1
|
Wang W, Zhu J, Wang Y, Long L, Lin Q, Wang J, Ding S. Functional characterization of two GH27 ɑ-galactosidases from Penicillium parvum 4-14 and their differential capabilities upon plant biomass degradation. Carbohydr Res 2025; 551:109428. [PMID: 39965390 DOI: 10.1016/j.carres.2025.109428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/09/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
Two new ɑ-galactosidases PpAgl27B and PpAgl27C from Penicillium parvum 4-14 were functionally investigated in this study. Based on the analysis of catalytic domain and phylogenetic tree, PpAgl27B (435 aa) and PpAgl27C (543 aa) belong to glycoside hydrolase (GH) 27 family. After expression in Pichia pastoris, the recombinant PpAgl27B and PpAgl27C showed the highest activities at pH 3.5 and 65 °C, or 4.0 and 45 °C, respectively. Using p-nitrophenyl-α-d-galactopyranoside (pNPGal) as substrate, the Michaelis constant were 0.90 mM for PpAgl27B and 2.54 mM for PpAgl27C. PpAgl27C had a low catalytic activity toward pNPGal and negligible activities on various natural substrates. Differently, PpAgl27B efficiently released galactose from the artificial substrate, raffinose family oligosaccharides, or galactomannans. Hydrolysis of corn bran arabinoxylan (CBAX) 1 or 2 were conducted by PpAgl27B alone or in combination with the enzyme blend E_CBAX1. PpAgl27B released a small amount of galactose (1.7-3.0 mg/g) from the both substrates. Compared with the individual enzymes, the liberations of galactose, xylose and arabinose from the substrates were significantly enhanced by combing PpAgl27B and E_CBAX1. The degrees of synergy of the enzyme combination for the saccharification of CBAX1 or CBAX2 were 1.20 and 1.13, respectively. PpAgl27B showed promising potential for the valorization of galactose-rich feedstocks as well as CBAX.
Collapse
Affiliation(s)
- Wei Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jiarong Zhu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yizhou Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Liangkun Long
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China; Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Nanjing Forestry University, Nanjing, 210037, China.
| | - Qunying Lin
- Nanjing Institute for the Comprehensive Utilization of Wild Plants, Nanjing, 211111, China
| | - Jing Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Shaojun Ding
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China; Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
2
|
Ge L, Jia R, Liu Y, Zhan L. Recombinant expression and characterization of an α-galactosidase from Thermoclostridium stercorarium subsp. thermolacticum DSM 2910 and its application in the hydrolysis of raffinose. Carbohydr Res 2025; 550:109410. [PMID: 39892277 DOI: 10.1016/j.carres.2025.109410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
Soybean contains anti-nutritional factor raffinose oligosaccharide (RFOs), which can cause flatulence, gastrointestinal dysfunction and low feed utilization rate. However, α-galactosidase can hydrolyze raffinose oligosaccharides (RFOs). Therefore, in this study, a novel α-galactosidase from Thermoclostridium stercorarium subsp. thermolacticum DSM 2910 (TstGal) which can hydrolyze raffinose was cloned, expressed, purified, and characterized. The gene fragment size is 2208 bp, and the enzyme TstGal consists of 736 amino acids. Under the optimum culture conditions, the maximum enzyme activity of the target protein TstGal was 23.8 U/mL. The enzyme was purified 11.3-fold by Ni-NTA agarose resin with an overall recovery of 51.4 % and specific activity of 9.0 U/mg, and its relative molecular weight was about 85 kDa. The optimal temperature of TstGal was 70 °C, and it exhibited excellent thermal stability at 60 °C. Furthermore, The TstGal had the highest activity at pH 6.5 and good pH stability at pH 5.0-7.5. Besides, the enzyme has a good sugar tolerance to galactose and sucrose. In addition, K+ and Fe2+ could significantly enhance the enzyme activity at a concentration of 5 mM. The values of KM, Vmax, kcat, and kcat/KM for pNPGal were found to be 0.507 mM, 13.979 U/mg, 19.735 s-1, and 38.895 s-1mM-1, respectively. Under the optimum conditions, the maximum hydrolysis rate of raffinose by TstGal reached 99.8 %, which shows that the enzyme had potential application value in food and feed industry.
Collapse
Affiliation(s)
- Lin Ge
- College of Biopharmacy, Suzhou Chien-Shiung Institute of Technology, 1 Jian Xiong Road, Taicang, 215411, China; Jiangsu Provincial Novel Anti-tumor Targeted Drug Conjugate Engineering Research Center, Suzhou, 215411, China.
| | - Ruobing Jia
- College of Biopharmacy, Suzhou Chien-Shiung Institute of Technology, 1 Jian Xiong Road, Taicang, 215411, China; Jiangsu Provincial Novel Anti-tumor Targeted Drug Conjugate Engineering Research Center, Suzhou, 215411, China
| | - Yingying Liu
- School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, 211 Jianjun East Road, Yancheng, 224000, China
| | - Lingling Zhan
- School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, 211 Jianjun East Road, Yancheng, 224000, China
| |
Collapse
|
3
|
Huang Z, Zhou J, Wang J, Xu S, Cheng C, Ma J, Gao Z. Complementary Distant and Active Site Mutations Simultaneously Enhance Catalytic Activity and Thermostability of α-Galactosidase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3635-3644. [PMID: 39899880 DOI: 10.1021/acs.jafc.4c12426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
The industrial applications of enzymes are limited due to the activity-stability trade-off, which implies that the improvement of thermostability often accompanies decreased activity. This study presents a dual-strategy approach to simultaneously improve the catalytic efficiency and thermostability of α-galactosidase galV from Anoxybacillus vitaminiphilus WMF1. Our integrated method combines computational analysis with enzyme property prediction to selectively target and modify the catalytic region and residues that are distant from the active site. We identified and experimentally validated mutations that improve activity without compromising stability and further increased thermostability through additional distant-site mutations. The resulting mutant enzyme variant N549Q/T550N/Y634F demonstrated a 6.2-fold increase in catalytic efficiency and a 3.2-fold improvement in the half-life at 65 °C. Molecular dynamics (MD) simulations supported the structural basis for the observed enhancements. This approach offers a refined strategy for engineering α-galactosidases with improved industrial applicability, overcoming the traditional trade-offs between enzyme activity and stability. Hydrolytic activity toward raffinose family oligosaccharides (RFOs) was validated using soymilk as a model substrate, demonstrating significant practical potential.
Collapse
Affiliation(s)
- Zhuangzhuang Huang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Nanjing, Jiangsu 211816, China
| | - Junru Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Nanjing, Jiangsu 211816, China
| | - Jialing Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Nanjing, Jiangsu 211816, China
| | - Sheng Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Nanjing, Jiangsu 211816, China
| | - Cheng Cheng
- School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhunan Road, Nanjing, Jiangsu 211816, China
| | - Jiangfeng Ma
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Nanjing, Jiangsu 211816, China
| | - Zhen Gao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Nanjing, Jiangsu 211816, China
| |
Collapse
|
4
|
Striegler S. Selective Hydrolysis of Heterooligosaccharides by Poly(acrylate) Gel Catalysts. ACS Catal 2024; 14:16723-16730. [PMID: 39569156 PMCID: PMC11574753 DOI: 10.1021/acscatal.4c04697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
Natural glycoside hydrolases are distinguished by their ability to hydrolyze glycosidic bonds with high efficiency and selectivity. This feature is achieved through specific interactions in the active site during catalytic turnover and is not just facilitated by two catalytically active amino acids. Intrigued by these features, a biomimetic α-galactosidase mimic was developed using an empirical catalyst design. Starting with a library of 704 gels of which 250 have a unique composition synthesized from TEGDMA cross-linker and 7 selected monomers, 238 monomodal gels are evaluated for their ability to hydrolyze the 1→6 α-glycosidic bond in the disaccharide melibiose. Among those, 13 polyacrylate gels with the potential for high catalytic activity are identified using spectrophotometric screening assays based on Schiff bases formed with toluidine. The best-performing polyacrylate (gel A) was found to have a 1500-fold higher proficiency to hydrolyze the 1→6 α-glycosidic bond in melibiose over the 1→2 α-glycosidic bond in sucrose, translating to selective hydrolysis of the glycosidic linkages in the trisaccharide raffinose. The matrix of gel A is composed of 25 mol % TEGDMA cross-linker and equimolar amounts of cyclohexyl, butyl, and benzyl acrylate accounting for CH-π and hydrophobic interaction in the surrounding of a hydrolytic binuclear Cu(II) complex. The combined observations underline a paramount influence of matrix-stabilizing effects on the transition state of the hydrolysis of glycosidic bonds and may pave the way for the rapid development of catalysts transforming biomass.
Collapse
Affiliation(s)
- Susanne Striegler
- Department of Chemistry and Biochemistry, University of Arkansas, 345 North Campus Walk, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
5
|
Zhang M, Xu W, Mei H, Song G, Ge N, Tao Y, Liu W, Liang G. Comparative genomics predict specific genes in potential mucorales identification. Arch Microbiol 2023; 205:320. [PMID: 37640972 DOI: 10.1007/s00203-023-03659-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/03/2023] [Accepted: 08/13/2023] [Indexed: 08/31/2023]
Abstract
Mucoralean fungi could cause mucormycosis in humans, particularly in immunodeficient individuals and those with diabetes mellitus or trauma. With plenty of species and genera, their molecular identification and pathogenicity have a large deviation. Reported cases of mucormycosis showed frequent occurrence in Rhizopus species, Mucor species, and Lichtheimia species. We analyzed the whole genome sequences of 25 species of the top 10 Mucorales genera, along with another 22 important pathogenic non-Mucorales species, to dig the target genes for monitoring Mucorales species and identify potential genomic imprints of virulence in them. Mucorales-specific genes have been found in various orthogroups extracted by Python script, while genus-specific genes were annotated covering cellular structure, biochemistry metabolism, molecular processing, and signal transduction. Proteins related to the virulence of Mucorales species varied with distinct significance in copy numbers, in which Orthofinder was conducted. Based on our fresh retrospective analysis of mucormycosis, a comparative genomic analysis of pathogenic Mucorales was conducted in more frequent pathogens. Specific orthologs between Mucorales and non-Mucoralean pathogenic fungi were discussed in detail. Referring to the previously reported virulence proteins, we included more frequent pathogenic Mucorales and compared them in Mucorales species and non-Mucorales species. Besides, more samples are needed to further verify the potential target genes.
Collapse
Affiliation(s)
- Meijie Zhang
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, 210042, China
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Wenqi Xu
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, 210042, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, 210042, China
| | - Huan Mei
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, 210042, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, 210042, China
| | - Ge Song
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, 210042, China
- Department of Dermatology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Naicen Ge
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, 210042, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, 210042, China
- CAMS Collection Center of Pathogen Microorganisms-D (CAMS-CCPM-D), Nanjing, 210042, China
| | - Ye Tao
- Shanghai Biozeron Biotechnology Co., Ltd, Shanghai, 201800, China
| | - Weida Liu
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, 210042, China.
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, 210042, China.
- CAMS Collection Center of Pathogen Microorganisms-D (CAMS-CCPM-D), Nanjing, 210042, China.
| | - Guanzhao Liang
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, 210042, China.
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, 210042, China.
- CAMS Collection Center of Pathogen Microorganisms-D (CAMS-CCPM-D), Nanjing, 210042, China.
| |
Collapse
|
6
|
Bangoria P, Patel A, Shah AR. Characterization of a fungal α-galactosidase and its synergistic effect with β-mannanase for hydrolysis of galactomannan. Carbohydr Res 2023; 531:108893. [PMID: 37429228 DOI: 10.1016/j.carres.2023.108893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/16/2023] [Accepted: 06/30/2023] [Indexed: 07/12/2023]
Abstract
An acid stable α-galactosidase was produced and purified from mannolytic fungal strain, Penicillium aculeatum APS1. Enzyme was produced using wheat bran and copra cake moistened with corn steep liquor by solid state fermentation. APS1αgal having molecular weight of 65.4 kDa was purified to electrophoretic homogeneity by three phase partitioning and gel permeation chromatography with high enzyme recovery. APS1αgal was found to be maximally active at 55 °C and pH 4.5, having high stability at acidic pH. Thermal stability and thermal inactivation kinetics of APS1αgal were also studied. APS1αgal was found to effectively hydrolyse oligosaccharides as well as polysaccharides having α-1,6 linked galactose. Abolishment of enzyme activity in N-brommosuccinimide revealed an important role of tryptophan residue in catalysis. APS1αgal had shown outstanding tolerance to NaCl and proteases. MALDI-TOF MS/MS analysis indicated that enzyme is probably a member of family GH27. Synergistic interaction between APS1αgal and β-mannanase for hydrolysis of galactomannan was very clear and maximum 2.0° of synergy was found under simultaneous mode of action. This study reports a new source of α-galactosidase with biochemical properties suitable for applications in food and feed industries.
Collapse
Affiliation(s)
- Purvi Bangoria
- Post Graduate Department of Biosciences, Satellite Campus, Bakrol, Sardar Patel University, Vallabh Vidhyanagar, 388315, Gujarat, India.
| | - Amisha Patel
- Post Graduate Department of Biosciences, Satellite Campus, Bakrol, Sardar Patel University, Vallabh Vidhyanagar, 388315, Gujarat, India.
| | - Amita R Shah
- Post Graduate Department of Biosciences, Satellite Campus, Bakrol, Sardar Patel University, Vallabh Vidhyanagar, 388315, Gujarat, India.
| |
Collapse
|
7
|
Corbu VM, Gheorghe-Barbu I, Dumbravă AȘ, Vrâncianu CO, Șesan TE. Current Insights in Fungal Importance-A Comprehensive Review. Microorganisms 2023; 11:1384. [PMID: 37374886 DOI: 10.3390/microorganisms11061384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Besides plants and animals, the Fungi kingdom describes several species characterized by various forms and applications. They can be found in all habitats and play an essential role in the excellent functioning of the ecosystem, for example, as decomposers of plant material for the cycling of carbon and nutrients or as symbionts of plants. Furthermore, fungi have been used in many sectors for centuries, from producing food, beverages, and medications. Recently, they have gained significant recognition for protecting the environment, agriculture, and several industrial applications. The current article intends to review the beneficial roles of fungi used for a vast range of applications, such as the production of several enzymes and pigments, applications regarding food and pharmaceutical industries, the environment, and research domains, as well as the negative impacts of fungi (secondary metabolites production, etiological agents of diseases in plants, animals, and humans, as well as deteriogenic agents).
Collapse
Affiliation(s)
- Viorica Maria Corbu
- Genetics Department, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, 91-95 Spl. Independentei, 050095 Bucharest, Romania
| | - Irina Gheorghe-Barbu
- Research Institute of the University of Bucharest-ICUB, 91-95 Spl. Independentei, 050095 Bucharest, Romania
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
| | - Andreea Ștefania Dumbravă
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
| | - Corneliu Ovidiu Vrâncianu
- Research Institute of the University of Bucharest-ICUB, 91-95 Spl. Independentei, 050095 Bucharest, Romania
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
| | - Tatiana Eugenia Șesan
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
- Academy of Agricultural Sciences and Forestry, 61 Bd. Mărăşti, District 1, 011464 Bucharest, Romania
| |
Collapse
|
8
|
Anisha GS. Biopharmaceutical applications of α-galactosidases. Biotechnol Appl Biochem 2023; 70:257-267. [PMID: 35436353 DOI: 10.1002/bab.2349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/04/2022] [Indexed: 11/06/2022]
Abstract
α-Galactosidases are exoglycosidases that are active on galactose-containing side chains in oligosaccharides, polysaccharides, glycolipids, and glycoproteins. α-Galactosidases are gaining increased interest in human medicine, especially in the enzyme replacement therapy for Fabry's disease. α-Galactosidases with regioselectivity toward α-1,3-linked galactose find application in xenotransplantation and blood group transformation. The use of α-galactosidases as a therapeutic agent in alleviating the postprandial symptoms of irritable bowel syndrome is much acclaimed. The excellent therapeutic applications of α-galactosidases have led to an upwelling of worldwide research interventions to identify novel α-galactosidases with improved catalytic efficiency. In addition to these therapeutic applications, α-galactosidases also have interesting applications in the industrial sectors like food, feed, probiotics, sugar, and paper pulp. The current review focuses on the diverse therapeutic applications of α-galactosidases and their prospects.
Collapse
Affiliation(s)
- Grace Sathyanesan Anisha
- Post-Graduate and Research Department of Zoology, Government College for Women, Thiruvananthapuram, Kerala, India
| |
Collapse
|
9
|
Othman AM, Elshafei AM, Elsayed MA, Ibrahim GE, Hassan MM, Mehanna NS. Biochemical characterization and insights into the potency of the acidic Aspergillus niger NRC114 purified α-galactosidase in removing raffinose family oligosaccharides from soymilk yogurt. BMC Biotechnol 2023; 23:3. [PMID: 36721204 PMCID: PMC9887927 DOI: 10.1186/s12896-023-00773-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/20/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Because humans lack α-galactosidase, foods containing certain oligosaccharides from the raffinose family, such as soybeans and other legumes, may disrupt digestion and cause flatulence. RESULTS Aspergillus niger NRC114 α-galactosidase was purified using protein precipitation, gel filtration, and ion exchange chromatography steps, which resulted in a 123-fold purification. The purified enzyme was found to be 64 kDa using the SDS-PAGE approach. The optimum pH and temperature of the purified α-galactosidase were detected at pH 3.5 and 60 ºC, respectively. The pure enzyme exhibited potent acidic pH stability at pH 3.0 and pH 4.0 for 2 h, and it retained its full activity at 50 ºC and 60 ºC for 120 min and 90 min, respectively. The enzyme was activated using 2.5 mM of K+, Mg2+, Co2+, or Zn2+ by 14%, 23%, 28%, and 11%, respectively. The Km and Vmax values of the purified enzyme were calculated to be 0.401 µM and 14.65 μmol min-1, respectively. The soymilk yogurt showed an increase in its total phenolic content and total flavonoids after enzyme treatment, as well as several volatile compounds that were detected and identified using GC-MS analysis. HPLC analysis clarified the enzymatic action in the hydrolysis of raffinose family oligosaccharides. CONCLUSION The findings of this study indicate the importance of A. niger NRC114 α-galactosidase enzyme for future studies, especially its applications in a variety of biological fields.
Collapse
Affiliation(s)
- Abdelmageed M. Othman
- grid.419725.c0000 0001 2151 8157Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St., Dokki 12622 Giza, Egypt
| | - Ali M. Elshafei
- grid.419725.c0000 0001 2151 8157Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St., Dokki 12622 Giza, Egypt
| | - Maysa A. Elsayed
- grid.419725.c0000 0001 2151 8157Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St., Dokki 12622 Giza, Egypt
| | - Gamil E. Ibrahim
- grid.419725.c0000 0001 2151 8157Chemistry of Flavor and Aroma Department, Food Industries and Nutrition Research Institute, National Research Centre, 33 El Bohouth St., Dokki 12622 Giza, Egypt
| | - Mohamed M. Hassan
- grid.419725.c0000 0001 2151 8157Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St., Dokki 12622 Giza, Egypt
| | - Nayra S. Mehanna
- grid.419725.c0000 0001 2151 8157Dairy Sciences Department, Food Industries and Nutrition Research Institute, National Research Centre, 33 El Bohouth St., Dokki 12622 Giza, Egypt
| |
Collapse
|
10
|
Anisha GS. Molecular advances in microbial α-galactosidases: challenges and prospects. World J Microbiol Biotechnol 2022; 38:148. [PMID: 35773364 DOI: 10.1007/s11274-022-03340-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/19/2022] [Indexed: 11/26/2022]
Abstract
α-Galactosidase (α-D-galactosidase galactohydrolase; EC 3.2.1.22), is an industrially important enzyme that hydrolyzes the galactose residues in galactooligosaccharides and polysaccharides. The industrial production of α-galactosidase is currently insufficient owing to the high production cost, low production efficiency and low enzyme activity. Recent years have witnessed an increase in the worldwide research on molecular techniques to improve the production efficiency of microbial α-galactosidases. Cloning and overexpression of the gene sequences coding for α-galactosidases can not only increase the enzyme yield but can confer industrially beneficial characteristics to the enzyme protein. This review focuses on the molecular advances in the overexpression of α-galactosidases in bacterial and yeast/fungal expression systems. Recombinant α-galactosidases have improved biochemical and hydrolytic properties compared to their native counterparts. Metabolic engineering of microorganisms to produce high yields of α-galactosidase can also assist in the production of value-added products. Developing new variants of α-galactosidases through directed evolution can yield enzymes with increased catalytic activity and altered regioselectivity. The bottlenecks in the recombinant production of α-galactosidases are also discussed. The knowledge about the hurdles in the overexpression of recombinant proteins illuminates the emerging possibilities of developing a successful microbial cell factory and widens the opportunities for the production of industrially beneficial α-galactosidases.
Collapse
Affiliation(s)
- Grace Sathyanesan Anisha
- Post-Graduate and Research Department of Zoology, Government College for Women, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
11
|
Çalcı E, Önal S. Comparative affinity immobilization of α-galactosidase on chitosan functionalized with Concanavalin A and its useability for the hydrolysis of raffinose. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Nyyssölä A, Nisov A, Lille M, Nikinmaa M, Rosa-Sibakov N, Ellilä S, Valkonen M, Nordlund E. Enzymatic reduction of galactooligosaccharide content of faba bean and yellow pea ingredients and food products. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
13
|
Ma J, Qin Z, Zhou P, Wang R, Yan Q, Jiang Z, Yang S. Structural insights into the substrate recognition and catalytic mechanism of a fungal glycoside hydrolase family 81 β-1,3-glucanase. Enzyme Microb Technol 2021; 153:109948. [PMID: 34801773 DOI: 10.1016/j.enzmictec.2021.109948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 11/03/2022]
Abstract
β-1,3-Glucan constitutes a prominent cell wall component being responsible for rigidity and strength of the cell wall structure in filamentous fungi. Glycoside hydrolase (GH) family 81 endo-β-1,3-glucanases which can cleave the long chain of β-1,3-glucans play a major role in fungal cell wall remodeling. Here, we reported the complex structures of a fungal GH family 81 endo-β-1,3-glucanase from Rhizomucor miehei (RmLam81A), revealing the triple-helical β-glucan recognition and hydrolysis patterns. In the crystals, three structured oligosaccharide ligands simultaneously interact with one enzyme molecular via seven glucose residues, and the spatial arrangement of ligands to RmLam81A was almost identical to that of β-1,3-glucan triple-helical structure. RmLam81A performed an inverting catalysis mechanism with Asp475 and Glu557 severing as the general acid and base catalyst, respectively. Furthermore, two hydrophobic patches involving Tyr93, Tyr106, Ile108, Phe619 and Tyr628 alongside the ligand-binding site possibly formed parts of the binding site. A ligand-binding motif, β31-β32, consisting of two key residues (Lys622 and Asp624), involved the recognition of a triple-helical β-glucan. Our results provided a structural basis for the unique β-1,3-glucan recognition pattern and catalytic mechanism of fungal GH family 81 endo-β-1,3-glucanases, which may be helpful in further understanding the diverse physiological functions of β-1,3-glucanases.
Collapse
Affiliation(s)
- Junwen Ma
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Key Laboratory of Food Bioengineering (China National Light Industry), College of Engineering, China Agricultural University, Beijing 100083, China
| | - Zhen Qin
- School of Life Science Shanghai University, Shanghai 200237, China
| | - Peng Zhou
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Qiaojuan Yan
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Engineering, China Agricultural University, Beijing 100083, China
| | - Zhengqiang Jiang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Shaoqing Yang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
14
|
Wang J, Cao X, Chen W, Xu J, Wu B. Identification and Characterization of a Thermostable GH36 α-Galactosidase from Anoxybacillusvitaminiphilus WMF1 and Its Application in Synthesizing Isofloridoside by Reverse Hydrolysis. Int J Mol Sci 2021; 22:10778. [PMID: 34639118 PMCID: PMC8509150 DOI: 10.3390/ijms221910778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022] Open
Abstract
An α-galactosidase-producing strain named Anoxybacillus vitaminiphilus WMF1, which catalyzed the reverse hydrolysis of d-galactose and glycerol to produce isofloridoside, was isolated from soil. The α-galactosidase (galV) gene was cloned and expressed in Escherichia coli. The galV was classified into the GH36 family with a molecular mass of 80 kDa. The optimum pH and temperature of galV was pH 7.5 and 60 °C, respectively, and it was highly stable at alkaline pH (6.0-9.0) and temperature below 65 °C. The specificity for p-nitrophenyl α-d-galactopyranoside was 70 U/mg, much higher than that for raffinose and stachyose. Among the metals and reagents tested, galV showed tolerance in the presence of various organic solvents. The kinetic parameters of the enzyme towards p-nitrophenyl α-d-galactopyranoside were obtained as Km (0.12 mM), Vmax (1.10 × 10-3 mM s-1), and Kcat/Km (763.92 mM-1 s-1). During the reaction of reverse hydrolysis, the enzyme exhibited high specificity towards the glycosyl donor galactose and acceptors glycerol, ethanol and ethylene glycol. Finally, the isofloridoside was synthesized using galactose as the donor and glycerol as the acceptor with a 26.6% conversion rate of galactose. This study indicated that galV might provide a potential enzyme source in producing isofloridoside because of its high thermal stability and activity.
Collapse
Affiliation(s)
- Jialing Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, China; (J.W.); (X.C.); (W.C.)
- School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, China
| | - Xuefei Cao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, China; (J.W.); (X.C.); (W.C.)
| | - Weihao Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, China; (J.W.); (X.C.); (W.C.)
| | - Jiaxing Xu
- College of Chemistry and Chemical Engineering, Huaiyin Normal University, 111 Jiangxi Road, Huai’an 223300, China
| | - Bin Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, China; (J.W.); (X.C.); (W.C.)
| |
Collapse
|
15
|
Mitra D, Das Mohapatra PK. Discovery of Novel Cyclic Salt Bridge in Thermophilic Bacterial Protease and Study of its Sequence and Structure. Appl Biochem Biotechnol 2021; 193:1688-1700. [PMID: 33683551 DOI: 10.1007/s12010-021-03547-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/26/2021] [Indexed: 11/30/2022]
Abstract
The plausible explanation behind the stability of thermophilic protein is still yet to be defined more clearly. Here, an in silico study has been undertaken by investigating the sequence and structure of protease from thermophilic (tPro) bacteria and mesophilic (mPro) bacteria. Results showed that charged and uncharged polar residues have higher abundance in tPro. In extreme environment, the tPro is stabilized by high number of isolated and network salt bridges. A novel cyclic salt bridge is also found in a structure of tPro. High number of metal ion-binding site also helps in protein stabilization of thermophilic protease. Aromatic-aromatic interactions also play a crucial role in tPro stabilization. Formation of long network aromatic-aromatic interactions also first time reported here. Finally, the present study provides a major insight with a newly identified cyclic salt bridge in the stability of the enzyme, which may be helpful for protein engineering. It is also used in industrial applications for human welfare.
Collapse
Affiliation(s)
- Debanjan Mitra
- Department of Microbiology, Raiganj University, Raiganj, WB, India
| | | |
Collapse
|
16
|
Purification, biochemical and biophysical characterization of an acidic α-galactosidase from the seeds of Annona squamosa (custard apple). Int J Biol Macromol 2021; 175:558-571. [PMID: 33529636 DOI: 10.1016/j.ijbiomac.2021.01.179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/14/2021] [Accepted: 01/28/2021] [Indexed: 02/01/2023]
Abstract
Alpha galactosidase is an exoglycosidase that cleaves α-D-galactose and has numerous applications in medicine, biotechnology, food and pharma industries. In this study, a low molecular weight acidic α-galactosidase was identified from the seeds of custard apple. The purification of α-galactosidase from the crude extract of defatted seeds was achieved by employing ammonium sulphate fractionation, hydrophobic interaction and gel filtration chromatographic techniques. The purified custard apple α-galactosidase (CaG) migrated as a single band in native PAGE corresponding to molecular weight of ~67 kDa and cleaved chromogenic, fluorogenic and natural substrates. CaG was found to be a heterodimer with subunit masses of 40 and 30 kDa. The kinetic parameters such as KM and Vmax were found to be 0.67 mM and 1.5 U/mg respectively with p-nitrophenyl α-D-galactopyranoside. Galactose, methyl α-D-galactopyranoside and D-galacturonic acid inhibited CaG activity in mixed mode. The CD spectral analysis at far UV region showed that purified CaG exists predominantly as helix (35%), beta sheets (16.3%) and random coils (32.3%) in its secondary structure. These biochemical and biophysical properties of CaG provide leads to understand its primary sequence and glycan structures which will eventually define its novel physiological roles in plants and potential industrial applications.
Collapse
|
17
|
Niu C, Wan X. Engineering a Trypsin-Resistant Thermophilic α-Galactosidase to Enhance Pepsin Resistance, Acidic Tolerance, Catalytic Performance, and Potential in the Food and Feed Industry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10560-10573. [PMID: 32829638 DOI: 10.1021/acs.jafc.0c02175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
α-Galactosidase has potential applications, and attempts to improve proteolytic resistance of enzymes have important values. We use a novel strategy for genetic manipulation of a pepsin-sensitive region specific for a pepsin-sensitive but trypsin-resistant high-temperature-active Gal27B from Neosartorya fischeri to screen mutants with enhanced pepsin resistance. All enzymes were produced in Pichia pastoris to identify the roles of loop 4 (Gal27B-A23) and its key residue at position 156 (Gly156Arg/Pro/His) in pepsin resistance. Gal27B-A23 and Gly156Arg/Pro/His elevated pepsin resistance, thermostability, stability at low pH, activity toward raffinose (5.3-6.9-fold) and stachyose (about 1.3-fold), and catalytic efficiencies (up to 4.9-fold). Replacing the pepsin cleavage site Glu155 with Gly improved pepsin resistance but had no effect on pepsin resistance when Arg/Pro/His was at position 156. Thus, pepsin resistance could appear to occur through steric hindrance between the residue at the altered site and neighboring pepsin active site. In the presence of pepsin or trypsin, all mutations increased the ability of Gal27B to hydrolyze galactosaccharides in soybean flour (up to 9.6- and 4.3-fold, respectively) and promoted apparent metabolizable energy and nutrient digestibility in soybean meal for broilers (1.3-1.8-fold). The high activity and tolerance to heat, low pH, and protease benefit food and feed industry in a cost-effective way.
Collapse
Affiliation(s)
- Canfang Niu
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiangyuan Wan
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China
| |
Collapse
|
18
|
Biochemical characterization of a novel protease-resistant α-galactosidase from Paecilomyces thermophila suitable for raffinose family oligosaccharides degradation. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Shang X, He X, Liu H, Wen B, Tan T, Xu C, Niu W, Zhang Y. Stachyose Prevents Intestinal Mucosal Injury in the Immunosuppressed Mice. STARCH-STARKE 2020. [DOI: 10.1002/star.201900073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Xiaoya Shang
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences Northwestern Polytechnical University Xi'an Shaanxi 710072 China
| | - Xiaoqin He
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences Northwestern Polytechnical University Xi'an Shaanxi 710072 China
| | - Huan Liu
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences Northwestern Polytechnical University Xi'an Shaanxi 710072 China
| | - Bingjie Wen
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences Northwestern Polytechnical University Xi'an Shaanxi 710072 China
| | - Taicong Tan
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences Northwestern Polytechnical University Xi'an Shaanxi 710072 China
| | - Chunlan Xu
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences Northwestern Polytechnical University Xi'an Shaanxi 710072 China
| | - Weining Niu
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences Northwestern Polytechnical University Xi'an Shaanxi 710072 China
| | - Yong Zhang
- Department of Surgical Oncology the First Affiliated Hospital of Xi'an Jiaotong University Xi'an Shaanxi 710061 China
| |
Collapse
|
20
|
Nyyssölä A, Ellilä S, Nordlund E, Poutanen K. Reduction of FODMAP content by bioprocessing. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
A thermophilic fungal GH36 α-galactosidase from Lichtheimia ramosa and its synergistic hydrolysis of locust bean gum. Carbohydr Res 2020; 491:107911. [PMID: 32217360 DOI: 10.1016/j.carres.2020.107911] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 01/07/2023]
Abstract
A novel GH36 α-galactosidase gene (LrAgal36A) from Lichtheimia ramosa was synthesized and highly expressed in Pichia pastoris. The enzyme titer and protein yield for high-density fermentation in a 5 L fermentor were up to 953.6 U mL-1 and 4.36 g L-1. Purified recombinant LrAgal36A showed the maximum activity at pH 6.0 and 65 °C and was thermostable with a half-life of 70 min at 60 °C. LrAgal36A displayed the highest specific activity (353.17 ± 4.19 U mg-1) toward p-nitrophenyl-α-d-galactopyranoside (pNPGal) followed by galacto-oligosaccharides and could act slightly on galactomannans. The Km and catalytic efficiency (kcat/Km) of LrAgal36A for pNPGal were 0.33 mM and 1569.50 mM-1 s-1, respectively. LrAgal36A and GH5 β-mannanase from L. ramosa showed a significant synergistic effect on the degradation of locust bean gum (LBG), resulting in release more reducing sugars (1.56 folds) and galactose (7.6 folds) by simultaneous or sequential reactions. Due to its hydrolysis properties, LrAgal36A might have potential applications in the area of pulp biobleaching, feed and food processing.
Collapse
|
22
|
Dong M, Gong Y, Guo J, Ma J, Li S, Li T. Optimization of production conditions of rice α-galactosidase II displayed on yeast cell surface. Protein Expr Purif 2020; 171:105611. [PMID: 32092408 DOI: 10.1016/j.pep.2020.105611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/02/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
Abstract
The yeast surface displayed rice α-galactosidase II (YSD rice α-Gal II) was generated with the pYD1 vector. The expression and cultural conditions for the improvement of production of YSD rice α-Gal II were optimized. The results showed that several induction factors, which were the initial cell density, inoculation ratio, galactose (inducer) concentration, induction time and temperature, determined the activity and expression efficiency of YSD rice α-Gal II. Meanwhile, the medium composition also affected its activity and production. Moreover, the production of YSD rice α-Gal II was further improved by continuous feeding of galactose in the fermenter level. The highest production was obtained at an initial cell density of OD600 = 2.9, 2% inoculation ratio, and 2% galactose, with 0.6 g/L compound nitrogen source ((NH4)2SO4/urea = 2/1, w/w) and 5 g/L sucrose, followed by continuous feeding of galactose (20 g/L with flow rate of 1.5 mL/h). At such conditions, the enzyme activity and productivity reached to 676.2 U/g (DCW) and 1548.5 U/L, respectively, 26.4- and 63.7-fold to that before optimization. The results provided a basic and effective strategy for the industrial production of YSD rice α-Gal II.
Collapse
Affiliation(s)
- Mosi Dong
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yun Gong
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jia Guo
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jing Ma
- Xingcheng Village Rehabilitation Service Centre, Xingcheng, 125100, China
| | - Suhong Li
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Tuoping Li
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
23
|
Shin YJ, Woo SH, Jeong HM, Kim JS, Ko DS, Jeong DW, Lee JH, Shim JH. Characterization of novel α-galactosidase in glycohydrolase family 97 from Bacteroides thetaiotaomicron and its immobilization for industrial application. Int J Biol Macromol 2020; 152:727-734. [PMID: 32092418 DOI: 10.1016/j.ijbiomac.2020.02.232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/11/2020] [Accepted: 02/20/2020] [Indexed: 02/05/2023]
Abstract
Bacteroides thetaiotaomicron (B. thetaiotaomicron), which resides in the human intestinal tract, has a number of carbohydrate enzymes, including glycoside hydrolase (GH) family 97. Only a few GH 97 enzymes have been characterized to date. In this study, a novel α-galactosidase (Bt_3294) was cloned from B. thetaiotaomicron, expressed in Escherichia coli, and purified using affinity chromatography. This novel enzyme showed optimal activity at 60 °C and pH 7.0. Enzyme activity was reduced by 94.4% and 95.7% in the presence of 5 mM Ca2+ and Fe2+, respectively. It is interesting that Bt_3294 specifically hydrolyzed shorter α-galactosyl oligosaccharides, such as melibiose and raffinose. The D-values of Bt_3294 at 40 °C and 50 °C were about 107 and 6 min, respectively. After immobilization of Bt_3294, the D-values at 40 °C and 50 °C were about 37.6 and 29.7 times higher than those of the free enzyme, respectively. As a practical application, the immobilized Bt_3294 was used to hydrolyze raffinose family oligosaccharides (RFOs) in soy milk, decreasing the RFOs by 98.9%.
Collapse
Affiliation(s)
- Yu-Jeong Shin
- Department of Food Science and Nutrition, The Korean Institute of Nutrition, Hallym University, Hallymdaehak-gil 1, Chuncheon, Gwangwon-do 24252, Republic of Korea
| | - Seung-Hye Woo
- Department of Food Science and Nutrition, The Korean Institute of Nutrition, Hallym University, Hallymdaehak-gil 1, Chuncheon, Gwangwon-do 24252, Republic of Korea
| | - Hyun-Mo Jeong
- Department of Food Science and Nutrition, The Korean Institute of Nutrition, Hallym University, Hallymdaehak-gil 1, Chuncheon, Gwangwon-do 24252, Republic of Korea
| | - Ji-Soo Kim
- Department of Food Science and Nutrition, The Korean Institute of Nutrition, Hallym University, Hallymdaehak-gil 1, Chuncheon, Gwangwon-do 24252, Republic of Korea
| | - Dam-Seul Ko
- Department of Food Science and Nutrition, The Korean Institute of Nutrition, Hallym University, Hallymdaehak-gil 1, Chuncheon, Gwangwon-do 24252, Republic of Korea
| | - Da-Woon Jeong
- Department of Food Science and Nutrition, The Korean Institute of Nutrition, Hallym University, Hallymdaehak-gil 1, Chuncheon, Gwangwon-do 24252, Republic of Korea
| | - Jung-Hoon Lee
- Multidisciplinary Genome Institute, Hallym University, Hallymdaehak-gil 1, Chuncheon, Gwangwon-do 24252, Republic of Korea
| | - Jae-Hoon Shim
- Department of Food Science and Nutrition, The Korean Institute of Nutrition, Hallym University, Hallymdaehak-gil 1, Chuncheon, Gwangwon-do 24252, Republic of Korea.
| |
Collapse
|
24
|
Liu Q, Du F, Kong W, Wang H, Ng TB. Fermentation Production, Purification and Characterization of a Fungal α-galactosidase from Trametes versicolor and Its Synergistic Degradation of Guar Gum with Mannanase. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2020. [DOI: 10.3136/fstr.26.265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Qin Liu
- Institute of Plant Nutrition, Agricultural Resources and Environmental Science, Henan Academy of Agricultural Sciences
| | - Fang Du
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences
| | - Weili Kong
- Institute of Plant Nutrition, Agricultural Resources and Environmental Science, Henan Academy of Agricultural Sciences
| | - Hexiang Wang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories
| |
Collapse
|
25
|
Bhatia S, Singh A, Batra N, Singh J. Microbial production and biotechnological applications of α-galactosidase. Int J Biol Macromol 2019; 150:1294-1313. [PMID: 31747573 DOI: 10.1016/j.ijbiomac.2019.10.140] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022]
Abstract
α-Galactosidase, (E.C. 3.2.1.22) is an exoglycosidase that target galactooligosaccharides such as raffinose, melibiose, stachyose and branched polysaccharides like galactomannans and galacto-glucomannans by catalysing the hydrolysis of α-1,6 linked terminal galactose residues. The enzyme has been isolated and characterized from microbial, plant and animal sources. This ubiquitous enzyme possesses physiological significance and immense industrial potential. Optimization of the growth conditions and efficient purification strategies can lead to a significant increase in the enzyme production. To boost commercial productivity, cloning of novel α-galactosidase genes and their heterologous expression in suitable host has gained popularity. Enzyme immobilization leads to its greater reutilization, superior thermostability, pH tolerance and increased activity. The enzyme is well explored in food industry in the removal of raffinose family oligosaccharides (RFOs) in soymilk and sugar crystallization process. It also improves animal feed quality and biomass processing. Applications of the enzyme is in the area of biomedicine includes therapeutic advances in treatment of Fabry disease, blood group conversion and removal of α-gal type immunogenic epitopes in xenotransplantation. With considerable biotechnological applications, this enzyme has been vastly commercialized and holds greater future prospects.
Collapse
Affiliation(s)
- Sonu Bhatia
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Abhinashi Singh
- Department of Biotechnology, G.G.D.S.D. College, Sector-32-C, Chandigarh, India
| | - Navneet Batra
- Department of Biotechnology, G.G.D.S.D. College, Sector-32-C, Chandigarh, India
| | - Jagtar Singh
- Department of Biotechnology, Panjab University, Chandigarh, India.
| |
Collapse
|
26
|
An JL, Zhang WX, Wu WP, Chen GJ, Liu WF. Characterization of a highly stable α-galactosidase from thermophilic Rasamsonia emersonii heterologously expressed in a modified Pichia pastoris expression system. Microb Cell Fact 2019; 18:180. [PMID: 31647018 PMCID: PMC6813122 DOI: 10.1186/s12934-019-1234-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/14/2019] [Indexed: 11/10/2022] Open
Abstract
Background Structurally stable α-galactosidases are of great interest for various biotechnological applications. More thermophilic α-galactosidases with high activity and structural stability have therefore to be mined and characterized. On the other hand, few studies have been performed to prominently enhance the AOX1 promoter activity in the commonly used Pichia pastoris system, in which production of some heterologous proteins are insufficient for further study. Results ReGal2 encoding a thermoactive α-galactosidase was identified from the thermophilic (hemi)cellulolytic fungus Rasamsonia emersonii. Significantly increased production of ReGal2 was achieved when ReGal2 was expressed in an engineered Pastoris pichia expression system with a modified AOX1 promoter and simultaneous fortified expression of Mxr1 that is involved in transcriptionally activating AOX1. Purified ReGal2 exists as an oligomer and has remarkable thermo-activity and thermo-tolerance, exhibiting maximum activity of 935 U/mg towards pNPGal at 80 °C and retaining full activity after incubation at 70 °C for 60 h. ReGal2 is insensitive to treatments by many metal ions and exhibits superior tolerance to protein denaturants. Moreover, ReGal2 efficiently hydrolyzed stachyose and raffinose in soybeans at 70 °C in 3 h and 24 h, respectively. Conclusion A modified P. pichia expression system with significantly enhanced AOX1 promoter activity has been established, in which ReGal2 production is markedly elevated to facilitate downstream purification and characterization. Purified ReGal2 exhibited prominent features in thermostability, catalytic activity, and resistance to protein denaturants. ReGal2 thus holds great potential in relevant biotechnological applications.
Collapse
Affiliation(s)
- Jian-Lu An
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, People's Republic of China
| | - Wei-Xin Zhang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, People's Republic of China.
| | - Wei-Ping Wu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, People's Republic of China
| | - Guan-Jun Chen
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, People's Republic of China
| | - Wei-Feng Liu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, People's Republic of China
| |
Collapse
|
27
|
Álvarez-Cao ME, Cerdán ME, González-Siso MI, Becerra M. Optimization of Saccharomyces cerevisiae α-galactosidase production and application in the degradation of raffinose family oligosaccharides. Microb Cell Fact 2019; 18:172. [PMID: 31601209 PMCID: PMC6786279 DOI: 10.1186/s12934-019-1222-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 09/29/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND α-Galactosidases are enzymes that act on galactosides present in many vegetables, mainly legumes and cereals, have growing importance with respect to our diet. For this reason, the use of their catalytic activity is of great interest in numerous biotechnological applications, especially those in the food industry directed to the degradation of oligosaccharides derived from raffinose. The aim of this work has been to optimize the recombinant production and further characterization of α-galactosidase of Saccharomyces cerevisiae. RESULTS The MEL1 gene coding for the α-galactosidase of S. cerevisiae (ScAGal) was cloned and expressed in the S. cerevisiae strain BJ3505. Different constructions were designed to obtain the degree of purification necessary for enzymatic characterization and to improve the productive process of the enzyme. ScAGal has greater specificity for the synthetic substrate p-nitrophenyl-α-D-galactopyranoside than for natural substrates, followed by the natural glycosides, melibiose, raffinose and stachyose; it only acts on locust bean gum after prior treatment with β-mannosidase. Furthermore, this enzyme strongly resists proteases, and shows remarkable activation in their presence. Hydrolysis of galactose bonds linked to terminal non-reducing mannose residues of synthetic galactomannan-oligosaccharides confirms that ScAGal belongs to the first group of α-galactosidases, according to substrate specificity. Optimization of culture conditions by the statistical model of Response Surface helped to improve the productivity by up to tenfold when the concentration of the carbon source and the aeration of the culture medium was increased, and up to 20 times to extend the cultivation time to 216 h. CONCLUSIONS ScAGal characteristics and improvement in productivity that have been achieved contribute in making ScAGal a good candidate for application in the elimination of raffinose family oligosaccharides found in many products of the food industry.
Collapse
Affiliation(s)
- María-Efigenia Álvarez-Cao
- Departamento de Bioloxía, Facultade de Ciencias, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña. Grupo EXPRELA, A Coruña, Spain
| | - María-Esperanza Cerdán
- Departamento de Bioloxía, Facultade de Ciencias, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña. Grupo EXPRELA, A Coruña, Spain
| | - María-Isabel González-Siso
- Departamento de Bioloxía, Facultade de Ciencias, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña. Grupo EXPRELA, A Coruña, Spain
| | - Manuel Becerra
- Departamento de Bioloxía, Facultade de Ciencias, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña. Grupo EXPRELA, A Coruña, Spain
| |
Collapse
|
28
|
Wang ZP, Zhang LL, Liu S, Liu XY, Yu XJ. Whole Conversion of Soybean Molasses into Isomaltulose and Ethanol by Combining Enzymatic Hydrolysis and Successive Selective Fermentations. Biomolecules 2019; 9:E353. [PMID: 31404957 PMCID: PMC6722743 DOI: 10.3390/biom9080353] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 12/02/2022] Open
Abstract
Isomaltulose is mainly produced from sucrose by microbial fermentation, when the utilization of sucrose contributes a high production cost. To achieve a low-cost isomaltulose production, soy molasses was introduced as an alternative substrate. Firstly, α-galactosidase gene from Rhizomucor miehei was expressed in Yarrowia lipolytica, which then showed a galactosidase activity of 121.6 U/mL. Under the effects of the recombinant α-galactosidase, most of the raffinose-family oligosaccharides in soy molasses were hydrolyzed into sucrose. Then the soy molasses hydrolysate with high sucrose content (22.04%, w/w) was supplemented into the medium, with an isomaltulose production of 209.4 g/L, and the yield of 0.95 g/g. Finally, by virtue of the bioremoval process using Pichia stipitis, sugar byproducts in broth were transformed into ethanol at the end of fermentation, thus resulting in high isomaltulose purity (97.8%). The bioprocess employed in this study provides a novel strategy for low-cost and efficient isomaltulose production from soybean molasses.
Collapse
Affiliation(s)
- Zhi-Peng Wang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Lin-Lin Zhang
- College of Chemistry & Environmental Engineering, Shandong University of Science & Technology, Qingdao 266510, China
| | - Song Liu
- Development & Reform Bureau, West Coast New Area, Qingdao 266000, China
| | - Xiao-Yan Liu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian 223300, China.
| | - Xin-Jun Yu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
29
|
Katrolia P, Liu X, Li J, Kopparapu NK. Enhanced elimination of non-digestible oligosaccharides from soy milk by immobilized α-galactosidase: A comparative analysis. J Food Biochem 2019; 43:e13005. [PMID: 31393013 DOI: 10.1111/jfbc.13005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/14/2022]
Abstract
This study compared two immobilization matrices like calcium-alginate and chitosan for immobilization of α-galactosidase and evaluated their potential for the removal of non-digestible raffinose family oligosaccharides from soy milk which cause abdominal discomfort. The pH optima of the free and immobilized enzymes were found to be similar at pH 4.0. The chitosan-immobilized α-galactosidase displayed higher optimal temperature (60°C) compared to alginate-immobilized enzyme (45°C) and free enzyme (50°C). The chitosan-immobilized and alginate-immobilized α-galactosidases displayed 93.7% and 97.6% hydrolysis of raffinose family oligosaccharides, respectively, while the free enzyme hydrolyzed only 30.3% oligosaccharides present in soy milk in 4 hr. Remarkably, both the immobilized enzymes showed complete removal of raffinose family oligosaccharides in 8 hr. Moreover, reusability studies indicate that even after five cycles of reuse, the chitosan and alginate-immobilized enzymes displayed 99% and 60% hydrolysis, respectively. PRACTICAL APPLICATIONS: In this study, we have used two inexpensive and non-toxic matrices for immobilizing α-galactosidase. We report that entrapment of α-galactosidase with chitosan significantly improved the optimal temperature of α-galactosidase, which is advantageous in food industry. The hydrolysis of raffinose family oligosaccharides in soy milk was also greatly enhanced after immobilization with chitosan and alginate. Thus, the results described in this study have relevance for development of safe, cost-effective and efficient method for removal of non-digestible soy oligosaccharides in food industry.
Collapse
Affiliation(s)
- Priti Katrolia
- Heilongjiang Provincial Key University Laboratory of Processing Agricultural Products, College of Food and Bioengineering, Qiqihar University, Qiqihar, China.,College of Food Science, Southwest University, Chongqing, China
| | - Xiaolan Liu
- Heilongjiang Provincial Key University Laboratory of Processing Agricultural Products, College of Food and Bioengineering, Qiqihar University, Qiqihar, China
| | - Junzhong Li
- Heilongjiang Provincial Key University Laboratory of Processing Agricultural Products, College of Food and Bioengineering, Qiqihar University, Qiqihar, China
| | - Narasimha Kumar Kopparapu
- Heilongjiang Provincial Key University Laboratory of Processing Agricultural Products, College of Food and Bioengineering, Qiqihar University, Qiqihar, China.,College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
30
|
|
31
|
Characterization of a high performance α-galactosidase from Irpex lacteus and its usage in removal of raffinose family oligosaccharides from soymilk. Int J Biol Macromol 2019; 131:1138-1146. [DOI: 10.1016/j.ijbiomac.2019.04.060] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 02/01/2023]
|
32
|
Han H, Ling Z, Khan A, Virk AK, Kulshrestha S, Li X. Improvements of thermophilic enzymes: From genetic modifications to applications. BIORESOURCE TECHNOLOGY 2019; 279:350-361. [PMID: 30755321 DOI: 10.1016/j.biortech.2019.01.087] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
Thermozymes (from thermophiles or hyperthermophiles) offer obvious advantages due to their excellent thermostability, broad pH adaptation, and hydrolysis ability, resulting in diverse industrial applications including food, paper, and textile processing, biofuel production. However, natural thermozymes with low yield and poor adaptability severely hinder their large-scale applications. Extensive studies demonstrated that using genetic modifications such as directed evolution, semi-rational design, and rational design, expression regulations and chemical modifications effectively improved enzyme's yield, thermostability and catalytic efficiency. However, mechanism-based techniques for thermozymes improvements and applications need more attention. In this review, stabilizing mechanisms of thermozymes are summarized for thermozymes improvements, and these improved thermozymes eventually have large-scale industrial applications.
Collapse
Affiliation(s)
- Huawen Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Zhenmin Ling
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Amanpreet Kaur Virk
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh 173229, India
| | - Saurabh Kulshrestha
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh 173229, India
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu 730000, People's Republic of China.
| |
Collapse
|
33
|
A protease-resistant α-galactosidase characterized by relatively acid pH tolerance from the Shitake Mushroom Lentinula edodes. Int J Biol Macromol 2019; 128:324-330. [DOI: 10.1016/j.ijbiomac.2019.01.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/24/2018] [Accepted: 01/11/2019] [Indexed: 11/18/2022]
|
34
|
Álvarez-Cao ME, Cerdán ME, González-Siso MI, Becerra M. Bioconversion of Beet Molasses to Alpha-Galactosidase and Ethanol. Front Microbiol 2019; 10:405. [PMID: 30899250 PMCID: PMC6416216 DOI: 10.3389/fmicb.2019.00405] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/15/2019] [Indexed: 12/15/2022] Open
Abstract
Molasses are sub-products of the sugar industry, rich in sucrose and containing other sugars like raffinose, glucose, and fructose. Alpha-galactosidases (EC. 3.2.1.22) catalyze the hydrolysis of alpha-(1,6) bonds of galactose residues in galacto-oligosaccharides (melibiose, raffinose, and stachyose) and complex galactomannans. Alpha-galactosidases have important applications, mainly in the food industry but also in the pharmaceutical and bioenergy sectors. However, the cost of the enzyme limits the profitability of most of these applications. The use of cheap sub-products, such as molasses, as substrates for production of alpha-galactosidases, reduces the cost of the enzymes and contributes to the circular economy. Alpha-galactosidase is a specially indicated bioproduct since, at the same time, it allows to use the raffinose present in molasses. This work describes the development of a two-step system for the valuation of beet molasses, based on their use as substrate for alpha-galactosidase and bioethanol production by Saccharomyces cerevisiae. Since this yeast secretes high amounts of invertase, to avoid congest the secretory route and to facilitate alpha-galactosidase purification from the culture medium, a mutant in the SUC2 gene (encoding invertase) was constructed. After a statistical optimization of culture conditions, this mutant yielded a very high rate of molasses bioconversion to alpha-galactosidase. In the second step, the SUC2 wild type yeast strain fermented the remaining sucrose to ethanol. A procedure to recycle the yeast biomass, by using it as nitrogen source to supplement molasses, was also developed.
Collapse
Affiliation(s)
- María-Efigenia Álvarez-Cao
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, Universidade da Coruña, A Coruña, Spain
| | - María-Esperanza Cerdán
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, Universidade da Coruña, A Coruña, Spain
| | - María-Isabel González-Siso
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, Universidade da Coruña, A Coruña, Spain
| | - Manuel Becerra
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, Universidade da Coruña, A Coruña, Spain
| |
Collapse
|
35
|
Aulitto M, Fusco S, Limauro D, Fiorentino G, Bartolucci S, Contursi P. Galactomannan degradation by thermophilic enzymes: a hot topic for biotechnological applications. World J Microbiol Biotechnol 2019; 35:32. [DOI: 10.1007/s11274-019-2591-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/10/2019] [Indexed: 01/06/2023]
|
36
|
Mutra R, Joseph JE, Panwar D, Kaira GS, Kapoor M. Low molecular weight α-galactosidase from black gram (Vigna mungo): Purification and insights towards biochemical and biophysical properties. Int J Biol Macromol 2018; 119:770-778. [DOI: 10.1016/j.ijbiomac.2018.06.093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 11/26/2022]
|
37
|
Song Y, Sun W, Fan Y, Xue Y, Liu D, Ma C, Liu W, Mosher W, Luo X, Li Z, Ma W, Zhang T. Galactomannan Degrading Enzymes from the Mannan Utilization Gene Cluster of Alkaliphilic Bacillus sp. N16-5 and Their Synergy on Galactomannan Degradation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11055-11063. [PMID: 30351049 DOI: 10.1021/acs.jafc.8b03878] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Two glycoside hydrolases encoded by the mannan utilization gene cluster of alkaliphilic Bacillus sp. N16-5 were studied. The recombinant Gal27A (rGal27A) hydrolyzed both galactomannans and oligo-galactomannans to release galactose, while the recombinant Man113A (rMan113A) showed poor activity toward galactomannans, but it hydrolyzed manno-oligosaccharides to release mannose and mannobiose. rGal27A showed synergistic interactions with rMan113A and recombinant β-mannanase ManA (rManA), which is also from Bacillus sp. N16-5, in galactomannan degradation. The synergy degree of rGal27A and rManA on hydrolysis of locust bean gum and guar gum was 1.13 and 2.21, respectively, and that of rGal27A and rMan113A reached 2.00 and 2.68. The main products of galactomannan hydrolyzed by rGal27A and rManA simultaneously were galactose, mannose, mannobiose, and mannotriose, while those of galactomannan hydrolyzed by rGal27A and rMan113A were galactose and mannose. The yields of mannose, mannobiose, and mannotriose dramatically increased compared with the hydrolysis in the presence of rManA or rMan113A alone.
Collapse
Affiliation(s)
- Yajian Song
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , China
| | - Wenyuan Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , China
| | - Yanli Fan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , China
| | - Yanfen Xue
- State Key Laboratory of Microbial Resources, Institute of Microbiology , Chinese Academy of Sciences , Beijing 100101 , China
| | - Duoduo Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , China
| | - Cuiping Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , China
| | - Wenting Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , China
- Tianjin Institute of Industrial Biotechnology , Chinese Academy of Sciences , Tianjin 300308 , China
| | - Wesley Mosher
- Department of Food Science and Nutrition , University of Minnesota , St. Paul , Minnesota 55108 , United States
| | - Xuegang Luo
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , China
| | - Zhongyuan Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , China
| | - Wenjian Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , China
| | - Tongcun Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , China
| |
Collapse
|
38
|
Ye F, Geng XR, Xu LJ, Chang MC, Feng CP, Meng JL. Purification and characterization of a novel protease-resistant GH27 α-galactosidase from Hericium erinaceus. Int J Biol Macromol 2018; 120:2165-2174. [PMID: 30195005 DOI: 10.1016/j.ijbiomac.2018.09.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 01/01/2023]
Abstract
A novel 57-kDa acidic α-galactosidase designated as HEG has been purified from the dry fruiting bodies of Hericium erinaceus. The isolation protocol involved ion-exchange chromatography and gel filtration on a Superdex75 column. The purification fold and specific activity were 1251 and 46 units/mg, respectively. A BLAST search of internal peptide sequences obtained by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis suggested that the enzyme belonged to the GH27 family. The activity of the enzyme reached its maximum at a pH of 6.0 or at 60 °C. The enzyme was stable within an acidic pH range of 2.2-7.0 and in a narrow temperature range. The enzyme was strongly inhibited by Zn2+, Fe3+, Ag+ ions and SDS. The Lineweaver-Burk plot suggested that the mode of inhibition by galactose and melibiose were of a mixed type. N-bromosuccinimide drastically decreased the activity of the enzyme, whereas diethylpyrocarbonate and carbodiimide strengthened the activity slightly. Moreover, the isolated enzyme displayed remarkable resistance to acid proteases, neutral proteases and pepsin. The enzyme could also hydrolyse oligosaccharides and polysaccharides. In addition, acidic protease promoted the hydrolysis of RFOs by HEG. The Km values of the enzyme towards pNPGal, raffinose and stachyose were 0.36 mM, 40.07 mM and 54.71 mM, respectively. These favourable properties increase the potential of the enzyme in the food industry and animal feed applications.
Collapse
Affiliation(s)
- Feng Ye
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Collaborative Innovation Center of Advancing Quality and Efficiency of Loess Plateau Edible Fungi, Taigu, 030801, China
| | - Xue-Ran Geng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Collaborative Innovation Center of Advancing Quality and Efficiency of Loess Plateau Edible Fungi, Taigu, 030801, China
| | - Li-Jing Xu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Collaborative Innovation Center of Advancing Quality and Efficiency of Loess Plateau Edible Fungi, Taigu, 030801, China
| | - Ming-Chang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Collaborative Innovation Center of Advancing Quality and Efficiency of Loess Plateau Edible Fungi, Taigu, 030801, China
| | - Cui-Ping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Collaborative Innovation Center of Advancing Quality and Efficiency of Loess Plateau Edible Fungi, Taigu, 030801, China
| | - Jun-Long Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Collaborative Innovation Center of Advancing Quality and Efficiency of Loess Plateau Edible Fungi, Taigu, 030801, China.
| |
Collapse
|
39
|
Álvarez-Cao ME, Rico-Díaz A, Cerdán ME, Becerra M, González-Siso MI. Valuation of agro-industrial wastes as substrates for heterologous production of α-galactosidase. Microb Cell Fact 2018; 17:137. [PMID: 30176892 PMCID: PMC6122717 DOI: 10.1186/s12934-018-0988-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 08/28/2018] [Indexed: 01/07/2023] Open
Abstract
Background The recycling of agro-industrial wastes is at present limited by the availability of efficient and low-cost enzyme cocktails. The use of these materials as culture media to produce the enzymes can contribute to the profitability of the recycling process and to the circular economy. The aim of this work is the construction of a recombinant yeast strain efficient to grow in mixed whey (residue of cheese making) and beet molasses (residue of sugar manufacture) as culture medium, and to produce heterologous α-galactosidase, an enzyme with varied industrial applications and wide market. Results The gene MEL1, encoding the α-galactosidase of Saccharomyces cerevisiae, was integrated (four copies) in the LAC4 locus of the Kluyveromyces lactis industrial strain GG799. The constructed recombinant strain produces high levels of extracellular α-galactosidase under the control of the LAC4 promoter, inducible by lactose and galactose, and the native MEL1 secretion signal peptide. K. lactis produces natively beta-galactosidase and invertase thus metabolizing the sugars of whey and molasses. A culture medium based on whey and molasses was statistically optimized, and then the cultures scaled-up at laboratory level, thus obtaining 19 U/mL of heterologous α-galactosidase with a productivity of 0.158 U/L h, which is the highest value reported hitherto from a cheap waste-based medium. Conclusions A K. lactis recombinant strain was constructed and a sustainable culture medium, based on a mixture of cheese whey and beet molasses, was optimized for high productivity of S. cerevisiae α-galactosidase, thus contributing to the circular economy by producing a heterologous enzyme from two agro-industrial wastes. Electronic supplementary material The online version of this article (10.1186/s12934-018-0988-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- María-Efigenia Álvarez-Cao
- EXPRELA Group, Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Spain
| | - Agustín Rico-Díaz
- EXPRELA Group, Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Spain
| | - María-Esperanza Cerdán
- EXPRELA Group, Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Spain
| | - Manuel Becerra
- EXPRELA Group, Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Spain
| | - María-Isabel González-Siso
- EXPRELA Group, Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Spain.
| |
Collapse
|
40
|
Liu Y, Yang S, Yan Q, Liu J, Jiang Z. High-level expression of a novel protease-resistant α-galactosidase from Thielavia terrestris. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.05.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
41
|
Zhao R, Zhao R, Tu Y, Zhang X, Deng L, Chen X. A novel α-galactosidase from the thermophilic probiotic Bacillus coagulans with remarkable protease-resistance and high hydrolytic activity. PLoS One 2018; 13:e0197067. [PMID: 29738566 PMCID: PMC5940202 DOI: 10.1371/journal.pone.0197067] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 04/25/2018] [Indexed: 11/18/2022] Open
Abstract
A novel α-galactosidase of glycoside hydrolase family 36 was cloned from Bacillus coagulans, overexpressed in Escherichia coli, and characterized. The purified enzyme Aga-BC7050 was 85 kDa according to SDS-PAGE and 168 kDa according to gel filtration, indicating that its native structure is a dimer. With p-nitrophenyl-α-d- galactopyranoside (pNPGal) as the substrate, optimal temperature and pH were 55 °C and 6.0, respectively. At 60 °C for 30 min, it retained > 50% of its activity. It was stable at pH 5.0–10.0, and showed remarkable resistance to proteinase K, subtilisin A, α-chymotrypsin, and trypsin. Its activity was not inhibited by glucose, sucrose, xylose, or fructose, but was slightly inhibited at galactose concentrations up to 100 mM. Aga-BC7050 was highly active toward pNPGal, melibiose, raffinose, and stachyose. It completely hydrolyzed melibiose, raffinose, and stachyose in < 30 min. These characteristics suggest that Aga-BC7050 could be used in feed and food industries and sugar processing.
Collapse
Affiliation(s)
- Ruili Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, P. R. China
| | - Rui Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, P. R. China
| | - Yishuai Tu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, P. R. China
| | - Xiaoming Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, P. R. China
| | - Liping Deng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, P. R. China
| | - Xiangdong Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, P. R. China
- China Center for Type Culture Collection, Wuhan, P. R. China
- * E-mail:
| |
Collapse
|
42
|
Bioaffinity immobilization and characterization of α-galactosidase on aminophenylboronicacid derivatized chitosan and Sepabeads EC-EA. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.12.073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Characterization of a novel GH36 α-galactosidase from Bacillus megaterium and its application in degradation of raffinose family oligosaccharides. Int J Biol Macromol 2018; 108:98-104. [DOI: 10.1016/j.ijbiomac.2017.11.154] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/31/2017] [Accepted: 11/25/2017] [Indexed: 11/21/2022]
|
44
|
Isolation of a protease-resistant and pH-stable α-galactosidase displaying hydrolytic efficacy toward raffinose family oligosaccharides from the button mushroom Agaricus bisporus. Int J Biol Macromol 2017. [DOI: 10.1016/j.ijbiomac.2017.06.077] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Characterization of a thermostable glycoside hydrolase family 36 α-galactosidase from Caldicellulosiruptor bescii. J Biosci Bioeng 2017; 124:289-295. [DOI: 10.1016/j.jbiosc.2017.04.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/16/2017] [Indexed: 01/25/2023]
|
46
|
Hu Y, Tian G, Zhao L, Wang H, Ng TB. A protease-resistant α-galactosidase from Pleurotus djamor with broad pH stability and good hydrolytic activity toward raffinose family oligosaccharides. Int J Biol Macromol 2017; 94:122-130. [DOI: 10.1016/j.ijbiomac.2016.10.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 09/28/2016] [Accepted: 10/03/2016] [Indexed: 11/29/2022]
|
47
|
Characterization of two novel heat-active α-galactosidases from thermophilic bacteria. Extremophiles 2016; 21:85-94. [DOI: 10.1007/s00792-016-0885-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/25/2016] [Indexed: 01/27/2023]
|
48
|
Qin Z, Yan Q, Yang S, Jiang Z. Modulating the function of a β-1,3-glucanosyltransferase to that of an endo-β-1,3-glucanase by structure-based protein engineering. Appl Microbiol Biotechnol 2016; 100:1765-1776. [PMID: 26490553 DOI: 10.1007/s00253-015-7057-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 09/25/2015] [Accepted: 10/02/2015] [Indexed: 02/08/2023]
Abstract
A glycoside hydrolase (GH) family 17 β-1,3-glucanosyltransferase (RmBgt17A) from Rhizomucor miehei CAU432 (CGMCC No. 4967) shared very low sequence homology (∼20 % identity) with that of other β-1,3-glucanases,despite their similar structural folds. Structural comparison and sequence alignment between RmBgt17A and GH family 17 β-1,3-glucanases suggested important roles for three residues (Tyr102, Trp157, and Glu158) located in the substrate-binding cleft of RmBgt17A in transglycosylation activity. A series of site-directed mutagenesis studies indicated that a single Glu-to-Ala mutation (E158A) modulates the function of RmBgt17A to that of a β-1,3-glucanase. Mutant E158A exhibited high hydrolytic activity (39.95 U/mg) toward reduced laminarin, 348.5-fold higher than the wild type. Optimal pH and temperature of the purified RmBgt17A-E158A were 4.5 and 55 °C, respectively. TLC analysis suggested that RmBgt17A-E158A is an endo-β-1,3-glucanase. Our study provides novel insight into protein engineering of the substrate-binding cleft of glycoside hydrolases to modulate the function of transglycosylation and hydrolysis.
Collapse
Affiliation(s)
- Zhen Qin
- College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Post Box 294, Beijing, 100083, China
| | - Qiaojuan Yan
- Bioresource Utilization Laboratory, College of Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Post Box 294, Beijing, 100083, China.
| | - Shaoqing Yang
- College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Post Box 294, Beijing, 100083, China
| | - Zhengqiang Jiang
- College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Post Box 294, Beijing, 100083, China.
| |
Collapse
|
49
|
The pH-dependent protection of α-galactosidase activity by proteins against degradative enzymes during soymilk in vitro digestion. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.01.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
50
|
Guo Y, Song Y, Qiu Y, Shao X, Wang H, Song Y. Purification of thermostable α-galactosidase from Irpex lacteus and its use for hydrolysis of oligosaccharides. J Basic Microbiol 2016; 56:448-58. [PMID: 26946959 DOI: 10.1002/jobm.201500668] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/11/2016] [Indexed: 12/26/2022]
Abstract
A monomeric α-galactosidase (ILGI) from the mushroom Irpex lacteus was purified 94.19-fold to electrophoretic homogeneity. ILGI exhibited a specific activity of 18.36 U mg(-1) and demonstrated a molecular mass of 60 kDa in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). ILGI was optimally active at 80 °C and pH 5.0, and it was stable over a temperature range of 4-70 °C and a wide pH range of 2.0-12.0. ILGI was completely inactivated by Ag(+) and Hg(2+) ions and N-bromosuccinimide (NBS). Moreover, ILGI exhibited good resistance to proteases. Galactose acted as a noncompetitive inhibitor with Ki and Kis of 3.34 and 0.29 mM, respectively. The α-galactosidase presented a broad substrate specificity, which included p-nitrophenyl α-D-galactopyranoside (pNPGal), melibiose, stachyose, and raffinose with Km values of 1.27, 3.24, 7.1, and 22.12 mM, correspondingly. ILGI exhibited efficient and complete hydrolysis to raffinose and stachyose. The aforementioned features of this enzyme suggest its potential value in food and feed industries.
Collapse
Affiliation(s)
- Yajie Guo
- College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Yi Song
- School of Public Health, Peking University, Beijing, P.R. China
| | - Yi Qiu
- College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Xiaoming Shao
- Beijing key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, P.R. China
| | - Hexiang Wang
- College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Yuan Song
- College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| |
Collapse
|