1
|
Sayın B, Kaban G. Biotechnological Innovations Unleashing the Potential of Olive Mill Wastewater in Added-Value Bioproducts. Foods 2024; 13:2245. [PMID: 39063329 PMCID: PMC11276412 DOI: 10.3390/foods13142245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/07/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Byproducts and wastes from the food processing industry represent an important group of wastes generated annually in large quantities. It is important to note that the amount of this waste will increase with industrialization, and effective solutions must be found urgently. Many wastes that cause environmental pollution are evaluated by their low-tech conversion into products with little economic value, such as animal feed and fertilizer. Therefore, the evaluation of food processing waste using effective recycling techniques has become an interesting subject with increasing population, ongoing biotechnological studies, and advances in technology. The conversion of food waste into biotechnological products via fermentation is a sustainable, environmentally friendly, and economical method in line with the principles of green chemistry. This approach promotes the reuse of food waste by supporting the principles of a circular economy and offers sustainable alternatives to fossil fuels and synthetic chemicals. This contributes to reducing the carbon footprint, preserving soil and water quality, and providing economic sustainability through the production of high-value products. In this study, the properties of olive mill wastewater, an important and valuable waste in the olive oil industry, its environmental aspects, and its use in biotechnological applications that integrate green chemistry are evaluated.
Collapse
Affiliation(s)
- Bilge Sayın
- Department of Gastronomy and Culinary Arts, School of Tourism and Hotel Management, Ardahan University, 75002 Ardahan, Türkiye
| | - Güzin Kaban
- Department of Food Engineering, Faculty of Agriculture, Atatürk University, 25240 Erzurum, Türkiye
| |
Collapse
|
2
|
Sustainable vs. Conventional Approach for Olive Oil Wastewater Management: A Review of the State of the Art. WATER 2022. [DOI: 10.3390/w14111695] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The main goal of this review is to collect and analyze the recently published research concerning the conventional and sustainable treatment processes for olive mill wastewater (OMW). In the conventional treatment processes, it is noticed that the main objective is to meet the environmental regulations for remediated wastewater without considering the economical values of its valuable constituents such as polyphenols. These substances have many important environmental values and could be used in many vital applications. Conversely, sustainable treatment processes aim to recover the valuable constituents through different processes and then treat the residual wastewater. Both approaches’ operational and design parameters were analyzed to generalize their advantages and possible applications. A valorization-treatment approach for OMW is expected to make it a sustainable resource for ingredients of high economical value that could lead to a profitable business. In addition, inclusion of a recovery process will detoxify the residual OMW, simplify its management treatment, and allow the possible reuse of the vast amounts of processed water. In a nutshell, the proposed approach led to zero waste with a closed water cycle development.
Collapse
|
3
|
Optimizing the Extraction Conditions of Hydroxytyrosol from Olive Leaves Using a Modified Spherical Activated Carbon: A New Experimental Design. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6199627. [PMID: 35620226 PMCID: PMC9129965 DOI: 10.1155/2022/6199627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/14/2022] [Accepted: 03/25/2022] [Indexed: 12/07/2022]
Abstract
The purification of hydroxytyrosol from olive leaves extract by modified activated carbon was studied experimentally in a batch system and a column by adsorption and desorption processes. The extraction yield reached 90% of hydroxytyrosol, which is the major compound found in the extract. Despite the abundance of research on extracts of hydroxytyrosol from olive leaves, it seems that the applied methods can be further improved. In this study, several approaches were applied to optimize the extraction conditions of this molecule. Hence, the response surface method and the Box-Behnken design (BBD) were used to evaluate the effect of the temperature, time, and adsorbent dose on the hydroxytyrosol recovery. Moreover, adsorption isotherm, kinetics, and thermodynamic studies were also performed to clarify the nature of the process. The main finding was the obtainment of a maximum adsorption yield of 97.5% at an adsorbent/adsorbate ratio of 1 : 20, after a 6 h cycle and at a temperature of 30°C. Furthermore, adsorption process seemed to fit best with Freundlich model. In addition, the thermodynamic study describes a spontaneous and endothermic process. Desorption assay using ethanol helped to recover 73% of hydroxytyrosol. Furthermore, the HPLC analysis of fractions after column adsorption showed a simple peak of hydroxytyrosol with purity higher than 97% and a flavonoids-rich fraction. These findings would indicate that this separation method for the recovery of phenolic compounds with high antioxidant activity can be a very promising one.
Collapse
|
4
|
Karadag A, Kayacan Cakmakoglu S, Metin Yildirim R, Karasu S, Avci E, Ozer H, Sagdic O. Enrichment of lecithin with phenolics from olive mill wastewater by cloud point extraction and its application in vegan salad dressing. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ayse Karadag
- Department of Food Engineering Yildiz Technical University Istanbul Turkey
| | | | | | - Salih Karasu
- Department of Food Engineering Yildiz Technical University Istanbul Turkey
| | - Esra Avci
- Department of Food Engineering Yildiz Technical University Istanbul Turkey
| | - Hayrettin Ozer
- Food Institute TUBITAK Marmara Research Center Gebze Turkey
| | - Osman Sagdic
- Department of Food Engineering Yildiz Technical University Istanbul Turkey
| |
Collapse
|
5
|
Microbial Application to Improve Olive Mill Wastewater Phenolic Extracts. Molecules 2021; 26:molecules26071944. [PMID: 33808362 PMCID: PMC8036537 DOI: 10.3390/molecules26071944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 11/20/2022] Open
Abstract
Olive mill wastewater (OMW) contains valuable and interesting bioactive compounds, among which is hydroxytyrosol, which is characterized by a remarkable antioxidant activity. Due to the health claims related to olive polyphenols, the aim of this study was to obtain an extract from OMW with an increased level of hydroxytyrosol by means of microbial enzymatic activity. For this purpose, four commercial adsorbent resins were selected and tested. The beta-glucosidase and esterase activity of strains of Wickerhamomyces anomalus, Lactiplantibacillus plantarum, and Saccharomyces cerevisiae were also investigated and compared to those of a commercial enzyme and an Aspergillus niger strain. The W. anomalus strain showed the best enzymatic performances. The SP207 resin showed the best efficiency in selective recovery of hydroxytyrosol, tyrosol, oleuropein, and total phenols. The bioconversion test of the OMW extract was assessed by using both culture broths and pellets of the tested strains. The results demonstrated that the pellets of W. anomalus and L. plantarum were the most effective in hydroxytyrosol increasing in phenolic extract. The interesting results suggest the possibility to study new formulations of OMW phenolic extracts with multifunctional microorganisms.
Collapse
|
6
|
Antioxidant and Antimicrobial Activity of Polyphenols Extracted after Adsorption onto Natural Clay “Ghassoul”. J CHEM-NY 2020. [DOI: 10.1155/2020/8736721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Natural polyphenols contained in olive mill wastewaters (OMW) have been usually associated with great bioactive properties as “antioxidants”. In this work, we recovered the polyphenols after adsorption onto natural clay “ghassoul” by different solvents: water, ethyl acetate, and methanol (PPW, PPA, and PPM, respectively) to avoid environmental pollution. Also, we tested the antioxidant activity of the extracted polyphenols by two methods: 1,1-diphenyl-2-picrylhydrazyl (DPPH) and total antioxidant capacity (TAC). Then, we analyzed antimicrobial activity by the microdilution technique to determine at the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC). The OMW of the Fez-Meknes region has a very acidic pH, considerable amounts of mineral matter, and a high concentration of polyphenols and organic content. The results of the test from DPPH showed good antiradical potential for polyphenols extracted with water, but the TAC showed an important capacity for all extracts unless PPA. The antibacterial activity is not the same on the four bacteria studied (Escherichia coli, Salmonella sp, Staphylococcus aureus, and Enterococcus faecalis), and all extracts inhibit most tested germs that do not have the same MIC and the same sensitivity. Only the PPW showed the minimum bactericidal concentration (MBC) that is equal to 0.290 mg/mL for Salmonella sp and Staphylococcus aureus, which confirms that the extraction by water of the adsorbed polyphenols is an original solution to recover the polyphenols and also to obtain a natural phenolic antioxidant which can be used in the pharmaceutical, nourishment, and cosmetic industry.
Collapse
|
7
|
Impact of Stability of Enriched Oil with Phenolic Extract from Olive Mill Wastewaters. Foods 2020; 9:foods9070856. [PMID: 32630100 PMCID: PMC7404700 DOI: 10.3390/foods9070856] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 11/20/2022] Open
Abstract
The disposal of olive mill wastewaters is a considerable subject for the development of a sustainable olive oil industry considering their high content of pollutants. Nevertheless, the selective extraction of phenolic compounds from olive mill wastewaters represents a promising approach to obtain phenolics suitable for food enrichment. This work aimed to evaluate the efficiency of phenolic extract addition (50 mg L−1), used as natural antioxidant, in sunflower oil against oxidative deterioration; to this aim, XAD-7-HP resin was tested in the recovery of phenolic compounds from olive mill wastewaters. Ultra-high performance liquid chromatography was used to evaluate the single phenols contained in the extract; the most consistent amount was detected for hydroxytyrosol (834 mg 100 mL−1). The change in the oxidation state of fortified sunflower oil was studied by measuring physicochemical (refractive index, peroxide value and oxidative resistance to degradation) and antioxidant parameters (DPPH, ABTS and ORAC assays) during 90 days of storage. Results showed an enhancement of oxidative stability of 50% in the fortified oil compared to control.
Collapse
|
8
|
Barbera M. Reuse of Food Waste and Wastewater as a Source of Polyphenolic Compounds to Use as Food Additives. J AOAC Int 2020; 103:906-914. [DOI: 10.1093/jaocint/qsz025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/04/2019] [Indexed: 01/18/2023]
Abstract
Abstract
The problem of waste and byproducts generated from agro-industrial activities worldwide is an increasing concern in terms of environmental sustainability. In this ambit, the quantity of food wastes—produced in all steps of the whole food chain—is enormous, and it may be forecasted that food waste could amount to more than 120 billion tonnes by 2020. The reuse of food waste and wastewater as source of polyphenolic compounds could be an interesting discussion in this ambit. In fact, polyphenols obtained in this way might be used for food and non-food purposes by means of new, improved, and safe extraction methods. In light of the opportunity represented by the treatment of agro-industrial waste, different systems concerning the winemaking and olive oil production industries have also been discussed as describing approaches applicable to other sectors. More research is needed before considering recovery of phenolic compounds from wastewater as an economically convenient choice for the food sector.
Collapse
Affiliation(s)
- Marcella Barbera
- University of Palermo, Department of Environmental and Agricultural Sciences, Palermo 90100, Italy
| |
Collapse
|
9
|
Olive mill wastewater treatment using infiltration percolation in column followed by aerobic biological treatment. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2481-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
10
|
Phenolic composition, antioxidant potential and health benefits of citrus peel. Food Res Int 2020; 132:109114. [PMID: 32331689 DOI: 10.1016/j.foodres.2020.109114] [Citation(s) in RCA: 273] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/24/2020] [Accepted: 02/18/2020] [Indexed: 01/18/2023]
Abstract
Citrus peel (CP) forms around 40-50% of the total fruit mass but is generally thought to be a waste. However, it is a substantial source of naturally occurring health enhancing compounds, particularly phenolic compounds and carotenoids. Phenolic compounds in CP mainly comprise phenolic acids (primarily caffeic, p-coumaric, ferulic and sinapic acid), flavanones (generally naringin and hesperidin) and polymethoxylated flavones (notably nobiletin and tangeretin). It has also been noted that CP's contain more amounts of these compounds than corresponding edible parts of the fruits. Phenolic compounds present in CP act as antioxidants (by either donation of protons or electrons) and protect cells against free radical damage as well as help in reducing the risk of many chronic diseases. Owing to the more abundance of polyphenols in CP's, their antioxidant activity is also higher than other edible fruit parts. Therefore, peels from citrus fruits can be used as sources of functional compounds and preservatives for the development of newer food products, that are not only safe but also have health-promoting activities. The present review provides in-depth knowledge about the phenolic composition, antioxidant potential and health benefits of CP.
Collapse
|
11
|
Mitrogiannis D, Psychoyou M, Kornaros ME, Tsigkou K, Brulé M, Koukouzas N, Alexopoulos D, Palles D, Kamitsos E, Oikonomou G, Papoutsa A, Xydous S, Baziotis I. Calcium-modified clinoptilolite as a recovery medium of phosphate and potassium from anaerobically digested olive mill wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:2977-2991. [PMID: 31838691 DOI: 10.1007/s11356-019-07212-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
Olive mill wastewater (OMW) is characterized as a high-strength effluent due to the high organic load, low biodegradability, and presence of phytotoxic compounds. Most of the OMW treatment methods proposed, including adsorption, focus mainly on the reduction of chemical oxygen demand and recovery of polyphenols. Adsorption studies aiming at nutrient removal from OMW are very limited. In the present work, Ca(OH)2-treated zeolite (CaT-Z) in a granular form was used for simultaneous recovery of phosphate (PO43-) and potassium (K+) ions from two samples of anaerobically digested OMW. Nutrient adsorption was investigated as a function of contact time, pH and dilution of OMW with deionized water. The lower removal efficiency of phosphorus (P) by CaT-Z was observed at higher dilution ratios consisted of 3.125-6.25% OMW-1 and 5% OMW-2. The maximum P removal was 73.9% in 25% OMW-1 and 85.9% in 10% OMW-2. Potassium removal, as the predominant cation of OMW samples, increased from 17.3 to 46.1% in OMW-1 and from 15.1 to 57.7% in OMW-2 with increasing dilution. The maximum experimental adsorption capacities were 15.8 mg K and 2.14 mg P per gram of CaT-Z. Five sequential treatments of 50% OMW-2 with fresh CaT-Z at each stage ensured a cumulative removal of 87.5% for P and 74.9% for K. Adsorption kinetics were faster for K than for P. The plant-available P was found to be the predominant fraction on the loaded CaT-Z. Electron Probe Micro-analysis confirmed the enhanced content of K and P on the loaded CaT-Z, whereas X-ray mapping revealed the co-distribution of Ca and P. This study demonstrates the potential usage of CaT-Z as an immobilization medium of P and K from anaerobically treated OMW.
Collapse
Affiliation(s)
- Dimitris Mitrogiannis
- Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens, 75 Iera Odos, 11855, Athens, Greece.
| | - Maria Psychoyou
- Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens, 75 Iera Odos, 11855, Athens, Greece
| | - Michael E Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology, Department of Chemical Engineering, University of Patras, Rion, GR 26504, Patras, Greece
| | - Konstantina Tsigkou
- Laboratory of Biochemical Engineering & Environmental Technology, Department of Chemical Engineering, University of Patras, Rion, GR 26504, Patras, Greece
| | - Mathieu Brulé
- Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens, 75 Iera Odos, 11855, Athens, Greece
| | - Nikolaos Koukouzas
- Centre for Research and Technology Hellas (CERTH), Chemical Process and Energy Resources Institute (CPERI), 52 Egialias str., Maroussi, 15125, Athens, Greece
| | - Dimitris Alexopoulos
- Centre for Research and Technology Hellas (CERTH), Chemical Process and Energy Resources Institute (CPERI), 52 Egialias str., Maroussi, 15125, Athens, Greece
| | - Dimitrios Palles
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635, Athens, Greece
| | - Efstratios Kamitsos
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635, Athens, Greece
| | - Georgios Oikonomou
- Institute of Geology and Mineral Exploration, Olympic Village Acharnae, 13677, Athens, Greece
| | - Angeliki Papoutsa
- Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens, 75 Iera Odos, 11855, Athens, Greece
| | - Stamatis Xydous
- Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens, 75 Iera Odos, 11855, Athens, Greece
| | - Ioannis Baziotis
- Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens, 75 Iera Odos, 11855, Athens, Greece
| |
Collapse
|
12
|
García-Ballesteros S, Grimalt J, Berto S, Minella M, Laurenti E, Vicente R, López-Pérez MF, Amat AM, Bianco Prevot A, Arques A. New Route for Valorization of Oil Mill Wastes: Isolation of Humic-Like Substances to be Employed in Solar-Driven Processes for Pollutants Removal. ACS OMEGA 2018; 3:13073-13080. [PMID: 31458028 PMCID: PMC6644490 DOI: 10.1021/acsomega.8b01816] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/26/2018] [Indexed: 05/27/2023]
Abstract
The valorization of olive oil mill solid wastes (OMW) has been addressed by considering it as a possible source of humic-like substances (HLSs), to be used as auxiliary substances for photo-Fenton, employing caffeine as a target pollutant to test the efficiency of this approach. The OMW-HLS isolation encompassed the OMW basic hydrolysis, followed by ultrafiltration and drying. OMW-HLS structural features have been investigated by means of laser light scattering, fluorescence, size exclusion chromatography, and thermogravimetric analysis; moreover, the capability of OMW-HLS to generate reactive species under irradiation has been investigated using spin-trap electronic paramagnetic resonance. The caffeine degradation by means of photo-Fenton process driven at pH = 5 was significantly increased by the addition of 10 mg/L of OMW-HLS. Under the mechanistic point of view, it could be hypothesized that singlet oxygen is not playing a relevant role, whereas other oxidants (mainly OH• radicals) can be considered as the key species in promoting caffeine degradation.
Collapse
Affiliation(s)
- Sara García-Ballesteros
- Grupo
de Procesos de Oxidación Avanzada, Departamento de Ingeniería
Textil y Papelera, and Departamento de Ingeniería Química
y Nuclear, Universitat Politècnica
de València, Plaza
Ferrándiz y Carbonell 1, 03801 Alcoy, Spain
| | - Jaume Grimalt
- Grupo
de Procesos de Oxidación Avanzada, Departamento de Ingeniería
Textil y Papelera, and Departamento de Ingeniería Química
y Nuclear, Universitat Politècnica
de València, Plaza
Ferrándiz y Carbonell 1, 03801 Alcoy, Spain
| | - Silvia Berto
- Dipartimento
di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Marco Minella
- Dipartimento
di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Enzo Laurenti
- Dipartimento
di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Rafael Vicente
- Grupo
de Procesos de Oxidación Avanzada, Departamento de Ingeniería
Textil y Papelera, and Departamento de Ingeniería Química
y Nuclear, Universitat Politècnica
de València, Plaza
Ferrándiz y Carbonell 1, 03801 Alcoy, Spain
| | - Maria F. López-Pérez
- Grupo
de Procesos de Oxidación Avanzada, Departamento de Ingeniería
Textil y Papelera, and Departamento de Ingeniería Química
y Nuclear, Universitat Politècnica
de València, Plaza
Ferrándiz y Carbonell 1, 03801 Alcoy, Spain
| | - Ana M. Amat
- Grupo
de Procesos de Oxidación Avanzada, Departamento de Ingeniería
Textil y Papelera, and Departamento de Ingeniería Química
y Nuclear, Universitat Politècnica
de València, Plaza
Ferrándiz y Carbonell 1, 03801 Alcoy, Spain
| | | | - Antonio Arques
- Grupo
de Procesos de Oxidación Avanzada, Departamento de Ingeniería
Textil y Papelera, and Departamento de Ingeniería Química
y Nuclear, Universitat Politècnica
de València, Plaza
Ferrándiz y Carbonell 1, 03801 Alcoy, Spain
| |
Collapse
|
13
|
Singh B, Singh JP, Kaur A, Singh N. Antimicrobial potential of pomegranate peel: a review. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13964] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Balwinder Singh
- P.G. Department of Biotechnology Khalsa College Amritsar 143002 Punjab India
| | - Jatinder Pal Singh
- Department of Food Science and Technology Guru Nanak Dev University Amritsar 143005 Punjab India
| | - Amritpal Kaur
- Department of Food Science and Technology Guru Nanak Dev University Amritsar 143005 Punjab India
| | - Narpinder Singh
- Department of Food Science and Technology Guru Nanak Dev University Amritsar 143005 Punjab India
| |
Collapse
|
14
|
Caporaso N, Formisano D, Genovese A. Use of phenolic compounds from olive mill wastewater as valuable ingredients for functional foods. Crit Rev Food Sci Nutr 2017; 58:2829-2841. [PMID: 28662342 DOI: 10.1080/10408398.2017.1343797] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Olive mill wastewater (OMW) is a pollutant by-product from the virgin olive oil production. Its high content in phenolic compounds makes them play an important role for their use in foods, for their high antioxidant significance. The present paper gives an overview on the techniques for OMW valuable ingredient separation, focusing on the most effective ones for their use in food products as functional ingredients. We report on effective methods to recover OMW phenolics, and give several examples on the use these extracts in foods. When added into vegetable oils, their effect on retarding lipid oxidation improves the oxidative status of the product, whilst several challenges need to be faced. OMW phenolic extracts were also used in food emulsions, milk products or other model systems, showing promising results and little or no negative impact on the sensory characteristics or other properties. Their possible use as antimicrobial agents is also another promising approach, as positive results were obtained when applied in meat products. Other examples of using natural phenolic extracts from other sources are suggested also for OMW extracts, to expand their use and thus to improve the nutritional and technological quality of foods.
Collapse
Affiliation(s)
- Nicola Caporaso
- a Department of Agricultural Sciences , University of Naples Federico II , Portici ( NA ), Italy.,b Division of Food Science , University of Nottingham , Sutton Bonington , UK
| | - Diego Formisano
- a Department of Agricultural Sciences , University of Naples Federico II , Portici ( NA ), Italy
| | - Alessandro Genovese
- a Department of Agricultural Sciences , University of Naples Federico II , Portici ( NA ), Italy
| |
Collapse
|
15
|
Nuzzo A, Negroni A, Zanaroli G, Fava F. Identification of two organohalide-respiring Dehalococcoidia associated to different dechlorination activities in PCB-impacted marine sediments. Microb Cell Fact 2017; 16:127. [PMID: 28738864 PMCID: PMC5525228 DOI: 10.1186/s12934-017-0743-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 07/14/2017] [Indexed: 01/02/2023] Open
Abstract
Background Microbial reductive dechlorination of polychlorinated biphenyls (PCBs) plays a major role in detoxifying anoxic contaminated freshwater and marine sediments from PCBs. Known members of the phylum Chloroflexi are typically responsible for this activity in freshwater sediments, whereas less is known about the microorganisms responsible for this activity in marine sediments. PCB-respiring activities were detected in PCB-impacted marine sediments of the Venice Lagoon. The aim of this work was to identify the indigenous organohalide-respiring microorganisms in such environments and assess their dechlorination specificity against spiked Aroclor™ 1254 PCBs under laboratory conditions resembling the in situ biogeochemistry. Results High PCB dechlorination activities (from 150 ± 7 to 380 ± 44 μmol of chlorine removed kg−1 week−1) were detected in three out of six sediments sampled from different locations of the lagoon. An uncultured non-Dehalococcoides phylotype of the class Dehalococcoidia closely related to Dehalobium chlorocoercia DF-1, namely phylotype VLD-1, was detected and enriched up to 109 16S rRNA gene copies per gram of sediment where dechlorination activities were higher and 25-4/24-4 and 25-2/24-2/4-4 chlorobiphenyls (CB) accumulated as the main tri-/dichlorinated products. Conversely, a different phylotype closely related to the SF1/m-1 clade, namely VLD-2, also enriched highly where lower dechlorination activity and the accumulation of 25-3 CB as main tri-chlorinated product occurred, albeit in the simultaneous presence of VLD-1. Both phylotypes showed growth yields higher or comparable to known organohalide respirers and neither phylotypes enriched in sediment cultures not exhibiting dechlorination. Conclusions These findings confirm the presence of different PCB-respiring microorganisms in the indigenous microbial communities of Venice Lagoon sediments and relate two non-Dehalococcoides phylotypes of the class Dehalococcoidia to different PCB dechlorination rates and specificities. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0743-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrea Nuzzo
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131, Bologna, Italy
| | - Andrea Negroni
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131, Bologna, Italy
| | - Giulio Zanaroli
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131, Bologna, Italy.
| | - Fabio Fava
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131, Bologna, Italy
| |
Collapse
|
16
|
Nuzzo A, Hosseinkhani B, Boon N, Zanaroli G, Fava F. Impact of bio-palladium nanoparticles (bio-Pd NPs) on the activity and structure of a marine microbial community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:1068-1078. [PMID: 27894722 DOI: 10.1016/j.envpol.2016.11.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/31/2016] [Accepted: 11/14/2016] [Indexed: 06/06/2023]
Abstract
Biogenic palladium nanoparticles (bio-Pd NPs) represent a promising catalyst for organohalide remediation in water and sediments. However, the available information regarding their possible impact in case of release into the environment, particularly on the environmental microbiota, is limited. In this study the toxicity of bio-Pd NPs on the model marine bacterium V. fischeri was assessed. The impacts of different concentrations of bio-Pd NPs on the respiratory metabolisms (i.e. organohalide respiration, sulfate reduction and methanogenesis) and the structure of a PCB-dechlorinating microbial community enriched form a marine sediment were also investigated in microcosms mimicking the actual sampling site conditions. Bio-Pd NPs had no toxic effect on V. fischeri. In addition, they had no significant effects on PCB-dehalogenating activity, while showing a partial, dose-dependent inhibitory effect on sulfate reduction as well as on methanogenesis. No toxic effects by bio-Pd NPs could be also observed on the total bacterial community structure, as its biodiversity was increased compared to the not exposed community. In addition, resilience of the microbial community to bio-Pd NPs exposure was observed, being the final community organization (Gini coefficient) of samples exposed to bio-Pd NPs similar to that of the not exposed one. Considering all the factors evaluated, bio-Pd NPs could be deemed as non-toxic to the marine microbiota in the conditions tested. This is the first study in which the impact of bio-Pd NPs is extensively evaluated over a microbial community in relevant environmental conditions, providing important information for the assessment of their environmental safety.
Collapse
Affiliation(s)
- Andrea Nuzzo
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Baharak Hosseinkhani
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Giulio Zanaroli
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
| | - Fabio Fava
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| |
Collapse
|
17
|
Banerjee J, Singh R, Vijayaraghavan R, MacFarlane D, Patti AF, Arora A. Bioactives from fruit processing wastes: Green approaches to valuable chemicals. Food Chem 2016; 225:10-22. [PMID: 28193402 DOI: 10.1016/j.foodchem.2016.12.093] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/06/2016] [Accepted: 12/27/2016] [Indexed: 11/24/2022]
Abstract
Fruit processing industries contribute more than 0.5billion tonnes of waste worldwide. The global availability of this feedstock and its untapped potential has encouraged researchers to perform detailed studies on value-addition potential of fruit processing waste (FPW). Compared to general food or other biomass derived waste, FPW are found to be selective and concentrated in nature. The peels, pomace and seed fractions of FPW could potentially be a good feedstock for recovery of bioactive compounds such as pectin, lipids, flavonoids, dietary fibres etc. A novel bio-refinery approach would aim to produce a wider range of valuable chemicals from FPW. The wastes from majority of the extraction processes may further be used as renewable sources for production of biofuels. The literature on value addition to fruit derived waste is diverse. This paper presents a review of fruit waste derived bioactives. The financial challenges encountered in existing methods are also discussed.
Collapse
Affiliation(s)
- Jhumur Banerjee
- CTARA, IITB-Monash Research Academy, IIT Bombay, Mumbai, Maharashtra 400076, India
| | - Ramkrishna Singh
- CTARA, IITB-Monash Research Academy, IIT Bombay, Mumbai, Maharashtra 400076, India
| | - R Vijayaraghavan
- School of Chemistry, Faculty of Science, Monash University, Clayton Campus, VIC 3800, Australia
| | - Douglas MacFarlane
- School of Chemistry, Faculty of Science, Monash University, Clayton Campus, VIC 3800, Australia
| | - Antonio F Patti
- School of Chemistry, Faculty of Science, Monash University, Clayton Campus, VIC 3800, Australia
| | - Amit Arora
- CTARA, IITB-Monash Research Academy, IIT Bombay, Mumbai, Maharashtra 400076, India.
| |
Collapse
|
18
|
|
19
|
Dammak I, Neves M, Isoda H, Sayadi S, Nakajima M. Recovery of polyphenols from olive mill wastewater using drowning-out crystallization based separation process. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2016.02.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Scoma A, Varela-Corredor F, Bertin L, Gostoli C, Bandini S. Recovery of VFAs from anaerobic digestion of dephenolized Olive Mill Wastewaters by Electrodialysis. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2015.12.029] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Larriba M, Omar S, Navarro P, García J, Rodríguez F, Gonzalez-Miquel M. Recovery of tyrosol from aqueous streams using hydrophobic ionic liquids: a first step towards developing sustainable processes for olive mill wastewater (OMW) management. RSC Adv 2016. [DOI: 10.1039/c5ra26510j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hydrophobic ILs have been proposed as VOCs replacements for tyrosol recovery from aqueous solutions, revealing promising extraction efficiency and regeneration capacity. This will help developing sustainable processes for olive mill waste management.
Collapse
Affiliation(s)
- Marcos Larriba
- Department of Chemical Engineering
- Complutense University of Madrid
- E-28040 Madrid
- Spain
- School of Chemical Engineering and Analytical Science
| | - Salama Omar
- Sección de Ingeniería Química
- Universidad Autónoma de Madrid
- Madrid
- Spain
| | - Pablo Navarro
- Department of Chemical Engineering
- Complutense University of Madrid
- E-28040 Madrid
- Spain
| | - Julián García
- Department of Chemical Engineering
- Complutense University of Madrid
- E-28040 Madrid
- Spain
| | - Francisco Rodríguez
- Department of Chemical Engineering
- Complutense University of Madrid
- E-28040 Madrid
- Spain
| | - Maria Gonzalez-Miquel
- School of Chemical Engineering and Analytical Science
- The University of Manchester
- Manchester
- UK
| |
Collapse
|
22
|
Fernandes LR, Gomes AC, Lopes A, Albuquerque A, Simões RM. Sugar and volatile fatty acids dynamic during anaerobic treatment of olive mill wastewater. ENVIRONMENTAL TECHNOLOGY 2015; 37:997-1007. [PMID: 26496487 DOI: 10.1080/09593330.2015.1096310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Biogas production has been the main route used to exploit olive mill wastewater (OMW), after pretreatment and/or in combination with other effluents, but more recently the production of chemicals and biopolymers by biotechnological routes has deserved increasing attention by the scientific community. The present paper aims to explore the potential of fresh OMW as a source of volatile fatty acids (VFAs) and biogas. The time profile of VFAs production and the corresponding sugar consumption was followed by high-performance liquid chromatography, in batch anaerobic assays. The experimental results have revealed the very high potential of the OMW for the production of VFAs, mainly due to the high sugar concentration in the effluent (37.8 g/L) and its complete conversion into VFAs, in a time period of 2-3 days. The most abundant VFAs were acetic (48-50%), n-butanoic (12-27%), iso-pentanoic (12-14%) and propanoic (5-13%). The ratio of VFA containing even and odd carbon chains increased with the reduction in the initial chemical oxygen demand concentration of the samples used in the experiments. The conversion of the VFAs to biogas was inhibited at concentrations of 3.5 g/L of VFAs.
Collapse
Affiliation(s)
- L R Fernandes
- a Department of Chemistry , University of Beira Interior , Covilhã , Portugal
| | - A C Gomes
- a Department of Chemistry , University of Beira Interior , Covilhã , Portugal
- b FibEnTech - Materiais Fibrosos e Tecnologias Ambientais , University of Beira Interior , Covilhã , Portugal
| | - A Lopes
- a Department of Chemistry , University of Beira Interior , Covilhã , Portugal
- b FibEnTech - Materiais Fibrosos e Tecnologias Ambientais , University of Beira Interior , Covilhã , Portugal
| | - A Albuquerque
- b FibEnTech - Materiais Fibrosos e Tecnologias Ambientais , University of Beira Interior , Covilhã , Portugal
- c Department of Civil Engineering and Architecture , University of Beira Interior , Covilhã , Portugal
| | - R M Simões
- a Department of Chemistry , University of Beira Interior , Covilhã , Portugal
- b FibEnTech - Materiais Fibrosos e Tecnologias Ambientais , University of Beira Interior , Covilhã , Portugal
| |
Collapse
|
23
|
|
24
|
Martínez-Sanz M, Lopez-Rubio A, Villano M, Oliveira CSS, Majone M, Reis M, Lagarón JM. Production of bacterial nanobiocomposites of polyhydroxyalkanoates derived from waste and bacterial nanocellulose by the electrospinning enabling melt compounding method. J Appl Polym Sci 2015. [DOI: 10.1002/app.42486] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Marta Martínez-Sanz
- Novel Materials and Nanotechnology Group; IATA, CSIC; Avda. Agustín Escardino, 7 46980 Paterna, Valencia Spain
| | - Amparo Lopez-Rubio
- Novel Materials and Nanotechnology Group; IATA, CSIC; Avda. Agustín Escardino, 7 46980 Paterna, Valencia Spain
| | - Marianna Villano
- Department of Chemistry; Sapienza University of Rome; P.le Aldo Moro 5 00185 Rome Italy
| | - Catarina S. S. Oliveira
- REQUIMTE/CQFB; FCT/Universidade Nova de Lisboa, Campus de Caparica; 2829-516 Caparica Portugal
| | - Mauro Majone
- Department of Chemistry; Sapienza University of Rome; P.le Aldo Moro 5 00185 Rome Italy
| | - Maria Reis
- REQUIMTE/CQFB; FCT/Universidade Nova de Lisboa, Campus de Caparica; 2829-516 Caparica Portugal
| | - Jose M. Lagarón
- Novel Materials and Nanotechnology Group; IATA, CSIC; Avda. Agustín Escardino, 7 46980 Paterna, Valencia Spain
| |
Collapse
|
25
|
Monti M, Scoma A, Martinez G, Bertin L, Fava F. Uncoupled hydrogen and volatile fatty acids generation in a two-step biotechnological anaerobic process fed with actual site wastewater. N Biotechnol 2015; 32:341-6. [DOI: 10.1016/j.nbt.2014.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 08/17/2014] [Accepted: 08/21/2014] [Indexed: 11/29/2022]
|
26
|
Agustín Martinez G, Bertin L, Scoma A, Rebecchi S, Braunegg G, Fava F. Production of polyhydroxyalkanoates from dephenolised and fermented olive mill wastewaters by employing a pure culture of Cupriavidus necator. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.02.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Kim J, Lee C. Response of a continuous biomethanation process to transient organic shock loads under controlled and uncontrolled pH conditions. WATER RESEARCH 2015; 73:68-77. [PMID: 25644629 DOI: 10.1016/j.watres.2015.01.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 01/06/2015] [Accepted: 01/08/2015] [Indexed: 06/04/2023]
Abstract
The organic loading rate (OLR) is a critical factor that controls the treatment efficiency and biogas production in anaerobic digestion (AD). Therefore, organic shock loads may cause significant process imbalances accompanied by a drop in pH and acid accumulation or even failure. This study investigated the response of a continuous mesophilic anaerobic bioreactor to a series of transient organic shock loads of the substrate whey permeate, a high-strength organic wastewater from cheese making. The reactor was subjected to organic shock loads of increasing magnitude (a one-day pulse of elevated feed organic concentration) under controlled (near 7) and uncontrolled pH conditions at a fixed HRT of 10 days. The reactor was resilient to up to a shock load of up to 8.0 g SCOD/L·d under controlled pH conditions but failed to recover from the serious imbalance caused by a 3.0-g SCOD/L·d shock load, thus indicating the critical effect of pH on system resilience. The acidified reactor was not restored by interrupted feeding under the acidic conditions that were formed (pH ≤ 4.5) but was successfully restored after pH adjustment to 7. The reactor subsequently reverted to continuous mode without pH control and showed a performance comparable to the stable performance at the design OLR of 1.0 g SCOD/L·d. The bacterial community structure shifted dynamically in association with disturbances in the reactor conditions, whereas the archaeal community structure remained simple and less variable during the shock loading experiments. The structural shifts of the bacterial community were well correlated with the process performance changes, and performance recovery was generally accompanied by recovery of the bacterial community structure. The overall results suggest that the reactor pH, rather than simply acting as an accumulation of organic acids, had a crucial effect on the resilience and robustness of the microbial community and thus on the reactor performance under organic shock loads.
Collapse
Affiliation(s)
- Jaai Kim
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 689-798, Republic of Korea
| | - Changsoo Lee
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 689-798, Republic of Korea.
| |
Collapse
|
28
|
Scoma A, Rebecchi S, Bertin L, Fava F. High impact biowastes from South European agro-industries as feedstock for second-generation biorefineries. Crit Rev Biotechnol 2014; 36:175-89. [PMID: 25373788 DOI: 10.3109/07388551.2014.947238] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Availability of bio-based chemicals, materials and energy at reasonable cost will be one of the forthcoming issues for the EU economy. In particular, the development of technologies making use of alternative resources to fossil fuels is encouraged by the current European research and innovation strategy to face the societal challenge of natural resource scarcity, fossil resource dependence and sustainable economic growth. In this respect, second- generation biorefineries, i.e. biorefineries fed with biowastes, appear to be good candidates to substitute and replace the present downstream processing scheme. Contrary to first-generation biorefineries, which make use of dedicated crops or primary cultivations to achieve such a goal, the former employ agricultural, industrial, zootechnical, fishery and forestry biowastes as the main feedstock. This leaves aside any ethical and social issue generated by first-generation approaches, and concomitantly prevents environmental and economical issues associated with the disposal of the aforementioned leftovers. Unfortunately, to date, a comprehensive and updated mapping of the availability and potential use of bioresources for second-generation biorefineries in Europe is missing. This is a lack that severely limits R&D and industrial applications in the sector. On the other hand, attempts at valorizing the most diverse biowastes dates back to the nineteenth century and plenty of information in the literature on their sustainable exploitation is available. However, the large majority of these investigations have been focused on single fractions of biowastes or single steps of biowaste processing, preventing considerations on an integrated and modular (cascade) approach for the whole valorization of organic leftovers. This review aims at addressing these issues by gathering recent data on (a) some of the main high-impact biowastes located in Europe and in particular in its Southern part, and (b) the bio-based chemicals, materials and fuels that can be produced from such residues. In particular, we focused on those key compounds referred to as "chemical platforms", which have been indicated as fundamental to generate the large majority of the industrially relevant goods to date.
Collapse
Affiliation(s)
- Alberto Scoma
- a Department of Civil , Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum, University of Bologna , Bologna , Italy
| | - Stefano Rebecchi
- a Department of Civil , Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum, University of Bologna , Bologna , Italy
| | - Lorenzo Bertin
- a Department of Civil , Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum, University of Bologna , Bologna , Italy
| | - Fabio Fava
- a Department of Civil , Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum, University of Bologna , Bologna , Italy
| |
Collapse
|
29
|
Effect of the organic loading rate on the production of polyhydroxyalkanoates in a multi-stage process aimed at the valorization of olive oil mill wastewater. Int J Biol Macromol 2014; 71:34-41. [DOI: 10.1016/j.ijbiomac.2014.06.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/08/2014] [Accepted: 06/10/2014] [Indexed: 11/23/2022]
|
30
|
Recovery of amorphous polyhydroxybutyrate granules from Cupriavidus necator cells grown on used cooking oil. Int J Biol Macromol 2014; 71:117-23. [DOI: 10.1016/j.ijbiomac.2014.04.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 03/18/2014] [Accepted: 04/05/2014] [Indexed: 11/30/2022]
|
31
|
Romero-García JM, Niño L, Martínez-Patiño C, Álvarez C, Castro E, Negro MJ. Biorefinery based on olive biomass. State of the art and future trends. BIORESOURCE TECHNOLOGY 2014; 159:421-32. [PMID: 24713236 DOI: 10.1016/j.biortech.2014.03.062] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/11/2014] [Accepted: 03/14/2014] [Indexed: 05/08/2023]
Abstract
With currently more than nine million hectares, olive tree cultivation has spread worldwide, table olives and olive oil as the main products. Moreover, a number of by-products and residues derived from both tree cultivation and the process of industrial olive oil production, most having no practical applications, are obtained yearly. This paper reviews the research regarding these by-products, namely biomass from olive tree pruning, olive stones, olive pomace and wastewaters obtained from the process of olive oil production. Furthermore, a wide range of compounds has been identified and can be produced using a broad definition of the term biorefinery based on olive tree biomass. As an example, this paper reviews ethanol production as one of the main proposed applications, as well as research on other value-added products. Finally, this paper also assesses recent technological advances, future perspectives and challenges in each stage of the process.
Collapse
Affiliation(s)
- J M Romero-García
- Dept. Chemical, Environmental and Materials Engineering, Agrifood Campus of International Excellence, ceiA3, University of Jaén, 23071 Jaén, Spain
| | - L Niño
- Dept. Chemical, Environmental and Materials Engineering, Agrifood Campus of International Excellence, ceiA3, University of Jaén, 23071 Jaén, Spain
| | - C Martínez-Patiño
- Dept. Chemical, Environmental and Materials Engineering, Agrifood Campus of International Excellence, ceiA3, University of Jaén, 23071 Jaén, Spain
| | - C Álvarez
- Biofuels Unit, Energy Department-CIEMAT, Avda. Complutense 40, 28040 Madrid, Spain
| | - E Castro
- Dept. Chemical, Environmental and Materials Engineering, Agrifood Campus of International Excellence, ceiA3, University of Jaén, 23071 Jaén, Spain
| | - M J Negro
- Biofuels Unit, Energy Department-CIEMAT, Avda. Complutense 40, 28040 Madrid, Spain.
| |
Collapse
|
32
|
Sciubba L, Bertin L, Todaro D, Bettini C, Fava F, Di Gioia D. Biodegradation of low-ethoxylated nonylphenols in a bioreactor packed with a new ceramic support (Vukopor ® S10). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:3241-3253. [PMID: 24217973 DOI: 10.1007/s11356-013-2290-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/24/2013] [Indexed: 06/02/2023]
Abstract
This work was aimed at studying the possibility of biodegrading 4-nonylphenol and low ethoxylated nonylphenol mixtures, which are particularly recalcitrant to microbial degradation, by employing a biofilm reactor packed with a ceramic support (Vukopor® S10). A selected microbial consortium (Consortium A) was used to colonize the support. 4-Nonylphenol and ethoxylated nonylphenol degradation and mineralization capabilities were studied both in batch and continuous mode. The results showed that Vukopor® S10 was able to be colonized by an active biofilm for the degradation of the target pollutants with the reactor operating both in batch and continuous mode. On the other hand, pollutant adsorption on the support was negligible. FISH showed equal proportion of Alphaproteobacteria and Gammaproteobacteria in the Igepal CO-520 degrading reactor. A shift towards high proportion of Gammaproteobacteria was observed by supplying Igepal CO-210. PCR-density gradient gel electrophoresis (DGGE) analyses also evidenced that the biofilm evolved with time by changing the mixture applied and that Proteobacteria were the most represented phylum in the biofilm. Taken together, the data obtained provide a strong indication that the biofilm reactor packed with Vukopor® S10 and inoculated with Consortium A could potentially be used to develop a technology for the decontamination of 4-nonylphenol and low ethoxylated nonylphenol polluted effluents.
Collapse
Affiliation(s)
- Luigi Sciubba
- Department of Agricultural Sciences, Alma Mater Studiorum, University of Bologna, viale Fanin, 44, 40127, Bologna, Italy
| | | | | | | | | | | |
Collapse
|
33
|
Kalogerakis N, Politi M, Foteinis S, Chatzisymeon E, Mantzavinos D. Recovery of antioxidants from olive mill wastewaters: a viable solution that promotes their overall sustainable management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2013; 128:749-758. [PMID: 23851320 DOI: 10.1016/j.jenvman.2013.06.027] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 06/10/2013] [Accepted: 06/20/2013] [Indexed: 06/02/2023]
Abstract
Olive mill wastewaters (OMW) are rich in water-soluble polyphenolic compounds that show remarkable antioxidant properties. In this work, the recovery yield of compounds, such as hydroxytyrosol and tyrosol, as well as total phenols (TPh) from real OMW was investigated. Antioxidants were recovered by means of liquid-liquid solvent extraction. For this purpose, a laboratory-scale pilot unit was established and the effect of various organic solvents, namely ethyl acetate, diethyl ether and a mixture of chloroform/isopropyl alcohol, on process efficiency was investigated. It was found that the performance of the three extraction systems decreased in the order: ethyl acetate > chloroform/isopropanol > diethyl ether, in terms of their antioxidant recovery yield. It was estimated that treatment of 1 m(3) OMW with ethyl acetate could provide 0.247 kg hydroxytyrosol, 0.062 kg tyrosol and 3.44 kg of TPh. Furthermore, the environmental footprint of the whole liquid-liquid extraction system was estimated by means of the life cycle assessment (LCA) methodology to provide the best available and most sustainable extraction technique. From an environmental perspective, it was found that ethyl acetate and diethyl ether had similar environmental impacts. Specifically, for the production of 1 g hydroxytyrosol, tyrosol or TPh, 13.3, 53.1 or 0.949 kg CO2 equivalent would be released to the atmosphere, respectively. On the other hand, the chloroform/isopropyl alcohol mixture had detrimental effects onto ecosystems, human health and fossil fuels resources. In total, ethyl acetate yields low environmental impacts and high antioxidant recovery yield and thus it can be considered as the best solution, both from the environmental and technical point of view. Three alternative scenarios to improve the recovery performance and boost the sustainability of the ethyl acetate extraction system were also investigated and their total environmental impacts were estimated. It was found that with small process modifications the environmental impacts could be reduced by 29%, thus achieving a more sustainable antioxidants recovery process.
Collapse
Affiliation(s)
- Nicolas Kalogerakis
- Department of Environmental Engineering, Technical University of Crete, Polytechneioupolis, GR-73100 Chania, Greece
| | | | | | | | | |
Collapse
|
34
|
|
35
|
Ntougias S, Bourtzis K, Tsiamis G. The microbiology of olive mill wastes. BIOMED RESEARCH INTERNATIONAL 2013; 2013:784591. [PMID: 24199199 PMCID: PMC3809369 DOI: 10.1155/2013/784591] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 07/18/2013] [Accepted: 07/22/2013] [Indexed: 01/18/2023]
Abstract
Olive mill wastes (OMWs) are high-strength organic effluents, which upon disposal can degrade soil and water quality, negatively affecting aquatic and terrestrial ecosystems. The main purpose of this review paper is to provide an up-to-date knowledge concerning the microbial communities identified over the past 20 years in olive mill wastes using both culture-dependent and independent approaches. A database survey of 16S rRNA gene sequences (585 records in total) obtained from olive mill waste environments revealed the dominance of members of Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, and Actinobacteria. Independent studies confirmed that OMW microbial communities' structure is cultivar dependent. On the other hand, the detection of fecal bacteria and other potential human pathogens in OMWs is of major concern and deserves further examination. Despite the fact that the degradation and detoxification of the olive mill wastes have been mostly investigated through the application of known bacterial and fungal species originated from other environmental sources, the biotechnological potential of indigenous microbiota should be further exploited in respect to olive mill waste bioremediation and inactivation of plant and human pathogens. The implementation of omic and metagenomic approaches will further elucidate disposal issues of olive mill wastes.
Collapse
Affiliation(s)
- Spyridon Ntougias
- Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67100 Xanthi, Greece
| | - Kostas Bourtzis
- Department of Environmental and Natural Resources Management, University of Patras, 2 Seferi Street, 30100 Agrinio, Greece
| | - George Tsiamis
- Department of Environmental and Natural Resources Management, University of Patras, 2 Seferi Street, 30100 Agrinio, Greece
| |
Collapse
|
36
|
Padovani G, Pintucci C, Carlozzi P. Dephenolization of stored olive-mill wastewater, using four different adsorbing matrices to attain a low-cost feedstock for hydrogen photo-production. BIORESOURCE TECHNOLOGY 2013; 138:172-179. [PMID: 23612177 DOI: 10.1016/j.biortech.2013.03.155] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 03/23/2013] [Accepted: 03/23/2013] [Indexed: 06/02/2023]
Abstract
This investigation deals with the conversion of olive-mill wastewater (OMW) into several feedstocks suitable for hydrogen photo-production. The goal was reached by means of two sequential steps: (i) a pre-treatment process of stored-OMW for the removal of polyphenols, which made it possible to obtain several effluents, and (ii) a photo-fermentative process for hydrogen production by means of Rhodopseudomonas palustris sp. Four different adsorbent matrices (Azolla, granular active carbon, resin, and zeolite) were used to dephenolize stored-OMW. The four liquid fractions attained by using the above process created the same number of effluents, and these were diluted with water and then used for hydrogen photo-production. The maximum hydrogen production rate (14.31 mL/L/h) was attained with the photo-fermenter containing 25% of the effluent, which came from the pre-treatment of stored-OMW using granular active carbon. Using the carbon effluent as feedstock, the greatest light conversion efficiency of 2.29% was achieved.
Collapse
Affiliation(s)
- Giulia Padovani
- Istituto per lo Studio degli Ecosistemi, Sede di Firenze, Consiglio Nazionale delle Ricerche, Polo Scientifico, Via Madonna del Piano n. 10, 50019 Sesto Fiorentino, Firenze, Italy
| | | | | |
Collapse
|
37
|
Cassano A, Conidi C, Giorno L, Drioli E. Fractionation of olive mill wastewaters by membrane separation techniques. JOURNAL OF HAZARDOUS MATERIALS 2013; 248-249:185-193. [PMID: 23376489 DOI: 10.1016/j.jhazmat.2013.01.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/17/2012] [Accepted: 01/04/2013] [Indexed: 06/01/2023]
Abstract
This study aims to evaluate the potential of an integrated membrane system in the treatment of olive mill wastewaters (OMWs) to produce a purified fraction enriched in low molecular weight polyphenols, a concentrated fraction of organic substances and a water stream which can be reused in the extractive process of olive oil. In particular, a sequence of two ultrafiltration (UF) processes followed by a final nanofiltration (NF) step was investigated on laboratory scale operating in selected process parameters. The produced fractions were analyzed for their total content of polyphenols, total antioxidant activity (TAA), free low molecular weight polyphenols and total organic carbon (TOC). The performance of selected membranes in terms of productivity, fouling index and selectivity toward compounds of interest was also evaluated and discussed. An integrated membrane process was proposed to achieve high levels of purification of OMWs and a water fraction which can be discharged in aquatic systems or to be reused in the olive oil extraction process.
Collapse
Affiliation(s)
- Alfredo Cassano
- Institute on Membrane Technology, ITM-CNR, Via P. Bucci, 17/C I-87036 Rende (CS), Italy.
| | | | | | | |
Collapse
|
38
|
Oleskowicz-Popiel P, Kádár Z, Heiske S, Klein-Marcuschamer D, Simmons BA, Blanch HW, Schmidt JE. Co-production of ethanol, biogas, protein fodder and natural fertilizer in organic farming--evaluation of a concept for a farm-scale biorefinery. BIORESOURCE TECHNOLOGY 2012; 104:440-446. [PMID: 22154299 DOI: 10.1016/j.biortech.2011.11.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 11/16/2011] [Accepted: 11/16/2011] [Indexed: 05/31/2023]
Abstract
The addition of a biorefinery to an organic farm was investigated, where ethanol was produced from germinated rye grains and whey, and the effluent was separated into two streams: the protein-rich solid fraction, to be used as animal feed, and the liquid fraction, which can be co-digested with clover grass silage to produce biogas. A method for ethanol production from rye was applied by utilizing inherent amylase activity from germination of the seed. Biogas potential of ethanol fermentation effluent was measured through anaerobic digestion trials. The effluent from the trials was assumed to serve as natural fertilizer. A technoeconomic analysis was also performed; total capital investment was estimated to be approximately 4 M USD. Setting a methane selling price according to available incentives for "green electricity" (0.72 USD/m(3)) led to a minimum ethanol selling price of 1.89 USD/L (project lifetime 25 yr, at a discount rate 10%).
Collapse
|