1
|
Wei H, Wang Y, Zeng Y, Yang N, Jiang Y, Suo Y. Enhanced tolerance of Clostridium tyrobutyricum to lignin-derived phenolic acids by overexpressing native reductases. J Biotechnol 2025; 404:9-17. [PMID: 40185369 DOI: 10.1016/j.jbiotec.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/01/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Ferulic acid (Fer) and p-coumaric acid (Coum) are major phenolic inhibitors in lignocellulosic hydrolysates that severely hinder the growth and metabolism of Clostridia species. This study demonstrates that the reduction of Fer and Coum to dihydroferulic acid and phloretic acid by Clostridium tyrobutyricum significantly alleviates their toxicity. Overexpression of the dho1 and sdr1 genes, encoding Fer and Coum reductases, respectively, in C. tyrobutyricum can significantly enhance tolerance to these phenolic acids. As a result, the recombinant strain ATCC 25755/ds, which co-overexpresses dho1 and sdr1, exhibited a marked increase in butyrate production compared to the wild-type strain under phenolic acid stress. In fed-batch fermentation with a 1.0 g/L mixture of Fer and Coum (1:1, w/w), ATCC 25755/ds showed a 35.1 % increase in butyrate production and a 61.1 % higher productivity. These results indicate that enhancing phenolic acid reduction can significantly improve Clostridia's tolerance to phenolic acids, thereby strengthening the biotransformation of lignocellulose hydrolysates.
Collapse
Affiliation(s)
- Hailing Wei
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Yunnan Minzu University, Kunming 650504, China
| | - Yuexin Wang
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Yunnan Minzu University, Kunming 650504, China
| | - Yu Zeng
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Yunnan Minzu University, Kunming 650504, China
| | - Na Yang
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Yunnan Minzu University, Kunming 650504, China
| | - Yuntao Jiang
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Yunnan Minzu University, Kunming 650504, China; Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650031, China.
| | - Yukai Suo
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Yunnan Minzu University, Kunming 650504, China; Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650031, China.
| |
Collapse
|
2
|
Jia C, Chai R, Zhang M, Guo X, Zhou X, Ding N, Lei C, Dong Z, Zhao J, Ren H, Lu D. Improvement of Saccharomyces cerevisiae strain tolerance to vanillin through heavy ion radiation combined with adaptive laboratory evolution. J Biotechnol 2024; 394:112-124. [PMID: 39197754 DOI: 10.1016/j.jbiotec.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
Vanillin is an inhibitor of lignocellulose hydrolysate, which can reduce the ability of Saccharomyces cerevisiae to utilize lignocellulose, which is an important factor limiting the development of the ethanol fermentation industry. In this study, mutants of vanillin-tolerant yeast named H6, H7, X3, and X8 were bred by heavy ion irradiation (HIR) combined with adaptive laboratory evolution (ALE). Phenotypic tests revealed that the mutants outperformed the original strain WT in tolerance, growth rate, genetic stability and fermentation ability. At 1.6 g/L vanillin concentration, the average OD600 value obtained for mutant strains was 0.95 and thus about 3.4-fold higher than for the wild-type. When the concentration of vanillin was 2.0 g/L, the glucose utilization rate of the mutant was 86.3 % within 96 h, while that of the original strain was only 70.0 %. At this concentration of vanillin, the mitochondrial membrane potential of the mutant strain recovered faster than that of the original strain, and the ROS scavenging ability was stronger. We analyzed the whole transcriptome sequencing map and the whole genome resequencing of the mutant, and found that DEGs such as FLO9, GRC3, PSP2 and SWF1, which have large differential expression multiples and obvious mutation characteristics, play an important role in cell flocculation, rDNA transcription, inhibition of DNA polymerase mutation and protein palmitoylation. These functions can help cells resist vanillin stress. The results show that combining HIR with ALE is an effective mutagenesis strategy. This approach can efficiently obtain Saccharomyces cerevisiae mutants with improved vanillin tolerance, and provide reference for obtaining robust yeast strains with lignocellulose inhibitor tolerance.
Collapse
Affiliation(s)
- Chenglin Jia
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ran Chai
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Miaomiao Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaopeng Guo
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Xiang Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Ding
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cairong Lei
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziyi Dong
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingru Zhao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiwei Ren
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Dong Lu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Fernández-Sandoval MT, García A, Teymennet-Ramírez KV, Arenas-Olivares DY, Martínez-Morales F, Trejo-Hernández MR. Removal of phenolic inhibitors from lignocellulose hydrolysates using laccases for the production of fuels and chemicals. Biotechnol Prog 2024; 40:e3406. [PMID: 37964692 DOI: 10.1002/btpr.3406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/14/2023] [Accepted: 10/23/2023] [Indexed: 11/16/2023]
Abstract
Lignocellulose is the most abundant biopolymer in the biosphere. It is inexpensive and therefore considered an attractive feedstock to produce biofuels and other biochemicals. Thermochemical and/or enzymatic pretreatment is used to release fermentable monomeric sugars. However, a variety of inhibitory by-products such as weak acids, furans, and phenolics that inhibit cell growth and fermentation are also released. Phenolic compounds are among the most toxic components in lignocellulosic hydrolysates and slurries derived from lignin decomposition, affecting overall fermentation processes and production yields and productivity. Ligninolytic enzymes have been shown to lower inhibitor concentrations in these hydrolysates, thereby enhancing their fermentability into valuable products. Among them, laccases, which are capable of oxidizing lignin and a variety of phenolic compounds in an environmentally benign manner, have been used for biomass delignification and detoxification of lignocellulose hydrolysates with promising results. This review discusses the state of the art of different enzymatic approaches to hydrolysate detoxification. In particular, laccases are used in separate or in situ detoxification steps, namely in free enzyme processes or immobilized by cell surface display technology to improve the efficiency of the fermentative process and consequently the production of second-generation biofuels and bio-based chemicals.
Collapse
Affiliation(s)
- M T Fernández-Sandoval
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - A García
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - K V Teymennet-Ramírez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - D Y Arenas-Olivares
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - F Martínez-Morales
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - M R Trejo-Hernández
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| |
Collapse
|
4
|
Zhang J, Hong Y, Li K, Sun Y, Yao C, Ling J, Zhong Y. Enhancing the production of a heterologous Trametes laccase (LacA) by replacement of the major cellulase CBH1 in Trichoderma reesei. J Ind Microbiol Biotechnol 2023; 50:kuad002. [PMID: 36690343 PMCID: PMC10124127 DOI: 10.1093/jimb/kuad002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023]
Abstract
The laccases from white-rot fungi exhibit high redox potential in treating phenolic compounds. However, their application in commercial purposes has been limited because of the relatively low productivity of the native hosts. Here, the laccase A-encoding gene lacA of Trametes sp. AH28-2 was overexpressed under the control of the strong promoter of cbh1 (Pcbh1), the gene encoding the endogenous cellobiohydrolase 1 (CBH1), in the industrial workhorse fungus Trichoderma reesei. Firstly, the lacA expression cassette was randomly integrated into the T. reesei chromosome by genetic transformation. The lacA gene was successfully transcribed, but the laccase couldn't be detected in the liquid fermentation condition. Meanwhile, it was found that the endoplasmic reticulum-associated degradation (ERAD) was strongly activated, indicating that the expression of LacA probably triggered intense endoplasmic reticulum (ER) stress. Subsequently, the lacA expression cassette was added with the downstream region of cbh1 (Tcbh1) to construct the new expression cassette lacA::Δcbh1, which could replace the cbh1 locus in the genome via homologous recombination. After genetic transformation, the lacA gene was integrated into the cbh1 locus and transcribed. And the unfolded protein response (UPR) and ERAD were only slightly induced, for which the loss of endogenous cellulase CBH1 released the pressure of secretion. Finally, the maximum laccase activity of 168.3 U/l was obtained in the fermentation broth. These results demonstrated that the reduction of secretion pressure by deletion of endogenous protein-encoding genes would be an efficient strategy for the secretion of heterologous target proteins in industrial fungi. ONE-SENTENCE SUMMARY The reduction of the secretion pressure by deletion of the endogenous cbh1 gene can contribute to heterologous expression of the laccase (LacA) from Trametes sp. AH28-2 in Trichoderma reesei.
Collapse
Affiliation(s)
- Jiaxin Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| | - Yu Hong
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| | - Kehang Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| | - Yu Sun
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| | - Cheng Yao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| | - Jianya Ling
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| | - Yaohua Zhong
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|
5
|
Zhao F, Zhang Y, Hu J, Shi C, Ao X, Wang S, Lin Y, Sun Z, Han S. Disruption of phosphate metabolism and sterol transport-related genes conferring yeast resistance to vanillin and rapid ethanol production. BIORESOURCE TECHNOLOGY 2023; 369:128489. [PMID: 36528179 DOI: 10.1016/j.biortech.2022.128489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Vanillin is a potent growth-inhibiting factor in Saccharomyces cerevisiae during lignocellulose biorefineries. Here, a haploid gene-deletion library was screened to search for vanillin-tolerant mutants and explain the possible tolerance mechanisms. Twenty-two deletion mutants were identified. The deleted genes in these mutants were involved in phosphate and inositol polyphosphate metabolism and intracellular sterol transport. Activation of the phosphate signaling pathway is not conducive to yeast against the pressure of vanillin. Furthermore, the findings indicate the role of inositol polyphosphates in altering vanillin tolerance by regulating phosphate metabolism. Meanwhile, reducing the transport of sterols from the plasma membrane enhanced tolerance to vanillin. In the presence of vanillin, the representative yeast deletions, pho84Δ and lam3Δ, showed good growth performance and promoted rapid ethanol production. Overall, this study identifies robust yeast strain alternatives for ethanol fermentation of cellulose and provides guidance for further genomic reconstruction of yeast strains.
Collapse
Affiliation(s)
- Fengguang Zhao
- School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yaping Zhang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jian Hu
- School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ce Shi
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiang Ao
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shengding Wang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ying Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhongwei Sun
- Fleming Biological Pharmaceutical Limited Company, Nanning, 530031, China
| | - Shuangyan Han
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
6
|
Valorization of Lignin and Its Derivatives Using Yeast. Processes (Basel) 2022. [DOI: 10.3390/pr10102004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
As the third most plentiful biopolymer after other lignocellulosic derivates such as cellulose and hemicellulose, lignin carries abundant potential as a substitute for petroleum-based products. However, the efficient, practical, value-added product valorization of lignin remains quite challenging. Although several studies have reviewed the valorization of lignin by microorganisms, this present review covers recent studies on the valorization of lignin by employing yeast to obtain products such as single-cell oils (SCOs), enzymes, and other chemical compounds. The use of yeasts has been found to be suitable for the biological conversion of lignin and might provide new insights for future research to develop a yeast strain for lignin to produce other valuable chemical compounds.
Collapse
|
7
|
Biswas SC, Bora A, Mudoi P, Misra T, Das S. Evaluation of Nutritional Value, Antioxidant Activity, and Phenolic Content of Protium serratum Engl and Artocarpus chama Buch.-Ham, Wild Edible Fruits Available in Tripura, a North-Eastern State of India. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1573401318666211221155620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Protium serratum Engl (Indian red pear) and Artocarpus chama Buch.-
Ham (wild jackfruit) are typical wild edible fruits that have a wide range of folk medicinal properties.
Objectives:
Our present study deals with the exploration of nutritional value, antioxidant activity,
and total phenolic content present in Protium serratum Engl and Artocarpus chama Buch.-Ham
fruits.
Methods:
The soxhlet apparatus was used to extract crude samples. The quantitative analysis of
the wild edible fruits was broadly done by proximate and ultimate analysis techniques.
Results:
The results showed that the moisture contents in P. serratum and A. chama Buch. are
78.53% and 74.23%, respectively. The obtained ash (8.59%), fiber (3.17%), total sugar (5.495
mg/100g), and fat (0.66%) contents are high in P. serratum. In contrast, A. chama Buch. has a
high content of protein (0.52%). Vitamin C content is higher in P. serratum (550 mg/100g) than
that in A. chama Buch. (350 mg/100g). The result shows that the Ca and Mg contents are higher
in P. serratum compared to A. chama Buch. Indian red pear shows good antioxidant properties
and has high total phenolic content as compared to wild jackfruit and some commercial fruits.
Conclusion:
The study establishes that further investigation must be done to determine the development
of new products, processing, and preservation techniques so that two underutilized
fruits can become a part of our regular dietary habits. By doing so, we can enrich the fruit basket
of the country.
Collapse
Affiliation(s)
- S. C. Biswas
- Department of Home Science, Krishi Vigyan KendraKhowai, Chebri, Tripura 799207,India
| | - A. Bora
- Department of Food Engineering and Technology, Tezpur Central University, Assam 784028,India
| | - P. Mudoi
- Department of Molecular Biology and Biotechnology, Tezpur Central University, Assam 784028,India
| | - T.K. Misra
- Department of Chemistry, National Institute of Technology Agartala, Tripura 799046,India
| | - S. Das
- Department of Chemistry, National Institute of Technology Patna, Bihar 800005,India
| |
Collapse
|
8
|
Li B, Liu N, Zhao X. Response mechanisms of Saccharomyces cerevisiae to the stress factors present in lignocellulose hydrolysate and strategies for constructing robust strains. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:28. [PMID: 35292082 PMCID: PMC8922928 DOI: 10.1186/s13068-022-02127-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/01/2022] [Indexed: 11/19/2022]
Abstract
Bioconversion of lignocellulosic biomass to biofuels such as bioethanol and high value-added products has attracted great interest in recent decades due to the carbon neutral nature of biomass feedstock. However, there are still many key technical difficulties for the industrial application of biomass bioconversion processes. One of the challenges associated with the microorganism Saccharomyces cerevisiae that is usually used for bioethanol production refers to the inhibition of the yeast by various stress factors. These inhibitive effects seriously restrict the growth and fermentation performance of the strains, resulting in reduced bioethanol production efficiency. Therefore, improving the stress response ability of the strains is of great significance for industrial production of bioethanol. In this article, the response mechanisms of S. cerevisiae to various hydrolysate-derived stress factors including organic acids, furan aldehydes, and phenolic compounds have been reviewed. Organic acids mainly stimulate cells to induce intracellular acidification, furan aldehydes mainly break the intracellular redox balance, and phenolic compounds have a greater effect on membrane homeostasis. These damages lead to inadequate intracellular energy supply and dysregulation of transcription and translation processes, and then activate a series of stress responses. The regulation mechanisms of S. cerevisiae in response to these stress factors are discussed with regard to the cell wall/membrane, energy, amino acids, transcriptional and translational, and redox regulation. The reported key target genes and transcription factors that contribute to the improvement of the strain performance are summarized. Furthermore, the genetic engineering strategies of constructing multilevel defense and eliminating stress effects are discussed in order to provide technical strategies for robust strain construction. It is recommended that robust S. cerevisiae can be constructed with the intervention of metabolic regulation based on the specific stress responses. Rational design with multilevel gene control and intensification of key enzymes can provide good strategies for construction of robust strains.
Collapse
Affiliation(s)
- Bo Li
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China.,Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Nan Liu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China.,Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xuebing Zhao
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China. .,Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
9
|
Asemoloye MD, Marchisio MA, Gupta VK, Pecoraro L. Genome-based engineering of ligninolytic enzymes in fungi. Microb Cell Fact 2021; 20:20. [PMID: 33478513 PMCID: PMC7819241 DOI: 10.1186/s12934-021-01510-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/07/2021] [Indexed: 12/23/2022] Open
Abstract
Background Many fungi grow as saprobic organisms and obtain nutrients from a wide range of dead organic materials. Among saprobes, fungal species that grow on wood or in polluted environments have evolved prolific mechanisms for the production of degrading compounds, such as ligninolytic enzymes. These enzymes include arrays of intense redox-potential oxidoreductase, such as laccase, catalase, and peroxidases. The ability to produce ligninolytic enzymes makes a variety of fungal species suitable for application in many industries, including the production of biofuels and antibiotics, bioremediation, and biomedical application as biosensors. However, fungal ligninolytic enzymes are produced naturally in small quantities that may not meet the industrial or market demands. Over the last decade, combined synthetic biology and computational designs have yielded significant results in enhancing the synthesis of natural compounds in fungi. Main body of the abstract In this review, we gave insights into different protein engineering methods, including rational, semi-rational, and directed evolution approaches that have been employed to enhance the production of some important ligninolytic enzymes in fungi. We described the role of metabolic pathway engineering to optimize the synthesis of chemical compounds of interest in various fields. We highlighted synthetic biology novel techniques for biosynthetic gene cluster (BGC) activation in fungo and heterologous reconstruction of BGC in microbial cells. We also discussed in detail some recombinant ligninolytic enzymes that have been successfully enhanced and expressed in different heterologous hosts. Finally, we described recent advance in CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas (CRISPR associated) protein systems as the most promising biotechnology for large-scale production of ligninolytic enzymes. Short conclusion Aggregation, expression, and regulation of ligninolytic enzymes in fungi require very complex procedures with many interfering factors. Synthetic and computational biology strategies, as explained in this review, are powerful tools that can be combined to solve these puzzles. These integrated strategies can lead to the production of enzymes with special abilities, such as wide substrate specifications, thermo-stability, tolerance to long time storage, and stability in different substrate conditions, such as pH and nutrients.
Collapse
Affiliation(s)
- Michael Dare Asemoloye
- School of Pharmaceutical Science and Technology, Tianjin University, Nankai District, 92 Weijin Road, Tianjin, 300072, China
| | - Mario Andrea Marchisio
- School of Pharmaceutical Science and Technology, Tianjin University, Nankai District, 92 Weijin Road, Tianjin, 300072, China.
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Lorenzo Pecoraro
- School of Pharmaceutical Science and Technology, Tianjin University, Nankai District, 92 Weijin Road, Tianjin, 300072, China.
| |
Collapse
|
10
|
Origin, Impact and Control of Lignocellulosic Inhibitors in Bioethanol Production—A Review. ENERGIES 2020. [DOI: 10.3390/en13184751] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bioethanol production from lignocellulosic biomass is still struggling with many obstacles. One of them is lignocellulosic inhibitors. The aim of this review is to discuss the most known inhibitors. Additionally, the review addresses different detoxification methods to degrade or to remove inhibitors from lignocellulosic hydrolysates. Inhibitors are formed during the pretreatment of biomass. They derive from the structural polymers-cellulose, hemicellulose and lignin. The formation of inhibitors depends on the pretreatment conditions. Inhibitors can have a negative influence on both the enzymatic hydrolysis and fermentation of lignocellulosic hydrolysates. The inhibition mechanisms can be, for example, deactivation of enzymes or impairment of vital cell structures. The toxicity of each inhibitor depends on its chemical and physical properties. To decrease the negative effects of inhibitors, different detoxification methods have been researched. Those methods focus on the chemical modification of inhibitors into less toxic forms or on the separation of inhibitors from lignocellulosic hydrolysates. Each detoxification method has its limitations on the removal of certain inhibitors. To choose a suitable detoxification method, a deep molecular understanding of the inhibition mechanism and the inhibitor formation is necessary.
Collapse
|
11
|
Directed Evolution of a Homodimeric Laccase from Cerrena unicolor BBP6 by Random Mutagenesis and In Vivo Assembly. Int J Mol Sci 2018; 19:ijms19102989. [PMID: 30274366 PMCID: PMC6213006 DOI: 10.3390/ijms19102989] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/19/2018] [Accepted: 09/27/2018] [Indexed: 11/21/2022] Open
Abstract
Laccases have great potential for industrial applications due to their green catalytic properties and broad substrate specificities, and various studies have attempted to improve the catalytic performance of these enzymes. Here, to the best of our knowledge, we firstly report the directed evolution of a homodimeric laccase from Cerrena unicolor BBP6 fused with α-factor prepro-leader that was engineered through random mutagenesis followed by in vivo assembly in Saccharomyces cerevisiae. Three evolved fusion variants selected from ~3500 clones presented 31- to 37-fold increases in total laccase activity, with better thermostability and broader pH profiles. The evolved α-factor prepro-leader enhanced laccase expression levels by up to 2.4-fold. Protein model analysis of these variants reveals that the beneficial mutations have influences on protein pKa shift, subunit interaction, substrate entrance, and C-terminal function.
Collapse
|
12
|
Zheng DQ, Jin XN, Zhang K, Fang YH, Wu XC. Novel strategy to improve vanillin tolerance and ethanol fermentation performances of Saccharomycere cerevisiae strains. BIORESOURCE TECHNOLOGY 2017; 231:53-58. [PMID: 28192726 DOI: 10.1016/j.biortech.2017.01.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/18/2017] [Accepted: 01/20/2017] [Indexed: 06/06/2023]
Abstract
The aim of this work was to develop a novel strategy for improving the vanillin tolerance and ethanol fermentation performances of Saccharomyces cerevisiae strains. Isogeneic diploid, triploid, and tetraploid S. cerevisiae strains were generated by genome duplication of haploid strain CEN.PK2-1C. Ploidy increments improved vanillin tolerance and diminished proliferation capability. Antimitotic drug methyl benzimidazol-2-ylcarbamate (MBC) was used to introduce chromosomal aberrations into the tetraploid S. cerevisiae strain. Interestingly, aneuploid mutants with DNA contents between triploid and tetraploid were more resistant to vanillin and showed faster ethanol fermentation rates than all euploid strains. The physiological characteristics of these mutants suggest that higher bioconversion capacities of vanillin and ergosterol contents might contribute to improved vanillin tolerance. This study demonstrates that genome duplication and MBC treatment is a powerful strategy to improve the vanillin tolerance of yeast strains.
Collapse
Affiliation(s)
- Dao-Qiong Zheng
- College of Life Science, Zhejiang University, Hangzhou 310058, Zhejiang Province, China; Ocean College, Zhejiang University, Zhoushan, Zhejiang Province, China
| | - Xin-Na Jin
- College of Life Science, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Ke Zhang
- College of Life Science, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Ya-Hong Fang
- College of Life Science, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Xue-Chang Wu
- College of Life Science, Zhejiang University, Hangzhou 310058, Zhejiang Province, China.
| |
Collapse
|
13
|
Wang X, Liang Z, Hou J, Shen Y, Bao X. The Absence of the Transcription Factor Yrr1p, Identified from Comparative Genome Profiling, Increased Vanillin Tolerance Due to Enhancements of ABC Transporters Expressing, rRNA Processing and Ribosome Biogenesis in Saccharomyces cerevisiae. Front Microbiol 2017; 8:367. [PMID: 28360888 PMCID: PMC5352702 DOI: 10.3389/fmicb.2017.00367] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/21/2017] [Indexed: 12/26/2022] Open
Abstract
Enhancing the tolerance of Saccharomyces cerevisiae to inhibitors derived from lignocellulose is conducive to producing biofuel and chemicals using abundant lignocellulosic materials. Vanillin is a major type of phenolic inhibitor in lignocellulose hydrolysates for S. cerevisiae. In the present work, the factors beneficial to vanillin resistance in yeast were identified from the vanillin-resistant strain EMV-8, which was derived from strain NAN-27 by adaptive evolution. We found 450 SNPs and 44 genes with InDels in the vanillin-tolerant strain EMV-8 by comparing the genome sequences of EMV-8 and NAN-27. To investigate the effects of InDels, InDels were deleted in BY4741, respectively. We demonstrated that the deletion of YRR1 improved vanillin tolerance of strain. In the presence of 6 mM vanillin, deleting YRR1 increase the maximum specific growth rate and the vanillin consumption rate by 142 and 51%, respectively. The subsequent transcriptome analysis revealed that deleting YRR1 resulted in changed expression of over 200 genes in the presence of 5 mM vanillin. The most marked changes were the significant up-regulation of the dehydrogenase ADH7, several ATP-binding cassette (ABC) transporters, and dozens of genes involved in ribosome biogenesis and rRNA processing. Coincidently, the crude enzyme solution of BY4741(yrr1Δ) exhibited higher NADPH-dependent vanillin reduction activity than control. In addition, overexpressing the ABC transporter genes PDR5, YOR1, and SNQ2, as well as the RNA helicase gene DBP2, increased the vanillin tolerance of strain. Interestingly, unlike the marked changes we mentioned above, under vanillin-free conditions, there are only limited transcriptional differences between wildtype and yrr1Δ. This indicated that vanillin might act as an effector in Yrr1p-related regulatory processes. The new findings of the relationship between YRR1 and vanillin tolerance, as well as the contribution of rRNA processing and ribosome biogenesis to enhancing S. cerevisiae vanillin tolerance, provide novel targets for genetic engineering manipulation to improve microbes' tolerance to lignocellulose hydrolysate.
Collapse
Affiliation(s)
- Xinning Wang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University Jinan, China
| | - Zhenzhen Liang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University Jinan, China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University Jinan, China
| | - Yu Shen
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University Jinan, China
| | - Xiaoming Bao
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong UniversityJinan, China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of TechnologyJinan, China
| |
Collapse
|
14
|
Abstract
Laccases are multi-copper oxidoreductases which catalyze the oxidation of a wide range of substrates during the simultaneous reduction of oxygen to water. These enzymes, originally found in fungi, plants, and other natural sources, have many industrial and biotechnological applications. They are used in the food, textile, pulp, and paper industries, as well as for bioremediation purposes. Although natural hosts can provide relatively high levels of active laccases after production optimization, heterologous expression can bring, moreover, engineered enzymes with desired properties, such as different substrate specificity or improved stability. Hence, diverse hosts suitable for laccase production are reviewed here, while the greatest emphasis is placed on yeasts which are commonly used for industrial production of various proteins. Different approaches to optimize the laccase expression and activity are also discussed in detail here.
Collapse
Affiliation(s)
- Zuzana Antošová
- Department of Membrane Transport, Institute of Physiology, Czech Academy of Sciences (CAS), Vídeňská 1083, 142 20, Prague 4, Czech Republic.
| | - Hana Sychrová
- Department of Membrane Transport, Institute of Physiology, Czech Academy of Sciences (CAS), Vídeňská 1083, 142 20, Prague 4, Czech Republic.
| |
Collapse
|
15
|
Narayanan V, Sànchez i Nogué V, van Niel EWJ, Gorwa-Grauslund MF. Adaptation to low pH and lignocellulosic inhibitors resulting in ethanolic fermentation and growth of Saccharomyces cerevisiae. AMB Express 2016; 6:59. [PMID: 27566648 PMCID: PMC5001960 DOI: 10.1186/s13568-016-0234-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/18/2016] [Indexed: 01/12/2023] Open
Abstract
Lignocellulosic bioethanol from renewable feedstocks using Saccharomyces cerevisiae is a promising alternative to fossil fuels owing to environmental challenges. S. cerevisiae is frequently challenged by bacterial contamination and a combination of lignocellulosic inhibitors formed during the pre-treatment, in terms of growth, ethanol yield and productivity. We investigated the phenotypic robustness of a brewing yeast strain TMB3500 and its ability to adapt to low pH thereby preventing bacterial contamination along with lignocellulosic inhibitors by short-term adaptation and adaptive lab evolution (ALE). The short-term adaptation strategy was used to investigate the inherent ability of strain TMB3500 to activate a robust phenotype involving pre-culturing yeast cells in defined medium with lignocellulosic inhibitors at pH 5.0 until late exponential phase prior to inoculating them in defined media with the same inhibitor cocktail at pH 3.7. Adapted cells were able to grow aerobically, ferment anaerobically (glucose exhaustion by 19 ± 5 h to yield 0.45 ± 0.01 g ethanol g glucose(-1)) and portray significant detoxification of inhibitors at pH 3.7, when compared to non-adapted cells. ALE was performed to investigate whether a stable strain could be developed to grow and ferment at low pH with lignocellulosic inhibitors in a continuous suspension culture. Though a robust population was obtained after 3600 h with an ability to grow and ferment at pH 3.7 with inhibitors, inhibitor robustness was not stable as indicated by the characterisation of the evolved culture possibly due to phenotypic plasticity. With further research, this short-term adaptation and low pH strategy could be successfully applied in lignocellulosic ethanol plants to prevent bacterial contamination.
Collapse
Affiliation(s)
- Venkatachalam Narayanan
- Division of Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| | - Violeta Sànchez i Nogué
- National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401 USA
| | - Ed W. J. van Niel
- Division of Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| | - Marie F. Gorwa-Grauslund
- Division of Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| |
Collapse
|
16
|
Wang X, Liang Z, Hou J, Bao X, Shen Y. Identification and functional evaluation of the reductases and dehydrogenases from Saccharomyces cerevisiae involved in vanillin resistance. BMC Biotechnol 2016; 16:31. [PMID: 27036139 PMCID: PMC4818428 DOI: 10.1186/s12896-016-0264-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/21/2016] [Indexed: 11/24/2022] Open
Abstract
Background Vanillin, a type of phenolic released during the pre-treatment of lignocellulosic materials, is toxic to microorganisms and therefore its presence inhibits the fermentation. The vanillin can be reduced to vanillyl alcohol, which is much less toxic, by the ethanol producer Saccharomyces cerevisiae. The reducing capacity of S. cerevisiae and its vanillin resistance are strongly correlated. However, the specific enzymes and their contribution to the vanillin reduction are not extensively studied. In our previous work, an evolved vanillin-resistant strain showed an increased vanillin reduction capacity compared with its parent strain. The transcriptome analysis suggested the reductases and dehydrogenases of this vanillin resistant strain were up-regulated. Using this as a starting point, 11 significantly regulated reductases and dehydrogenases were selected in the present work for further study. The roles of these reductases and dehydrogenases in the vanillin tolerance and detoxification abilities of S. cerevisiae are described. Results Among the candidate genes, the overexpression of the alcohol dehydrogenase gene ADH6, acetaldehyde dehydrogenase gene ALD6, glucose-6-phosphate 1-dehydrogenase gene ZWF1, NADH-dependent aldehyde reductase gene YNL134C, and aldo-keto reductase gene YJR096W increased 177, 25, 6, 15, and 18 % of the strain μmax in the medium containing 1 g L−1 vanillin. The in vitro detected vanillin reductase activities of strain overexpressing ADH6, YNL134C and YJR096W were notably higher than control. The vanillin specific reduction rate increased by 8 times in ADH6 overexpressed strain but not in YNL134C and YJR096W overexpressed strain. This suggested that the enzymes encoded by YNL134C and YJR096W might prefer other substrate and/or could not show their effects on vanillin on the high background of Adh6p in vivo. Overexpressing ALD6 and ZWF1 mainly increased the [NADPH]/[NADP+] and [GSH]/[GSSG] ratios but not the vanillin reductase activities. Their contribution to strain growth and vanillin reduction were balancing the redox state of strain when vanillin was presented. Conclusions Beside the reported Adh6p, the enzymes encoded by YNL134C and YJR096W were proved to have vanillin reduction activity in present study. While ALD6 and ZWF1 did not directly reduce vanillin to vanillyl alcohol, their contribution to vanillin resistance primarily depended on the enhancement of the reducing equivalent supply. Electronic supplementary material The online version of this article (doi:10.1186/s12896-016-0264-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xinning Wang
- State Key Laboratory of Microbial Technology, Shandong University, Shan Da Nan Road 27, Jinan, 250100, China
| | - Zhenzhen Liang
- State Key Laboratory of Microbial Technology, Shandong University, Shan Da Nan Road 27, Jinan, 250100, China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Shan Da Nan Road 27, Jinan, 250100, China
| | - Xiaoming Bao
- State Key Laboratory of Microbial Technology, Shandong University, Shan Da Nan Road 27, Jinan, 250100, China.
| | - Yu Shen
- State Key Laboratory of Microbial Technology, Shandong University, Shan Da Nan Road 27, Jinan, 250100, China.
| |
Collapse
|
17
|
Chen P, Yan L, Wu Z, Li S, Bai Z, Yan X, Wang N, Liang N, Li H. A microbial transformation using Bacillus subtilis B7-S to produce natural vanillin from ferulic acid. Sci Rep 2016; 6:20400. [PMID: 26841717 PMCID: PMC4740768 DOI: 10.1038/srep20400] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 01/04/2016] [Indexed: 11/09/2022] Open
Abstract
Bacillus subtilis strain B7-S screened from18 strains is an aerobic, endospore-forming, model organism of Gram-positive bacteria which is capable to form vanillin during ferulic acid bioconversion. The bioconversion of ferulic acid to vanillin by Bacillus subtilis B7-S (B. subtilis B7-S) was investigated. Based on our results, the optimum bioconversion conditions for the production of vanillin by B. subtilis B7-S can be summarized as follows: temperature 35 °C; initial pH 9.0; inoculum volume 5%; ferulic acid concentration 0.6 g/L; volume of culture medium 20%; and shaking speed 200 r/min. Under these conditions, several repeated small-scale batch experiments showed that the maximum conversion efficiency was 63.30% after 3 h of bioconversion. The vanillin products were confirmed by spectral data achieved from UV-vis, inductively coupled plasma atomic emission spectroscope (ICP-AES) and Fourier transform infrared spectrometer (FT-IR) spectra. Scanning electron microscopy (SEM) and transmission electron spectroscopy (TEM) results confirmed that the cell surface of B. subtilis plays a role in the induction of ferulic acid tolerance. These results demonstrate that B. subtilis B7-S has the potential for use in vanillin production through bioconversion of ferulic acid.
Collapse
Affiliation(s)
- Peng Chen
- School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou, 730020, PR China
| | - Lei Yan
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Zhengrong Wu
- School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou, 730020, PR China
| | - Suyue Li
- Gansu Institute of Business and Technology, Yannan Road No. 449, Lanzhou, 730010, PR China
| | - Zhongtian Bai
- The First Hospital of Lanzhou University, Donggang West Road No. 1, Lanzhou, 730020, PR China
| | - Xiaojuan Yan
- Gansu Institute of Business and Technology, Yannan Road No. 449, Lanzhou, 730010, PR China
| | - Ningbo Wang
- Gansu Institute of Business and Technology, Yannan Road No. 449, Lanzhou, 730010, PR China
| | - Ning Liang
- Gansu Institute of Business and Technology, Yannan Road No. 449, Lanzhou, 730010, PR China
| | - Hongyu Li
- School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou, 730020, PR China
| |
Collapse
|
18
|
Fang Z, Liu X, Chen L, Shen Y, Zhang X, Fang W, Wang X, Bao X, Xiao Y. Identification of a laccase Glac15 from Ganoderma lucidum 77002 and its application in bioethanol production. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:54. [PMID: 25883681 PMCID: PMC4399389 DOI: 10.1186/s13068-015-0235-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 03/09/2015] [Indexed: 05/24/2023]
Abstract
BACKGROUND Laccases have potential applications in detoxification of lignocellulosic biomass after thermochemical pretreatment and production of value-added products or biofuels from renewable biomass. However, their application in large-scale industrial and environmental processes has been severely thwarted by the high cost of commercial laccases. Therefore, it is necessary to identify new laccases with lower cost but higher activity to detoxify lignocellulosic hydrolysates and better efficiency to produce biofuels such as bioethanol. Laccases from Ganoderma lucidum represent proper candidates in processing of lignocellulosic biomass. RESULTS G. lucidum 77002 produces three laccase isoenzymes with a total laccase activity of 141.1 U/mL within 6 days when using wheat bran and peanut powder as energy sources in liquid culture medium. A new isoenzyme named Glac15 was identified, purified, and characterized. Glac15 possesses an optimum pH of 4.5 to 5.0 and a temperature range of 45°C to 55°C for the substrates tested. It was stable at pH values ranging from 5.0 to 7.0 and temperatures lower than 55°C, with more than 80% activity retained after incubation for 2 h. When used in bioethanol production process, 0.05 U/mL Glac15 removed 84% of the phenolic compounds in prehydrolysate, and the yeast biomass reached 11.81 (optimal density at 600 nm (OD600)), compared to no growth in the untreated one. Addition of Glac15 before cellulase hydrolysis had no significant effect on glucose recovery. However, ethanol yield were improved in samples treated with laccases compared to that in control samples. The final ethanol concentration of 9.74, 10.05, 10.11, and 10.81 g/L were obtained from samples containing only solid content, solid content treated with Glac15, solid content containing 50% prehydrolysate, and solid content containing 50% prehydrolysate treated with Glac15, respectively. CONCLUSIONS The G. lucidum laccase Glac15 has potentials in bioethanol production industry.
Collapse
Affiliation(s)
- Zemin Fang
- />School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601 China
- />Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, 111 Jiulong Road, Hefei, Anhui 230601 China
| | - Xiaoman Liu
- />School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601 China
- />Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, 111 Jiulong Road, Hefei, Anhui 230601 China
| | - Liyuan Chen
- />The State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, 27 Shanda Nanlu, Jinan, Shandong 250100 China
| | - Yu Shen
- />The State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, 27 Shanda Nanlu, Jinan, Shandong 250100 China
| | - Xuecheng Zhang
- />School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601 China
- />Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, 111 Jiulong Road, Hefei, Anhui 230601 China
| | - Wei Fang
- />School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601 China
- />Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, 111 Jiulong Road, Hefei, Anhui 230601 China
| | - Xiaotang Wang
- />Department of Chemistry & Biochemistry, Florida International University, Miami, FL 33199 USA
| | - Xiaoming Bao
- />The State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, 27 Shanda Nanlu, Jinan, Shandong 250100 China
| | - Yazhong Xiao
- />School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601 China
- />Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, 111 Jiulong Road, Hefei, Anhui 230601 China
| |
Collapse
|
19
|
Yang J, Ng TB, Lin J, Ye X. A novel laccase from basidiomycete Cerrena sp.: Cloning, heterologous expression, and characterization. Int J Biol Macromol 2015; 77:344-9. [PMID: 25825077 DOI: 10.1016/j.ijbiomac.2015.03.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/19/2015] [Accepted: 03/20/2015] [Indexed: 11/26/2022]
Abstract
A novel laccase gene Lac1 and its cDNA were cloned from a white-rot fungus Cerrena sp. and characterized. The 1554-bp cDNA of Lac1 encoded a mature protein with 497 amino acids, preceded by a signal peptide of 20 amino acids. An unconventional intron splice site and incomplete splicing variants of Lac1 were observed. Lac1 was heterologously expressed in the yeast host Pichia pastoris, and a maximal laccase activity of 6.3UmL(-1) in the fermentation broth was achieved after fermentation for 9 days. The recombinant protein rLac1 was purified, and its enzymatic properties and functional characteristics were investigated. When ABTS was used as the substrate, the enzyme was most active at pH 3.5 and 55°C, and stable at pH 4-10 and 20-60°C. The Km and kcat values of rLac1 toward ABTS were 28.9 μM and 332.4s(-1), respectively. Furthermore, rLac1 was tolerant to common metal ions up to 100mM concentration and capable of decolorizing structurally different dyes in the absence of a redox mediator. Hence, Lac1 may be useful for industrial applications, such as dye decolorization and bioremediation.
Collapse
Affiliation(s)
- Jie Yang
- College of Biological Sciences and Technology, Fuzhou University, Fuzhou, Fujian 350116, China; Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou, Fujian 350116, China
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Juan Lin
- College of Biological Sciences and Technology, Fuzhou University, Fuzhou, Fujian 350116, China; Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou, Fujian 350116, China
| | - Xiuyun Ye
- College of Biological Sciences and Technology, Fuzhou University, Fuzhou, Fujian 350116, China; Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou, Fujian 350116, China.
| |
Collapse
|
20
|
Shen Y, Li H, Wang X, Zhang X, Hou J, Wang L, Gao N, Bao X. High vanillin tolerance of an evolved Saccharomyces cerevisiae strain owing to its enhanced vanillin reduction and antioxidative capacity. J Ind Microbiol Biotechnol 2014; 41:1637-45. [PMID: 25261986 DOI: 10.1007/s10295-014-1515-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 09/19/2014] [Indexed: 11/24/2022]
Abstract
The phenolic compounds present in hydrolysates pose significant challenges for the sustainable lignocellulosic materials refining industry. Three Saccharomyces cerevisiae strains with high tolerance to lignocellulose hydrolysate were obtained through ethyl methanesulfonate mutation and adaptive evolution. Among them, strain EMV-8 exhibits specific tolerance to vanillin, a phenolic compound common in lignocellulose hydrolysate. The EMV-8 maintains a specific growth rate of 0.104 h(-1) in 2 g L(-1) vanillin, whereas the reference strain cannot grow. Physiological studies revealed that the vanillin reduction rate of EMV-8 is 1.92-fold higher than its parent strain, and the Trolox equivalent antioxidant capacity of EMV-8 is 15 % higher than its parent strain. Transcriptional analysis results confirmed an up-regulated oxidoreductase activity and antioxidant activity in this strain. Our results suggest that enhancing the antioxidant capacity and oxidoreductase activity could be a strategy to engineer S. cerevisiae for improved vanillin tolerance.
Collapse
Affiliation(s)
- Yu Shen
- The State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Xu L, Shen Y, Hou J, Peng B, Tang H, Bao X. Secretory pathway engineering enhances secretion of cellobiohydrolase I from Trichoderma reesei in Saccharomyces cerevisiae. J Biosci Bioeng 2014; 117:45-52. [DOI: 10.1016/j.jbiosc.2013.06.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 05/27/2013] [Accepted: 06/16/2013] [Indexed: 10/26/2022]
|
22
|
|
23
|
Improvement of L-arabinose fermentation by modifying the metabolic pathway and transport in Saccharomyces cerevisiae. BIOMED RESEARCH INTERNATIONAL 2013; 2013:461204. [PMID: 24195072 PMCID: PMC3806156 DOI: 10.1155/2013/461204] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 08/25/2013] [Indexed: 11/17/2022]
Abstract
The L-arabinose utilization pathway was established in Saccharomyces cerevisiae, by expressing the codon-optimized araA, araB, and araD genes of Lactobacillus plantarum. After overexpressing the TAL1, TKL1, RPE1, RKI1, and GAL2 genes and adaptive evolution, the L-arabinose utilization of the recombinant strain became efficient. The resulting strain displayed a maximum specific growth rate of 0.075 h−1, a maximum specific L-arabinose consumption rate of 0.61 g h−1 g−1 dry cell weight, and a promising ethanol yield of 0.43 g g−1 from L-arabinose fermentation.
Collapse
|
24
|
Fang W, Fang Z, Zhou P, Chang F, Hong Y, Zhang X, Peng H, Xiao Y. Evidence for lignin oxidation by the giant panda fecal microbiome. PLoS One 2012; 7:e50312. [PMID: 23209704 PMCID: PMC3508987 DOI: 10.1371/journal.pone.0050312] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 10/18/2012] [Indexed: 11/19/2022] Open
Abstract
The digestion of lignin and lignin-related phenolic compounds from bamboo by giant pandas has puzzled scientists because of the lack of lignin-degrading genes in the genome of the bamboo-feeding animals. We constructed a 16S rRNA gene library from the microorganisms derived from the giant panda feces to identify the possibility for the presence of potential lignin-degrading bacteria. Phylogenetic analysis showed that the phylotypes of the intestinal bacteria were affiliated with the phyla Proteobacteria (53%) and Firmicutes (47%). Two phylotypes were affiliated with the known lignin-degrading bacterium Pseudomonas putida and the mangrove forest bacteria. To test the hypothesis that microbes in the giant panda gut help degrade lignin, a metagenomic library of the intestinal bacteria was constructed and screened for clones that contained genes encoding laccase, a lignin-degrading related enzyme. A multicopper oxidase gene, designated as lac51, was identified from a metagenomic clone. Sequence analysis and copper content determination indicated that Lac51 is a laccase rather than a metallo-oxidase and may work outside its original host cell because it has a TAT-type signal peptide and a transmembrane segment at its N-terminus. Lac51 oxidizes a variety of lignin-related phenolic compounds, including syringaldazine, 2,6-dimethoxyphenol, ferulic acid, veratryl alcohol, guaiacol, and sinapinic acid at conditions that simulate the physiologic environment in giant panda intestines. Furthermore, in the presence of 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), syringic acid, or ferulic acid as mediators, the oxidative ability of Lac51 on lignin was promoted. The absorbance of lignin at 445 nm decreased to 36% for ABTS, 51% for syringic acid, and 51% for ferulic acid after incubation for 10 h. Our findings demonstrate that the intestinal bacteria of giant pandas may facilitate the oxidation of lignin moieties, thereby clarifying the digestion of bamboo lignin by the animal.
Collapse
Affiliation(s)
- Wei Fang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui, China
| | - Zemin Fang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui, China
| | - Peng Zhou
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui, China
| | - Fei Chang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui, China
| | - Yuzhi Hong
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui, China
| | - Xuecheng Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui, China
| | - Hui Peng
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui, China
| | - Yazhong Xiao
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui, China
- * E-mail:
| |
Collapse
|
25
|
Laluce C, Schenberg ACG, Gallardo JCM, Coradello LFC, Pombeiro-Sponchiado SR. Advances and Developments in Strategies to Improve Strains of Saccharomyces cerevisiae and Processes to Obtain the Lignocellulosic Ethanol−A Review. Appl Biochem Biotechnol 2012; 166:1908-26. [DOI: 10.1007/s12010-012-9619-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 02/16/2012] [Indexed: 10/28/2022]
|