1
|
Li KY, Zhou JL, Guo SY, Dou XX, Gu JJ, Gao F. Advances of microalgae-based enhancement strategies in industrial flue gas treatment: From carbon sequestration to lipid production. BIORESOURCE TECHNOLOGY 2025; 423:132250. [PMID: 39961522 DOI: 10.1016/j.biortech.2025.132250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/20/2025] [Accepted: 02/15/2025] [Indexed: 02/24/2025]
Abstract
The acceleration of industrial development and urban expansion has led to a significant increase in flue gas emissions, posing a significant risk to human health and ecosystems. Recent studies have elucidated the significant potential of microalgae in the domain of sustainable industrial flue gas treatment. However, the inherent multifaceted factors within flue gas exert inhibitory effects on microalgal growth, thereby diminishing the overall system efficacy. Therefore, it is necessary to systematically analyze the flue gas components and propose complete intermediate treatment steps to alleviate their stressful effects on microalgae. Concurrently, to address the intrinsic limitations of the systemic functionality and enhance the applicability of microalgal biotechnology in industrial flue gas treatment, this review proposes a series of innovative solutions and strategies aimed at improving carbon fixation efficiency and lipid productivity of microalgae during flue gas treatment. In addition, the feasibility and potential limitations of these strategies in industrial applications are also discussed. Furthermore, through systematic comparative analysis, the optimal scheme and development trend of industrial flue gas emission reduction technology are explored. This comprehensive review not only establishes a theoretical foundation for the application of microalgae in industrial flue gas treatment, but also offers valuable insights for future research directions in related fields.
Collapse
Affiliation(s)
- Kai-Yuan Li
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, Zhoushan 316000, China
| | - Jin-Long Zhou
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, Zhoushan 316000, China
| | - Si-Yuan Guo
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, Zhoushan 316000, China
| | - Xiao-Xiao Dou
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, Zhoushan 316000, China
| | - Jun-Jie Gu
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, Zhoushan 316000, China
| | - Feng Gao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, Zhoushan 316000, China.
| |
Collapse
|
2
|
Carone M, Alpe D, Costantino V, Derossi C, Occhipinti A, Zanetti M, Riggio VA. Design and characterization of a new pressurized flat panel photobioreactor for microalgae cultivation and CO 2 bio-fixation. CHEMOSPHERE 2022; 307:135755. [PMID: 35868532 DOI: 10.1016/j.chemosphere.2022.135755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/14/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Microalgae-based biorefinery processes are gaining particular importance as a biotechnological tool for direct carbon dioxide fixation and production of high-quality biomass and energy feedstock for different industrial markets. However, despite the many technological advances in photobioreactor designs and operations, microalgae cultivation is still limited due to the low yields achieved in open systems and to the high investment and operation costs of closed photobioreactors. In this work, a new alveolar flat panel photobioreactor was designed and characterized with the aim of achieving high microalgae productivities and CO2 bio-fixation rates. Moreover, the energy efficiency of the employed pump-assisted hydraulic circuit was evaluated. The 1.3 cm thick alveolar flat-panels enhance the light utilization, whereas the hydraulic design of the photobioreactor aims to improve the global CO2 gas-liquid mass transfer coefficient (kLaCO2). The mixing time, liquid flow velocity, and kLaCO2 as well as the uniformity matrix of the artificial lighting source were experimentally calculated. The performance of the system was tested by cultivating the green microalga Acutodesmus obliquus. A volumetric biomass concentration equal to 1.9 g L-1 was achieved after 7 days under controlled indoor cultivation conditions with a CO2 bio-fixation efficiency of 64% of total injected CO2. The (gross) energy consumption related to substrate handling was estimated to be between 27 and 46 Wh m-3, without any cost associated to CO2 injection and O2 degassing. The data suggest that this pilot-scale cultivation system may constitute a relevant technology in the development of microalgae-based industrial scenario for CO2 mitigation and biomass production.
Collapse
Affiliation(s)
- Michele Carone
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Torino, Italy.
| | - Davis Alpe
- Photo B-Otic S.r.l., Via Paolo Veronese 202, 10148, Torino, Italy
| | - Valentina Costantino
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Torino, Italy
| | - Clara Derossi
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Torino, Italy
| | - Andrea Occhipinti
- Abel Nutraceuticals S.r.l., Via Paolo Veronese 202, 10148, Torino, Italy
| | - Mariachiara Zanetti
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Torino, Italy
| | - Vincenzo A Riggio
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Torino, Italy
| |
Collapse
|
3
|
Zhang S, Zhang L, Xu G, Li F, Li X. A review on biodiesel production from microalgae: Influencing parameters and recent advanced technologies. Front Microbiol 2022; 13:970028. [PMID: 35966657 PMCID: PMC9372408 DOI: 10.3389/fmicb.2022.970028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/12/2022] [Indexed: 12/17/2022] Open
Abstract
Microalgae are the important part of carbon cycle in the nature, and they could utilize the carbon resource in water and soil efficiently. The abilities of microalgae to mitigate CO2 emission and produce oil with a high productivity have been proven. Hence, this third-generation biodiesel should be popularized. This review firstly introduce the basic characteristics and application fields of microalgae. Then, the influencing parameters and recent advanced technologies for the microalgae biodiesel production have been discussed. In influencing parameters for biodiesel production section, the factors of microalgae cultivation, lipid accumulation, microalgae harvesting, and lipid extraction have been summarized. In recent advanced technologies for biodiesel production section, the microalgae cultivation systems, lipid induction technologies, microalgae harvesting technologies, and lipid extraction technologies have been reviewed. This review aims to provide useful information to help future development of efficient and commercially viable technology for microalgae-based biodiesel production.
Collapse
Affiliation(s)
- Shiqiu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, China
- School of Geography and Environment, Shandong Normal University, Jinan, China
| | - Lijie Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
- *Correspondence: Lijie Zhang,
| | - Geng Xu
- School of Geography and Environment, Shandong Normal University, Jinan, China
| | - Fei Li
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, China
| | - Xiaokang Li
- School of Environmental and Material Engineering, Yantai University, Yantai, China
- Xiaokang Li,
| |
Collapse
|
4
|
Critical Review on Nanomaterials for Enhancing Bioconversion and Bioremediation of Agricultural Wastes and Wastewater. ENERGIES 2022. [DOI: 10.3390/en15155387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Anaerobic digestion (AD), microalgae cultivation, and microbial fuel cells (MFCs) are the major biological processes to convert organic solid wastes and wastewater in the agricultural industry into biofuels, biopower, various biochemical and fertilizer products, and meanwhile, recycle water. Various nanomaterials including nano zero valent irons (nZVIs), metal oxide nanoparticles (NPs), carbon-based and multicompound nanomaterials have been studied to improve the economics and environmental sustainability of those biological processes by increasing their conversion efficiency and the quality of products, and minimizing the negative impacts of hazardous materials in the wastes. This review article presented the structures, functionalities and applications of various nanomaterials that have been studied to improve the performance of AD, microalgae cultivation, and MFCs for recycling and valorizing agricultural solid wastes and wastewater. The review also discussed the methods that have been studied to improve the performance of those nanomaterials for their applications in those biological processes.
Collapse
|
5
|
Wang T, Ni Z, Kuang B, Zhou L, Chen X, Lin Z, Guo B, Zhu G, Jia J. Two-stage hybrid microalgal electroactive wetland-coupled anaerobic digestion for swine wastewater treatment in South China: Full-scale verification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153312. [PMID: 35065128 DOI: 10.1016/j.scitotenv.2022.153312] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Constructed wetlands have been widely used for organic wastewater treatment owing to low operating costs and simple maintenance. However, there are some disadvantages such as unstable efficiency in winter. In this study, a microalgal electroactive biofilm-constructed wetland was coupled with anaerobic digestion for full-scale treatment of swine wastewater. In a 12-month outdoor trial, the overall removal efficiencies of chemical oxygen demand, ammonium, nitrate, total nitrogen, total phosphorus, and nitrite reached 98.26%/95.14%, 97.96%/92.07%, 85.45%/66.04%, 95.07%/91.48%, 91.44%/91.52%, and 85.45%/84.67% in summer/winter, respectively. Hydrolytic bacteria were dominant in the anaerobic digestion part, and Cyanobium, Shewanella, and Azoarcus were enriched in the microalgal electroactive biofilm. The operating cost of the entire system was approximately 0.118 $/m3 of wastewater. These results confirm that the microalgal electroactive biofilm significantly enhances the efficiency and stability of constructed wetlands. In conclusion, the anaerobic digestion-microalgal electroactive biofilm-constructed wetland is technically and economically feasible for the treatment of swine wastewater.
Collapse
Affiliation(s)
- Tao Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China.
| | - Zhili Ni
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Bin Kuang
- Jiangmen Polytechnic, Jiangmen 529020, PR China
| | - Lilin Zhou
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Xuanhao Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Ziyang Lin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Bing Guo
- Department of Civil and Environmental Engineering, University of Surrey, Surrey GU2 7XH, United Kingdom
| | - Gefu Zhu
- School of Environment and Nature Resources, Renmin University of China, Beijing 100872, PR China
| | - Jianbo Jia
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China.
| |
Collapse
|
6
|
The Oxygen Paradigm—Quantitative Impact of High Concentrations of Dissolved Oxygen on Kinetics and Large-Scale Production of Arthrospira platensis. CHEMENGINEERING 2022. [DOI: 10.3390/chemengineering6010014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The cultivation of Arthrospira platensis in tubular photobioreactors (tPBRs) presents a promising approach for the commercial production of nutraceuticals and food products as it can achieve high productivity and effective process control. In closed photobioreactors, however, high amounts of photosynthetically produced oxygen can accumulate. So far, there has been a wide range of discussion on how dissolved oxygen concentrations (DOCs) affect bioprocess kinetics, and the subject has mainly been assessed empirically. In this study, we used photorespirometry to quantify the impact of DOCs on the growth kinetics and phycocyanin content of the widely cultivated cyanobacterium A. platensis. The photorespirometric routine revealed that the illumination intensity and cell dry weight concentration are important interconnected process parameters behind the impact that DOCs have on the bioprocess kinetics. Unfavorable process conditions such as low biomass concentrations or high illumination intensities yielded significant growth inhibition and reduced the phycocyanin content of A. platensis by up to 35%. In order to predict the biomass productivity of the large-scale cultivation of A. platensis in tPBRs, a simple process model was extended to include photoautotrophic oxygen production and accumulation in the tPBR to evaluate the performance of two configurations of a 5000 L tPBR.
Collapse
|
7
|
Gao P, Guo L, Gao M, Zhao Y, Jin C, She Z. Regulation of carbon source metabolism in mixotrophic microalgae cultivation in response to light intensity variation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:114095. [PMID: 34775333 DOI: 10.1016/j.jenvman.2021.114095] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/14/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Microalgae are one of the promising sources for renewable energy production, and the light intensity variation can affect the biofuel generation and carbon assimilation of mixotrophic microalgae. To reveal the response of carbon assimilation to light intensity, the effect of light intensity on the carbon source metabolism of Chlorella vulgaris under mixotrophic cultivation was investigated in this study. Moreover, the optimal carbon source composition for mixotrophic microalgae cultivation was evaluated using bicarbonate (HCO3-) and carbonate (CO32-) as inorganic carbon sources, and glucose and acetate as organic carbon sources. The optimal light intensity for Chlorella vulgaris growth was at the range of 8000-12000 lux. For the accumulation of biochemical components, low light intensity was beneficial to protein accumulation, and high light intensity was advantageous for carbohydrate and lipid accumulation. With HCO3- and glucose, the maximum lipid content reached 37.0% at a light intensity of 12000 lux. The citrate synthase activity was negatively correlated with light intensity, showing an opposite trend to biomass production. High light intensity had a positive impact on Rubisco expression, which promoted the microalgae growth and carbon fixing. The energy produced by heterotrophic metabolic activities increased at low light intensity, and the enhancement of biomass production with high light intensity was mainly caused by the improved photoreaction efficiency during the mixotrophic cultivation.
Collapse
Affiliation(s)
- Pengtao Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Mengchun Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Zonglian She
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
8
|
Neofotis P, Temple J, Tessmer OL, Bibik J, Norris N, Pollner E, Lucker B, Weraduwage SM, Withrow A, Sears B, Mogos G, Frame M, Hall D, Weissman J, Kramer DM. The induction of pyrenoid synthesis by hyperoxia and its implications for the natural diversity of photosynthetic responses in Chlamydomonas. eLife 2021; 10:67565. [PMID: 34936552 PMCID: PMC8694700 DOI: 10.7554/elife.67565] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 11/13/2021] [Indexed: 12/31/2022] Open
Abstract
In algae, it is well established that the pyrenoid, a component of the carbon-concentrating mechanism (CCM), is essential for efficient photosynthesis at low CO2. However, the signal that triggers the formation of the pyrenoid has remained elusive. Here, we show that, in Chlamydomonas reinhardtii, the pyrenoid is strongly induced by hyperoxia, even at high CO2 or bicarbonate levels. These results suggest that the pyrenoid can be induced by a common product of photosynthesis specific to low CO2 or hyperoxia. Consistent with this view, the photorespiratory by-product, H2O2, induced the pyrenoid, suggesting that it acts as a signal. Finally, we show evidence for linkages between genetic variations in hyperoxia tolerance, H2O2 signaling, and pyrenoid morphologies.
Collapse
Affiliation(s)
- Peter Neofotis
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, United States
| | - Joshua Temple
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, United States.,Department of Plant Biology, Michigan State University, East Lansing, United States
| | - Oliver L Tessmer
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, United States
| | - Jacob Bibik
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, United States
| | - Nicole Norris
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, United States
| | - Eric Pollner
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, United States
| | - Ben Lucker
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, United States
| | - Sarathi M Weraduwage
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, United States.,Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, United States
| | - Alecia Withrow
- Center for Advanced Microscopy, Michigan State University, East Lansing, United States
| | - Barbara Sears
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, United States
| | - Greg Mogos
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, United States
| | - Melinda Frame
- Center for Advanced Microscopy, Michigan State University, East Lansing, United States
| | - David Hall
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, United States
| | - Joseph Weissman
- Corporate Strategic Research, ExxonMobil, Annandale, United States
| | - David M Kramer
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, United States
| |
Collapse
|
9
|
Rearte TA, Celis-Plá PS, Neori A, Masojídek J, Torzillo G, Gómez-Serrano C, Silva Benavides AM, Álvarez-Gómez F, Abdala-Díaz R, Ranglová K, Caporgno M, Massocato TF, da Silva JC, Al Mahrouqui H, Atzmüller R, Figueroa FL. Photosynthetic performance of Chlorella vulgaris R117 mass culture is moderated by diurnal oxygen gradients in an outdoor thin layer cascade. ALGAL RES 2021. [DOI: 10.1016/j.algal.2020.102176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
10
|
Modeling the Influence of Temperature, Light Intensity and Oxygen Concentration on Microalgal Growth Rate. Processes (Basel) 2021. [DOI: 10.3390/pr9030496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Dissolved oxygen plays a key role in microalgal growth at high density. This effect was so far rarely quantified. Here we propose a new model to represent the combined effect of light, oxygen concentration and temperature (LOT-model) on microalgae growth. The LOT-model introduces oxygen concentration in order to represent the oxidative stress affecting the cultures, adding a toxicity term in the expression of the net growth rate. The model was validated with experimental data for several species such as Chlorella minutissima, Chlorella vulgaris, Dunaliella salina, Isochrysis galbana. It successfully predicted experimental records with an average error lower than 5.5%. The model was also validated using dynamical data where oxygen concentration varies. It highlights a strong impact of oxygen concentration on productivity, depending on temperature. The model quantifies the sensitivity to oxidative stress of different species and shows, for example, that Dunaliella salina is much less affected than Chlorella vulgaris by oxidative stress. The modeling approach can support an optimization strategy to improve productivity, especially for managing high oxygen levels.
Collapse
|
11
|
Hwang JH, Ryu H, Rodriguez KL, Fahad S, Domingo JS, Kushima A, Lee WH. A strategy for power generation from bilgewater using a photosynthetic microalgal fuel cell (MAFC). JOURNAL OF POWER SOURCES 2021; 484:10.1016/j.jpowsour.2020.229222. [PMID: 33627935 PMCID: PMC7898120 DOI: 10.1016/j.jpowsour.2020.229222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microbial fuel cells (MFCs) have recently been applied to generate electricity from oily wastewater. Although MFCs that utilize microalgae to provide a self-supporting oxygen (O2) supply at the cathode have been well discussed, those with microalgae at the anode as an active biomass for treating wastewater and producing electrons are still poorly studied and understood. Here, we demonstrated a bilgewater treatment using single- and double-chamber microalgal fuel cells (SMAFC and DMAFC) capable of generating energy with a novel microalgal strain (Chlorella sorokiniana) that was initially isolated from oily wastewater. Compared to previous MFC studies using green algae, relatively high voltage output (151.3-160.1 mV, 71.3-83.4 mV m-2 of power density) was observed in the SMAFC under O2 controlled systems (i.e., acetate addition or light/dark cycle). It was assumed that, under the O2 depletion, alternative electron acceptors such as bicarbonate may be utilized for power generation. A DMAFC showed better power density (up to 23.9%) compared to the SMAFC due to the separated cathode chamber which fully utilizes O2 as an electron acceptor. Both SMAFC and DMAFC removed 67.2-77.4% of soluble chemical oxygen demands (SCOD) from the synthetic bilgewater. This study demonstrates that the application of algae-based MFCs is a feasible strategy to treat oil-in-water emulsion while generating electricity.
Collapse
Affiliation(s)
- Jae-Hoon Hwang
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL, 32816, USA
| | - Hodon Ryu
- United States Environmental Protection Agency, Office of Research and Development, 26 W. Martin Luther King Drive, Cincinnati, OH, 45268, USA
| | - Kelsey L. Rodriguez
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL, 32816, USA
| | - Saisaban Fahad
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, 32816, USA
| | - Jorge Santo Domingo
- United States Environmental Protection Agency, Office of Research and Development, 26 W. Martin Luther King Drive, Cincinnati, OH, 45268, USA
| | - Akihiro Kushima
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, 32816, USA
| | - Woo Hyoung Lee
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL, 32816, USA
| |
Collapse
|
12
|
Nagappan S, Tsai PC, Devendran S, Alagarsamy V, Ponnusamy VK. Enhancement of biofuel production by microalgae using cement flue gas as substrate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:17571-17586. [PMID: 31512119 DOI: 10.1007/s11356-019-06425-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
The cement industry generates a substantial amount of gaseous pollutants that cannot be treated efficiently and economically using standard techniques. Microalgae, a promising bioremediation and biodegradation agent used as feedstock for biofuel production, can be used for the biotreatment of cement flue gas. In specific, components of cement flue gas such as carbon dioxide, nitrogen, and sulfur oxides are shown to serve as nutrients for microalgae. Microalgae also have the capacity to sequestrate heavy metals present in cement kiln dust, adding further benefits. This work provides an extensive overview of multiple approaches taken in the inclusion of microalgae biofuel production in the cement sector. In addition, factors influencing the production of microalgal biomass are also described in such an integrated plant. In addition, process limitations such as the adverse impact of flue gas on medium pH, exhaust gas toxicity, and efficient delivery of carbon dioxide to media are also discussed. Finally, the article concludes by proposing the future potential for incorporating the microalgae biofuel plant into the cement sector.
Collapse
Affiliation(s)
- Senthil Nagappan
- Department of Biotechnology, Sri Venkateswara College of Engineering (Autonomous - Affiliated to Anna University), Sriperumbudur, Tamil Nadu, 602 117, India
| | - Pei-Chien Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shiquan 1st Road, Sanmin District, Kaohsiung City, 807, Taiwan
| | - Saravanan Devendran
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Vardhini Alagarsamy
- Department of Biotechnology, Sri Venkateswara College of Engineering (Autonomous - Affiliated to Anna University), Sriperumbudur, Tamil Nadu, 602 117, India
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shiquan 1st Road, Sanmin District, Kaohsiung City, 807, Taiwan.
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan.
| |
Collapse
|
13
|
Chuka-ogwude D, Ogbonna J, Moheimani NR. A review on microalgal culture to treat anaerobic digestate food waste effluent. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101841] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Chowdhury R, Keen PL, Tao W. Fatty acid profile and energy efficiency of biodiesel production from an alkaliphilic algae grown in the photobioreactor. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Abu Hajar HA, Riefler RG, Stuart BJ. Cultivation of the microalga Neochloris oleoabundans for biofuels production and other industrial applications (a review). APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683817060096] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Fawzy MA. Fatty Acid Characterization and Biodiesel Production by the Marine Microalga Asteromonas gracilis: Statistical Optimization of Medium for Biomass and Lipid Enhancement. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2017; 19:219-231. [PMID: 28456869 DOI: 10.1007/s10126-017-9743-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 02/13/2017] [Indexed: 06/07/2023]
Abstract
Lipid production is an important indicator for evaluating microalgal species for biodiesel production. In this study, a new green microalga was isolated from a salt lake in Egypt and identified as Asteromonas gracilis. The main parameters such as biomass productivity, lipid content, and lipid productivity were evaluated in A. gracilis, cultivated in nutrient-starved (nitrogen, phosphorous), and salinity stress as a one-factor-at-a-time method. These parameters in general did not vary significantly from the standard nutrient growth media when these factors were utilized separately. Hence, response surface methodology (RSM) was assessed to study the combinatorial effect of different concentrations of the abovementioned factor conditions and to maximize the biomass productivity, lipid content, and lipid productivity of A. gracilis by determining optimal concentrations. RSM optimized media, including 1.36 M NaCl, 1 g/L nitrogen, and 0.0 g/L phosphorus recorded maximum biomass productivity, lipid content, and lipid productivity (40.6 mg/L/day, 39.3%, and 15.9 mg/L/day, respectively) which agreed well with the predicted values (40.1 mg/L/day, 43.6%, and 14.6 mg/L/day, respectively). Fatty acid profile of A. gracilis was composed of C16:0, C16:1, C18:0, C18:3, C18:2, C18:1, and C20:5, and the properties of fuel were also in agreement with international standards. These results suggest that A. gracilis is a promising feedstock for biodiesel production.
Collapse
Affiliation(s)
- Mustafa A Fawzy
- Faculty of Science, Botany and Microbiology Department, Assiut University, Assiut, 71516, Egypt.
| |
Collapse
|
17
|
Benvenuti G, Ruiz J, Lamers PP, Bosma R, Wijffels RH, Barbosa MJ. Towards microalgal triglycerides in the commodity markets. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:188. [PMID: 28725268 PMCID: PMC5514516 DOI: 10.1186/s13068-017-0873-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/11/2017] [Indexed: 05/04/2023]
Abstract
BACKGROUND Microalgal triglycerides (TAGs) hold great promise as sustainable feedstock for commodity industries. However, to determine research priorities and support business decisions, solid techno-economic studies are essential. Here, we present a techno-economic analysis of two-step TAG production (growth reactors are operated in continuous mode such that multiple batch-operated stress reactors are inoculated and harvested sequentially) for a 100-ha plant in southern Spain using vertically stacked tubular photobioreactors. The base case is established with outdoor pilot-scale data and based on current process technology. RESULTS For the base case, production costs of 6.7 € per kg of biomass containing 24% TAG (w/w) were found. Several scenarios with reduced production costs were then presented based on the latest biological and technological advances. For instance, much effort should focus on increasing the photosynthetic efficiency during the stress and growth phases, as this is the most influential parameter on production costs (30 and 14% cost reduction from base case). Next, biological and technological solutions should be implemented for a reduction in cooling requirements (10 and 4.5% cost reduction from base case when active cooling is avoided and cooling setpoint is increased, respectively). When implementing all the suggested improvements, production costs can be decreased to 3.3 € per kg of biomass containing 60% TAG (w/w) within the next 8 years. CONCLUSIONS With our techno-economic analysis, we indicated a roadmap for a substantial cost reduction. However, microalgal TAGs are not yet cost efficient when compared to their present market value. Cost-competiveness strictly relies on the valorization of the whole biomass components and on cheaper PBR designs (e.g. plastic film flat panels). In particular, further research should focus on the development and commercialization of PBRs where active cooling is avoided and stable operating temperatures are maintained by the water basin in which the reactor is placed.
Collapse
Affiliation(s)
- Giulia Benvenuti
- Bioprocess Engineering, AlgaePARC, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Jesús Ruiz
- Algades–Alga, Development, Engineering and Services, S.L., c. Margaritas, Costa Oeste, El Puerto de Santa María, 11500 Cádiz, Spain
| | - Packo P. Lamers
- Bioprocess Engineering, AlgaePARC, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Rouke Bosma
- Bioprocess Engineering, AlgaePARC, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - René H. Wijffels
- Bioprocess Engineering, AlgaePARC, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
- Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
| | - Maria J. Barbosa
- Bioprocess Engineering, AlgaePARC, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
18
|
de Vree JH, Bosma R, Wieggers R, Gegic S, Janssen M, Barbosa MJ, Wijffels RH. Turbidostat operation of outdoor pilot-scale photobioreactors. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.06.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
de Vree JH, Bosma R, Janssen M, Barbosa MJ, Wijffels RH. Comparison of four outdoor pilot-scale photobioreactors. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:215. [PMID: 26689675 PMCID: PMC4683866 DOI: 10.1186/s13068-015-0400-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 11/30/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND Microalgae are a potential source of sustainable commodities of fuels, chemicals and food and feed additives. The current high production costs, as a result of the low areal productivities, limit the application of microalgae in industry. A first step is determining how the different production system designs relate to each other under identical climate conditions. The productivity and photosynthetic efficiency of Nannochloropsis sp. CCAP 211/78 cultivated in four different outdoor continuously operated pilot-scale photobioreactors under the same climatological conditions were compared. The optimal dilution rate was determined for each photobioreactor by operation of the different photobioreactors at different dilution rates. RESULTS In vertical photobioreactors, higher areal productivities and photosynthetic efficiencies, 19-24 g m(-2) day(-1) and 2.4-4.2 %, respectively, were found in comparison to the horizontal systems; 12-15 g m(-2) day(-1) and 1.5-1.8 %. The higher ground areal productivity in the vertical systems could be explained by light dilution in combination with a higher light capture. In the raceway pond low productivities were obtained, due to the long optical path in this system. Areal productivities in all systems increased with increasing photon flux densities up to a photon flux density of 30 mol m(-2) day(-1). Photosynthetic efficiencies remained constant in all systems with increasing photon flux densities. The highest photosynthetic efficiencies obtained were; 4.2 % for the vertical tubular photobioreactor, 3.8 % for the flat panel reactor, 1.8 % for the horizontal tubular reactor, and 1.5 % for the open raceway pond. CONCLUSIONS Vertical photobioreactors resulted in higher areal productivities than horizontal photobioreactors because of the lower incident photon flux densities on the reactor surface. The flat panel photobioreactor resulted, among the vertical photobioreactors studied, in the highest average photosynthetic efficiency, areal and volumetric productivities due to the short optical path. Photobioreactor light interception should be further optimized to maximize ground areal productivity and photosynthetic efficiency.
Collapse
Affiliation(s)
- Jeroen H. de Vree
- />Bioprocess Engineering, AlgaePARC, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
- />Bioprocess Engineering, AlgaePARC, Wageningen University, P.O. Box 8129, 6721 NG Bennekom, The Netherlands
| | - Rouke Bosma
- />Bioprocess Engineering, AlgaePARC, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Marcel Janssen
- />Bioprocess Engineering, AlgaePARC, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Maria J. Barbosa
- />Food and Biobased Research, AlgaePARC, Wageningen UR, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - René H. Wijffels
- />Bioprocess Engineering, AlgaePARC, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
- />Biosciences and Aquaculture, Nordland University, 8049 Bodø, Norway
| |
Collapse
|
20
|
Kwak HS, Kim JYH, Sim SJ. A microscale approach for simple and rapid monitoring of cell growth and lipid accumulation in Neochloris oleoabundans. Bioprocess Biosyst Eng 2015. [PMID: 26209175 DOI: 10.1007/s00449-015-1444-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Due to the increasing environmental problems caused by the use of fossil fuels, microalgae have been spotlighted as renewable resources to produce biomass and biofuels. Therefore, the investigation of the optimum culture conditions of microalgae in a short time is one of the important factors for improving growth and lipid productivity. Herein, we developed a PDMS-based high-throughput screening system to rapidly and easily determine the optimum conditions for high-density culture and lipid accumulation of Neochloris oleoabundans. Using the microreactor, we were able to find the optimal culture conditions of N. oleoabundans within 5 days by rapid and parallel monitoring growth and lipid induction under diverse conditions of light intensity, pH, CO2 and nitrate concentration. We found that the maximum growth rate (µ max = 2.13 day(-1)) achieved in the microreactor was 1.58-fold higher than that in a flask (µ max = 1.34 day(-1)) at the light intensity of 40 µmol photons m(-2) s(-1), 5 % CO2 (v/v), pH 7.5 and 7 mM nitrate. In addition, we observed that the accumulation of lipid in the microreactor was 1.5-fold faster than in a flask under optimum culture condition. These results show that the microscale approach has the great potential for improving growth and lipid productivity by high-throughput screening of diverse optimum conditions.
Collapse
Affiliation(s)
- Ho Seok Kwak
- Department of Chemical and Biological Engineering, Korea University, Seoul, 136-713, South Korea
| | - Jaoon Young Hwan Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul, 136-713, South Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, Seoul, 136-713, South Korea. .,Green School, Korea University, Seoul, 136-713, South Korea.
| |
Collapse
|
21
|
Benvenuti G, Bosma R, Klok AJ, Ji F, Lamers PP, Barbosa MJ, Wijffels RH. Microalgal triacylglycerides production in outdoor batch-operated tubular PBRs. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:100. [PMID: 26175799 PMCID: PMC4501280 DOI: 10.1186/s13068-015-0283-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 07/02/2015] [Indexed: 05/09/2023]
Abstract
BACKGROUND Microalgal triacylglycerides (TAGs) are a promising sustainable feedstock for the biofuel, chemical and food industry. However, industrial production of microalgal products for commodity markets is not yet economically viable, largely because of low microalgal productivity. The latter is strictly dependent on initial-biomass-specific (IBS) light availability (i.e. ratio of light impinging on reactor ground area divided by initial biomass concentration per ground area). This study investigates the effect of IBS-light availability on batch TAG production for Nannochloropsis sp. cultivated in two outdoor tubular reactors (i.e. vertical and horizontal) at different initial biomass concentrations for the TAG accumulation phase, during two distinct seasons (i.e. high and low light conditions). RESULTS Increasing IBS-light availability led to both a higher IBS-TAG production rate and TAG content at the end of the batch, whereas biomass yield on light decreased. As a result, an optimum IBS-light availability was determined for the TAG productivity obtained at the end of the batch and several guidelines could be established. The vertical reactor (VR) should be operated at an initial biomass concentration of 1.5 g L(-1) to achieve high TAG productivities (1.9 and 3.2 g m(-2) day(-1) under low and high light, respectively). Instead, the horizontal reactor (HR) should be operated at 2.5 g L(-1) under high light (2.6 g m(-2) day(-1)), and at 1.5 g L(-1) under low light (1.4 g m(-2) day(-1)). CONCLUSIONS From this study, the great importance of IBS-light availability on TAG production can be deduced. Although maintaining high light availabilities in the reactor is key to reach high TAG contents at the end of the batch, considerable losses in TAG productivity were observed for the two reactors regardless of light condition, when not operated at optimal initial biomass concentrations (15-40% for VR and 30-60% for HR).
Collapse
Affiliation(s)
- Giulia Benvenuti
- />Bioprocess Engineering, AlgaePARC, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Rouke Bosma
- />Bioprocess Engineering, AlgaePARC, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Anne J Klok
- />Bioprocess Engineering, AlgaePARC, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Fang Ji
- />Biomass Engineering Center, China Agricultural University, P.O. Box 50, Beijing, 100083 China
| | - Packo P Lamers
- />Bioprocess Engineering, AlgaePARC, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Maria J Barbosa
- />Food and Biobased Research, AlgaePARC, Wageningen UR, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - René H Wijffels
- />Bioprocess Engineering, AlgaePARC, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
- />Biosciences and Aquaculture, Nordland University, 8049 Bodø, Norway
| |
Collapse
|
22
|
|
23
|
de Winter L, Schepers LW, Cuaresma M, Barbosa MJ, Martens DE, Wijffels RH. Circadian rhythms in the cell cycle and biomass composition of Neochloris oleoabundans under nitrogen limitation. J Biotechnol 2014; 187:25-33. [DOI: 10.1016/j.jbiotec.2014.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 06/09/2014] [Accepted: 07/15/2014] [Indexed: 10/25/2022]
|
24
|
Morales-Sánchez D, Tinoco-Valencia R, Caro-Bermúdez MA, Martinez A. Culturing Neochloris oleoabundans microalga in a nitrogen-limited, heterotrophic fed-batch system to enhance lipid and carbohydrate accumulation. ALGAL RES 2014. [DOI: 10.1016/j.algal.2014.05.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Donot F, Cazals G, Gunata Z, Egron D, Malinge J, Strub C, Fontana A, Schorr-Galindo S. Analysis of neutral lipids from microalgae by HPLC-ELSD and APCI-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 942-943:98-106. [DOI: 10.1016/j.jchromb.2013.10.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 09/04/2013] [Accepted: 10/11/2013] [Indexed: 11/26/2022]
|
26
|
Klok AJ, Verbaanderd JA, Lamers PP, Martens DE, Rinzema A, Wijffels RH. A model for customising biomass composition in continuous microalgae production. BIORESOURCE TECHNOLOGY 2013; 146:89-100. [PMID: 23911819 DOI: 10.1016/j.biortech.2013.07.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/06/2013] [Accepted: 07/11/2013] [Indexed: 06/02/2023]
Abstract
A kinetic model is presented that describes functional biomass, starch and storage lipid (TAG) synthesis in the microalga Neochloris oleoabundans as a function of nitrogen and light supply rates to a nitrogen-limited turbidostat cultivation system. The model is based on the measured electron distribution in N. oleoabundans, which showed that starch is the primary storage component, whereas TAG was only produced after an excess of electrons was generated, when growth was limited by nitrogen supply. A fixed 8.6% of the excess electrons ended up in TAG, suggesting close metabolic interactions between nitrogen assimilation and TAG accumulation, such as a shared electron pool. The proposed model shows that by manipulating the cultivation conditions in a light or nitrogen limited turbidostat, algal biomass composition can be customised and the volumetric productivities and yields of the major biomass constituents can be changed on demand.
Collapse
Affiliation(s)
- Anne J Klok
- Bioprocess Engineering, AlgaePARC, Wageningen University, PO Box 8129, 6700 EV Wageningen, The Netherlands; Wetsus - Center of Excellence for Sustainable Water Technology, PO Box 1113, 8900 CC Leeuwarden, The Netherlands.
| | - Johannes A Verbaanderd
- Bioprocess Engineering, AlgaePARC, Wageningen University, PO Box 8129, 6700 EV Wageningen, The Netherlands
| | - Packo P Lamers
- Bioprocess Engineering, AlgaePARC, Wageningen University, PO Box 8129, 6700 EV Wageningen, The Netherlands
| | - Dirk E Martens
- Bioprocess Engineering, AlgaePARC, Wageningen University, PO Box 8129, 6700 EV Wageningen, The Netherlands
| | - Arjen Rinzema
- Bioprocess Engineering, AlgaePARC, Wageningen University, PO Box 8129, 6700 EV Wageningen, The Netherlands
| | - René H Wijffels
- Bioprocess Engineering, AlgaePARC, Wageningen University, PO Box 8129, 6700 EV Wageningen, The Netherlands
| |
Collapse
|
27
|
Sousa C, Valev D, Vermuë MH, Wijffels RH. Effect of dynamic oxygen concentrations on the growth of Neochloris oleoabundans at sub-saturating light conditions. BIORESOURCE TECHNOLOGY 2013; 142:95-100. [PMID: 23732923 DOI: 10.1016/j.biortech.2013.05.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/09/2013] [Accepted: 05/11/2013] [Indexed: 06/02/2023]
Abstract
In tubular photobioreactors micro-algae continuously experience dynamically changing oxygen and light conditions when circulating from the solar receiver to the dark degasser. These changes in oxygen concentration and light were simulated in a CSTR using sub-saturating light intensity. Elongation of the residence time in the solar receiver from 30 to 300 min was also investigated. Specific growth rates measured at constant low oxygen concentration PO2=0.21 bar were; 1.14 ± 0.06 day(-1) using continuous light 0.80 ± 0.16 day(-1) with 30 min light and 1.09 ± 0.05 day(-1) with 300 min light. The effect of dynamically changing oxygen concentrations from PO2=0.21 to 0.63 bar followed by degassing resulted in similar specific growth rates. The exposure of the algae cells to dark periods in the degasser has a bigger negative impact than the temporary exposure to accumulating oxygen concentrations in the solar receiver. This shows that considerable energy savings for degassing are possible.
Collapse
Affiliation(s)
- Claudia Sousa
- Wetsus, P.O. Box 1113, 8900 CC Leeuwarden, The Netherlands.
| | | | | | | |
Collapse
|
28
|
Santos A, Lamers P, Janssen M, Wijffels R. Biomass and lipid productivity of Neochloris oleoabundans under alkaline–saline conditions. ALGAL RES 2013. [DOI: 10.1016/j.algal.2013.04.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Keymer PC, Pratt S, Lant PA. Development of a novel electrochemical system for oxygen control (ESOC) to examine dissolved oxygen inhibition on algal activity. Biotechnol Bioeng 2013; 110:2405-11. [DOI: 10.1002/bit.24905] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 03/11/2013] [Accepted: 03/15/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Philip C. Keymer
- School of Chemical EngineeringThe University of QueenslandBrisbaneQLD 4072Australia
| | - Steven Pratt
- School of Chemical EngineeringThe University of QueenslandBrisbaneQLD 4072Australia
| | - Paul A. Lant
- School of Chemical EngineeringThe University of QueenslandBrisbaneQLD 4072Australia
| |
Collapse
|
30
|
Costache TA, Acién Fernández FG, Morales MM, Fernández-Sevilla JM, Stamatin I, Molina E. Comprehensive model of microalgae photosynthesis rate as a function of culture conditions in photobioreactors. Appl Microbiol Biotechnol 2013; 97:7627-37. [PMID: 23793345 DOI: 10.1007/s00253-013-5035-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 06/03/2013] [Accepted: 06/03/2013] [Indexed: 10/26/2022]
Abstract
In this paper, the influence of culture conditions (irradiance, temperature, pH, and dissolved oxygen) on the photosynthesis rate of Scenedesmus almeriensis cultures is analyzed. Short-run experiments were performed to study cell response to variations in culture conditions, which take place in changing environments such as outdoor photobioreactors. Experiments were performed by subjecting diluted samples of cells to different levels of irradiance, temperature, pH, and dissolved oxygen concentration. Results demonstrate the existence of photoinhibition phenomena at irradiances higher than 1,000 μE/m(2) s; in addition to reduced photosynthesis rates at inadequate temperatures or pH-the optimal values being 35 °C and 8, respectively. Moreover, photosynthesis rate reduction at dissolved oxygen concentrations above 20 mg/l is demonstrated. Data have been used to develop an integrated model based on considering the simultaneous influence of irradiance, temperature, pH, and dissolved oxygen. The model fits the experimental results in the range of culture conditions tested, and it was validated using data obtained by the simultaneous variation of two of the modified variables. Furthermore, the model fits experimental results obtained from an outdoor culture of S. almeriensis performed in an open raceway reactor. Results demonstrate that photosynthetic efficiency is modified as a function of culture conditions, and can be used to determine the proximity of culture conditions to optimal values. Optimal conditions found (T = 35 °C, pH = 8, dissolved oxygen concentration <20 mg/l) allows to maximize the use of light by the cells. The developed model is a powerful tool for the optimal design and management of microalgae-based processes, especially outdoors, where the cultures are subject to daily culture condition variations.
Collapse
Affiliation(s)
- T A Costache
- 3Nano-SAE Research Centre, Faculty of Physics, University of Bucharest, Bucharest, Romania
| | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Salama ES, Kim HC, Abou-Shanab RAI, Ji MK, Oh YK, Kim SH, Jeon BH. Biomass, lipid content, and fatty acid composition of freshwater Chlamydomonas mexicana and Scenedesmus obliquus grown under salt stress. Bioprocess Biosyst Eng 2013; 36:827-33. [PMID: 23411874 DOI: 10.1007/s00449-013-0919-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 01/26/2013] [Indexed: 11/29/2022]
Abstract
Two freshwater microalgae including Chlamydomonas mexicana and Scenedesmus obliquus were grown on Bold Basal Medium (BBM) with different levels of salinity up to 100 mM NaCl. The dry biomass and lipid content of microalgae were improved as the concentration of NaCl increased from 0 to 25 mM. Highest dry weight (0.8 and 0.65 g/L) and lipid content (37 and 34 %) of C. mexicana and S. obliquus, respectively, were obtained in BBM amended with 25 mM NaCl. The fatty acid composition of the investigated species was also improved by the increased NaCl concentration. At 50 mM, NaCl palmitic acid (35 %) and linoleic acid (41 %) were the dominant fatty acids in C. mexicana, while oleic acid (41 %) and α-linolenic acid (20 %) were the major fractions found in S. obliquus.
Collapse
Affiliation(s)
- El-Sayed Salama
- Department of Environmental Engineering, Yonsei University, Wonju, Gangwon-do, 220-710, South Korea
| | | | | | | | | | | | | |
Collapse
|
33
|
Mohsenpour SF, Richards B, Willoughby N. Spectral conversion of light for enhanced microalgae growth rates and photosynthetic pigment production. BIORESOURCE TECHNOLOGY 2012; 125:75-81. [PMID: 23023239 DOI: 10.1016/j.biortech.2012.08.072] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/16/2012] [Accepted: 08/19/2012] [Indexed: 06/01/2023]
Abstract
The effect of light conditions on the growth of green algae Chlorella vulgaris and cyanobacteria Gloeothece membranacea was investigated by filtering different wavelengths of visible light and comparing against a model daylight source as a control. Luminescent acrylic sheets containing violet, green, orange or red dyes illuminated by a solar simulator produced the desired wavelengths of light for this study. From the experimental results the highest specific growth rate for C. vulgaris was achieved using the orange range whereas violet light promoted the growth of G. membranacea. Red light exhibited the least efficiency in conversion of light energy into biomass in both strains of microalgae. Photosynthetic pigment formation was examined and maximum chlorophyll-a production in C. vulgaris was obtained by red light illumination. Green light yielded the best chlorophyll-a production in G. membranacea. The proposed illumination strategy offers improved microalgae growth without resorting to artificial light sources, reducing energy use and costs of cultivation.
Collapse
Affiliation(s)
- Seyedeh Fatemeh Mohsenpour
- Institute for Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | | | | |
Collapse
|