1
|
Alzabaidi AR, Alabbasi N, Meilan R, Meiners SJ, Canam T. Transcriptome response of the white-rot fungus Trametes versicolor to hybrid poplar exhibiting unique lignin chemistry. Fungal Biol Biotechnol 2025; 12:2. [PMID: 40045426 PMCID: PMC11883944 DOI: 10.1186/s40694-025-00193-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/19/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Production of biofuels and bioproducts from lignocellulosic material is limited due to the complexity of the cell wall structure. This necessitates the use of physical, chemical, and/or physico-chemical pretreatment technologies, which adds significant capital, operational, and environmental costs. Biological pretreatment strategies have the potential to mitigate these expenses by harnessing the innate ability of specialized bacteria and fungi to deconstruct lignocellulose. White-rot fungi (e.g. Trametes versicolor) have been shown to be effective at biological pretreatment of lignocellulose, yet it was uncertain if these fungi are feedstock agnostic or are able to sense subtle changes in cell wall chemistry. RESULTS The present study examined the transcriptome response by Trametes versicolor to transgenic hybrid poplar (Populus tremula × alba) lines with altered syringyl (S) and guaiacyl (G) lignin. Specifically, the transcriptional response of the fungus to wild-type wood was compared to that from the wood of six transgenic lines within three lignin phenotypes, LSX (low S with hydroxy-G), LSHG (low S with high G), and HS (high S), with 350 transcripts showing significant differences among the samples. The transcriptome of T. versicolor varied according to the lignin phenotype of the wood, with the LSX wood resulting in the most substantial changes in T. versicolor transcript abundance. Specifically, the LSX wood led to 50 upregulated and 48 downregulated transcripts from WT at the twofold or greater threshold. For example, transcripts for the lignin peroxidases LiP3 and LiP10 were downregulated (approximately 12X and 31X lower, respectively) by the fungus on LSX wood compared to wild-type wood. LSX wood also resulted in approximately 11X lower transcript numbers of endo-β-1,4-glucanase yet led to an increase in expression of certain hemicellulases, further highlighting the altered deconstruction strategy by the fungus on this wood type. CONCLUSIONS Overall, the results of this study demonstrated that T. versicolor was able to respond to transgenic poplar wood with the same genetic background, which has important implications for biological pretreatment strategies involving feedstocks that are genetically modified or have considerable natural variations in cell wall chemistry.
Collapse
Affiliation(s)
- Anbarah R Alzabaidi
- Department of Biological Sciences, Eastern Illinois University, 600 Lincoln Avenue, Charleston, IL, 61920-3099, USA
| | - Noor Alabbasi
- Department of Biological Sciences, Eastern Illinois University, 600 Lincoln Avenue, Charleston, IL, 61920-3099, USA
| | - Richard Meilan
- Forestry and Natural Resources, Purdue University, 715 West State Street, West Lafayette, IN, 47907-2061, USA
| | - Scott J Meiners
- Department of Biological Sciences, Eastern Illinois University, 600 Lincoln Avenue, Charleston, IL, 61920-3099, USA
| | - Thomas Canam
- Department of Biological Sciences, Eastern Illinois University, 600 Lincoln Avenue, Charleston, IL, 61920-3099, USA.
- Center for Clean Energy Research and Education, Eastern Illinois University, 600 Lincoln Avenue, Charleston, IL, 61920-3099, USA.
| |
Collapse
|
2
|
Dao CN, Tabil LG, Mupondwa E, Dumonceaux T. Modeling the microbial pretreatment of camelina straw and switchgrass by Trametes versicolor and Phanerochaete chrysosporium via solid-state fermentation process: A growth kinetic sub-model in the context of biomass-based biorefineries. Front Microbiol 2023; 14:1130196. [PMID: 37089565 PMCID: PMC10117130 DOI: 10.3389/fmicb.2023.1130196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/10/2023] [Indexed: 04/08/2023] Open
Abstract
Advancing microbial pretreatment of lignocellulose has the potential not only to reduce the carbon footprint and environmental impacts of the pretreatment processes from cradle-to-grave, but also increase biomass valorization, support agricultural growers, and boost the bioeconomy. Mathematical modeling of microbial pretreatment of lignocellulose provides insights into the metabolic activities of the microorganisms as responses to substrate and environment and provides baseline targets for the design, development, and optimization of solid-state-fermentation (SSF) bioreactors, including substrate concentrations, heat and mass transfer. In this study, the growth of Trametes versicolor 52J (TV52J), Trametes versicolor m4D (TVm4D), and Phanerochaete chrysosporium (PC) on camelina straw (CS) and switchgrass (SG) during an SSF process was examined. While TV52J illustrated the highest specific growth rate and maximum cell concentration, a mutant strain deficient in cellulose catabolism, TVm4D, performed best in terms of holocellulose preservation and delignification. The hybrid logistic-Monod equation along with holocellulose consumption and delignification models described well the growth kinetics. The oxygen uptake rate and carbon dioxide production rate were directly correlated to the fungal biomass concentration; however, a more sophisticated non-linear relationship might explain those correlations better than a linear model. This study provides an informative baseline for developing SSF systems to integrate fungal pretreatment into a large-scale, on-farm, wet-storage process for the utilization of agricultural residues as feedstocks for biofuel production.
Collapse
Affiliation(s)
- Cuong Ngoc Dao
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- *Correspondence: Cuong Ngoc Dao
| | - Lope G. Tabil
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Edmund Mupondwa
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, SK, Canada
| | - Tim Dumonceaux
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, SK, Canada
- Tim Dumonceaux
| |
Collapse
|
3
|
Tišma M, Žnidaršič-Plazl P, Šelo G, Tolj I, Šperanda M, Bucić-Kojić A, Planinić M. Trametes versicolor in lignocellulose-based bioeconomy: State of the art, challenges and opportunities. BIORESOURCE TECHNOLOGY 2021; 330:124997. [PMID: 33752945 DOI: 10.1016/j.biortech.2021.124997] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Although Trametes versicolor is one of the most investigated white-rot fungi, the industrial application of this fungus and its metabolites is still far from reaching its full potential. This review aims to highlight the opportunities and challenges for the industrial use of T. versicolor according to the principles of circular bioeconomy. The use of this fungus can contribute significantly to the success of efforts to valorize lignocellulosic waste biomass and industrial lignocellulosic byproducts. Various techniques of T. versicolor cultivation for enzyme production, food and feed production, wastewater treatment, and biofuel production are listed and critically evaluated, highlighting bottlenecks and future perspectives. Applications of T. versicolor crude laccase extracts in wastewater treatment, removal of lignin from lignocellulose, and in various biotransformations are analyzed separately.
Collapse
Affiliation(s)
- Marina Tišma
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 18, HR-31000 Osijek, Croatia.
| | - Polona Žnidaršič-Plazl
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Gordana Šelo
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 18, HR-31000 Osijek, Croatia
| | - Ivana Tolj
- Josip Juraj Strossmayer University of Osijek, University Hospital Center of Osijek, Clinical of Internal Medicine, Department of Nephrology, Josipa Hutlera 4, HR-31000 Osijek, Croatia
| | - Marcela Šperanda
- Josip Juraj Strossmayer University of Osijek, Faculty of Agrobiotechnical Sciences Osijek, Vladimira Preloga 1, HR - 31000 Osijek, Croatia
| | - Ana Bucić-Kojić
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 18, HR-31000 Osijek, Croatia
| | - Mirela Planinić
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 18, HR-31000 Osijek, Croatia
| |
Collapse
|
4
|
Biological Pretreatment by Solid-State Fermentation of Oat Straw to Enhance Physical Quality of Pellets. J CHEM-NY 2020. [DOI: 10.1155/2020/3060475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Pelleting can increase the efficiency of handling and transportation of biomass. Pretreatment obtains lignin fragments by disrupting the lignocellulosic structure of biomass and ensures the high-quality compressed pellets. In this study, solid-state fermentation (SSF) is used as a biological method to improve the quality of pellets of oat straw. SSF of oat straw using Trametes versicolor 52J (TV52J) and Phanerochaete chrysosporium (PC) was conducted. Response surface methodology (RSM) was employed by using a four-factor, three-level Box–Behnken design with fermentation time (days), moisture content (%), particle size (mm), and fermentation temperature (°C) as independent parameters. Pellet density, dimensional stability, and tensile strength were the response variables. The optimization options of fermentation time (33.96 and 35 days), moisture content (70%), particle size (150 and 50 mm), and fermentation temperature (22°C) of oat straw pretreated with these two fungal strains were obtained. The microscopic structural changes of oat straw caused by biological pretreatment were investigated by scanning electron microscopy (SEM). Observation results of SEM showed that the connection between single fibers became relatively loose, and this was beneficial to improve the physical quality of the pellets.
Collapse
|
5
|
Ding C, Wang X, Li M. Evaluation of six white-rot fungal pretreatments on corn stover for the production of cellulolytic and ligninolytic enzymes, reducing sugars, and ethanol. Appl Microbiol Biotechnol 2019; 103:5641-5652. [DOI: 10.1007/s00253-019-09884-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/12/2019] [Accepted: 04/29/2019] [Indexed: 11/24/2022]
|
6
|
Abstract
Fungal pretreatment is a biological process that uses rotting fungi to reduce the recalcitrance and enhance the enzymatic digestibility of lignocellulosic feedstocks at low temperature, without added chemicals and wastewater generation. Thus, it has been presumed to be low cost. However, fungal pretreatment requires longer incubation times and generates lower yields than traditional pretreatments. Thus, this study assesses the techno-economic feasibility of a fungal pretreatment facility for the production of fermentable sugars for a 75,700 m3 (20 million gallons) per year cellulosic bioethanol plant. Four feedstocks were evaluated: perennial grasses, corn stover, agricultural residues other than corn stover, and hardwood. The lowest estimated sugars production cost ($1.6/kg) was obtained from corn stover, and was 4–15 times as much as previous estimates for conventional pretreatment technologies. The facility-related cost was the major contributor (46–51%) to the sugar production cost, mainly because of the requirement of large equipment in high quantities, due to process bottlenecks such as low sugar yields, low feedstock bulk density, long fungal pretreatment times, and sterilization requirements. At the current state of the technology, fungal pretreatment at biorefinery scale does not appear to be economically feasible, and considerable process improvements are still required to achieve product cost targets.
Collapse
|
7
|
Tsegaye B, Balomajumder C, Roy P. Biodegradation of wheat straw by Ochrobactrum oryzae BMP03 and Bacillus sp. BMP01 bacteria to enhance biofuel production by increasing total reducing sugars yield. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:30585-30596. [PMID: 30173388 DOI: 10.1007/s11356-018-3056-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/24/2018] [Indexed: 05/21/2023]
Abstract
Pretreatment is a vital step to enhance the yield of total reducing sugars and biofuel production from lignocellulose biomass. An effective new lignin-degrading and polysaccharide-hydrolyzing bacteria, Ochrobactrum oryzae BMP03 and Bacillus sp. BMP01 strains, were isolated and identified from wood-feeding termite's guts. Wheat straw was biodelignified by Ochrobactrum oryzae BMP03 bacteria strains to degrade lignin and to release the trapped cellulose and hemicellulose. The biodelignified wheat straw was hydrolyzed by Bacillus sp. BMP01 strains. Ochrobactrum oryzae BMP03-Bacillus sp. BMP01 consortia were also performed to analyze the effect of the simultaneous system. It was shown that the production of total reducing sugars in a separate hydrolysis system by Bacillus sp. BMP01 strain achieved 439 mg/g at 16 days of hydrolysis time, which is 9.45% higher than the simultaneous system. About 44.47% lignin was degraded by the Ochrobactrum oryzae BMP03 strain after 16 days of biotreatment. This also contributed for increment in cellulose content by 22.38% and hemicellulose content by 18.64%. The simultaneous system converted 368 mg of reducing sugars/g of wheat straw. Separate biodelignification and hydrolysis have an advantage over the simultaneous system in terms of hydrolysis efficiency and vice versa in terms of biotreatment time. Scanning electron microscope, mid-infrared analysis by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction analysis confirmed the change in composition due to biotreatment. The biotreatment improved hydrolysis efficiency, which reduces the cost of biofuel production and increases the yield of biofuel. These results indicate the possibilities of biofuel production from wheat straw by employing Ochrobactrum oryzae BMP03 and Bacillus sp. BMP01 bacteria strains.
Collapse
Affiliation(s)
- Bahiru Tsegaye
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| | - Chandrajit Balomajumder
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Partha Roy
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| |
Collapse
|
8
|
Dey P, Pal P, Kevin JD, Das DB. Lignocellulosic bioethanol production: prospects of emerging membrane technologies to improve the process – a critical review. REV CHEM ENG 2018. [DOI: 10.1515/revce-2018-0014] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
To meet the worldwide rapid growth of industrialization and population, the demand for the production of bioethanol as an alternative green biofuel is gaining significant prominence. The bioethanol production process is still considered one of the largest energy-consuming processes and is challenging due to the limited effectiveness of conventional pretreatment processes, saccharification processes, and extreme use of electricity in common fermentation and purification processes. Thus, it became necessary to improve the bioethanol production process through reduced energy requirements. Membrane-based separation technologies have already gained attention due to their reduced energy requirements, investment in lower labor costs, lower space requirements, and wide flexibility in operations. For the selective conversion of biomasses to bioethanol, membrane bioreactors are specifically well suited. Advanced membrane-integrated processes can effectively contribute to different stages of bioethanol production processes, including enzymatic saccharification, concentrating feed solutions for fermentation, improving pretreatment processes, and finally purification processes. Advanced membrane-integrated simultaneous saccharification, filtration, and fermentation strategies consisting of ultrafiltration-based enzyme recycle system with nanofiltration-based high-density cell recycle fermentation system or the combination of high-density cell recycle fermentation system with membrane pervaporation or distillation can definitely contribute to the development of the most efficient and economically sustainable second-generation bioethanol production process.
Collapse
Affiliation(s)
- Pinaki Dey
- Department of Biotechnology , Karunya Institute of Technology and Sciences , Karunya Nagar Coimbatore 641114 , India
| | - Parimal Pal
- Department of Chemical Engineering , National Institute of Technology , Durgapur , India
| | - Joseph Dilip Kevin
- Department of Biotechnology , Karunya Institute of Technology and Sciences , Coimbatore , India
| | - Diganta Bhusan Das
- Department of Chemical Engineering, School of AACME , Loughborough University , Loughborough, Leicestershire , UK
| |
Collapse
|
9
|
Harada H, Onoda A, Uchihashi T, Watanabe H, Sunagawa N, Samejima M, Igarashi K, Hayashi T. Interdomain flip-flop motion visualized in flavocytochrome cellobiose dehydrogenase using high-speed atomic force microscopy during catalysis. Chem Sci 2017; 8:6561-6565. [PMID: 28989682 PMCID: PMC5627353 DOI: 10.1039/c7sc01672g] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/15/2017] [Indexed: 12/02/2022] Open
Abstract
To visualize the dynamic domain motion of class-I CDH from Phanerochaete chrysosporium (PcCDH) during catalysis using high-speed atomic force microscopy, the apo-form of PcCDH was anchored to a heme-immobilized flat gold surface that can fix the orientation of the CYT domain.
Cellobiose dehydrogenase (CDH) is a dual domain flavocytochrome, which consists of a dehydrogenase (DH) domain containing a flavin adenine dinucleotide and a cytochrome (CYT) domain containing b-type heme. To directly visualize the dynamic domain motion of class-I CDH from Phanerochaete chrysosporium (PcCDH) during catalysis using high-speed atomic force microscopy, the apo-form of PcCDH was anchored to a heme-immobilized flat gold surface that can specifically fix the orientation of the CYT domain. The two domains of CDH are found to be immobile in the absence of cellobiose, whereas the addition of cellobiose triggers an interdomain flip-flop motion involving domain–domain association and dissociation. Our results indicate that dynamic motion of a dual domain enzyme during catalysis induces efficient electron transfer to an external electron acceptor.
Collapse
Affiliation(s)
- Hirofumi Harada
- Department of Applied Chemistry , Graduate School of Engineering , Osaka University , 2-1 Yamadaoka , Suita , Osaka 565-0871 , Japan . ;
| | - Akira Onoda
- Department of Applied Chemistry , Graduate School of Engineering , Osaka University , 2-1 Yamadaoka , Suita , Osaka 565-0871 , Japan . ;
| | - Takayuki Uchihashi
- Department of Physics , Nagoya University , Furo-cho, Chikusa-ku , Nagoya , 464-8602 , Japan .
| | - Hiroki Watanabe
- Faculty of Natural Science and Technology , Kanazawa University , Kakuma , Kanazawa , 920-1192 , Japan
| | - Naoki Sunagawa
- Department of Biomaterials Sciences , Graduate School of Agricultural and Life Sciences , The University of Tokyo , Bunkyo-ku , 113-8657 , Japan .
| | - Masahiro Samejima
- Department of Biomaterials Sciences , Graduate School of Agricultural and Life Sciences , The University of Tokyo , Bunkyo-ku , 113-8657 , Japan .
| | - Kiyohiko Igarashi
- Department of Biomaterials Sciences , Graduate School of Agricultural and Life Sciences , The University of Tokyo , Bunkyo-ku , 113-8657 , Japan . .,VTT Technical Research Centre of Finland , P.O. Box 1000, Tietotie 2 , Espoo FI-02044 VTT , Finland
| | - Takashi Hayashi
- Department of Applied Chemistry , Graduate School of Engineering , Osaka University , 2-1 Yamadaoka , Suita , Osaka 565-0871 , Japan . ;
| |
Collapse
|
10
|
Thermal Pretreatment of Harvest Residues and Their Use in Anaerobic Co-digestion with Dairy Cow Manure. Appl Biochem Biotechnol 2017; 184:471-483. [DOI: 10.1007/s12010-017-2559-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/14/2017] [Indexed: 11/26/2022]
|
11
|
Pretreatment of Hardwood and Miscanthus with Trametes versicolor for Bioenergy Conversion and Densification Strategies. Appl Biochem Biotechnol 2017; 183:1401-1413. [DOI: 10.1007/s12010-017-2507-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/09/2017] [Indexed: 11/26/2022]
|
12
|
Ma J, Zhang K, Huang M, Hector SB, Liu B, Tong C, Liu Q, Zeng J, Gao Y, Xu T, Liu Y, Liu X, Zhu Y. Involvement of Fenton chemistry in rice straw degradation by the lignocellulolytic bacterium Pantoea ananatis Sd-1. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:211. [PMID: 27761153 PMCID: PMC5054592 DOI: 10.1186/s13068-016-0623-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/24/2016] [Indexed: 05/24/2023]
Abstract
BACKGROUND Lignocellulolytic bacteria have revealed to be a promising source for biofuel production, yet the underlying mechanisms are still worth exploring. Our previous study inferred that the highly efficient lignocellulose degradation by bacterium Pantoea ananatis Sd-1 might involve Fenton chemistry (Fe2+ + H2O2 + H+ → Fe3+ + OH· + H2O), similar to that of white-rot and brown-rot fungi. The aim of this work is to investigate the existence of this Fenton-based oxidation mechanism in the rice straw degradation process of P. ananatis Sd-1. RESULTS After 3 days incubation of unpretreated rice straw with P. ananatis Sd-1, the percentage in weight reduction of rice straw as well as its cellulose, hemicellulose, and lignin components reached 46.7, 43.1, 42.9, and 37.9 %, respectively. The addition of different hydroxyl radical scavengers resulted in a significant decline (P < 0.001) in rice straw degradation. Pyrolysis gas chromatography-mass spectrometry and Fourier transform infrared spectroscopy analysis revealed the consistency of chemical changes of rice straw components that exists between P. ananatis Sd-1 and Fenton reagent treatment. In addition to the increased total iron ion concentration throughout the rice straw decomposition process, the Fe3+-reducing capacity of P. ananatis Sd-1 was induced by rice straw and predominantly contributed by aromatic compounds metabolites. The transcript levels of the glucose-methanol-choline oxidoreductase gene related to hydrogen peroxide production were significantly up-regulated (at least P < 0.01) in rice straw cultures. Higher activities of GMC oxidoreductase and less hydrogen peroxide concentration in rice straw cultures relative to glucose cultures may be responsible for increasing rice straw degradation, which includes Fenton-like reactions. CONCLUSIONS Our results confirmed the Fenton chemistry-assisted degradation model in P. ananatis Sd-1. We are among the first to show that a Fenton-based oxidation mechanism exists in a bacteria degradation system, which provides a new perspective for how natural plant biomass is decomposed by bacteria. This degradative system may offer an alternative approach to the fungi system for lignocellulosic biofuels production.
Collapse
Affiliation(s)
- Jiangshan Ma
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410008 Hunan People’s Republic of China
| | - Keke Zhang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410008 Hunan People’s Republic of China
| | - Mei Huang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410008 Hunan People’s Republic of China
| | - Stanton B. Hector
- Department of Genetics, Institute for Plant Biotechnology, Stellenbosch University, Private Bag X1, Matieland, 7602 South Africa
- DNA Sequencing Unit, Central Analytical Facility, Stellenbosch University, Private Bag X1, Matieland, 7602 South Africa
| | - Bin Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410008 Hunan People’s Republic of China
| | - Chunyi Tong
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410008 Hunan People’s Republic of China
| | - Qian Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410008 Hunan People’s Republic of China
| | - Jiarui Zeng
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410008 Hunan People’s Republic of China
| | - Yan Gao
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410008 Hunan People’s Republic of China
| | - Ting Xu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410008 Hunan People’s Republic of China
| | - Ying Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410008 Hunan People’s Republic of China
| | - Xuanming Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410008 Hunan People’s Republic of China
| | - Yonghua Zhu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410008 Hunan People’s Republic of China
| |
Collapse
|
13
|
Recovery of Phenolic Acid and Enzyme Production from Corn Silage Biologically Treated by Trametes versicolor. Appl Biochem Biotechnol 2016; 181:948-960. [DOI: 10.1007/s12010-016-2261-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/19/2016] [Indexed: 11/25/2022]
|
14
|
Planinić M, Zelić B, Čubel I, Bucić-Kojić A, Tišma M. Corn forage biological pretreatment by Trametes versicolor in a tray bioreactor. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2016; 34:802-809. [PMID: 27401159 DOI: 10.1177/0734242x16654979] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Trametes versicolor is a white-rot fungus known to be efficient in lignin removal due to its complex extracellular lignocellulolytic enzymatic system. Therefore, it can be used in the treatment of lignocellulose waste from agro, food, and wood industries. In a first experiment, corn forage treatment with T. versicolor was investigated in laboratory jars. In a second experiment, the process was scaled up to a tray bioreactor. In the tray bioreactor, the process of lignin degradation was improved, resulting in an increase in lignin conversion of up to 71% during seven days' treatment.
Collapse
Affiliation(s)
- Mirela Planinić
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Croatia
| | - Bruno Zelić
- University of Zagreb, Faculty of Chemical Engineering and Technology, Croatia
| | - Ivan Čubel
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Croatia
| | - Ana Bucić-Kojić
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Croatia
| | - Marina Tišma
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Croatia
| |
Collapse
|
15
|
Rosnow JJ, Anderson LN, Nair RN, Baker ES, Wright AT. Profiling microbial lignocellulose degradation and utilization by emergent omics technologies. Crit Rev Biotechnol 2016; 37:626-640. [PMID: 27439855 DOI: 10.1080/07388551.2016.1209158] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The use of plant materials to generate renewable biofuels and other high-value chemicals is the sustainable and preferable option, but will require considerable improvements to increase the rate and efficiency of lignocellulose depolymerization. This review highlights novel and emerging technologies that are being developed and deployed to characterize the process of lignocellulose degradation. The review will also illustrate how microbial communities deconstruct and metabolize lignocellulose by identifying the necessary genes and enzyme activities along with the reaction products. These technologies include multi-omic measurements, cell sorting and isolation, nuclear magnetic resonance spectroscopy (NMR), activity-based protein profiling, and direct measurement of enzyme activity. The recalcitrant nature of lignocellulose necessitates the need to characterize the methods microbes employ to deconstruct lignocellulose to inform new strategies on how to greatly improve biofuel conversion processes. New technologies are yielding important insights into microbial functions and strategies employed to degrade lignocellulose, providing a mechanistic blueprint in order to advance biofuel production.
Collapse
Affiliation(s)
- Joshua J Rosnow
- a Biological Sciences Division , Pacific Northwest National Laboratory , Richland , WA , USA
| | - Lindsey N Anderson
- a Biological Sciences Division , Pacific Northwest National Laboratory , Richland , WA , USA
| | - Reji N Nair
- a Biological Sciences Division , Pacific Northwest National Laboratory , Richland , WA , USA
| | - Erin S Baker
- a Biological Sciences Division , Pacific Northwest National Laboratory , Richland , WA , USA
| | - Aaron T Wright
- a Biological Sciences Division , Pacific Northwest National Laboratory , Richland , WA , USA
| |
Collapse
|
16
|
Tan TC, Kracher D, Gandini R, Sygmund C, Kittl R, Haltrich D, Hällberg BM, Ludwig R, Divne C. Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation. Nat Commun 2015; 6:7542. [PMID: 26151670 PMCID: PMC4507011 DOI: 10.1038/ncomms8542] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 05/19/2015] [Indexed: 02/06/2023] Open
Abstract
A new paradigm for cellulose depolymerization by fungi focuses on an oxidative mechanism involving cellobiose dehydrogenases (CDH) and copper-dependent lytic polysaccharide monooxygenases (LPMO); however, mechanistic studies have been hampered by the lack of structural information regarding CDH. CDH contains a haem-binding cytochrome (CYT) connected via a flexible linker to a flavin-dependent dehydrogenase (DH). Electrons are generated from cellobiose oxidation catalysed by DH and shuttled via CYT to LPMO. Here we present structural analyses that provide a comprehensive picture of CDH conformers, which govern the electron transfer between redox centres. Using structure-based site-directed mutagenesis, rapid kinetics analysis and molecular docking, we demonstrate that flavin-to-haem interdomain electron transfer (IET) is enabled by a haem propionate group and that rapid IET requires a closed CDH state in which the propionate is tightly enfolded by DH. Following haem reduction, CYT reduces LPMO to initiate oxygen activation at the copper centre and subsequent cellulose depolymerization.
Collapse
Affiliation(s)
- Tien-Chye Tan
- School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center, Roslagstullsbacken 21, Stockholm S-10691, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheelelaboratoriet, Scheeles väg 2, Stockholm S-17177, Sweden
| | - Daniel Kracher
- Food Biotechnology Laboratory, Department of Food Science and Technology, Vienna Institute of Biotechnology (VIBT), BOKU—University of Natural Resources and Life Sciences, Muthgasse 18, Vienna A-1190, Austria
| | - Rosaria Gandini
- School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center, Roslagstullsbacken 21, Stockholm S-10691, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheelelaboratoriet, Scheeles väg 2, Stockholm S-17177, Sweden
| | - Christoph Sygmund
- Food Biotechnology Laboratory, Department of Food Science and Technology, Vienna Institute of Biotechnology (VIBT), BOKU—University of Natural Resources and Life Sciences, Muthgasse 18, Vienna A-1190, Austria
| | - Roman Kittl
- Food Biotechnology Laboratory, Department of Food Science and Technology, Vienna Institute of Biotechnology (VIBT), BOKU—University of Natural Resources and Life Sciences, Muthgasse 18, Vienna A-1190, Austria
| | - Dietmar Haltrich
- Food Biotechnology Laboratory, Department of Food Science and Technology, Vienna Institute of Biotechnology (VIBT), BOKU—University of Natural Resources and Life Sciences, Muthgasse 18, Vienna A-1190, Austria
| | - B. Martin Hällberg
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm S-17177, Sweden
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg 22603, Germany; and Centre for Structural Systems Biology (CSSB), DESY-Campus, Hamburg 22603, Germany
| | - Roland Ludwig
- Food Biotechnology Laboratory, Department of Food Science and Technology, Vienna Institute of Biotechnology (VIBT), BOKU—University of Natural Resources and Life Sciences, Muthgasse 18, Vienna A-1190, Austria
| | - Christina Divne
- School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center, Roslagstullsbacken 21, Stockholm S-10691, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheelelaboratoriet, Scheeles väg 2, Stockholm S-17177, Sweden
| |
Collapse
|
17
|
Moreno AD, Ibarra D, Alvira P, Tomás-Pejó E, Ballesteros M. A review of biological delignification and detoxification methods for lignocellulosic bioethanol production. Crit Rev Biotechnol 2014; 35:342-54. [DOI: 10.3109/07388551.2013.878896] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Sulej J, Janusz G, Osińska-Jaroszuk M, Małek P, Mazur A, Komaniecka I, Choma A, Rogalski J. Characterization of cellobiose dehydrogenase and its FAD-domain from the ligninolytic basidiomycete Pycnoporus sanguineus. Enzyme Microb Technol 2013; 53:427-37. [PMID: 24315647 DOI: 10.1016/j.enzmictec.2013.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 09/16/2013] [Accepted: 09/17/2013] [Indexed: 10/26/2022]
Abstract
Cellobiose dehydrogenase (CDH), an extracellular flavocytochrome produced by several wood-degrading fungi, was detected in the culture supernatant of the selective delignifier Pycnoporus sanguineus maintained on a cellulose-based liquid medium. Cellobiose dehydrogenase was purified as two active fractions: CDH1-FAD (flavin domain) (40.4 fold) with recovery of 10.9% and CDH1 (flavo-heme enzyme) (54.7 fold) with recovery of 9.8%. As determined by SDS-PAGE, the molecular mass of the purified enzyme was found to be 113.4kDa and its isoelectric point was 4.2, whereas these values for the FAD-domain were 82.7kDa and pI=6.7. The carbohydrate content of the purified enzymes was 9.2%. In this work, the cellobiose dehydrogenase gene cdh1 and its corresponding cDNA from fungus P. sanguineus were isolated, cloned, and characterized. The 2310bp full-length cDNA of cdh1 encoded a mature CDH protein containing 769 amino acids, which was preceded by a signal peptide of 19 amino acids. Moreover, both active fractions were characterized in terms of kinetics, temperature and pH optima, and antioxidant properties.
Collapse
Affiliation(s)
- Justyna Sulej
- Department of Biochemistry, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Salvachúa D, Prieto A, Vaquero ME, Martínez ÁT, Martínez MJ. Sugar recoveries from wheat straw following treatments with the fungus Irpex lacteus. BIORESOURCE TECHNOLOGY 2013; 131:218-25. [PMID: 23347930 DOI: 10.1016/j.biortech.2012.11.089] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 11/13/2012] [Accepted: 11/19/2012] [Indexed: 05/16/2023]
Abstract
Irpex lacteus is a white-rot fungus capable of increasing sugar recovery from wheat straw; however, in order to incorporate biopretreatment in bioethanol production, some process specifications need to be optimized. With this objective, I. lacteus was grown on different liquid culture media for use as inoculums. Additionally, the effect of wheat straw particle size, moisture content, organic and inorganic supplementations, and mild alkali washing during solid-state fermentation (SSF) on sugar yield were investigated. Wheat thin stillage was the best medium for producing inoculums. Supplementation of wheat straw with 0.3mM Mn(II) during SSF resulted in glucose yields of 68% as compared to yields of 62% and 33% for cultures grown without supplementation or on untreated raw material, respectively after 21 days. Lignin loss, wheat straw digestibility, peroxidase activity, and fungal biomass were also correlated with sugar yields in the search for biopretreatment efficiency indicators.
Collapse
Affiliation(s)
- Davinia Salvachúa
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
20
|
Biological Pretreatment of Lignocellulosic Biomass for Enzymatic Saccharification. PRETREATMENT TECHNIQUES FOR BIOFUELS AND BIOREFINERIES 2013. [DOI: 10.1007/978-3-642-32735-3_1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Tsai AYL, Canam T, Gorzsás A, Mellerowicz EJ, Campbell MM, Master ER. Constitutive expression of a fungal glucuronoyl esterase in Arabidopsis reveals altered cell wall composition and structure. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:1077-87. [PMID: 22924998 DOI: 10.1111/j.1467-7652.2012.00735.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A family 15 carbohydrate esterase (CE15) from the white-rot basidiomycete, Phanerochaete carnosa (PcGCE), was transformed into Arabidopsis thaliana Col-0 and was expressed from the constitutive cauliflower mosaic virus 35S promoter. Like other CE15 enzymes, PcGCE hydrolyzed methyl-4-O-methyl-d-glucopyranuronate and could target ester linkages that contribute to lignin-carbohydrate complexes that form in plant cell walls. Three independently transformed Arabidopsis lines were evaluated in terms of nine morphometric parameters, total sugar and lignin composition, cell wall anatomy, enzymatic saccharification and xylan extractability. The transgenic lines consistently displayed a leaf-yellowing phenotype, as well as reduced glucose and xylose content by as much as 30% and 35%, respectively. Histological analysis revealed 50% reduction in cell wall thickness in the interfascicular fibres of transgenic plants, and FT-IR microspectroscopy of interfascicular fibre walls indicated reduction in lignin cross-linking in plants overexpressing PcGCE. Notably, these characteristics could be correlated with improved xylose recovery in transgenic plants, up to 15%. The current analysis represents the first example whereby a fungal glucuronoyl esterase is expressed in Arabidopsis and shows that the promotion of glucuronoyl esterase activity in plants can alter the extent of intermolecular cross-linking within plant cell walls.
Collapse
Affiliation(s)
- Alex Y-L Tsai
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | |
Collapse
|