1
|
Ghanaim AM, Mahdy OME, Mohamed HI. Biodegradation of azo dyes by Aspergillus flavus and its bioremediation potential using seed germination efficiency. BMC Microbiol 2025; 25:7. [PMID: 39780060 PMCID: PMC11715232 DOI: 10.1186/s12866-024-03703-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
The worldwide textile industry extensively uses azo dyes, which pose serious health and environmental risks. Effective cleanup is necessary but challenging. Developing bioremediation methods for textile effluents will improve color removal efficiency. The recent attention to effectively utilizing microbes to convert toxic industrial azo dyes into non-hazardous compounds has garnered significant attention. In the present study, four fungal strains-Aspergillus flavus, Aspergillus terreus, Aspergillus niger, and Fusarium oxysporium-were employed to screen for the degradation and detoxification of azo dyes including congo red, crystal violet, bromophenol blue, and malachite green. After eight days, A. flavus had degraded azo dyes at the maximum proportion. The maximum decolorization (%) was achieved at 50 mg/L of dye concentration, 8 days of incubation, pH 6, 30 °C temperature, sucrose as a carbon source, NaNO3 as a nitrogen source, Ca+2 as minerals, and using static culture. The efficient production of laccases, lignin peroxidase, and manganese peroxidase enzymes by A. flavus proved that the enzyme played a crucial role in decolorizing the harmful azo dyes. The Fourier Transform Infrared spectrometer (FT-IR) data validated the decolorization and degradation process brought on by absorption and biodegradation. Compared to control plants, the results of the phytotoxicity assay showed that the degraded product was less harmful to maize and common bean plant's growth and germination rates. As a result, the findings indicate that A. flavus is a viable option for remediating azo dyes. This aids in the biodegradation of azo dyes found in wastewater.
Collapse
Affiliation(s)
- Amira M Ghanaim
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt
| | - Omima M El Mahdy
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt
| | - Heba I Mohamed
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.
| |
Collapse
|
2
|
Roy H, Rahman TU, Tasnim N, Arju J, Rafid MM, Islam MR, Pervez MN, Cai Y, Naddeo V, Islam MS. Microbial Fuel Cell Construction Features and Application for Sustainable Wastewater Treatment. MEMBRANES 2023; 13:membranes13050490. [PMID: 37233551 DOI: 10.3390/membranes13050490] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
A microbial fuel cell (MFC) is a system that can generate electricity by harnessing microorganisms' metabolic activity. MFCs can be used in wastewater treatment plants since they can convert the organic matter in wastewater into electricity while also removing pollutants. The microorganisms in the anode electrode oxidize the organic matter, breaking down pollutants and generating electrons that flow through an electrical circuit to the cathode compartment. This process also generates clean water as a byproduct, which can be reused or released back into the environment. MFCs offer a more energy-efficient alternative to traditional wastewater treatment plants, as they can generate electricity from the organic matter in wastewater, offsetting the energy needs of the treatment plants. The energy requirements of conventional wastewater treatment plants can add to the overall cost of the treatment process and contribute to greenhouse gas emissions. MFCs in wastewater treatment plants can increase sustainability in wastewater treatment processes by increasing energy efficiency and reducing operational cost and greenhouse gas emissions. However, the build-up to the commercial-scale still needs a lot of study, as MFC research is still in its early stages. This study thoroughly describes the principles underlying MFCs, including their fundamental structure and types, construction materials and membrane, working mechanism, and significant process elements influencing their effectiveness in the workplace. The application of this technology in sustainable wastewater treatment, as well as the challenges involved in its widespread adoption, are discussed in this study.
Collapse
Affiliation(s)
- Hridoy Roy
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Tanzim Ur Rahman
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Nishat Tasnim
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Jannatul Arju
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Md Mustafa Rafid
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Md Reazul Islam
- Department of Civil Engineering, Louisiana Tech University, Ruston, LA 71270, USA
| | - Md Nahid Pervez
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Yingjie Cai
- Hubei Provincial Engineering Laboratory for Clean Production and High Value Utilization of Bio-Based Textile Materials, Wuhan Textile University, Wuhan 430200, China
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Md Shahinoor Islam
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
- Department of Textile Engineering, Daffodil International University, Dhaka 1341, Bangladesh
| |
Collapse
|
3
|
Naderi A, Kakavandi B, Giannakis S, Angelidaki I, Rezaei Kalantary R. Putting the electro-bugs to work: A systematic review of 22 years of advances in bio-electrochemical systems and the parameters governing their performance. ENVIRONMENTAL RESEARCH 2023; 229:115843. [PMID: 37068722 DOI: 10.1016/j.envres.2023.115843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/25/2023] [Accepted: 04/03/2023] [Indexed: 05/08/2023]
Abstract
Wastewater treatment using bioelectrochemical systems (BESs) can be considered as a technology finding application in versatile areas such as for renewable energy production and simultaneous reducing environmental problems, biosensors, and bioelectrosynthesis. This review paper reports and critically discusses the challenges, and advances in bio-electrochemical studies in the 21st century. To sum and critically analyze the strides of the last 20+ years on the topic, this study first provides a comprehensive analysis on the structure, performance, and application of BESs, which include Microbial Fuel Cells (MFCs), Microbial Electrolysis Cells (MECs) and Microbial Desalination Cells (MDCs). We focus on the effect of various parameters, such as electroactive microbial community structure, electrode material, configuration of bioreactors, anode unit volume, membrane type, initial COD, co-substrates and the nature of the input wastewater in treatment process and the amount of energy and fuel production, with the purpose of showcasing the modes of operation as a guide for future studies. The results of this review show that the BES have great potential in reducing environmental pollution, purifying saltwater, and producing energy and fuel. At a larger scale, it aspires to facilitate the path of achieving sustainable development and practical application of BES in real-world scenarios.
Collapse
Affiliation(s)
- Azra Naderi
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Babak Kakavandi
- Research Center for Health, Safety and Environment, Alborz University of Medical Sciences, Karaj, Iran; Department of Environmental Health Engineering, Alborz University of Medical Sciences, Karaj, Iran
| | - Stefanos Giannakis
- Universidad Politécnica de Madrid, E.T.S. de Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Environment, Coast and Ocean Research Laboratory (ECOREL-UPM), C/Profesor Aranguren, s/n, ES-28040, Madrid, Spain
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Roshanak Rezaei Kalantary
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Liu S, Wang Z, Feng X, Pyo SH. Refractory azo dye wastewater treatment by combined process of microbial electrolytic reactor and plant-microbial fuel cell. ENVIRONMENTAL RESEARCH 2023; 216:114625. [PMID: 36279915 DOI: 10.1016/j.envres.2022.114625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/09/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
An innovative design of microbial electrolytic reactor (MER) coupled with Ipomoea aquaticaForsk. plant microbial fuel cell (IAF-PMFC) was developed for azo dye wastewater treatment and electricity generation. This study aims to assess the sequential degradation of azo dye and the feasibility of energy self-sufficiency in the MER/IAF-PMFC system. The decomposition of azo dye into aromatic amines and dye decolorization occurred in the MER at high hydraulic loading of 0.28 m3/(m2·d), while dye intermediates were mainly mineralized in the IAF-PMFC at low hydraulic loading of 0.06 m3/(m2·d). The final decolorization efficiency and COD removal of the combined system reached 99.64% and 92.06% respectively, even at influent dye concentration of 1000 mg/L. The effects of open/closed circuit conditions, presence/absence of aquatic plant and different cathode areas on the performance of the IAF-PMFC for treating the effluent of the MER were systematically tested, and the results showed that closed-circuit condition, plant involvement and larger cathode area were more beneficial to decolorization, detoxification and mineralization of dye wastewater, bioelectricity output, plant growth and photosynthetic rate. The power consumption by the MER was 0.0163 kWh/m3 of dye wastewater, while the highest power generation of the IAF-PMFC reached 0.0183 kWh/m3. The current efficiency of the MER for dye decolorization was as high as 942.83%, while the maximum coulombic efficiency of the IAF-PMFC for intermediates metabolism was only 6.30%, which still had much space of bioelectricity generation promotion. The MER/IAF-PMFC technology can simultaneously realize refractory wastewater treatment and balance of electricity production and consumption.
Collapse
Affiliation(s)
- Shentan Liu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, Shaanxi, China; Biotechnology, Department of Chemistry, Faculty of Engineering, Lund University, SE-22100, Lund, Sweden
| | - Zuo Wang
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, Shaanxi, China
| | - Xiaojuan Feng
- School of Water and Environment, Chang'an University, Xi'an, 710054, China.
| | - Sang-Hyun Pyo
- Biotechnology, Department of Chemistry, Faculty of Engineering, Lund University, SE-22100, Lund, Sweden
| |
Collapse
|
5
|
Yadav A, Kumar P, Rawat D, Garg S, Mukherjee P, Farooqi F, Roy A, Sundaram S, Sharma RS, Mishra V. Microbial fuel cells for mineralization and decolorization of azo dyes: Recent advances in design and materials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154038. [PMID: 35202698 DOI: 10.1016/j.scitotenv.2022.154038] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Microbial fuel cells (MFCs) exhibit tremendous potential in the sustainable management of dye wastewater via degrading azo dyes while generating electricity. The past decade has witnessed advances in MFC configurations and materials; however, comprehensive analyses of design and material and its association with dye degradation and electricity generation are required for their industrial application. MFC models with high efficiency of dye decolorization (96-100%) and a wide variation in power generation (29.4-940 mW/m2) have been reported. However, only 28 out of 104 studies analyzed dye mineralization - a prerequisite to obviate dye toxicity. Consequently, the current review aims to provide an in-depth analysis of MFCs potential in dye degradation and mineralization and evaluates materials and designs as crucial factors. Also, structural and operation parameters critical to large-scale applicability and complete mineralization of azo dye were evaluated. Choice of materials, i.e., bacteria, anode, cathode, cathode catalyst, membrane, and substrate and their effects on power density and dye decolorization efficiency presented in review will help in economic feasibility and MFCs scalability to develop a self-sustainable solution for treating azo dye wastewater.
Collapse
Affiliation(s)
- Archana Yadav
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110 007, India
| | - Pankaj Kumar
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110 007, India
| | - Deepak Rawat
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110 007, India; Department of Environmental Studies, Janki Devi Memorial College, University of Delhi, Delhi 110060, India
| | - Shafali Garg
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110 007, India
| | - Paromita Mukherjee
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110 007, India
| | - Furqan Farooqi
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110 007, India
| | - Anurag Roy
- Environment and Sustainability Institute ESI Solar Lab, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| | - Senthilarasu Sundaram
- Environment and Sustainability Institute ESI Solar Lab, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK; Electrical & Electronic Engineering, School of Engineering and the Built Environment, Edinburgh Napier University, Edinburgh EH10 5DT, UK
| | - Radhey Shyam Sharma
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110 007, India; Delhi School of Climate Change & Sustainability, Institute of Eminence, University of Delhi, Delhi 110007, India
| | - Vandana Mishra
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110 007, India.
| |
Collapse
|
6
|
Mohyudin S, Farooq R, Jubeen F, Rasheed T, Fatima M, Sher F. Microbial fuel cells a state-of-the-art technology for wastewater treatment and bioelectricity generation. ENVIRONMENTAL RESEARCH 2022; 204:112387. [PMID: 34785206 DOI: 10.1016/j.envres.2021.112387] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/17/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Wastewater treatment and electricity generation have been the major concerns for the last few years. The scarcity of fossil fuels has led to the development of unconventional energy resources that are pollution-free. Microbial fuel cell (MFC) is an environmental and eco-friendly technology that harvests energy through the oxidation of organic substrates and transform into the electric current with the aid of microorganisms as catalysts. This review presents power output and colour removal values by designing various configurations of MFCs and highlights the importance of materials for the fabrication of anode and cathode electrodes playing vital roles in the formation of biofilm and redox reactions taking place in both chambers. The electron transfer mechanism from microbes towards the electrode surface and the generation of electric current are also highlighted. The effect of various parameters affecting the cell performance such as type and amount of substrate, pH and temperature maintained within the chambers have also been discussed. Although this technology presents many advantages, it still needs to be used in combination with other processes to enhance power output.
Collapse
Affiliation(s)
- Sidra Mohyudin
- Department of Chemistry, Government College Women University, Faisalabad, 38000, Pakistan
| | - Robina Farooq
- Department of Chemistry, Government College Women University, Faisalabad, 38000, Pakistan; Department of Chemistry, COMSATS University, Islamabad, Lahore, Pakistan
| | - Farhat Jubeen
- Department of Chemistry, Government College Women University, Faisalabad, 38000, Pakistan
| | - Tahir Rasheed
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia.
| | - Masoom Fatima
- Department of Chemistry, Government College Women University, Faisalabad, 38000, Pakistan; Department of Biology and Environmental Science, Allama Iqbal Open University, Islamabad, 44000, Pakistan
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, United Kingdom.
| |
Collapse
|
7
|
Wang L, Liang D, Shi Y. Profiling of co-metabolic degradation of tetracycline by the bio-cathode in microbial fuel cells. RSC Adv 2022; 12:509-516. [PMID: 35424472 PMCID: PMC8978701 DOI: 10.1039/d1ra07600k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/10/2021] [Indexed: 11/21/2022] Open
Abstract
In this paper, a system of tetracycline (TEC) degradation by the bio-cathode in a microbial fuel cell (MFC) was constructed. Overall, the co-metabolic degradation performance of TEC was studied through single factor experiments and the ecological risk was evaluated using the E. coli growth inhibition rate and resistance genes. High throughput sequencing (HTS) was utilized to profile the biofilm community structure of the bio-cathode. Results showed that the degradation rate of TEC reached greater than 90% under optimal conditions, which was 10 mg L−1 initial TEC concentration, 0.2–0.7 g L−1 sodium acetate concentration and 12–18 L h−1 aeration. Furthermore, compared with the aerobic biodegradation of TEC, the degradation efficiency of the MFC bio-cathode for TEC was significantly increased by 50% and the eco-toxicity of TEC after 36 hour degradation was reduced by 60.9%, and TEC ARGs in effluent were cut down. HTS results showed that electrochemically active bacteria Acetobacter and TEC-resistant degradation bacteria Hyphomicrobium, Clostridium and Rhodopseudomonas were the main dominant bacteria in the cathode biofilm. Besides, based on 5 intermediates, degradation pathways involving deamidation, denitro dimethylation, dedimethylation and dehydroxylation of TEC were proposed. The degradation of TEC on the bio-cathode was mainly caused by microbial co-metabolism action. This study would enrich the study of MFC bio-cathodic degradation of antibiotics in water. In this paper, a system of tetracycline (TEC) degradation by the bio-cathode in a microbial fuel cell (MFC) was constructed.![]()
Collapse
Affiliation(s)
- Luxiang Wang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, P. R China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou Higher Education Mega Centre, Guangzhou 510006, P. R China
| | - Dongmin Liang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, P. R China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou Higher Education Mega Centre, Guangzhou 510006, P. R China
| | - Yunqi Shi
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, P. R China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou Higher Education Mega Centre, Guangzhou 510006, P. R China
| |
Collapse
|
8
|
Qiu B, Hu Y, Tang C, Chen Y, Cheng J. Simultaneous mineralization of 2-anilinophenylacetate and denitrification by Ru/Fe modified biocathode double-chamber microbial fuel cell. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148446. [PMID: 34465036 DOI: 10.1016/j.scitotenv.2021.148446] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/21/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
A double-chamber microbial fuel cell (MFC) with Ru/Fe-modified-biocathode was constructed for simultaneous mineralization of 2-anilinophenylacetate (APA) and denitrification. The factors on performance of simultaneous APA degradation and denitrification were explored. The contributions of ROS to APA degradation were evaluated by EPR and quenching experiments. The microbial community of Ru/Fe-modified-biocathode was determined by high-throughput sequencing. Results showed that low resistance accelerated APA degradation by Ru/Fe-modified-biocathode, while higher initial APA concentration inhibited microbial activity of the biocathode. The optimum ammonia concentration was 50 mg L-1, while too high or too low ammonia concentration did not favor APA degradation. The APA degradation efficiency of Ru/Fe-modified-biocathode-MFC was higher than that of other modified-cathode-MFCs. The APA degradation process confirmed to the pseudo-first-order kinetic model, and APA degradation kinetic constant, the maximum removal efficiency of TOC, ammonia and TN were 2.15d-1, 59.70%, 99.20% and 44.56% respectively, signifying a simultaneous APA mineralization and denitrification performance of Ru/Fe-modified-biocathode-MFC. The coulombic efficiency decreased with APA concentration increase. OH was the primary radical in APA degradation progress. Eight kinds of intermediates were measured, and two APA degradation pathways were proposed, among which APA hydroxylation was the main pathway. The microbial community of Ru/Fe-modified-biocathode was dominated with Nitrosomonas at genus level, and enriched with various APA-degraders, nitrifiers, and denitrifiers such as Pseudomonas, Nitrospira, Nitrobacter, Paracoccus, Thermomonas, Dechloromonas, and Clostridium_Sutra_stricto_1. COG analysis showed the redox reaction of Ru/Fe might affect signal transduction and environment adaptation, while FAPROTAX analysis suggested that Ru/Fe-modified-biocathode exhibited higher nitrification activity than that of carbon-felt-biocathode. The synergistic mechanism of simultaneous APA mineralization and denitrification was mainly redox reaction of Ru/Fe and supplemented by aerobic biodegradation.
Collapse
Affiliation(s)
- Bing Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Yongyou Hu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.
| | - Chaoyang Tang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Yuancai Chen
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jianhua Cheng
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| |
Collapse
|
9
|
Outlook on the Role of Microbial Fuel Cells in Remediation of Environmental Pollutants with Electricity Generation. Catalysts 2020. [DOI: 10.3390/catal10080819] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A wide variety of pollutants are discharged into water bodies like lakes, rivers, canal, etc. due to the growing world population, industrial development, depletion of water resources, improper disposal of agricultural and native wastes. Water pollution is becoming a severe problem for the whole world from small villages to big cities. The toxic metals and organic dyes pollutants are considered as significant contaminants that cause severe hazards to human beings and aquatic life. The microbial fuel cell (MFC) is the most promising, eco-friendly, and emerging technique. In this technique, microorganisms play an important role in bioremediation of water pollutants simultaneously generating an electric current. In this review, a new approach based on microbial fuel cells for bioremediation of organic dyes and toxic metals has been summarized. This technique offers an alternative with great potential in the field of wastewater treatment. Finally, their applications are discussed to explore the research gaps for future research direction. From a literature survey of more than 170 recent papers, it is evident that MFCs have demonstrated outstanding removal capabilities for various pollutants.
Collapse
|
10
|
Oon YL, Ong SA, Ho LN, Wong YS, Dahalan FA, Oon YS, Teoh TP, Lehl HK, Thung WE. Constructed wetland-microbial fuel cell for azo dyes degradation and energy recovery: Influence of molecular structure, kinetics, mechanisms and degradation pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137370. [PMID: 32325554 DOI: 10.1016/j.scitotenv.2020.137370] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 02/04/2020] [Accepted: 02/15/2020] [Indexed: 06/11/2023]
Abstract
Complete degradation of azo dye has always been a challenge due to the refractory nature of azo dye. An innovative hybrid system, constructed wetland-microbial fuel cell (CW-MFC) was developed for simultaneous azo dye remediation and energy recovery. This study investigated the effect of circuit connection and the influence of azo dye molecular structures on the degradation rate of azo dye and bioelectricity generation. The closed circuit system exhibited higher chemical oxygen demand (COD) removal and decolourisation efficiencies compared to the open circuit system. The wastewater treatment performances of different operating systems were ranked in the decreasing order of CW-MFC (R1 planted-closed circuit) > MFC (R2 plant-free-closed circuit) > CW (R1 planted-open circuit) > bioreactor (R2 plant-free-open circuit). The highest decolourisation rate was achieved by Acid Red 18 (AR18), 96%, followed by Acid Orange 7 (AO7), 67% and Congo Red (CR), 60%. The voltage outputs of the three azo dyes were ranked in the decreasing order of AR18 > AO7 > CR. The results disclosed that the decolourisation performance was significantly influenced by the azo dye structure and the moieties at the proximity of azo bond; the naphthol type azo dye with a lower number of azo bond and more electron-withdrawing groups could cause azo bond to be more electrophilic and more reductive for decolourisation. Moreover, the degradation pathway of AR18, AO7 and CR were elucidated based on the respective dye intermediate products identified through UV-Vis spectrophotometry, high-performance liquid chromatography (HPLC), and gas chromatograph-mass spectrometer (GC-MS) analyses. The CW-MFC system demonstrated high capability of decolouring azo dyes at the anaerobic anodic region and further mineralising dye intermediates at the aerobic cathodic region to less harmful or non-toxic products.
Collapse
Affiliation(s)
- Yoong-Ling Oon
- Water Research Group (WAREG), School of Environmental Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | - Soon-An Ong
- Water Research Group (WAREG), School of Environmental Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia.
| | - Li-Ngee Ho
- School of Materials Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | - Yee-Shian Wong
- Water Research Group (WAREG), School of Environmental Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | - Farrah Aini Dahalan
- Water Research Group (WAREG), School of Environmental Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | - Yoong-Sin Oon
- Water Research Group (WAREG), School of Environmental Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | - Tean-Peng Teoh
- Water Research Group (WAREG), School of Environmental Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | - Harvinder Kaur Lehl
- Water Research Group (WAREG), School of Environmental Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | - Wei-Eng Thung
- Faculty of Engineering, Technology & Built Environment, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Zhang G, Shi Y, Zhang H, Yang F, Cai L. Operation adjustments of an electrochemically coupled system for total nitrogen removal and the associated mechanism. CHEMOSPHERE 2020; 246:125649. [PMID: 31918076 DOI: 10.1016/j.chemosphere.2019.125649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 09/13/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
A coupled system consisting of sequencing batch reactor and microbial fuel cell (SBR-MFC) was designed to buffer pH drift and purify wastewater. The addition of nitrifying sludge and the adjustment of hydraulic retention time (HRT) were performed to achieve better removal of total nitrogen (TN). When anaerobic/aerobic/anoxic phases in one cycle were 6/4/2 h, the removal efficiency of ammonium was 99.0 ± 1.3%, whereas denitrification was insufficient and the overall removal efficiency of TN was only 29.1 ± 5.8%. When the phases were adjusted to 6/2/4 h, the removal efficiencies of ammonium were 100.0 ± 0.0% in both closed and open circuits, and the overall removal efficiencies of TN were 91.4 ± 0.2% and 71.7 ± 4.2%, respectively, improved by 20% in MFC mode; the maximum voltage (200 Ω) maintained at 0.1 V. Ammonium-oxidizing bacteria (AOB) and Nitrite-oxidizing bacteria (NOB) in the sludge carried out nitrification. The main denitrification pathways in anoxic phase involved polyhydroxyalkanoate (PHA) denitrification by denitrifying glycogen accumulating organisms (GAOs) and electrochemical denitrification by electrochemical active bacteria (EAB). Few polyphosphate accumulating organisms (PAOs) were present, which accounted for poor P removal.
Collapse
Affiliation(s)
- Guangyi Zhang
- School of Water Conservancy Engineering, Zhengzhou University, Kexue Road 100, Zhengzhou, 450001, China; Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Yinghao Shi
- School of Water Conservancy Engineering, Zhengzhou University, Kexue Road 100, Zhengzhou, 450001, China
| | - Hanmin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China.
| | - Fenglin Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Lu Cai
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| |
Collapse
|
12
|
Performance of microbial fuel cells based on the operational parameters of biocathode during simultaneous Congo red decolorization and electricity generation. Bioelectrochemistry 2019; 128:291-297. [DOI: 10.1016/j.bioelechem.2019.04.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 11/20/2022]
|
13
|
Ottoni CA, Simões MF, Santos JG, Peixoto L, Martins CR, Silva BP, Neto AO, Brito AG, Maiorano AE. Application of microbial fuel cell technology for vinasse treatment and bioelectricity generation. Biotechnol Lett 2018; 41:107-114. [PMID: 30443879 DOI: 10.1007/s10529-018-2624-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/12/2018] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Our study evaluated the performance of different two-chambered microbial fuel cell (MFC) prototypes, operated with variable distance between electrodes and Nafion membrane and specific inoculum concentration, applied for vinasse treatment. RESULTS The performance of the developed MFC resulted in a maximum current density of 1200 mA m-2 and power density of 800 mW m-2 in a period of 61 days. MFC performed a chemical oxygen demand removal at a rate ranging from 51 to 60%. CONCLUSIONS Taking our preliminary results into consideration, we concluded that the MFC technology presents itself as highly promising for the treatment of vinasse.
Collapse
Affiliation(s)
- Cristiane Angélica Ottoni
- São Paulo State University (UNESP), Bioscience Institute, São Vicente, SP, 11380-972, Brazil. .,Laboratório de Biotecnologia Industrial, Instituto de Pesquisas Tecnológicas do Estado de São Paulo, São Paulo, SP, 05508-901, Brazil.
| | - Marta F Simões
- Biology Department, Edge Hill University, St Helens Road, Lancashire, Ormskirk, L39 4QP, UK
| | - Jonas G Santos
- Laboratório de Biotecnologia Industrial, Instituto de Pesquisas Tecnológicas do Estado de São Paulo, São Paulo, SP, 05508-901, Brazil
| | - Luciana Peixoto
- Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal
| | - Cleiton R Martins
- São Paulo State University (UNESP), Bioscience Institute, São Vicente, SP, 11380-972, Brazil
| | - Bruno P Silva
- São Paulo State University (UNESP), Bioscience Institute, São Vicente, SP, 11380-972, Brazil
| | - Almir O Neto
- Centro de Célula a Combustível e Hidrogênio, Instituto de Pesquisas Energéticas e Nucleares, São Paulo, SP, 05508-000, Brazil
| | - António G Brito
- Department of Biosystems Sciences and Engineering, Institute of Agronomy, University of Lisbon, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Alfredo E Maiorano
- Laboratório de Biotecnologia Industrial, Instituto de Pesquisas Tecnológicas do Estado de São Paulo, São Paulo, SP, 05508-901, Brazil
| |
Collapse
|
14
|
Oon YL, Ong SA, Ho LN, Wong YS, Dahalan FA, Oon YS, Lehl HK, Thung WE, Nordin N. Up-flow constructed wetland-microbial fuel cell for azo dye, saline, nitrate remediation and bioelectricity generation: From waste to energy approach. BIORESOURCE TECHNOLOGY 2018; 266:97-108. [PMID: 29957296 DOI: 10.1016/j.biortech.2018.06.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
This study explored the influence of azo dye concentration, salinity (with and without aeration) and nitrate concentration on bioelectricity generation and treatment performance in the up-flow constructed wetland-microbial fuel cell (UFCW-MFC) system. The decolourisation efficiencies were up to 91% for 500 mg/L of Acid Red 18 (AR18). However, the power density declined with the increment in azo dye concentration. The results suggest that the combination of salinity and aeration at an optimum level improved the power performance. The highest power density achieved was 8.67 mW/m2. The increase of nitrate by 3-fold led to decrease in decolourisation and power density of the system. The findings revealed that the electron acceptors (AR18, nitrate and anode) competed at the anodic region for electrons and the electron transfer pathways would directly influence the treatment and power performance of UFCW-MFC. The planted UFCW-MFC significantly outweighed the plant-free control in power performance.
Collapse
Affiliation(s)
- Yoong-Ling Oon
- Water Research Group (WAREG), School of Environmental Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | - Soon-An Ong
- Water Research Group (WAREG), School of Environmental Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia.
| | - Li-Ngee Ho
- School of Materials Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | - Yee-Shian Wong
- Water Research Group (WAREG), School of Environmental Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | - Farrah Aini Dahalan
- Water Research Group (WAREG), School of Environmental Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | - Yoong-Sin Oon
- Water Research Group (WAREG), School of Environmental Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | - Harvinder Kaur Lehl
- Water Research Group (WAREG), School of Environmental Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | - Wei-Eng Thung
- Water Research Group (WAREG), School of Environmental Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | - Noradiba Nordin
- School of Materials Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| |
Collapse
|
15
|
Kronenberg M, Trably E, Bernet N, Patureau D. Biodegradation of polycyclic aromatic hydrocarbons: Using microbial bioelectrochemical systems to overcome an impasse. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:509-523. [PMID: 28841503 DOI: 10.1016/j.envpol.2017.08.048] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/09/2017] [Accepted: 08/11/2017] [Indexed: 05/22/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are hardly biodegradable carcinogenic organic compounds. Bioremediation is a commonly used method for treating PAH contaminated environments such as soils, sediment, water bodies and wastewater. However, bioremediation has various drawbacks including the low abundance, diversity and activity of indigenous hydrocarbon degrading bacteria, their slow growth rates and especially a limited bioavailability of PAHs in the aqueous phase. Addition of nutrients, electron acceptors or co-substrates to enhance indigenous microbial activity is costly and added chemicals often diffuse away from the target compound, thus pointing out an impasse for the bioremediation of PAHs. A promising solution is the adoption of bioelectrochemical systems. They guarantee a permanent electron supply and withdrawal for microorganisms, thereby circumventing the traditional shortcomings of bioremediation. These systems combine biological treatment with electrochemical oxidation/reduction by supplying an anode and a cathode that serve as an electron exchange facility for the biocatalyst. Here, recent achievements in polycyclic aromatic hydrocarbon removal using bioelectrochemical systems have been reviewed. This also concerns PAH precursors: total petroleum hydrocarbons and diesel. Removal performances of PAH biodegradation in bioelectrochemical systems are discussed, focussing on configurational parameters such as anode and cathode designs as well as environmental parameters like porosity, salinity, adsorption and conductivity of soil and sediment that affect PAH biodegradation in BESs. The still scarcely available information on microbiological aspects of bioelectrochemical PAH removal is summarised here. This comprehensive review offers a better understanding of the parameters that affect the removal of PAHs within bioelectrochemical systems. In addition, future experimental setups are proposed in order to study syntrophic relationships between PAH degraders and exoelectrogens. This synopsis can help as guide for researchers in their choices for future experimental designs aiming at increasing the power densities and PAH biodegradation rates using microbial bioelectrochemistry.
Collapse
Affiliation(s)
| | - Eric Trably
- LBE, INRA, 102 avenue des Etangs, 11100 Narbonne, France
| | - Nicolas Bernet
- LBE, INRA, 102 avenue des Etangs, 11100 Narbonne, France
| | | |
Collapse
|
16
|
Comparison of electrochemical performances and microbial community structures of two photosynthetic microbial fuel cells. J Biosci Bioeng 2017. [DOI: 10.1016/j.jbiosc.2017.05.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
17
|
He CS, Mu ZX, Yang HY, Wang YZ, Mu Y, Yu HQ. Electron acceptors for energy generation in microbial fuel cells fed with wastewaters: A mini-review. CHEMOSPHERE 2015; 140:12-17. [PMID: 25907762 DOI: 10.1016/j.chemosphere.2015.03.059] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 08/20/2014] [Accepted: 03/27/2015] [Indexed: 06/04/2023]
Abstract
Microbial fuel cells (MFCs) have gained tremendous global interest over the last decades as a device that uses bacteria to oxidize organic and inorganic matters in the anode with bioelectricity generation and even for purpose of bioremediation. However, this prospective technology has not yet been carried out in field in particular because of its low power yields and target compounds removal which can be largely influenced by electron acceptors contributing to overcome the potential losses existing on the cathode. This mini review summarizes various electron acceptors used in recent years in the categories of inorganic and organic compounds, identifies their merits and drawbacks, and compares their influences on performance of MFCs, as well as briefly discusses possible future research directions particularly from cathode aspect.
Collapse
Affiliation(s)
- Chuan-Shu He
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, China
| | - Zhe-Xuan Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, China
| | - Hou-Yun Yang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, China
| | - Ya-Zhou Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, China.
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, China
| |
Collapse
|
18
|
Wang H, Luo H, Fallgren PH, Jin S, Ren ZJ. Bioelectrochemical system platform for sustainable environmental remediation and energy generation. Biotechnol Adv 2015; 33:317-34. [DOI: 10.1016/j.biotechadv.2015.04.003] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 03/29/2015] [Accepted: 04/06/2015] [Indexed: 10/23/2022]
|
19
|
Kong F, Wang A, Cheng H, Liang B. Accelerated decolorization of azo dye Congo red in a combined bioanode-biocathode bioelectrochemical system with modified electrodes deployment. BIORESOURCE TECHNOLOGY 2014; 151:332-339. [PMID: 24262842 DOI: 10.1016/j.biortech.2013.10.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/03/2013] [Accepted: 10/09/2013] [Indexed: 06/02/2023]
Abstract
In this study, BES with bioanode and biocathode was applied to decolorize an azo dye Congo red (CR). Results showed that the Congo red decolorization efficiency (CR-DE) within 23 h in a combined bioanode-biocathode single chamber BES was 98.3±1.3%, significantly higher than that of mixed solution in a dual chamber BES (67.2±3.5%) (P<0.005). Various electrodes deployments (horizontal, vertical and surrounding) in the combined bioanode-biocathode BES were further compared based on the decolorization performance and electrochemical characterization. Results indicated that CR-DE within 11h improved from 87.4±1.3% to 97.5±2.3%, meanwhile the internal resistance decreased from 236.6 to 42.2Ω as modifying the horizontal deployment to be a surrounding deployment. It proved that the combination of bioanode and biocathode with suitable electrodes deployment could accelerate the decolorization of azo dye Congo red, which would be great potential for the application of bioelectrochemical technology in azo dye wastewater treatment.
Collapse
Affiliation(s)
- Fanying Kong
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | | | | | | |
Collapse
|
20
|
Chakraborty S, Basak B, Dutta S, Bhunia B, Dey A. Decolorization and biodegradation of congo red dye by a novel white rot fungus Alternaria alternata CMERI F6. BIORESOURCE TECHNOLOGY 2013; 147:662-666. [PMID: 24034987 DOI: 10.1016/j.biortech.2013.08.117] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 08/16/2013] [Accepted: 08/19/2013] [Indexed: 06/02/2023]
Abstract
A novel white rot fungus Alternaria alternata CMERI F6 decolorized 99.99% of 600 mg/L congo red within 48 h in yeast extract-glucose medium at 25 °C, pH 5 and 150 rpm. Physicochemical parameters like carbon and nitrogen sources, temperature, pH and aeration were optimized to develop faster decolorization process. Dye decolorization rate was maximal (20.21 mg/L h) at 25 °C, pH 5, 150 rpm and 800 mg/L dye, giving 78% final decolorization efficiency. Scanning electron microscopy and X-ray Diffraction analysis revealed that the fungus become amorphous after dye adsorption. HPLC and FTIR analysis of the extracted metabolites suggested that the decolorization occurred through biosorption and biodegradation. Thermogravimetric analysis (TGA), differential thermal analysis (DTA) and acid-alkali and 70% ethanol treatment revealed the efficient dye retention capability of the fungus. The foregoing results justify the applicability of the strain in removal of congo red from textile wastewaters and their safe disposal.
Collapse
Affiliation(s)
- Samayita Chakraborty
- Department of Biotechnology, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur 713209, India
| | - Bikram Basak
- Department of Biotechnology, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur 713209, India
| | - Subhasish Dutta
- Department of Biotechnology, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur 713209, India
| | - Biswanath Bhunia
- Department of Bio Engineering, National Institute of Technology Agartala, Barjala, Tripura 799055, India.
| | - Apurba Dey
- Department of Biotechnology, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur 713209, India.
| |
Collapse
|
21
|
Wang YZ, Wang AJ, Liu WZ, Kong DY, Tan WB, Liu C. Accelerated azo dye removal by biocathode formation in single-chamber biocatalyzed electrolysis systems. BIORESOURCE TECHNOLOGY 2013; 146:740-743. [PMID: 23948224 DOI: 10.1016/j.biortech.2013.07.082] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/11/2013] [Accepted: 07/13/2013] [Indexed: 06/02/2023]
Abstract
Biocatalyzed electrolysis systems (BES) have been the topic of a great deal of research. However, the biocathodes formed in single-chamber BES without extra inocula have not previously been researched. Along with the formation of biocathodes, the polarization current increased to 1.76 mA from 0.35 mA of abio-cathodes at -1.2 V (vs. SCE). Electrochemical impedance spectroscopy (EIS) results also indicated that the charge transfer resistance (Rct) was decreased to 148.9 Ω, less than 1978 Ω of the abio-cathodes cleared. The performance of the biocathodes was tested for azo dye decolorization, and the dye removal efficiency was 13.3±3.2% higher than abio-cathodes with a 0.5 V direct current (DC) power supply. These aspects demonstrate that biocathode accelerates the rate of electrode reaction in BES and comparing with noble metal catalysts, biocathodes have low toxicity or non-toxic and reproducible properties, which can be widely applied in bioelectrochemical field in the future.
Collapse
Affiliation(s)
- You-Zhao Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Harbin 150090, PR China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Harbin 150090, PR China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Wen-Zong Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - De-Yong Kong
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Harbin 150090, PR China
| | - Wen-Bo Tan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Harbin 150090, PR China
| | - Chong Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Harbin 150090, PR China
| |
Collapse
|
22
|
Fang Z, Song HL, Cang N, Li XN. Performance of microbial fuel cell coupled constructed wetland system for decolorization of azo dye and bioelectricity generation. BIORESOURCE TECHNOLOGY 2013; 144:165-171. [PMID: 23867535 DOI: 10.1016/j.biortech.2013.06.073] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/17/2013] [Accepted: 06/20/2013] [Indexed: 06/02/2023]
Abstract
A microbial fuel cell coupled constructed wetland (planted with Ipomoea aquatica) system (planted CW-MFC) was used for azo dye decolorization. Electricity was simultaneously produced during the co-metabolism process of glucose and azo dye. A non-planted and an open-circuit system were established as reference to study the roles of plants and electrodes in azo dye decolorization and electricity production processes, respectively. The results indicated that plants grown in cathode enhanced the cathode potential and slightly promoted dye decolorization efficiency. The electrodes promoted the dye decolorization efficiency in the anode. The planted CW-MFC system achieved the highest decolorization rate of about 91.24% and a voltage output of about 610 mV. The connection of external circuit promoted the growth of electrogenic bacteria Geobacter sulfurreducens and Beta Proteobacteria, and inhibited the growth of Archaea in anode.
Collapse
Affiliation(s)
- Zhou Fang
- School of Energy and Environment, Southeast University, Nanjing 210096, China
| | | | | | | |
Collapse
|
23
|
Kong F, Wang A, Liang B, Liu W, Cheng H. Improved azo dye decolorization in a modified sleeve-type bioelectrochemical system. BIORESOURCE TECHNOLOGY 2013; 143:669-673. [PMID: 23830473 DOI: 10.1016/j.biortech.2013.06.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 06/11/2013] [Accepted: 06/14/2013] [Indexed: 06/02/2023]
Abstract
Bioelectrochemical system (BES) that removes recalcitrant pollutant out of wastewater is of special interest for practice. This study modified the configuration of BES to be a sleeve-type with compact structure. Azo dye (acid orange 7, AO7) in the outer cathode chamber performed a complete decolorization by electrons supplied from acetate oxidized with electricigens in the inner anode chamber. The AO7 decolorization efficiency (DEAO7) was enhanced to be higher than 98% from 0.14 to 2.00 mM. Electrochemical impedance spectroscopy (EIS) analysis showed that the internal resistance of anode, cathode and the whole cell was 26.4, 38.3, and 64.6 Ω, respectively, indicating that the modified configuration with large area and small distance between anode and cathode can result in a lower internal resistance and higher decolorization performance. This is the first study for azo dye decolorization using sleeve-type configuration with highly efficient decolorization by abiotic cathode BES.
Collapse
Affiliation(s)
- Fanying Kong
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | | | | | | | | |
Collapse
|
24
|
Xu Q, Sun J, Hu YY, Chen J, Li WJ. Characterization and interactions of anodic isolates in microbial fuel cells explored for simultaneous electricity generation and Congo red decolorization. BIORESOURCE TECHNOLOGY 2013; 142:101-108. [PMID: 23735792 DOI: 10.1016/j.biortech.2013.05.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/07/2013] [Accepted: 05/07/2013] [Indexed: 06/02/2023]
Abstract
To investigate functions and interactions of predominant microorganisms in microbial fuel cells (MFCs) for simultaneous electricity generation and Congo red decolorization, four strains were isolated from the anodic biofilm, and identified as Pseudomonas (M-P and I-P), Bacillus (M-B) and Aquamicrobium (I-A). Higher maximum power density (by 158.2% and 58.1%) but lower Congo red decolorization rate (by 3.2% and 5.9%) were achieved in MFCs using pure cultures I-P and M-P as inoculums than those using I-A and M-B, respectively. By comparing MFCs using co-cultures with those using pure cultures (M-P&B versus M-B and M-P, I-P&A versus I-A and I-P), the maximum power density of MFCs using co-cultures increased 82.0%, 15.1%, 94.6% and -24.6% (minus meant decreased), but decolorization rate decreased 33.3%, 29.4%, 7.9% and 5.0%, respectively. The results indicated specific interaction could enhance the performance of MFCs and might benefit the development of bio-process controlling.
Collapse
Affiliation(s)
- Qian Xu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | | | | | | | | |
Collapse
|
25
|
|
26
|
The microbial degradation of azo dyes: minireview. World J Microbiol Biotechnol 2012; 29:389-99. [PMID: 23108664 DOI: 10.1007/s11274-012-1198-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Accepted: 10/18/2012] [Indexed: 10/27/2022]
Abstract
The removal of dyes in wastewater treatment plants still involves physical or chemical processes. Yet numerous studies currently exist on degradation based on the use of microbes-which is a well-studied field. However progress in the use of biological methods to deal with this environmentally noxious waste is currently lacking. This review focuses on the largest dye class, that is azo dyes and their biodegradation. We summarize the bacteria identified thus far which have been implicated in dye decolorization and discuss the enzymes involved and mechanisms by which these colorants are broken down.
Collapse
|
27
|
Savizi ISP, Kariminia HR, Bakhshian S. Simultaneous decolorization and bioelectricity generation in a dual chamber microbial fuel cell using electropolymerized-enzymatic cathode. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:6584-6593. [PMID: 22612728 DOI: 10.1021/es300367h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Effect of cathodic enzymatic decolorization of reactive blue 221 (RB221) on the performance of a dual-chamber microbial fuel cell (MFC) was investigated. Immobilized laccase on the surface of a modified graphite electrode was used in the cathode compartment in order to decolorize the azo dye and enhance the oxygen reduction reaction. First, methylene blue which is an electroactive polymer was electropolymerized on the surface of a graphite bar to prepare the modified electrode. Utilization of the modified electrode with no enzyme in the MFC increased the power density up to 57% due to the reduction of internal resistance from 1000 to 750 Ω. Using the electropolymerized-enzymatic cathode resulted in 65% improvement of the power density and a decolorization efficiency of 74%. Laccase could act as a biocatalyst for oxygen reduction reaction along with catalyzing RB221 decolorization. Treatment of RB221 with immobilized laccase reduced its toxicity up to 5.2%. Degradation products of RB221 were identified using GC-MS, and the decomposition pathway was proposed. A discussion was also provided as to the mechanism of dye decolorization on the enhancement of the MFC performance.
Collapse
Affiliation(s)
- Iman Shahidi Pour Savizi
- Department of Chemical & Petroleum Engineering, Sharif University of Technology, PO Box 11155-9465, Tehran, Iran
| | | | | |
Collapse
|