1
|
Tafazzoli K, Ghavami M, Khosravi-Darani K. Investigation of impact of siderophore and process variables on production of iron enriched Saccharomyces boulardii by Plackett-Burman design. Sci Rep 2024; 14:22813. [PMID: 39353969 PMCID: PMC11445229 DOI: 10.1038/s41598-024-70467-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 08/16/2024] [Indexed: 10/03/2024] Open
Abstract
The primary cause of anemia worldwide is due to poor diet and iron deficiency. Iron (Fe) enriched yeast can be the most effective way to manage anemia because of the capability for biotransformation of mineral to organic and bioavailable iron. To overcome the low richness of yeast, the use of siderophore as cellular iron carriers is a new approach. In this research, for the first time the potential of siderophore in increasing the Fe enrichment of Saccharomyces boulardii (S. boulardii), which is important because of its probiotic properties and resistance to different stresses, has been investigated to produce of potential iron supplements. For this purpose, siderophore was produced by Pseudomonas aeruginosa (P. aeruginosa). Siderophore impact, along with ten other independent process variables, has been studied on the efficiency of iron biotransformation by the Plackett-Burman design (PBD). The results showed that the highest biotransformation yield was 17.77 mg Fe/g dry cell weight (DCW) in the highest biomass weight of 9 g/l. Iron concentration is the most important variable, with contributions of 46% and 70.79% for biomass weight and biotransformation, respectively, followed by fermentation time, agitation speed, and KH2PO4 concentration. But increasing the level of siderophore and zinc led to a significant negative effect. siderophore inefficiency may be attributed to the absence of membrane receptors for pyoverdine (Pvd) and pyochelin (Pch) siderophores. Also, the steric hindrance of the cell wall mannan, the stickiness and sediment ability of the yeast, can create limitations in the absorption of elements. Such yeast can be used as a potential source of iron even for vegetarians and vegans in the form of medicinal and fortified food products to improve the treatment of anemia. It is recommended that further research be focused on increasing the iron enrichment of yeast by overcoming the structural barrier of the cell wall, investigating factors affecting membrane permeability and iron transport potential of other types of siderophores.
Collapse
Affiliation(s)
- Kiyana Tafazzoli
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mehrdad Ghavami
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kianoush Khosravi-Darani
- Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Li P, Zhou Y, Wu Y, Jiang X, Wang X, Shi X, Wang W. The effects of environmental factors on the synthesis of water-soluble Monascus red pigments via submerged fermentation: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7754-7764. [PMID: 38591364 DOI: 10.1002/jsfa.13517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/21/2024] [Accepted: 04/09/2024] [Indexed: 04/10/2024]
Abstract
Monascus pigments (MPs) have been used as natural food pigments for many years. There is a high demand for Monascus red pigments (MRPs) to enhance color and for antibacterial and cancer prevention therapies in food and medicine. Most MRPs are not water soluble, and the yield of water-soluble MRPs is naturally low. On the other hand, water-soluble MRP is more cost effective for application in industrial mass production. Therefore, it is important to improve the yield of water-soluble MRPs. Environmental factors have a significant influence on the synthesis of water-soluble MRPs, which is crucial for the development of industrial production of water-soluble MRPs. This review introduces the biosynthetic pathways of water-soluble MRPs and summarizes the effects of environmental factors on the yield of water-soluble MRPs. Acetyl coenzyme A (acetyl-CoA) is a precursor for MPs synthesis. Carbon and nitrogen sources and the carbon/nitrogen ratio can impact MP production by regulating the metabolic pathway of acetyl-CoA. Optimization of fermentation conditions to change the morphology of Monascus can stimulate the synthesis of MPs. The appropriate choice of nitrogen sources and pH values can promote the synthesis of MRPs from MPs. Additives such as metal ions and non-ionic surfactants can affect the fluidity of Monascus cell membrane and promote the transformation of MRPs into water-soluble MRPs. This review will lay the foundation for the industrial production of water-soluble MRPs. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ping Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei University of Technology, Wuhan, China
| | - Yin Zhou
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei University of Technology, Wuhan, China
| | - Yingying Wu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei University of Technology, Wuhan, China
| | - Xiao Jiang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei University of Technology, Wuhan, China
| | - Xuan Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei University of Technology, Wuhan, China
| | - Xinyun Shi
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei University of Technology, Wuhan, China
| | - Weiping Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei University of Technology, Wuhan, China
| |
Collapse
|
3
|
Li F, Fan H, Sun Q, Di Y, Xia H. Effects of Medium Additives on the Mycelial Growth and Polysaccharide Biosynthesis in Submerged Culture of Bjerkandera fumosa. Molecules 2024; 29:422. [PMID: 38257335 PMCID: PMC10818688 DOI: 10.3390/molecules29020422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/29/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Medium additives have been shown to affect the synthesis of active products in fungi. This study investigated the effects of corn stalk, poplar sawdust, Tween-80, and oleic acid on mycelial biomass and physicochemical properties, as well as the bioactivity of polysaccharides, including exopolysaccharides (EPS) and intracellular polysaccharides (IPS), in the submerged culture of Bjerkandera fumosa. Results showed that the addition of corn stalk or poplar sawdust increased the production of EPS but decreased the production of IPS; Tween-80 had less effect on the production of EPS and IPS; and oleic acid stimulated polysaccharide production significantly. Polysaccharide property analysis showed that the addition of corn stalk or poplar sawdust promoted the production of high-molecular-weight components in polysaccharides and changed the monosaccharide composition of polysaccharides, as well as increased the mannose, glucuronic acid, and xylose contents of IPS. Tween-80 and oleic acid also changed the molecular weight distribution of polysaccharides but only slightly affected the composition of monosaccharides. The bioactivity assay indicated that the polysaccharides obtained by adding corn stalk possessed high hydroxyl radical scavenging and antitumor activities. The effect of poplar sawdust was slightly weaker than that of corn stalk. EPS and IPS obtained from a culture with Tween-80 and oleic acid possessed low antioxidant activity. Moreover, their antitumor activity was improved and lost, respectively. The results obtained in this work are useful for improving the understanding of the optimization and regulation of bioactive polysaccharide production in the submerged culture of B. fumosa.
Collapse
Affiliation(s)
| | | | | | | | - Hongmei Xia
- Engineering Research Center of Glycoconjugates Ministry of Education, School of Life Sciences, Northeast Normal University, Changchun 130024, China; (F.L.); (H.F.); (Q.S.); (Y.D.)
| |
Collapse
|
4
|
Zhou MJ, Hu LX, Hu WS, Huang JB, Huang XL, Gao XL, Luo YN, Xue ZL, Liu Y. Enhanced vitamin K2 production by engineered Bacillus subtilis during leakage fermentation. World J Microbiol Biotechnol 2023; 39:224. [PMID: 37291450 DOI: 10.1007/s11274-023-03671-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Menaquinone-7 (MK-7), a valuable member of the vitamin K2 series, is an essential nutrient for humans. It is used for treating coagulation disorders, and osteoporosis, promoting liver function recovery, and preventing cardiovascular diseases. In this study, to further improve the metabolic synthesis of MK-7 by the mutant strain, the effect of surfactants on the metabolic synthesis of MK-7 by the mutant strain Bacillus subtilis 168 KO-SinR (BS168 KO-SinR) was analyzed. The scanning electron microscopy and flow cytometry results showed that the addition of surfactants changed the permeability of the cell membrane of the mutant strain and the structural components of the biofilm. When 0.7% Tween-80 was added into the medium, the extracellular and intracellular synthesis of MK-7 reached 28.8 mg/L and 59.2 mg/L, respectively, increasing the total synthesis of MK-7 by 80.3%. Quantitative real-time PCR showed that the addition of surfactant significantly increased the expression level of MK-7 synthesis-related genes, and the electron microscopy results showed that the addition of surfactant changed the permeability of the cell membrane. The research results of this paper can serve as a reference for the industrial development of MK-7 prepared by fermentation.
Collapse
Affiliation(s)
- Meng-Jie Zhou
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Liu-Xiu Hu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
- Anhui Zhang Hengchun Pharmaceutical Co., LTD, Wuhu, 241000, China
| | - Wen-Song Hu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Jun-Bao Huang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Xi-Lin Huang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Xu-Li Gao
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Ya-Ni Luo
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Zheng-Lian Xue
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Wuhu, 241000, China
| | - Yan Liu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China.
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Wuhu, 241000, China.
| |
Collapse
|
5
|
Ding K, Wang Y, Han C. Polysaccharide Elicitors Affect the Yield, Polysaccharide Synthase and Antibacterial Activity of Intracellular Polysaccharides from Submerged Culture of Cordyceps milifaris (Ascomycetes). Int J Med Mushrooms 2023; 25:35-48. [PMID: 36749055 DOI: 10.1615/intjmedmushrooms.2022046732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study aimed to increase the yield of Cordyceps militaris intracellular polysaccharide (IPS) by adding elicitors. By comparing the effects of different elicitors on the IPS yield, three polysaccharide elicitors with significant promoting effect were screened out: Tween 80, pH, and vitamin B6 (VB6). We combined these elicitors and optimized the composition of the complex elicitor using response surface methodology to further improve the yield of IPS. The highest percentage of increased yield was 82.52 ± 0.48% obtained at a Tween concentration of 0.41% (w/v), pH of 4.98, and VB6 concentration of 0.17 mg/mL. Simultaneously, the mechanism of promoting high yield of IPS was preliminarily discussed. The complex elicitor may promote the synthesis of IPS by influencing the activity of polysaccharide synthase. Furthermore, the antibacterial activity against Staphylococcus aureus and Escherichia coli was evaluated. The addition of the complex elicitor increased the antibacterial activity of IPS. Therefore, our findings will lead the way for large scale industrial fermentations and commercial uses of IPS from C. militaris as antibacterial constituents.
Collapse
Affiliation(s)
- Kai Ding
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, P.R. China
| | - Yongxia Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, People's Republic of China
| | - Chunchao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, People's Republic of China; Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, Shandong, 250355, People's Republic of China
| |
Collapse
|
6
|
Li Y, Yang Q, Liu B, Liu Y, Zhang Q, Li S, Zhao X. Simultaneous Extraction of Flavonoid Glycosides and Flavonoid Aglycones from Discarded Apple Branches by Enzyme-assisted Micelle-mediated Extraction with Cloud Point Enrichment Method. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02973-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Xie L, Wang G, Xie J, Chen X, Xie J, Shi X, Huang Z. Enhancement of functional activity and biosynthesis of exopolysaccharides in Monascus purpureus by genistein treatments. Curr Res Food Sci 2022; 5:2228-2242. [PMID: 36425595 PMCID: PMC9678808 DOI: 10.1016/j.crfs.2022.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/07/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022] Open
Abstract
The exopolysaccharides (EPS) produced by the edible medicinal fungus Monascus purpureus (EMP) become the center of growing interest due to their techno-functional properties and their numerous applications in the food industries; however, the low EPS yields limit its application. In this study, the effect of genistein supplementation on the production, rheological and antioxidant properties of EPS by M. purpureus and its biosynthesis mechanism were explored. The results indicated that the addition of genistein (3 g/L) generated a 110% and 59% increase in the maximum mycelial biomass and EPS yield, respectively. The genistein supplementation group (G-EMP) had higher molar percentages of Xyl and Man, and significantly decreased molecule weight and particle size of EPS, which resulted in stronger antioxidant effect and cell growth promotion. Rheological analysis showed that both EMP and G-EMP demonstrated pseudoplastic fluid behavior and G-EMP exhibited strong gel-like elastic behavior (G' > G"). Furthermore, genistein not only facilitated the production of EPS by regulating cell membrane permeability, enhancing cellular respiratory metabolism and monosaccharide precursor synthesis pathways, and enhancing antioxidant enzyme activity to reduce oxidative stress damage, but also affected the composition of the monosaccharides by increasing enzyme activity in the underlying synthesis pathways. These findings expand the application of M. purpureus resources and provide a paradigm for future study of the structural and functional characteristics of EPS. Genistein (3 g/L) significantly stimulate yield of biomass and exopolysaccharides (EPS) from M. purpureus. The physicochemical and rheological properties of EPS were significantly changed. Their antioxidant and cytoprotective effect were compared. A possible mechanism for the response of genistein to increase EPS yield is proposed.
Collapse
|
8
|
Xia J, Liu S, Jiao J, Qiu Z, Liu X, He A, Xu N, Xu J. Evaluation of enhancing effect of soybean oil on polymalic acid production by Aureobasidium pullulans HA-4D. Bioprocess Biosyst Eng 2022; 45:1673-1682. [DOI: 10.1007/s00449-022-02772-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/05/2022] [Indexed: 11/28/2022]
|
9
|
Yu C, Fang Y, Huang W, Lei P, Xu X, Sun D, Wu L, Xu H, Li S. Effect of surfactants on the production and biofunction of Tremella fuciformis polysaccharide through submerged fermentation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Stimulating mechanism of corn oil on biomass and polysaccharide production of Pleurotus tuber-regium mycelium. Int J Biol Macromol 2021; 201:93-103. [PMID: 34973980 DOI: 10.1016/j.ijbiomac.2021.12.149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/05/2021] [Accepted: 12/23/2021] [Indexed: 01/03/2023]
Abstract
Hyperbranched polysaccharides (HBPSs) are the main components in cell wall and exopolysaccharide (EPS) of Pleurotus tuber-regium. To enhance the yield of these macromolecules, corn oil at 4% addition exhibited the best effect for production of mycelial biomass at 20.49 g/L and EPS at 0.59 g/L, which was 2.56 folds and 1.90 folds of the control, respectively. The treated hyphae were much thicker with smooth surface, while its cell wall content (43.81 ± 0.02%) was 1.96 times of the control (22.34 ± 0.01%). Moreover, a large number of lipid droplets could be visualized under the view of confocal laser scanning microscopy (CLSM). RNA-seq analysis revealed that corn oil could enter the cells and result in the up-regulation of genes on cell morphology and membrane permeability, as well as the down-regulation on expression level of polysaccharide hydrolase and genes involved in the MAPK pathway, all of which probably contribute to the increase of polysaccharides production.
Collapse
|
11
|
Wu N, Zhang J, Ou W, Chen Y, Wang R, Li K, Sun XM, Li Y, Xu Q, Huang H. Transcriptome analysis of Rhizopus oryzae seed pellet formation using triethanolamine. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:230. [PMID: 34863259 PMCID: PMC8645130 DOI: 10.1186/s13068-021-02081-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Rhizopus oryzae (R. oryzae) can effectively produce organic acids, and its pellet formation in seed cultures has been shown to significantly enhance subsequent fermentation processes. Despite advances in strain development, simple and effective methods for inducing pellet morphology and a basic understanding of the mechanisms controlling this process could facilitate substantial increases in efficiency and product output. Here, we report that 1.5% triethanolamine (TEOA) in seed culture medium can activate the growth of R. oryzae spores in compact and uniform pellets which is optimal for fermentation conditions. Analysis of fermentation kinetics showed that the production of fumaric and L-malic acid increases 293% and 177%, respectively. Transcriptomic analysis revealed that exposure of R. oryzae to 1.5% TEOA during the seed culture activated the phosphatidylinositol and mitogen-activated protein kinase signaling pathways. Theses pathways subsequently stimulated the downstream carbohydrate-active synthases and hydrolases that required for cell wall component synthesis and reconstruction. Our results thus provide insight into the regulatory pathways controlling pellet morphology germane to the viability of seed cultures, and provide valuable reference data for subsequent optimization of organic acid fermentation by R. oryzae.
Collapse
Affiliation(s)
- Na Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Jiahui Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Wen Ou
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Yaru Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Ru Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Ke Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Yingfeng Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Qing Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
12
|
Meng Q, Chuai S, Chen L, Wang L, Cai G, Mao J, Gu Z, Shi G, Ding Z. Effect of surfactants on the production of polysaccharides from Schizophyllum commune through submerged fermentation. Int J Biol Macromol 2021; 192:210-218. [PMID: 34619278 DOI: 10.1016/j.ijbiomac.2021.09.191] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022]
Abstract
Schizophyllum commune (S. commune) polysaccharides are biomacromolecules with multiple biological activities and wide applications. In this study, polysaccharide production through submerged fermentation of S. commune using different surfactants was investigated. The addition of 1 g/L of polyoxyethylene sorbitan monooleate (Tween 80) at the beginning of the fermentation showed the best promotional effects on collective exopolysaccharide (EPS) production (which increased by 37.17%) while shortening the production cycle by 2 days. The monosaccharide composition of the EPS produced when the added Tween 80 was similar to that of the control; however, the molecular weight (Mw) was lower. Notably, the addition of Tween 80 significantly increased the ATP levels and the transcription levels of phosphoglucomutase and β-glucan synthase genes in the polysaccharide synthesis pathway. The addition of Tween 80 reduced the pellet size of the mycelium compared to that of the control, but did not significantly change the microstructure of the mycelial cells. This study proposes an efficient strategy for the production of polysaccharides through submerged fermentation of S. commune, and elucidates the detailed mechanism of using Tween 80 as a fermentation stimulatory reagent.
Collapse
Affiliation(s)
- Qi Meng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
| | - ShiChen Chuai
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
| | - Lei Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Lingling Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guolin Cai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Industrial Technology Research Institute, Jiangnan University (Rugao) Food Biotechnology Research Institute, Nantong 226500, China
| | - Jinsheng Mao
- Jiangsu Industrial Technology Research Institute, Jiangnan University (Rugao) Food Biotechnology Research Institute, Nantong 226500, China
| | - Zhenghua Gu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
| | - Guiyang Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
13
|
Liao C, Ayansola H, Ma Y, Ito K, Guo Y, Zhang B. Advances in Enhanced Menaquinone-7 Production From Bacillus subtilis. Front Bioeng Biotechnol 2021; 9:695526. [PMID: 34354987 PMCID: PMC8330505 DOI: 10.3389/fbioe.2021.695526] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/01/2021] [Indexed: 12/02/2022] Open
Abstract
The production of nutraceutical compounds through biosynthetic approaches has received considerable attention in recent years. For example, Menaquinone-7 (MK-7), a sub-type of Vitamin K2, biosynthesized from Bacillus subtilis (B. subtilis), proved to be more efficiently produced than the conventional chemical synthesis techniques. This is possible due to the development of B. subtilis as a chassis cell during the biosynthesis stages. Hence, it is imperative to provide insights on the B. subtilis membrane permeability modifications, biofilm reactors, and fermentation optimization as advanced techniques relevant to MK-7 production. Although the traditional gene-editing method of homologous recombination improves the biosynthetic pathway, CRISPR-Cas9 could potentially resolve the drawbacks of traditional genome editing techniques. For these reasons, future studies should explore the applications of CRISPRi (CRISPR interference) and CRISPRa (CRISPR activation) system gene-editing tools in the MK-7 anabolism pathway.
Collapse
Affiliation(s)
- Chaoyong Liao
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hammed Ayansola
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yanbo Ma
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Koichi Ito
- Department of Food and Physiological Models, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki, Japan
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
14
|
Yan L, Zhang Z, Zhang Y, Yang H, Qiu G, Wang D, Lian Y. Improvement of tacrolimus production in Streptomyces tsukubaensis by mutagenesis and optimization of fermentation medium using Plackett-Burman design combined with response surface methodology. Biotechnol Lett 2021; 43:1765-1778. [PMID: 34021830 DOI: 10.1007/s10529-021-03144-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 04/30/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE This study was conducted to enhance the production of tacrolimus in Streptomyces tsukubaensis by strain mutagenesis and optimization of the fermentation medium. RESULTS A high tacrolimus producing strain S. tsukubaensis FIM-16-06 was obtained by ultraviolet mutagenesis coupled with atmospheric and room temperature plasma mutagenesis.Then, nine variables were screened using Plackett-Burman experimental design, in which soluble starch, peptone and Tween 80 showed significantly affected tacrolimus production. Further studies were carried out employing central composite design to elucidate the mutual interaction between the variables and to work out optimal fermentation medium composition for tacrolimus production. The optimum fermentation medium was found to contain 61.61 g/L of soluble starch, 20.61 g/L of peptone and 30.79 g/L of Tween 80. In the optimized medium, the production of tacrolimus reached 1293 mg/L in shake-flask culture, and reached 1522 mg/L while the scaled-up fermentation was conducted in a 1000 L fermenter, which was about 3.7 times higher than that in the original medium. CONCLUSIONS Combining compound mutation with rational medium optimization is an effective approach for improving tacrolimus production, and the optimized fermentation medium could be efficiently used for industrial production.
Collapse
Affiliation(s)
- Lingbin Yan
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, 350007, China
| | - Zhulan Zhang
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, 350007, China.
| | - Yin Zhang
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, 350007, China
| | - Huangjian Yang
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, 350007, China
| | - Guanrong Qiu
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, 350007, China
| | - Desen Wang
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, 350007, China
| | - Yunyang Lian
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, 350007, China.
| |
Collapse
|
15
|
Lou H, Li H, Wei T, Chen Q. Stimulatory Effects of Oleci Acid and Fungal Elicitor on Betulinic Acid Production by Submerged Cultivation of Medicinal Mushroom Inonotus obliquus. J Fungi (Basel) 2021; 7:jof7040266. [PMID: 33807450 PMCID: PMC8066064 DOI: 10.3390/jof7040266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 12/28/2022] Open
Abstract
To evaluate the novel strategy of oleic acid and fungal elicitor (made from Aspergillus niger) to elicit betulinic acid biosynthesis in medicinal mushroom Inonotus obliquus, we conduct the stimulatory effects investigation for synthesizing betulinic acid from betulin. HPLC results indicated oleic acid and fungal elicitor were effective stimulators. The supplementation of 1.0 g/L oleic acid led to the highest increase of betulinic acid either in dry mycelia or fermentation broth by 2-fold of the control. Fungal elicitor at 45 mg/L markedly increases mycelia growth by 146.0% and enhance intracellular betulinic acid accumulation by 429.5% as compared to the controls. Quantification of transcription levels determined that oleic acid, fungal elicitor and their combinations could induce the expressions of key genes involved in betulinic acid biosynthesis, such as HMG-CoA reductase and squalene synthase. These findings indicated that oleic acid and fungal elicitor could enhance betulinic acid metabolism by up-regulating key genes expression.
Collapse
Affiliation(s)
| | | | | | - Qihe Chen
- Correspondence: ; Tel.: +86-0571-86984316
| |
Collapse
|
16
|
Permana AW, Sampers I, Van der Meeren P. Influence of virgin coconut oil on the inhibitory effect of emulsion-based edible coatings containing cinnamaldehyde against the growth of Colletotrichum gloeosporioides (Glomerella cingulata). Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107622] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
17
|
Zhang M, Fan S, Hao M, Hou H, Zheng H, Darwesh OM. Improving the production of fungal exopolysaccharides with application of repeated batch fermentation technology coupling with foam separation in the presence of surfactant. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.06.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Efficient kefiran production by Lactobacillus kefiranofaciens ATCC 43761 in submerged cultivation: Influence of osmotic stress and nonionic surfactants, and potential bioactivities. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.09.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
19
|
Chen N, Zhang H, Zong X, Li S, Wang J, Wang Y, Jin M. Polysaccharides from Auricularia auricula: Preparation, structural features and biological activities. Carbohydr Polym 2020; 247:116750. [DOI: 10.1016/j.carbpol.2020.116750] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/27/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
|
20
|
Lin S, Wang P, Lam KL, Hu J, Cheung PCK. Research on a Specialty Mushroom ( Pleurotus tuber-regium) as a Functional Food: Chemical Composition and Biological Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9277-9286. [PMID: 32786828 DOI: 10.1021/acs.jafc.0c03502] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pleurotus tuber-regium (PTR) is an edible specialty mushroom that has attracted growing interest recently because of its sensory attributes, high nutritional values, and important medicinal properties. PTR is rich in bioactive polysaccharides, proteins with essential amino acids, essential fatty acids, dietary fiber, minerals, and vitamins. Current studies have shown that the nutrients and bioactive ingredients of PTR contribute to their antitumor, antihypercholesterolemic, antihypertensive, antiobesity, hepatic-protective, antimicrobial, antioxidant, and prebiotic activities, indicating that PTR is a promising functional food and nutraceutical. In this review, the chemical constituents and physiological functions of PTR are summarized, which provide the scientific basis to support the further research and development of its application in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Shaoling Lin
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, People's Republic of China
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region of the People's Republic of China
| | - Peixin Wang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, People's Republic of China
| | - Ka-Lung Lam
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region of the People's Republic of China
| | - Jiamiao Hu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, People's Republic of China
| | - Peter C K Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region of the People's Republic of China
| |
Collapse
|
21
|
Yang X, Yang Y, Zhang Y, He J, Xie Y. Enhanced exopolysaccharide production in submerged fermentation of Ganoderma lucidum by Tween 80 supplementation. Bioprocess Biosyst Eng 2020; 44:47-56. [PMID: 32743719 DOI: 10.1007/s00449-020-02418-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/26/2020] [Indexed: 12/23/2022]
Abstract
Bioactive polysaccharides extracted from Ganoderma lucidum (G. lucidum) have been widely applied in food and medicine for their multiple functions. In this study, G. lucidum exopolysaccharide (EPS) production in submerged fermentation was stimulated by Tween 80. The addition of 0.25% Tween 80 on day 3 gave a maximum production of mycelial biomass and EPS, with an increase of 19.76 and 137.50%, respectively. Analysis of fermentation kinetics showed that glucose was consumed faster after adding Tween 80, while the expression of EPS biosynthesis-related genes and ATP generation were greatly improved. Moreover, Tween 80 resulted in the significant accumulation of reactive oxygen species and increased cell membrane and cell wall permeability. The EPS from Tween 80-containing medium had higher contents of carbohydrate and uronic acid, lower molecular weight, and higher antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals than those of EPS produced in the absence of Tween 80. This study provides further evidence to clarify the stimulatory effects of Tween 80 in fermentation and provides a guide for the production of bioactive G. lucidum EPS.
Collapse
Affiliation(s)
- Xiaobing Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| | - Yingyin Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Yifan Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Jiahao He
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Yizhen Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.,Yuewei Edible Fungi Technology Co. Ltd., Guangzhou, 510663, China
| |
Collapse
|
22
|
Relationship between pellet formation by Aspergillus oryzae strain KB and the production of β-fructofuranosidase with high transfructosylation activity. Fungal Biol 2020; 124:708-713. [PMID: 32690252 DOI: 10.1016/j.funbio.2020.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 11/23/2022]
Abstract
Aspergillus oryzae KB produces two β-fructofuranosidases (F1 and F2). F1 has high transfructosylation activity (Ut) to produce fructooligosaccharides. F2 has high hydrolysis activity (Uh), releasing glucose and fructose. It is desirable to selectively produce F1, which can be used for production of fructooligosaccharides. Here, the relationship between filamentous pellet size and selective production of F1 in liquid culture was investigated. Our finding revealed that: (i) The mean particle size of pellets (5.88 ± 1.36 mm) was larger, and the ratio of Ut to Uh was improved (Ut/Uh = 5.0) in 10% sucrose medium compared with 1% sucrose medium (pellet size = 2.60 ± 0.37 mm; Ut/Uh = 0.96). (ii) The final culture pH of the 1% sucrose medium was 8.7; on controlling the pH of 1% sucrose medium at 5.0, increased pellet size (9.69 ± 2.01 mm) and Ut/Uh (7.8) were observed. (iii) When 3% glycerin was used as carbon source, the pellet size decreased to 1.09 ± 0.33 mm and Ut/Uh was 0.57. (iv) In medium containing 1% sucrose, the pellet size was dependent on the number of spores used in the culture inoculum, but, in these experiments, Ut/Uh was almost constant (1.05 ± 0.08). Collectively, the data show that the value of Ut/Uh is proportional to the pellet size when liquid culture of A. oryzae strain KB is performed in some conditions (such as in the presence of high sucrose concentration, low pH, or added Tween surfactant), but in other conditions Ut/Uh is independent of pellet size.
Collapse
|
23
|
BAI JIAFENG, LI TIANXIAO, JIA XUEWEI, CHEN YICHANG, NONG LIZHENG, LIU SHAOHUA, XU CHUNPING. Effect of tween 40 and ethanol on the secretion, structure and antioxidant activities of exopolysaccharides from Inonotus rickii. AN ACAD BRAS CIENC 2020; 92 Suppl 2:e20180838. [DOI: 10.1590/0001-3765202020180838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 09/28/2018] [Indexed: 11/22/2022] Open
Affiliation(s)
- JIAFENG BAI
- China Tobacco Guangxi Industrial Co. Ltd., China
| | - TIANXIAO LI
- Zhengzhou University of Light Industry, China
| | - XUEWEI JIA
- Zhengzhou University of Light Industry, China
| | - YICHANG CHEN
- China Tobacco Guangxi Industrial Co. Ltd., China
| | - LIZHENG NONG
- China Tobacco Guangxi Industrial Co. Ltd., China
| | - SHAOHUA LIU
- China Tobacco Guangxi Industrial Co. Ltd., China
| | - CHUNPING XU
- Zhengzhou University of Light Industry, China
| |
Collapse
|
24
|
Ozdal M. A new strategy for the efficient production of pyocyanin, a versatile pigment, in Pseudomonas aeruginosa OG1 via toluene addition. 3 Biotech 2019; 9:374. [PMID: 31588398 DOI: 10.1007/s13205-019-1907-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 09/19/2019] [Indexed: 11/24/2022] Open
Abstract
Pseudomonas aeruginosa produce pyocyanin, which is an extracellular secondary metabolite and multifunctional pigment. In this study, the effects of several surfactants (Tween 20, Tween 80 and Triton X-100) and organic solvents (toluene and chloroform) on pyocyanin production and cell growth were investigated in submerged culture of P. aeruginosa OG1. Organic solvents were found to be more effective in the production of pyocyanin. The maximum production of pyocyanin (33 mg/L) was achieved when 0.2% toluene was added at the stationary growth phase (30 h), corresponding to significant increase of 312% compared with the control (8 mg/L). With the addition of toluene, pyocyanin production was significantly increased, but bacterial biomass reduced. Production of alkaline protease was also affected by toluene addition. It was found that the ratio of saturated/unsaturated fatty acids in the bacterial biomass significantly increased when toluene addition to the medium. This study revealed that with a novel strategy, the addition of toluene to the fermentation medium significantly increased pyocyanin production. These findings suggest that solvent-assisted fermentation strategy can be used in microbial fermentations to increase the production of biotechnological products such as industrially important pigment and enzyme. This study is a first investigation on the stimulation of pyocyanin release in the medium of P. aeruginosa cultures by the addition of toluene.
Collapse
Affiliation(s)
- Murat Ozdal
- Department of Biology, Science Faculty, Ataturk University, Erzurum, 25240 Turkey
| |
Collapse
|
25
|
Teodoro TS, Oliveira FD, Poffo C, Braga LP, Arbigaus A, Rampinelli JR, Wisbeck E, Bonatti-Chaves M, Furlan SA. The influence of Tween 80 on laccase production by Pleurotus sajor-caju and the efficiency of crude enzyme broth in the removal of bisphenol-A. ARQUIVOS DO INSTITUTO BIOLÓGICO 2018. [DOI: 10.1590/1808-1657001022017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT: Bisphenol-A is currently considered an environmental pollutant, capable of interfering in the endocrine system of organisms and causing alterations in its development and reproductive system. An alternative method to the chemical treatment of this pollutant has been the use of oxidative enzymes, especially laccases produced by fungi. In order to reduce production costs, agro-industrial waste can be used in the culture medium composition. Nonionic surfactants, which are only slightly toxic to biological membranes, can be applied, as well as Tween 80, to facilitate the excretion of these enzymes into the culture medium. The objectives of this work were: a) characterize the immersion water of banana straw used in the formulation of the culture medium; b) evaluate laccase production by Pleurotus sajor-caju in culture medium with and without addition of Tween 80, through shaken flasks; c) evaluate the efficiency of the crude enzyme broth in degrading bisphenol-A. The shaken flasks were incubated at 30°C for 12 days. The immersion water had a C:N ratio of 13.8, ash percentage of 28.6%, and pH close to neutrality. The addition of Tween 80 on the culture medium (7.5%, m/v) yielded laccase activity and productivity values equal to 3,016.47 U L-1 and 502.7 U L-1 day-1, respectively. These values were 50 and 33.5 times higher than those obtained in the culture medium without addition of Tween 80 for laccase activity and productivity, respectively. The crude enzyme broth degraded 100% of bisphenol-A after 48 hours, regardless of concentration (500, 750 and 1,000 mg L-1).
Collapse
|
26
|
Li Q, Lei Y, Hu G, Lei Y, Dan D. Effects of Tween 80 on the liquid fermentation of Lentinus edodes. Food Sci Biotechnol 2018; 27:1103-1109. [PMID: 30263840 PMCID: PMC6085267 DOI: 10.1007/s10068-018-0339-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 02/13/2018] [Accepted: 02/19/2018] [Indexed: 11/30/2022] Open
Abstract
This paper explored the effects of Tween 80 on the biomass, intracellular polysaccharide (IPS) content, fermentation parameters, the pellets size of mycelium, and the antioxidant activity of IPS in Lentinus edodes liquid fermentation. With adding to Tween 80, the outputs of biomass and IPS increased during the L. edodes fermentation, respectively, while the reducing sugar content was decreased, as well as, the time courses of pH value were different. It was also shown that the addition of Tween 80 could protect the intact of pellets from breaking down. The effects of Tween 80 on the main structure of IPS were no obvious, and the IPS were revealed similar infrared spectrum, as was indicated by the infrared spectrum analysis. Improvements in the scavenging capacity of DPPH radicals of IPS were observed in Tween 80 treated group compared with the control group. Tween 80 exerts impacts on the liquid fermentation of L. edodes.
Collapse
Affiliation(s)
- Qiuyang Li
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205 Hubei People’s Republic of China
| | - Yuguo Lei
- Hubei Yuguo Gu Ye Co., Ltd., Suizhou, 441300 Hubei People’s Republic of China
| | - Guoyuan Hu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205 Hubei People’s Republic of China
| | - Yuanzheng Lei
- Hubei Yuguo Gu Ye Co., Ltd., Suizhou, 441300 Hubei People’s Republic of China
| | - Dongmei Dan
- Hubei Yuguo Gu Ye Co., Ltd., Suizhou, 441300 Hubei People’s Republic of China
| |
Collapse
|
27
|
High biobutanol production integrated with in situ extraction in the presence of Tween 80 by Clostridium acetobutylicum. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
Metabolism and secretion of yellow pigment under high glucose stress with Monascus ruber. AMB Express 2017; 7:79. [PMID: 28401504 PMCID: PMC5388664 DOI: 10.1186/s13568-017-0382-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/03/2017] [Indexed: 11/10/2022] Open
Abstract
The biosynthesis of microbial secondary metabolites is induced by a wide range of environmental stresses. In this study, submerged fermentation of Monascus yellow pigments by Monascus ruber CGMCC 10910 under high glucose stress was investigated. The increase of lipid content was the major contributor to the increase of dry cell weight (DCW), and the lipid-free DCW was only slightly changed under high glucose stress, which benefited the accumulation of intracellular hydrophobic pigments. The fatty acid composition analysis in Monascus cell membranes showed that high glucose stress significantly increased the ratio of unsaturated/saturated fatty acid and the index of unsaturated fatty acid (IUFA) value, which would improve the fluidity and permeability of the cell membrane. As a consequence, high glucose stress increased extracellular yellow pigments production by enhancing secretion and trans-membrane conversion of intracellular pigments to the broth. The total yield of extracellular and intracellular yellow pigments per unit of lipid-free DCW increased by 94.86 and 26.31% under high glucose stress compared to conventional fermentation, respectively. A real-time quantitative PCR analysis revealed that the expression of the pigment biosynthetic gene cluster was up-regulated under high glucose stress. The gene mppE, which is associated with yellow pigment biosynthesis, was significantly up-regulated. These results indicated that high glucose stress can shift the Monascus pigment biosynthesis pathway to accumulate yellow pigments and lead to a high yield of both extracellular and intracellular yellow pigments. These findings have potential application in commercial Monascus yellow pigment production.
Collapse
|
29
|
Lei XY, Zhang MY, Ma YJ, Wang JW. Transcriptomic responses involved in enhanced production of hypocrellin A by addition of Triton X-100 in submerged cultures of Shiraia bambusicola. J Ind Microbiol Biotechnol 2017; 44:1415-1429. [PMID: 28685359 DOI: 10.1007/s10295-017-1965-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 06/26/2017] [Indexed: 01/20/2023]
Abstract
The addition of surfactant is a useful strategy to enhance the product yield in submerged fermentation process. In this study, we sought to explore the mechanism for the elicitation of Triton X-100 on production of hypocrellin A (HA) in cultures of Shiraia bambusicola through transcriptomic analysis. Triton X-100 at 2.5% (w/v) not only induced HA biosynthesis in mycelia, but also stimulated the release of HA into the medium. We found 23 of 2463 transcripts, possible candidate genes for HA biosynthesis under Triton X-100 induction. Gene ontology (GO) analysis showed Triton X-100 treatment changed expression of genes involved in transmembrane transport and oxidation-reduction process, indicating that enhanced HA production was mainly due to both elicited biosynthesis in mycelium and the increased membrane permeability for HA release. These data provided new insights into elicitation of surfactants in submerged cultures of fungi.
Collapse
Affiliation(s)
- Xiu Yun Lei
- College of Pharmaceutical Sciences, Soochow University, 215123, Suzhou, China
| | - Ming Ye Zhang
- College of Pharmaceutical Sciences, Soochow University, 215123, Suzhou, China
| | - Yan Jun Ma
- College of Pharmaceutical Sciences, Soochow University, 215123, Suzhou, China
| | - Jian Wen Wang
- College of Pharmaceutical Sciences, Soochow University, 215123, Suzhou, China.
| |
Collapse
|
30
|
Enhancing Menaquinone-7 Production by Bacillus natto R127 Through the Nutritional Factors and Surfactant. Appl Biochem Biotechnol 2017; 182:1630-1641. [PMID: 28258367 DOI: 10.1007/s12010-017-2423-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/23/2017] [Indexed: 01/07/2023]
Abstract
Bacillus natto is commonly used in industrial production of menaquinone-7, an important vitamin which plays a crucial role for blood clotting and may contribute to prevention of cardiovascular disease and osteoporosis. This study determined the optimal combination of key nutrients and established an effective use of surfactant in a coupling medium to enhance the yield of extracellular MK-7. MK-7 yield of 31.18 mg/L was achieved under optimal conditions containing 53.6 g/L glycerol, 100 g/L soy peptone, and 10 g/L K2HPO4. A maximal yield of 40.96 mg/L MK-7 and a secretion ratio of 61.1% were obtained when 20 g/L soybean oil was supplemented at the logarithmic phase. The non-ionic surfactant span 20 was the second most promising surfactant in improving product yield, whereas addition of 2 g/L betaine exerted a minimal effect on secretion ratio of MK-7 at 19.1%. The results collectively showed that the supplementation of surfactants was an effective strategy to regulate cytomembrane permeability. Graphical abstract ᅟ.
Collapse
|
31
|
Effects of nonionic surfactants on pellet formation and the production of β-fructofuranosidases from Aspergillus oryzae KB. Food Chem 2016; 224:139-143. [PMID: 28159248 DOI: 10.1016/j.foodchem.2016.12.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/17/2016] [Accepted: 12/19/2016] [Indexed: 01/01/2023]
Abstract
Aspergillus oryzae KB produces two β-fructofuranosidases (F1 and F2). F1 has high transferring activity and produces fructooligosaccharides from sucrose. Mycelial growth pellets were altered by the addition of Tween 20, 40 and 80 (HLB=16.7, 15.6 and 15.0, respectively) in liquid medium cultures to form small spherical pellets. The particle size of the pellets decreased with the HLB value, which corresponds to an increase in surfactant hydrophobicity. Selective F1 production and pellet size were maximized using Tween 20. Adding polyoxyethylene oleyl ethers (POEs) with various degrees of polymerization (2, 7, 10, 20 and 50: HLB=7.7, 10.7, 14.7, 17.2 and 18.2, respectively) was investigated. A minimum mean particle size was obtained using a POE with DP=10, HLB=14.7. The POE surfactants had little effect on the selective production of F1. The formation of filamentous pellets depended on the surfactant HLB value, and F1 enzymes were produced most efficiently using Tween 20.
Collapse
|
32
|
Xu X, Zhao W, Shen M. Antioxidant activity of liquid cultured Inonotus obliquus polyphenols using tween-20 as a stimulatory agent: Correlation of the activity and the phenolic profiles. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2016.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
33
|
He P, Wu S, Pan L, Sun S, Mao D, Xu C. Effect of Tween 80 and Acetone on the Secretion,
Structure and Antioxidant Activities of Exopolysaccharides from Lentinus tigrinus. Food Technol Biotechnol 2016; 54:290-295. [PMID: 27956860 PMCID: PMC5151215 DOI: 10.17113/ftb.54.03.16.4211] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 04/14/2016] [Indexed: 11/12/2022] Open
Abstract
In this study, the effects of the addition of Tween 80 and acetone on secretion, structure and antioxidant activities of Lentinus tigrinus exopolysaccharides (EPS) were investigated. It was found that Tween 80 and acetone displayed a stimulatory effect on EPS secretion. The EPS obtained by the addition of Tween 80 (EPS-T), acetone (EPS-A) and control (EPS--C) were purified by Sepharose CL-6B gel filtration chromatography and molecular mass of purified fractions was estimated to be 22.1, 137 and 12 kDa, respectively. Monosaccharide composition analysis indicated that EPS-T, EPS-A and EPS-C were mainly composed of glucose and mannose. Congo Red test indicated that EPS-T and EPS-A had a highly ordered conformation of triple helix, while EPS-C had a random coil conformation. Furthermore, EPS-A exhibited higher DPPH scavenging and antiproliferative activities than EPS--C and EPS-T, which might be attributed to the molecular mass.
Collapse
Affiliation(s)
- Peixin He
- School of Food and Biological Engineering, Zhengzhou University of Light Industry,
Zhengzhou 450001, PR China
- Collaborative Innovation Center of Food Production and Safety, Henan Province,
Zhengzhou 450001, PR China
| | - Shuangshuang Wu
- School of Food and Biological Engineering, Zhengzhou University of Light Industry,
Zhengzhou 450001, PR China
| | - Lige Pan
- School of Food and Biological Engineering, Zhengzhou University of Light Industry,
Zhengzhou 450001, PR China
| | - Siwen Sun
- School of Food and Biological Engineering, Zhengzhou University of Light Industry,
Zhengzhou 450001, PR China
| | - Duobin Mao
- School of Food and Biological Engineering, Zhengzhou University of Light Industry,
Zhengzhou 450001, PR China
- Collaborative Innovation Center of Food Production and Safety, Henan Province,
Zhengzhou 450001, PR China
| | - Chunping Xu
- School of Food and Biological Engineering, Zhengzhou University of Light Industry,
Zhengzhou 450001, PR China
- Collaborative Innovation Center of Food Production and Safety, Henan Province,
Zhengzhou 450001, PR China
| |
Collapse
|
34
|
Hu YD, Zhang BB, Xu GR, Liao XR, Cheung PC. A mechanistic study on the biosynthetic regulation of bioactive metabolite Antroquinonol from edible and medicinal mushroom Antrodia camphorata. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
35
|
Chen X, Yan JK, Wu JY. Characterization and antibacterial activity of silver nanoparticles prepared with a fungal exopolysaccharide in water. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2014.12.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Chen L, Cheng WN, Zhang BB, Cheung PCK. Structural and thermal analysis of a hyper-branched exopolysaccharide produced by submerged fermentation of mushroom mycelium. RSC Adv 2016. [DOI: 10.1039/c6ra23383j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
An exopolysaccharide (PTR-EPS1) purified from the culture medium of the mycelial fermentation of Pleurotus tuber-regium had a weight-average molecular mass of 173.6 kDa and a radius of 55.6 nm.
Collapse
Affiliation(s)
- L. Chen
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| | - W. N. Cheng
- Department of Pharmacy
- Affiliated Hospital of Binzhou Medical University
- Binzhou 256603
- China
| | - B. B. Zhang
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| | - P. C. K. Cheung
- School of Life Sciences
- The Chinese University of Hong Kong
- Hong Kong
- China
| |
Collapse
|
37
|
Understanding the influence of Tween 80 on pullulan fermentation by Aureobasidium pullulans CGMCC1234. Carbohydr Polym 2016; 136:1332-7. [DOI: 10.1016/j.carbpol.2015.10.058] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 09/27/2015] [Accepted: 10/14/2015] [Indexed: 11/23/2022]
|
38
|
Zhang BB, Lu LP, Xu GR. Why solid-state fermentation is more advantageous over submerged fermentation for converting high concentration of glycerol into Monacolin K by Monascus purpureus 9901: A mechanistic study. J Biotechnol 2015; 206:60-5. [DOI: 10.1016/j.jbiotec.2015.04.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 03/17/2015] [Accepted: 04/17/2015] [Indexed: 10/23/2022]
|
39
|
Xu X, Quan L, Shen M. Effect of chemicals on production, composition and antioxidant activity of polysaccharides of Inonotus obliquus. Int J Biol Macromol 2015; 77:143-50. [DOI: 10.1016/j.ijbiomac.2015.03.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/19/2015] [Accepted: 03/08/2015] [Indexed: 10/23/2022]
|
40
|
Stimulatory Agents Simultaneously Improving the Production and Antioxidant Activity of Polyphenols from Inonotus obliquus by Submerged Fermentation. Appl Biochem Biotechnol 2015; 176:1237-50. [DOI: 10.1007/s12010-015-1642-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/21/2015] [Indexed: 12/18/2022]
|
41
|
Tu G, Wang Y, Ji Y, Zou X. The effect of Tween 80 on the polymalic acid and pullulan production by Aureobasidium pullulans CCTCC M2012223. World J Microbiol Biotechnol 2014; 31:219-26. [DOI: 10.1007/s11274-014-1779-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 11/14/2014] [Indexed: 01/05/2023]
|
42
|
Liu YW, Mei HC, Su YW, Fan HT, Chen CC, Tsai YC. Inhibitory effects of Pleurotus tuber-regium mycelia and bioactive constituents on LPS-treated RAW 264.7 cells. J Funct Foods 2014. [DOI: 10.1016/j.jff.2013.12.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
43
|
Chen HB, Chen CI, Chen MJ, Lin CC, Kan SC, Zang CZ, Yeh CW, Shieh CJ, Liu YC. The use of mushroom hydrolysate from waste bag-log as the nitrogen source to mycelium biomass and exopolysaccharide production in Pleurotus eryngii cultivation. J Taiwan Inst Chem Eng 2013. [DOI: 10.1016/j.jtice.2012.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
44
|
Babič J, Likozar B, Pavko A. Optimization of ligninolytic enzyme activity and production rate with Ceriporiopsis subvermispora for application in bioremediation by varying submerged media composition and growth immobilization support. Int J Mol Sci 2012; 13:11365-11384. [PMID: 23109859 PMCID: PMC3472751 DOI: 10.3390/ijms130911365] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 08/23/2012] [Accepted: 09/05/2012] [Indexed: 11/21/2022] Open
Abstract
Response surface methodology (central composite design of experiments) was employed to simultaneously optimize enzyme production and productivities of two ligninolytic enzymes produced by Ceriporiopsis subvermispora. Concentrations of glucose, ammonium tartrate and Polysorbate 80 were varied to establish the optimal composition of liquid media (OLM), where the highest experimentally obtained activities and productivities were 41 U L−1 and 16 U L−1 day−1 for laccase (Lac), and 193 U L−1 and 80 U L−1 day−1 for manganese peroxidase (MnP). Considering culture growth in OLM on various types of immobilization support, the best results were obtained with 1 cm beech wood cubes (BWCM). Enzyme activities in culture filtrate were 152 U L−1 for Lac and 58 U L−1 for MnP, since the chemical composition of this immobilization material induced higher Lac activity. Lower enzyme activities were obtained with polyurethane foam. Culture filtrates of OLM and BWCM were applied for dye decolorization. Remazol Brilliant Blue R (RBBR) was decolorized faster and more efficiently than Copper(II)phthalocyanine (CuP) with BWCM (80% and 60%), since Lac played a crucial role. Decolorization of CuP was initially faster than that of RBBR, due to higher MnP activities in OLM. The extent of decolorization after 14 h was 60% for both dyes.
Collapse
Affiliation(s)
- Janja Babič
- Chair of Chemical, Biochemical and Environmental Engineering, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, 1000 Ljubljana, Slovenia; E-Mail:
| | - Blaž Likozar
- Laboratory of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; E-Mail:
| | - Aleksander Pavko
- Chair of Chemical, Biochemical and Environmental Engineering, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, 1000 Ljubljana, Slovenia; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +386-1-24-19-506; Fax: +386-1-24-19-530
| |
Collapse
|
45
|
Zhang BB, Chen L, Cheung PCK. Two-dimensional gel electrophoresis analysis of mycelial cells treated with Tween 80: differentially expressed protein related to enhanced metabolite production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:10585-10591. [PMID: 23013510 DOI: 10.1021/jf303570d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Two-dimensional gel electrophoresis identified 40 differentially expressed proteins which explained the mechanisms underlying the stimulatory effect of Tween 80 for exopolysaccharide production in the mycelium of an edible mushroom Pleurotus tuber-regium. The up-regulation of fatty acid synthase alpha subunit FasA might promote the synthesis of long-chain fatty acids and their incorporation into the mycelial cell membranes, increasing the membrane permeability. A down-regulation of Phospholipase D1 and an up-regulation of Hypothetical protein PGUG_02954 might mediate signal transduction between the mycelial cells and the extracellular stimulus (Tween 80). The down-regulated ATP-binding cassette transporter protein might function as pumps to extrude exopolysaccharide out of the cells that lead to a significant increase in its production. The present results explained how stimulatory agents like Tween 80 can increase mycelial cell membrane permeability to enhance the production of useful extracellular metabolites by submerged fermentation.
Collapse
Affiliation(s)
- Bo-Bo Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | | | | |
Collapse
|
46
|
Zhang BB, Chen L, Cheung PCK. Proteomic insights into the stimulatory effect of Tween 80 on mycelial growth and exopolysaccharide production of an edible mushroom Pleurotus tuber-regium. Biotechnol Lett 2012; 34:1863-7. [PMID: 22714275 DOI: 10.1007/s10529-012-0975-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Accepted: 05/25/2012] [Indexed: 10/28/2022]
Abstract
Proteomic analysis was applied to investigate the mechanism of the stimulatory effect of Tween 80 on the mycelial growth and exopolysaccharide production by an edible mushroom Pleurotus tuber-regium. 32 differentially expressed proteins were identified by one-dimension gel electrophoresis. Combined with our previous findings, the up-regulation of heat shock proteins might help to maintain cellular viability under environmental stress. The up-regulation of ATP:citrate lyase isoform 2 could suppress the activity of tricarboxylic acid cycle and, consequently, stimulate exopolysaccharide production. The present results provide important insight to the mechanism by which stimulatory agents (Tween 80) can increase the production of useful fungal metabolites and also fill the gap of our knowledge on the under-developed mushroom proteomics.
Collapse
Affiliation(s)
- Bo-Bo Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | | | | |
Collapse
|
47
|
Suárez Arango C, Nieto IJ. [Biotechnological cultivation of edible macrofungi: an alternative for obtaining nutraceutics]. Rev Iberoam Micol 2012; 30:1-8. [PMID: 22449697 DOI: 10.1016/j.riam.2012.03.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 03/06/2012] [Accepted: 03/12/2012] [Indexed: 02/02/2023] Open
Abstract
Macromycetes have been part of the human culture for thousand years, and have been reported as food in the most important civilizations in history. Many nutraceutical properties of macromycetes have been described, such as anti-cancer, anti-tumour, cholesterol lowering, antiviral, antibacterial, or immunomodulatory, among others. Given that production of mushrooms by traditional cultivation and extraction of bioactive metabolites is very difficult in some cases, biotechnology is essential for the development of profitable and productive techniques for obtaining these metabolites. It is the development of this technology, and the ease in which it enables the use of its variables that has allowed mycelium to be cultivated in liquid medium of macrofungi, with a significant reduction in time and an increased production of metabolites. This increased production has led to the study of compounds that have medicinal, nutriceutical and quasi-farmaceutical potential, in the exhausted media and the mycelium. The aim of this review is to provide an overview of the use of liquid-state fermentation as a technological tool for obtaining edible fungi, and the study of these and their metabolites, by describing the different cultivation conditions used in recent years, as well as the results obtained. The relevance of Agaricus, Flammulina, Grifola, Pleurotus and Lentinula genera, will also be discussed, with emphasis on the last one, since Shiitake has been always considered as the ultimate medicinal mushroom.
Collapse
|