaraj P. Shetti
- K.L.E Institute of TechnologyDepartment of Chemistry 580030 Gokul, Hubballi Karnataka India
| | - Raghavendra V. Kulkarni
- BLDEA's SSM College of Pharmacy and Research CentreDepartment of Pharmaceutics 586 103 Karnataka Vijayapur India
| | - Anjanapura V. Raghu
- JAIN Deemed-to-be UniversityDepartment of Basic SciencesCenter for Emerging Technology (CET)School of Chemistry 562112 Karnataka Bangalore India
| |
Collapse
|
13
|
Developing a Microbial Consortium for Enhanced Metabolite Production from Simulated Food Waste. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5040098] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Food waste disposal and transportation of commodity chemicals to the point-of-need are substantial challenges in military environments. Here, we propose addressing these challenges via the design of a microbial consortium for the fermentation of food waste to hydrogen. First, we simulated the exchange metabolic fluxes of monocultures and pairwise co-cultures using genome-scale metabolic models on a food waste proxy. We identified that one of the top hydrogen producing co-cultures comprised Clostridium beijerinckii NCIMB 8052 and Yokenella regensburgei ATCC 43003. A consortium of these two strains produced a similar amount of hydrogen gas and increased butyrate compared to the C. beijerinckii monoculture, when grown on an artificial garbage slurry. Increased butyrate production in the consortium can be attributed to cross-feeding of lactate produced by Y. regensburgei. Moreover, exogenous lactate promotes the growth of C. beijerinckii with or without a limited amount of glucose. Increasing the scale of the consortium fermentation proved challenging, as two distinct attempts to scale-up the enhanced butyrate production resulted in different metabolic profiles than observed in smaller scale fermentations. Though the genome-scale metabolic model simulations provided a useful starting point for the design of microbial consortia to generate value-added products from waste materials, further model refinements based on experimental results are required for more robust predictions.
Collapse
|
14
|
Shimizu T, Teramoto H, Inui M. Engineering the transcriptional activator NifA for the construction of Rhodobacter sphaeroides strains that produce hydrogen gas constitutively. Appl Microbiol Biotechnol 2019; 103:9739-9749. [DOI: 10.1007/s00253-019-10199-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/07/2019] [Accepted: 10/15/2019] [Indexed: 11/30/2022]
|
15
|
Wang Y, Tahir N, Cao W, Zhang Q, Lee DJ. Grid columnar flat panel photobioreactor with immobilized photosynthetic bacteria for continuous photofermentative hydrogen production. BIORESOURCE TECHNOLOGY 2019; 291:121806. [PMID: 31326683 DOI: 10.1016/j.biortech.2019.121806] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
A biophotoreactor with a transparent glass flat panel with polymethyl methacrylate (PMMA) grid columnar for enhanced biofilm growth with Rhodopseudomonas palustris GCA009 was developed and tested at 590 nm incident light. Continuous photofermentative hydrogen production from glucose was tested using this novel reactor. At light intensity of 210 W/m2, feed substrate concentration of 56.0 mmol/L, and crossflow velocity of 1.68 × 10-6 m/s, a maximum hydrogen production rate of 32.6 mmol/L-d (3.56 mmol/m2-h), hydrogen yield of 1.15 mol H2/mol glucose and light conversion efficiency of 5.34% can be achieved. Since the revised grid columnar effectively enlarged the surface area of reactor and enhanced cell attachment, the present reactor design led to higher hydrogen production rates than literature works.
Collapse
Affiliation(s)
- Yi Wang
- MOA Key Laboratory of New Materials and Facilities for Rural Renewable Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Nadeem Tahir
- MOA Key Laboratory of New Materials and Facilities for Rural Renewable Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Weixing Cao
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Quanguo Zhang
- MOA Key Laboratory of New Materials and Facilities for Rural Renewable Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; College of Engineering, Tunghai University, Taichung 40704, Taiwan.
| |
Collapse
|
16
|
|
17
|
Carlozzi P, Touloupakis E, Di Lorenzo T, Giovannelli A, Seggiani M, Cinelli P, Lazzeri A. Whey and molasses as inexpensive raw materials for parallel production of biohydrogen and polyesters via a two-stage bioprocess: New routes towards a circular bioeconomy. J Biotechnol 2019; 303:37-45. [PMID: 31351109 DOI: 10.1016/j.jbiotec.2019.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/16/2019] [Accepted: 07/23/2019] [Indexed: 11/30/2022]
Abstract
Consecutive dark-fermentation and photo-fermentation stages were investigated for a profitable circular bio-economy. H2 photo-production versus poly(3-hydroxybutyrate) (P3HB) accumulation is a modern biotechnological approach to use agro-food industrial byproducts as no-cost rich-nutrient medium in eco-sustainable biological processes. Whey and molasses are very important byproducts rich in nutrients that lactic acid bacteria can convert, by dark-fermentation, in dark fermented effluents of whey (DFEW) and molasses (DFEM). These effluents are proper media for culturing purple non-sulfur bacteria, which are profitable producers of P3HB and H2. The results of the present study show that Lactobacillus sp. and Rhodopseudomonas sp. S16-VOGS3 are two representative genera for mitigation of environmental impact. The highest productivity of P3HB (4.445 mg/(L·h)) was achieved culturing Rhodopseudomonas sp. S16-VOGS3, when feeding the bacterium with 20% of DFEM; the highest H2 production rate of 4.46 mL/(L·h) was achieved when feeding the bacterium with 30% of DFEM.
Collapse
Affiliation(s)
- Pietro Carlozzi
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino (FI), Italy.
| | - Eleftherios Touloupakis
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino (FI), Italy
| | - Tiziana Di Lorenzo
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino (FI), Italy
| | - Alessio Giovannelli
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino (FI), Italy
| | - Maurizia Seggiani
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
| | - Patrizia Cinelli
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
| | - Andrea Lazzeri
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
| |
Collapse
|
18
|
Biological hydrogen production: molecular and electrolytic perspectives. World J Microbiol Biotechnol 2019; 35:116. [PMID: 31332538 DOI: 10.1007/s11274-019-2692-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/07/2019] [Indexed: 10/26/2022]
Abstract
Exploration of renewable energy sources is an imperative task in order to replace fossil fuels and to diminish atmospheric pollution. Hydrogen is considered one of the most promising fuels for the future and implores further investigation to find eco-friendly ways toward viable production. Expansive processes like electrolysis and fossil fuels are currently being used to produce hydrogen. Biological hydrogen production (BHP) displays recyclable and economical traits, and is thus imperative for hydrogen economy. Three basic modes of BHP were investigated, including bio photolysis, photo fermentation and dark fermentation. Photosynthetic microorganisms could readily serve as powerhouses to successively produce this type of energy. Cyanobacteria, blue green algae (bio photolysis) and some purple non-sulfur bacteria (Photo fermentation) utilize solar energy and produce hydrogen during their metabolic processes. Ionic species, including hydrogen (H+) and electrons (e-) are combined into hydrogen gas (H2), with the use of special enzymes called hydrogenases in the case of bio photolysis, and nitrogenases catalyze the formation of hydrogen in the case of photo fermentation. Nevertheless, oxygen sensitivity of these enzymes is a drawback for bio photolysis and photo fermentation, whereas, the amount of hydrogen per unit substrate produced appears insufficient for dark fermentation. This review focuses on innovative advances in the bioprocess research, genetic engineering and bioprocess technologies such as microbial fuel cell technology, in developing bio hydrogen production.
Collapse
|
19
|
Hydroxytyrosol rich-mixture from olive mill wastewater and production of green products by feeding Rhodopseudomonas sp. S16-FVPT5 with the residual effluent. J Biotechnol 2019; 295:28-36. [DOI: 10.1016/j.jbiotec.2019.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/24/2019] [Accepted: 02/19/2019] [Indexed: 11/19/2022]
|
20
|
Erkal NA, Eser MG, Özgür E, Gündüz U, Eroglu I, Yücel M. Transcriptome analysis of Rhodobacter capsulatus grown on different nitrogen sources. Arch Microbiol 2019; 201:661-671. [PMID: 30796473 DOI: 10.1007/s00203-019-01635-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 10/10/2018] [Accepted: 02/18/2019] [Indexed: 01/21/2023]
Abstract
This study investigated the effect of different nitrogen sources, namely, ammonium chloride and glutamate, on photoheterotrophic metabolism of Rhodobacter capsulatus grown on acetate as the carbon source. Genes that were significantly differentially expressed according to Affymetrix microarray data were categorized into Clusters of Orthologous Groups functional categories and those in acetate assimilation, hydrogen production, and photosynthetic electron transport pathways were analyzed in detail. Genes related to hydrogen production metabolism were significantly downregulated in cultures grown on ammonium chloride when compared to those grown on glutamate. In contrast, photosynthetic electron transport and acetate assimilation pathway genes were upregulated. In detail, aceA encoding isocitrate lyase, a unique enzyme of the glyoxylate cycle and ccrA encoding the rate limiting crotonyl-CoA carboxylase/reductase enzyme of ethylmalonyl-coA pathway were significantly upregulated. Our findings indicate for the first time that R. capsulatus can operate both glyoxylate and ethylmalonyl-coA cycles for acetate assimilation.
Collapse
Affiliation(s)
- Nilüfer Afsar Erkal
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey
- Mikro Biyositemler Inc, 06530, Ankara, Turkey
| | | | - Ebru Özgür
- Mikro Biyositemler Inc, 06530, Ankara, Turkey
- Department of Chemical Engineering, Middle East Technical University, 06800, Ankara, Turkey
| | - Ufuk Gündüz
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey
| | - Inci Eroglu
- Department of Chemical Engineering, Middle East Technical University, 06800, Ankara, Turkey
| | - Meral Yücel
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey.
| |
Collapse
|
21
|
Laurinavichene T, Tekucheva D, Laurinavichius K, Tsygankov A. Utilization of distillery wastewater for hydrogen production in one-stage and two-stage processes involving photofermentation. Enzyme Microb Technol 2018; 110:1-7. [DOI: 10.1016/j.enzmictec.2017.11.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/21/2017] [Accepted: 11/28/2017] [Indexed: 01/09/2023]
|
22
|
Sağır E, Yucel M, Hallenbeck PC. Demonstration and optimization of sequential microaerobic dark- and photo-fermentation biohydrogen production by immobilized Rhodobacter capsulatus JP91. BIORESOURCE TECHNOLOGY 2018; 250:43-52. [PMID: 29153649 DOI: 10.1016/j.biortech.2017.11.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
Hydrogen generation from complex substrates composed of simple sugars has the potential to mitigate future worldwide energy demand. The biohydrogen potential of a sequential microaerobic dark- and photo-fermentative system was investigated using immobilized Rhodobacter capsulatus JP91. Biological hydrogen production from glucose was carried out using a batch process and a bench-scale bioreactor. Response surface methodology with a Box-Behnken design was employed to optimize key parameters such as inoculum concentration, oxygen concentration, and glucose concentration. The maximum hydrogen production (21 ± 0.25 mmol H2/L) and yield (7.8 ± 0.1 mol H2/mol glucose) were obtained at 6 mM glucose, 4.5% oxygen and 62.5 v/v% inoculum concentration, demonstrating the feasibility of enhanced hydrogen production by immobilized R. capsulatus JP91 in a sequential system. This is the first time that a sequential process using an immobilized system has been described. This system also achieved the highest hydrogen yield obtained by an immobilized system so far.
Collapse
Affiliation(s)
- Emrah Sağır
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, CP6128 Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada; Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Meral Yucel
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Patrick C Hallenbeck
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, CP6128 Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada; Life Sciences Research Center, Department of Biology, United States Air Force Academy, USA.
| |
Collapse
|
23
|
Biological Hydrogen Production From Renewable Resources by Photofermentation. ADVANCES IN BIOENERGY 2018. [DOI: 10.1016/bs.aibe.2018.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
24
|
Lazaro CZ, Hitit ZY, Hallenbeck PC. Optimization of the yield of dark microaerobic production of hydrogen from lactate by Rhodopseudomonas palustris. BIORESOURCE TECHNOLOGY 2017; 245:123-131. [PMID: 28892681 DOI: 10.1016/j.biortech.2017.08.207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 06/07/2023]
Abstract
Hydrogen yields of dark fermentation are limited due to the need to also produce reduced side products, and photofermentation, an alternative, is limited by the need for light. A relatively new strategy, dark microaerobic fermentation, could potentially overcome both these constraints. Here, application of this strategy demonstrated for the first time significant hydrogen production from lactate by a single organism in the dark. Response surface methodology (RSM) was used to optimize substrate and oxygen concentration as well as inoculum using both (1) regular batch and (2) O2 fed batch cultures. The highest hydrogen yield (HY) was observed under regular batch (1.4±0.1molH2/mollactate) and the highest hydrogen production (HP) (173.5µmolH2) was achieved using O2 fed batch. This study has provided proof of principal for the ability of microaerobic fermentation to drive thermodynamically difficult reactions, such as the conversion of lactate to hydrogen.
Collapse
Affiliation(s)
- Carolina Zampol Lazaro
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, CP6128 Succursale Centre-ville, Montréal, Québec H3C 3J7 Canada
| | - Zeynep Yilmazer Hitit
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, CP6128 Succursale Centre-ville, Montréal, Québec H3C 3J7 Canada; Faculty of Engineering, Department of Chemical Engineering, Ankara University, Tandogan, 06100 Ankara, Turkey
| | - Patrick C Hallenbeck
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, CP6128 Succursale Centre-ville, Montréal, Québec H3C 3J7 Canada; Life Sciences Research Center, Department of Biology, United States Air Force Academy, 2355 Faculty Drive, USAF Academy, CO 80840, United States.
| |
Collapse
|
25
|
Hu C, Choy SY, Giannis A. Evaluation of Lighting Systems, Carbon Sources, and Bacteria Cultures on Photofermentative Hydrogen Production. Appl Biochem Biotechnol 2017; 185:257-269. [PMID: 29127540 DOI: 10.1007/s12010-017-2655-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 11/02/2017] [Indexed: 01/30/2023]
Abstract
Fluorescent and incandescent lighting systems were applied for batch photofermentative hydrogen production by four purple non-sulfur photosynthetic bacteria (PNSB). The hydrogen production efficiency of Rhodopseudomonas palustris, Rhodobacter sphaeroides, Rhodobacter capsulatus, and Rhodospirillum rubrum was evaluated using different carbon sources (acetate, butyrate, lactate, and malate). Incandescent light was found to be more effective for bacteria cell growth and hydrogen production. It was observed that PNSB followed substrate selection criteria for hydrogen production. Only R. palustris was able to produce hydrogen using most carbon sources. Cell density was almost constant, but cell growth rate and hydrogen production were significantly varied under the different lighting systems. The kinetics study suggested that initial substrate concentration had a positive correlation with lag phase duration. Among the PNSB, R. palustris grew faster and had higher hydrogen yields of 1.58, 4.92, and 2.57 mol H2/mol using acetate, butyrate, and lactate, respectively. In the integrative approach with dark fermentation effluents rich in organic acids, R. palustris should be enriched in the phototrophic microbial consortium of the continuous hydrogen production system.
Collapse
Affiliation(s)
- Chengcheng Hu
- Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Sing-Ying Choy
- Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore
| | - Apostolos Giannis
- Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore.
| |
Collapse
|
26
|
Corneli E, Adessi A, Olguín E, Ragaglini G, García‐López D, De Philippis R. Biotransformation of water lettuce (
Pistia stratiotes
) to biohydrogen by
Rhodopseudomonas palustris. J Appl Microbiol 2017; 123:1438-1446. [DOI: 10.1111/jam.13599] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/20/2017] [Accepted: 09/23/2017] [Indexed: 11/28/2022]
Affiliation(s)
- E. Corneli
- Institute of Life Sciences Scuola Superiore Sant'Anna Pisa Italy
| | - A. Adessi
- Department of Agrifood Production and Environmental Sciences University of Florence Firenze Italy
| | - E.J. Olguín
- Environmental Biotechnology Group Institute of Ecology CONACYT Veracruz México
| | - G. Ragaglini
- Institute of Life Sciences Scuola Superiore Sant'Anna Pisa Italy
- CRIBE – Centro Ricerche Interuniversitario Biomasse da Energia Pisa Italy
| | - D.A. García‐López
- Environmental Biotechnology Group Institute of Ecology CONACYT Veracruz México
| | - R. De Philippis
- Department of Agrifood Production and Environmental Sciences University of Florence Firenze Italy
| |
Collapse
|
27
|
Zhang Q, Wang Y, Zhang Z, Lee DJ, Zhou X, Jing Y, Ge X, Jiang D, Hu J, He C. Photo-fermentative hydrogen production from crop residue: A mini review. BIORESOURCE TECHNOLOGY 2017; 229:222-230. [PMID: 28108074 DOI: 10.1016/j.biortech.2017.01.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/03/2017] [Accepted: 01/06/2017] [Indexed: 06/06/2023]
Abstract
Photofermentative hydrogen production from crop residues, if feasible, can lead to complete conversion of organic substances to hydrogen (and carbon dioxide). This mini review lists the studies on photofermentative hydrogen production using crop residues as feedstock. Pretreatment methods, substrate structure, mechanism of photosynthetic bacteria growth and metabolism were discussed. Photofermentative hydrogen production from pure culture, consortia and mutants, and the geometry, light sources, mass transfer resistances and the operational strategies of the photo-bioreactor were herein reviewed. Future studies of regulation mechanism of photosynthetic bacteria, such as highly-efficient strain breeding and gene reconstruction, and development of new-generation photo-bioreactor were suggested.
Collapse
Affiliation(s)
- Quanguo Zhang
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Yi Wang
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Zhiping Zhang
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Duu-Jong Lee
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, PR China; Department of Chemical Engineering, National Taiwan University, Taipei 10607, Taiwan.
| | - Xuehua Zhou
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Yanyan Jing
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Xumeng Ge
- Department of Food, Agricultural and Biological Engineering, The Ohio State University/Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691-4096, USA
| | - Danping Jiang
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Jianjun Hu
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Chao He
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, PR China
| |
Collapse
|
28
|
Luongo V, Ghimire A, Frunzo L, Fabbricino M, d'Antonio G, Pirozzi F, Esposito G. Photofermentative production of hydrogen and poly-β-hydroxybutyrate from dark fermentation products. BIORESOURCE TECHNOLOGY 2017; 228:171-175. [PMID: 28063359 DOI: 10.1016/j.biortech.2016.12.079] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/16/2016] [Accepted: 12/22/2016] [Indexed: 05/08/2023]
Abstract
The aim of this work is to investigate the hydrogen and poly-β-hydroxybutyrate (PHB) production during the photofermentative treatment of the effluent from a dark fermentation reactor fed with the organic fraction of municipal solid waste. Two different inocula, an adapted culture of Rhodobacter sphaeroides AV1b and a mixed consortium of purple non sulphur bacteria have been investigated under the same operational conditions. Different hydrogen productivities of 364 and 559NmL H2 L-1 were observed for the Rhodobacter sphaeroides and the mixed culture consortium tests, respectively: the consortium of PNSB resulted 1.5-fold more productive than the pure culture. On the other hand, Rhodobacter sphaeroides culture showed a higher PHB productivity (155mg PHB g COD-1) than the mixed culture (55mg PHB g COD-1). In all the tests, the concomitant H2 and PHB production was associated to a dissolved COD removal higher than 80%.
Collapse
Affiliation(s)
- Vincenzo Luongo
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125 Naples, Italy; Department of Mathematics and Applications Renato Caccioppoli, University of Naples Federico II, via Cintia, Monte S. Angelo, 80124 Naples, Italy.
| | - Anish Ghimire
- Department of Environmental Science and Engineering, Kathmandu University, P.O.Box 6250, Dhulikhel, Nepal
| | - Luigi Frunzo
- Department of Mathematics and Applications Renato Caccioppoli, University of Naples Federico II, via Cintia, Monte S. Angelo, 80124 Naples, Italy
| | - Massimiliano Fabbricino
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125 Naples, Italy
| | - Giuseppe d'Antonio
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125 Naples, Italy
| | - Francesco Pirozzi
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125 Naples, Italy
| | - Giovanni Esposito
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, via Di Biasio 43, 03043 Cassino (FR), Italy
| |
Collapse
|
29
|
Zagrodnik R, Łaniecki M. Hydrogen production from starch by co-culture of Clostridium acetobutylicum and Rhodobacter sphaeroides in one step hybrid dark- and photofermentation in repeated fed-batch reactor. BIORESOURCE TECHNOLOGY 2017; 224:298-306. [PMID: 27810246 DOI: 10.1016/j.biortech.2016.10.060] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/18/2016] [Accepted: 10/19/2016] [Indexed: 06/06/2023]
Abstract
Hydrogen production from starch by a co-culture hybrid dark and photofermentation under repeated fed-batch conditions at different organic loading rates (OLR) was studied. Effective cooperation between bacteria in co-culture during initial days was observed at controlled pH 7.0. However, at pH above 6.5 dark fermentation phase was redirected from H2 formation towards production of formic acid, lactic acid and ethanol (which are not coupled with hydrogen production) with simultaneous lower starch removal efficiency. This resulted in decrease in the hydrogen production rate. The highest H2 production in co-culture process (3.23LH2/Lmedium - after 11days) was achieved at OLR of 1.5gstarch/L/day, and it was twofold higher than for dark fermentation process (1.59LH2/Lmedium). The highest H2 yield in the co-culture (2.62molH2/molhexose) was obtained at the OLR of 0.375gstarch/L/day. Different pH requirements of bacteria were proven to be a key limitation in co-culture system.
Collapse
Affiliation(s)
- R Zagrodnik
- Faculty of Chemistry, A. Mickiewicz University, Umultowska 89 b, 61-614 Poznań, Poland.
| | - M Łaniecki
- Faculty of Chemistry, A. Mickiewicz University, Umultowska 89 b, 61-614 Poznań, Poland
| |
Collapse
|
30
|
Qin L, Liu Q, Meng Q, Fan Z, He J, Liu T, Shen C, Zhang G. Anoxic oscillating MBR for photosynthetic bacteria harvesting and high salinity wastewater treatment. BIORESOURCE TECHNOLOGY 2017; 224:69-77. [PMID: 28341096 DOI: 10.1016/j.biortech.2016.10.067] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/20/2016] [Accepted: 10/23/2016] [Indexed: 06/06/2023]
Abstract
In this study, photosynthetic bacteria (PSB) were first harvested by MBR with pendulum type oscillation (PTO) hollow fiber module in succession and on a large scale. Based on unique properties of PSB, PSB/MBR was successfully applied for high-salinity wastewater treatment. Compared with control PSB-MBR (CMBR), PSB/PTO-MBR exhibited more excellent organics removal, which was mainly attributed to much higher biomass production for utilization. Meanwhile, the influence of light irradiation and aeration on activity of PSB was investigated in detail. Results showed that PTO-MBR with 12h light irradiation proved to be a promising and economical alternative. The cycle of dark/light and anoxic had a positive effect on PSB cultivating. Moreover, PTO-MBR exhibited much higher flux than CMBR even if large amounts of biomass existed, which demonstrated that the strong shear stress on interface of liquid-membrane played important roles on membrane fouling reduction.
Collapse
Affiliation(s)
- Lei Qin
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Qiuhua Liu
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Qin Meng
- Department of Chemical and Biological Engineering, State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Zheng Fan
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jinzhe He
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Tao Liu
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Chong Shen
- Department of Chemical and Biological Engineering, State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Guoliang Zhang
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
31
|
Velázquez-Sánchez HI, Puebla-Nuñez HF, Aguilar-López R. Novel Feedback Control to Improve Biohydrogen Production by Desulfovibrio alaskensis. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2016. [DOI: 10.1515/ijcre-2016-0044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abstract
In this paper, a novel control algorithm to increase biohydrogen production in a continuous reactor using the sulphate-reducing bacteria Desulfovibrio alaskensis with lactate as carbon source is proposed. This work was conducted via numerical simulations, based on an experimentally corroborated kinetic model, considered as a benchmark of the system. A bifurcation analysis to identify the reactor’s steady-state performance was done in order to identify feasible operating regions. The proposed controller cancels the upper bounds of the reactor, imposing a finite-time convergence to the selected set point. The closed-loop stability of the reactor is analysed via the dynamic of the regulation error. Finally, numerical experiments were conducted in order to compare the dynamic behaviour of the proposed closed-loop system versus its open-loop counterpart and a well-tuned classical PI controller one. The proposed methodology increases the hydrogen productivity controlling with a satisfactory performance the biomass concentration, which is considered as the control output.
Collapse
|
32
|
Laurinavichene T, Laurinavichius K, Shastik E, Tsygankov A. Inhibited growth of Clostridium butyricum in efficient H 2-producing co-culture with Rhodobacter sphaeroides. Appl Microbiol Biotechnol 2016; 100:10649-10658. [PMID: 27838838 DOI: 10.1007/s00253-016-7977-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/24/2016] [Accepted: 10/27/2016] [Indexed: 12/11/2022]
Abstract
Cell number of Clostridium butyricum and Rhodobacter sphaeroides in co-culture was measured using q-PCR approach. During efficient H2 photoproduction from starch (6.2 mol H2/mol glucose), Clostridia growth and starch-hydrolyzing activity was partly suppressed. Apparently, the effect of R. sphaeroides towards C. butyricum was not attributed to altered Eh or pH values in the presence of purple bacteria. Further, disk-diffusion test proved that R. sphaeroides was capable of producing inhibitors against another purple bacterium, Rhodospirillum rubrum, but not against C. butyricum. We suggested that at initial cell number ratio C. butyricum:R. sphaeroides 1:1 purple bacteria outcompeted C. butyricum for yeast extract at its low concentration (80 mg/L). Under these conditions, the H2 yield was rather high (5.7 mol/mol). When the yeast extract concentration increased to 320 mg/L, this process was replaced by the low-yield H2 production (1.8 mol/mol) characteristic of Clostridia. However, increased percentage of purple bacteria in inoculum under these conditions prevented this shift. The outcome of competition depended on both the yeast extract concentration and cell number ratio. Apparently, the competition for yeast extract helped to maintain balance between fast-growing C. butyricum and slower-growing R. sphaeroides for efficient H2 photoproduction.
Collapse
Affiliation(s)
- Tatyana Laurinavichene
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Kestutis Laurinavichius
- Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Evgeny Shastik
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Anatoly Tsygankov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
33
|
Corneli E, Adessi A, Dragoni F, Ragaglini G, Bonari E, De Philippis R. Agroindustrial residues and energy crops for the production of hydrogen and poly-β-hydroxybutyrate via photofermentation. BIORESOURCE TECHNOLOGY 2016; 216:941-947. [PMID: 27341463 DOI: 10.1016/j.biortech.2016.06.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 06/06/2023]
Abstract
The present study was aimed at assessing the biotransformation of dark fermented agroindustrial residues and energy crops for the production of hydrogen and poly-β-hydroxybutyrate (PHB), in lab-scale photofermentation. The investigation on novel substrates for photofermentation is needed in order to enlarge the range of sustainable feedstocks. Dark fermentation effluents of ensiled maize, ensiled giant reed, ensiled olive pomace, and wheat bran were inoculated with Rhodopseudomonas palustris CGA676, a mutant strain suitable for hydrogen production in ammonium-rich media. The highest hydrogen producing performances were observed in wheat bran and maize effluents (648.6 and 320.3mLL(-1), respectively), both characterized by high initial volatile fatty acids (VFAs) concentrations. Giant reed and olive pomace effluents led to poor hydrogen production due to low initial VFAs concentrations, as the original substrates are rich in fiber. The highest PHB content was accumulated in olive pomace effluent (11.53%TS), ascribable to magnesium deficiency.
Collapse
Affiliation(s)
- Elisa Corneli
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Alessandra Adessi
- Institute of Chemistry of Organometallic Compounds (ICCOM), CNR, via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy; Department of Agrifood Production and Environmental Sciences, University of Florence, via Maragliano 77, 50144 Firenze, Italy.
| | - Federico Dragoni
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Giorgio Ragaglini
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy; CRIBE - Centro di Ricerche Interuniversitario Biomasse da Energia, Via Vecchia Livornese 748, 56122 Pisa, Italy
| | - Enrico Bonari
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy; CRIBE - Centro di Ricerche Interuniversitario Biomasse da Energia, Via Vecchia Livornese 748, 56122 Pisa, Italy
| | - Roberto De Philippis
- Institute of Chemistry of Organometallic Compounds (ICCOM), CNR, via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy; Department of Agrifood Production and Environmental Sciences, University of Florence, via Maragliano 77, 50144 Firenze, Italy
| |
Collapse
|
34
|
Adessi A, Concato M, Sanchini A, Rossi F, De Philippis R. Hydrogen production under salt stress conditions by a freshwater Rhodopseudomonas palustris strain. Appl Microbiol Biotechnol 2016; 100:2917-26. [DOI: 10.1007/s00253-016-7291-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/21/2015] [Accepted: 12/26/2015] [Indexed: 10/22/2022]
|
35
|
Zagrodnik R, Laniecki M. An unexpected negative influence of light intensity on hydrogen production by dark fermentative bacteria Clostridium beijerinckii. BIORESOURCE TECHNOLOGY 2016; 200:1039-1043. [PMID: 26602144 DOI: 10.1016/j.biortech.2015.10.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/06/2015] [Accepted: 10/07/2015] [Indexed: 06/05/2023]
Abstract
The role of light intensity on biohydrogen production from glucose by Clostridium beijerinckii, Clostridium acetobutylicum, and Rhodobacter sphaeroides was studied to evaluate the performance and possible application in co-culture fermentation system. The applied source of light had spectrum similar to the solar radiation. The influence of light intensity on hydrogen production in dark process by C. acetobutylicum was negligible. In contrast, dark fermentation by C. beijerinckii bacteria showed a significant decrease (83%) in produced hydrogen at light intensity of 540W/m(2). Here, the redirection of metabolism from acetic and butyric acid formation towards lactic acid was observed. This not yet reported effect was probably caused by irradiation of these bacteria by light within UVA range, which is an important component of the solar radiation. The excessive illumination with light of intensity higher than 200W/m(2) resulted in decrease in hydrogen production with photofermentative bacteria as well.
Collapse
Affiliation(s)
- R Zagrodnik
- Faculty of Chemistry, A. Mickiewicz University, Umultowska 89 b, 61-614 Poznań, Poland.
| | - M Laniecki
- Faculty of Chemistry, A. Mickiewicz University, Umultowska 89 b, 61-614 Poznań, Poland
| |
Collapse
|
36
|
Dounavis AS, Ntaikou I, Lyberatos G. Production of biohydrogen from crude glycerol in an upflow column bioreactor. BIORESOURCE TECHNOLOGY 2015; 198:701-708. [PMID: 26441027 DOI: 10.1016/j.biortech.2015.09.072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/15/2015] [Accepted: 09/20/2015] [Indexed: 06/05/2023]
Abstract
A continuous attached growth process for the production of biohydrogen from crude glycerol was developed. The process consisted of an anaerobic up-flow column bioreactor (UFCB), packed with cylindrical ceramic beads, which constituted the support matrix for the attachment of bacterial cells. The effect of crude glycerol concentration, pH and hydraulic retention time on glycerol conversion, hydrogen yield and metabolite distribution was investigated. It was shown that the most critical parameter for the efficient bioconversion was the pH of the influent, whereas the hydrogen yield increased with an increase in feed glycerol concentration and a decrease in the hydraulic retention time. The main soluble metabolite detected was 1,3-propanediol in all cases, followed by butyric and hexanoic acids. The latter is reported to be produced from glycerol for the first time. Acidification of the waste reached 38.5%, and the maximum H2 productivity was 107.3 ± 0.7 L/kg waste glycerol at optimal conditions.
Collapse
Affiliation(s)
- Athanasios S Dounavis
- Institute of Chemical Engineering Sciences, 265 04 Patras, Greece; Department of Chemical Engineering, University of Patras, 265 00 Patras, Greece
| | - Ioanna Ntaikou
- Institute of Chemical Engineering Sciences, 265 04 Patras, Greece.
| | - Gerasimos Lyberatos
- Institute of Chemical Engineering Sciences, 265 04 Patras, Greece; School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 157072 Athens, Greece
| |
Collapse
|
37
|
Laocharoen S, Reungsang A, Plangklang P. Bioaugmentation of Lactobacillus delbrueckii ssp. bulgaricus TISTR 895 to enhance bio-hydrogen production of Rhodobacter sphaeroides KKU-PS5. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:190. [PMID: 26613000 PMCID: PMC4660636 DOI: 10.1186/s13068-015-0375-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/09/2015] [Indexed: 05/30/2023]
Abstract
BACKGROUND Bioaugmentation or an addition of the desired microorganisms or specialized microbial strains into the anaerobic digesters can enhance the performance of microbial community in the hydrogen production process. Most of the studies focused on a bioaugmentation of native microorganisms capable of producing hydrogen with the dark-fermentative hydrogen producers while information on bioaugmentation of purple non-sulfur photosynthetic bacteria (PNSB) with lactic acid-producing bacteria (LAB) is still limited. In our study, bioaugmentation of Rhodobacter sphaeroides KKU-PS5 with Lactobacillus delbrueckii ssp. bulgaricus TISTR 895 was conducted as a method to produce hydrogen. Unfortunately, even though well-characterized microorganisms were used in the fermentation system, a cultivation of two different organisms in the same bioreactor was still difficult because of the differences in their metabolic types, optimal conditions, and nutritional requirements. Therefore, evaluation of the physical and chemical factors affecting hydrogen production of PNSB augmented with LAB was conducted using a full factorial design followed by response surface methodology (RSM) with central composite design (CCD). RESULTS A suitable LAB/PNSB ratio and initial cell concentration were found to be 1/12 (w/w) and 0.15 g/L, respectively. The optimal initial pH, light intensity, and Mo concentration obtained from RSM with CCD were 7.92, 8.37 klux and 0.44 mg/L, respectively. Under these optimal conditions, a cumulative hydrogen production of 3396 ± 66 mL H2/L, a hydrogen production rate (HPR) of 9.1 ± 0.2 mL H2/L h, and a hydrogen yield (HY) of 9.65 ± 0.23 mol H2/mol glucose were obtained. KKU-PS5 augmented with TISTR 895 produced hydrogen from glucose at a relatively high HY, 9.65 ± 0.23 mol H2/mol glucose, i.e., 80 % of the theoretical yield. CONCLUSIONS The ratio of the strains TISTR 895/KKU-PS5 and their initial cell concentrations affected the rate of lactic acid production and its consumption. A suitable LAB/PNSB ratio and initial cell concentration could balance the lactic acid production rate and its consumption in order to avoid lactic acid accumulation in the fermentation system. Through use of appropriate environmental conditions for bioaugmentation of PNSB with LAB, a hydrogen production could be enhanced.
Collapse
Affiliation(s)
- Sucheera Laocharoen
- />Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Alissara Reungsang
- />Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002 Thailand
- />Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Pensri Plangklang
- />Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002 Thailand
| |
Collapse
|
38
|
Kisielewska M, Dębowski M, Zieliński M. Improvement of biohydrogen production using a reduced pressure fermentation. Bioprocess Biosyst Eng 2015; 38:1925-33. [DOI: 10.1007/s00449-015-1434-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/19/2015] [Indexed: 11/25/2022]
|
39
|
Heiniger EK, Harwood CS. Posttranslational modification of a vanadium nitrogenase. Microbiologyopen 2015; 4:597-603. [PMID: 26097040 PMCID: PMC4554455 DOI: 10.1002/mbo3.265] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/06/2015] [Accepted: 04/13/2015] [Indexed: 11/11/2022] Open
Abstract
In microbes that fix nitrogen, nitrogenase catalyzes the conversion of N2 to ammonia in an ATP-demanding reaction. To help conserve energy some bacteria inhibit nitrogenase activity upon exposure to ammonium. The purple nonsulfur phototrophic bacterium Rhodopseudomonas palustris strain CGA009 can synthesize three functional nitrogenase isoenzymes: a molybdenum nitrogenase, a vanadium nitrogenase, and an iron nitrogenase. Previous studies showed that in some alphaproteobacteria, including R. palustris, molybdenum nitrogenase activity is inhibited by ADP-ribosylation when cells are exposed to ammonium. Some iron nitrogenases are also posttranslationally modified. However, the posttranslational modification of vanadium nitrogenase has not been reported. Here, we investigated the regulation of the alternative nitrogenases of R. palustris and determined that both its vanadium nitrogenase and its iron nitrogenase activities were inhibited and posttranslationally modified when cells are exposed to ammonium. Vanadium nitrogenase is not found in all strains of R. palustris, suggesting that it may have been acquired by horizontal gene transfer. Also, phylogenetic analyses of the three nitrogenases suggest that VnfH, the target of ADP-ribosylation, may be the product of a gene duplication of nifH, the molybdenum nitrogenase homolog.
Collapse
Affiliation(s)
- Erin K Heiniger
- Department of Microbiology, University of Washington, Seattle, Washington, 98195
| | - Caroline S Harwood
- Department of Microbiology, University of Washington, Seattle, Washington, 98195
| |
Collapse
|
40
|
Biohydrogen production: strategies to improve process efficiency through microbial routes. Int J Mol Sci 2015; 16:8266-93. [PMID: 25874756 PMCID: PMC4425080 DOI: 10.3390/ijms16048266] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/01/2015] [Accepted: 04/03/2015] [Indexed: 11/17/2022] Open
Abstract
The current fossil fuel-based generation of energy has led to large-scale industrial development. However, the reliance on fossil fuels leads to the significant depletion of natural resources of buried combustible geologic deposits and to negative effects on the global climate with emissions of greenhouse gases. Accordingly, enormous efforts are directed to transition from fossil fuels to nonpolluting and renewable energy sources. One potential alternative is biohydrogen (H2), a clean energy carrier with high-energy yields; upon the combustion of H2, H2O is the only major by-product. In recent decades, the attractive and renewable characteristics of H2 led us to develop a variety of biological routes for the production of H2. Based on the mode of H2 generation, the biological routes for H2 production are categorized into four groups: photobiological fermentation, anaerobic fermentation, enzymatic and microbial electrolysis, and a combination of these processes. Thus, this review primarily focuses on the evaluation of the biological routes for the production of H2. In particular, we assess the efficiency and feasibility of these bioprocesses with respect to the factors that affect operations, and we delineate the limitations. Additionally, alternative options such as bioaugmentation, multiple process integration, and microbial electrolysis to improve process efficiency are discussed to address industrial-level applications.
Collapse
|
41
|
Dipasquale L, Adessi A, d'Ippolito G, Rossi F, Fontana A, De Philippis R. Introducing capnophilic lactic fermentation in a combined dark-photo fermentation process: a route to unparalleled H2 yields. Appl Microbiol Biotechnol 2014; 99:1001-10. [PMID: 25467925 DOI: 10.1007/s00253-014-6231-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/11/2014] [Accepted: 11/12/2014] [Indexed: 11/27/2022]
Abstract
Two-stage process based on photofermentation of dark fermentation effluents is widely recognized as the most effective method for biological production of hydrogen from organic substrates. Recently, it was described an alternative mechanism, named capnophilic lactic fermentation, for sugar fermentation by the hyperthermophilic bacterium Thermotoga neapolitana in CO2-rich atmosphere. Here, we report the first application of this novel process to two-stage biological production of hydrogen. The microbial system based on T. neapolitana DSM 4359(T) and Rhodopseudomonas palustris 42OL gave 9.4 mol of hydrogen per mole of glucose consumed during the anaerobic process, which is the best production yield so far reported for conventional two-stage batch cultivations. The improvement of hydrogen yield correlates with the increase in lactic production during capnophilic lactic fermentation and takes also advantage of the introduction of original conditions for culturing both microorganisms in minimal media based on diluted sea water. The use of CO2 during the first step of the combined process establishes a novel strategy for biohydrogen technology. Moreover, this study opens the way to cost reduction and use of salt-rich waste as feedstock.
Collapse
Affiliation(s)
- L Dipasquale
- Institute of Biomolecular Chemistry (ICB), CNR, Via Campi Flegrei 34, 80078, Pozzuoli, Napoli, Italy
| | | | | | | | | | | |
Collapse
|
42
|
Mazzoli R, Bosco F, Mizrahi I, Bayer EA, Pessione E. Towards lactic acid bacteria-based biorefineries. Biotechnol Adv 2014; 32:1216-1236. [PMID: 25087936 DOI: 10.1016/j.biotechadv.2014.07.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 07/14/2014] [Accepted: 07/16/2014] [Indexed: 10/25/2022]
Abstract
Lactic acid bacteria (LAB) have long been used in industrial applications mainly as starters for food fermentation or as biocontrol agents or as probiotics. However, LAB possess several characteristics that render them among the most promising candidates for use in future biorefineries in converting plant-derived biomass-either from dedicated crops or from municipal/industrial solid wastes-into biofuels and high value-added products. Lactic acid, their main fermentation product, is an attractive building block extensively used by the chemical industry, owing to the potential for production of polylactides as biodegradable and biocompatible plastic alternative to polymers derived from petrochemicals. LA is but one of many high-value compounds which can be produced by LAB fermentation, which also include biofuels such as ethanol and butanol, biodegradable plastic polymers, exopolysaccharides, antimicrobial agents, health-promoting substances and nutraceuticals. Furthermore, several LAB strains have ascertained probiotic properties, and their biomass can be considered a high-value product. The present contribution aims to provide an extensive overview of the main industrial applications of LAB and future perspectives concerning their utilization in biorefineries. Strategies will be described in detail for developing LAB strains with broader substrate metabolic capacity for fermentation of cheaper biomass.
Collapse
Affiliation(s)
- Roberto Mazzoli
- Laboratory of Biochemistry: Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy.
| | - Francesca Bosco
- Department of Applied Science and Technology (DISAT), Politecnico of Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy.
| | - Itzhak Mizrahi
- Institute of Animal Science, ARO, Volcani Research Center, P.O. Box 6Â, Bet Dagan 50-250, Israel.
| | - Edward A Bayer
- Department of Biological Chemistry, the Weizmann Institute of Science, Rehovot 76100 Israel.
| | - Enrica Pessione
- Laboratory of Biochemistry: Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy.
| |
Collapse
|
43
|
Poggi-Varaldo HM, Munoz-Paez KM, Escamilla-Alvarado C, Robledo-Narváez PN, Ponce-Noyola MT, Calva-Calva G, Ríos-Leal E, Galíndez-Mayer J, Estrada-Vázquez C, Ortega-Clemente A, Rinderknecht-Seijas NF. Biohydrogen, biomethane and bioelectricity as crucial components of biorefinery of organic wastes: a review. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2014; 32:353-365. [PMID: 24742981 DOI: 10.1177/0734242x14529178] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Biohydrogen is a sustainable form of energy as it can be produced from organic waste through fermentation processes involving dark fermentation and photofermentation. Very often biohydrogen is included as a part of biorefinery approaches, which reclaim organic wastes that are abundant sources of renewable and low cost substrate that can be efficiently fermented by microorganisms. The aim of this work was to critically assess selected bioenergy alternatives from organic solid waste, such as biohydrogen and bioelectricity, to evaluate their relative advantages and disadvantages in the context of biorefineries, and finally to indicate the trends for future research and development. Biorefining is the sustainable processing of biomass into a spectrum of marketable products, which means: energy, materials, chemicals, food and feed. Dark fermentation of organic wastes could be the beach-head of complete biorefineries that generate biohydrogen as a first step and could significantly influence the future of solid waste management. Series systems show a better efficiency than one-stage process regarding substrate conversion to hydrogen and bioenergy. The dark fermentation also produces fermented by-products (fatty acids and solvents), so there is an opportunity for further combining with other processes that yield more bioenergy. Photoheterotrophic fermentation is one of them: photosynthetic heterotrophs, such as non-sulfur purple bacteria, can thrive on the simple organic substances produced in dark fermentation and light, to give more H2. Effluents from photoheterotrophic fermentation and digestates can be processed in microbial fuel cells for bioelectricity production and methanogenic digestion for methane generation, thus integrating a diverse block of bioenergies. Several digestates from bioenergies could be used for bioproducts generation, such as cellulolytic enzymes and saccharification processes, leading to ethanol fermentation (another bioenergy), thus completing the inverse cascade. Finally, biohydrogen, biomethane and bioelectricity could contribute to significant improvements for solid organic waste management in agricultural regions, as well as in urban areas.
Collapse
|
44
|
Chookaew T, Prasertsan P, Ren ZJ. Two-stage conversion of crude glycerol to energy using dark fermentation linked with microbial fuel cell or microbial electrolysis cell. N Biotechnol 2014; 31:179-84. [DOI: 10.1016/j.nbt.2013.12.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/28/2013] [Accepted: 12/22/2013] [Indexed: 11/16/2022]
|
45
|
Cai J, Wang G. Photo-biological hydrogen production by an acid tolerant mutant of Rhodovulum sulfidophilum P5 generated by transposon mutagenesis. BIORESOURCE TECHNOLOGY 2014; 154:254-259. [PMID: 24412477 DOI: 10.1016/j.biortech.2013.12.057] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/10/2013] [Accepted: 12/12/2013] [Indexed: 06/03/2023]
Abstract
Most of the photosynthetic bacterial strains exhibit optimum hydrogen production at neutral initial pH, and lower initial pH resulted in a sharp decrease in hydrogen yield. Thus, screening of acid-tolerant hydrogen-producing photosynthetic bacteria is very important. To obtain acid tolerant mutants, a Tn7-based transposon was randomly inserted into the genomic DNA of Rhodovulum sulfidophilum P5. An acid tolerant mutant strain TH-102 exhibited increased hydrogen production in acidic environment (pH 4.5-6.5) and at higher temperatures (35 and 37°C) than the wild-type strain. At pH 5.5 and 35°C, the mutant strain TH-102 continuously produced hydrogen. The hydrogen yield and average rate were 2.16 ± 0.10 mol/mol acetate and 10.06 ± 0.47 mL/Lh, which was about 17.32 and 15.37-fold higher than that of the wild-type strain, respectively. This acid- and temperature-tolerant mutant strain TH-102 could be used in a cost-effective hydrogen production process employing both dark fermentative and photosynthetic bacteria.
Collapse
Affiliation(s)
- Jinling Cai
- Tianjin Key Laboratory of Marine Resources and Chemistry, College of Marine Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Guangce Wang
- Tianjin Key Laboratory of Marine Resources and Chemistry, College of Marine Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China; Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong, PR China.
| |
Collapse
|
46
|
Adessi A, De Philippis R. Photosynthesis and Hydrogen Production in Purple Non Sulfur Bacteria: Fundamental and Applied Aspects. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/978-94-017-8554-9_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
47
|
|
48
|
Hallenbeck PC. Bioenergy from Microorganisms: An Overview. MICROBIAL BIOENERGY: HYDROGEN PRODUCTION 2014. [DOI: 10.1007/978-94-017-8554-9_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
49
|
Singhania RR, Patel AK, Christophe G, Fontanille P, Larroche C. Biological upgrading of volatile fatty acids, key intermediates for the valorization of biowaste through dark anaerobic fermentation. BIORESOURCE TECHNOLOGY 2013; 145:166-174. [PMID: 23339903 DOI: 10.1016/j.biortech.2012.12.137] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 12/03/2012] [Accepted: 12/06/2012] [Indexed: 06/01/2023]
Abstract
VFAs can be obtained from lignocellulosic agro-industrial wastes, sludge, and various biodegradable organic wastes as key intermediates through dark fermentation processes and synthesized through chemical route also. They are building blocks of several organic compounds viz. alcohol, aldehyde, ketones, esters and olefins. These can serve as alternate carbon source for microbial biolipid, biohydrogen, microbial fuel cells productions, methanisation, and for denitrification. Organic wastes are the substrate for VFA platform that is of zero or even negative cost, giving VFA as intermediate product but their separation from the fermentation broth is still a challenge; however, several separation technologies have been developed, membrane separation being the most suitable one. These aspects will be reviewed and results obtained during anaerobic treatment of slaughterhouse wastes with further utilisation of volatile fatty acids for yeast cultivation have been discussed.
Collapse
Affiliation(s)
- Reeta Rani Singhania
- Clermont Université, Université Blaise Pascal, Institut Pascal UMR CNRS 6602, Polytech Clermont-Ferrand, Aubière, France
| | | | | | | | | |
Collapse
|
50
|
ElMekawy A, Diels L, De Wever H, Pant D. Valorization of cereal based biorefinery byproducts: reality and expectations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:9014-27. [PMID: 23931701 PMCID: PMC3774676 DOI: 10.1021/es402395g] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The growth of the biobased economy will lead to an increase in new biorefinery activities. All biorefineries face the regular challenges of efficiently and economically treating their effluent to be compatible with local discharge requirements and to minimize net water consumption. The amount of wastes resulting from biorefineries industry is exponentially growing. The valorization of such wastes has drawn considerable attention with respect to resources with an observable economic and environmental concern. This has been a promising field which shows great prospective toward byproduct usage and increasing value obtained from the biorefinery. However, full-scale realization of biorefinery wastes valorization is not straightforward because several microbiological, technological and economic challenges need to be resolved. In this review we considered valorization options for cereals based biorefineries wastes while identifying their challenges and exploring the opportunities for future process.
Collapse
Affiliation(s)
- Ahmed ElMekawy
- Separation
and Conversion Technologies, VITO-Flemish Institute for
Technological Research,
Boeretang 200, 2400 Mol, Belgium
- Genetic Engineering and Biotechnology
Research Institute, Minufiya University, Sadat City, Egypt
| | - Ludo Diels
- Separation
and Conversion Technologies, VITO-Flemish Institute for
Technological Research,
Boeretang 200, 2400 Mol, Belgium
| | - Heleen De Wever
- Separation
and Conversion Technologies, VITO-Flemish Institute for
Technological Research,
Boeretang 200, 2400 Mol, Belgium
| | - Deepak Pant
- Separation
and Conversion Technologies, VITO-Flemish Institute for
Technological Research,
Boeretang 200, 2400 Mol, Belgium
- Phone: +32 14336969; fax: +32 14326586; e-mail: ;
| |
Collapse
|