1
|
Zamani A, Thibault J, Tezel FH. Separation of n-Butanol from Aqueous Solutions via Pervaporation Using PDMS/ZIF-8 Mixed-Matrix Membranes of Different Particle Sizes. MEMBRANES 2023; 13:632. [PMID: 37504998 PMCID: PMC10385397 DOI: 10.3390/membranes13070632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/29/2023] [Accepted: 06/19/2023] [Indexed: 07/29/2023]
Abstract
The use of mixed matrix membranes (MMMs) to facilitate the production of biofuels has attracted significant research interest in the field of renewable energy. In this study, the pervaporation separation of butanol from aqueous solutions was studied using a series of MMMs, including zeolitic imidazolate frameworks (ZIF-8)-polydimethylsiloxane (PDMS) and zinc oxide-PDMS mixed matrix membranes. Although several studies have reported that mixed matrix membranes incorporating ZIF-8 nanoparticles showed improved pervaporation performances attributed to their intrinsic microporosity and high specific surface area, an in-depth study on the role of ZIF-8 nanoparticle size in MMMs has not yet been reported. In this study, different average sizes of ZIF-8 nanoparticles (30, 65, and 80 nm) were synthesized, and the effects of particle size and particle loading content on the performance of butanol separation using MMMs were investigated. Furthermore, zinc oxide nanoparticles, as non-porous fillers with the same metalcore as ZIF-8 but with a very different geometric shape, were used to illustrate the importance of the particle geometry on the membrane performance. Results showed that small-sized ZIF-8 nanoparticles have better permeability and selectivity than medium and large-size ZIF-8 MMMs. While the permeation flux increased continuously with an increase in the loading of nanoparticles, the selectivity reached a maximum for MMM with 8 wt% smaller-size ZIF-8 nanoparticle loading. The flux and butanol selectivity increased by 350% and 6%, respectively, in comparison to those of neat PDMS membranes prepared in this study.
Collapse
Affiliation(s)
- Ali Zamani
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Jules Thibault
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Fatma Handan Tezel
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
2
|
Chinwatpaiboon P, Boonsombuti A, Chaisuwan T, Savarajara A, Luengnaruemitchai A. Modified Activated Carbon: A Supporting Material for Improving Clostridium beijerinckii TISTR1461 Immobilized Fermentation. Bioinorg Chem Appl 2023; 2023:3600404. [PMID: 37009337 PMCID: PMC10063362 DOI: 10.1155/2023/3600404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 04/04/2023] Open
Abstract
This study aimed to investigate the effect of activated carbon (AC) as an immobilization material in acetone-butanol-ethanol fermentation. The AC surface was modified with different physical (orbital shaking and refluxing) and chemical (nitric acid, sodium hydroxide and, (3-aminopropyl)triethoxysilane (APTES)) treatments to enhance the biobutanol production by Clostridium beijerinckii TISTR1461. The effect of surface modification on AC was evaluated using Fourier-transform infrared spectroscopy, field emission scanning electron microscopy, surface area analyses, and X-ray photoelectron spectroscopy, while the fermented broth was examined by high-performance liquid chromatography. The chemical functionalization significantly modified the physicochemical properties of the different treated ACs and further enhanced the butanol production. The AC treated with APTES under refluxing provided the best fermentation results at 10.93 g/L of butanol, 0.23 g/g of yield, and 0.15 g/L/h of productivity, which were 1.8-, 1.5-, and 3.0-fold higher, respectively, than that in the free-cell fermentation. The obtained dried cell biomass also revealed that the treatment improved the AC surface for cell immobilization. This study demonstrated and emphasized the importance of surface properties to cell immobilization.
Collapse
Affiliation(s)
- Piyawat Chinwatpaiboon
- The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand
| | - Akarin Boonsombuti
- Department of Materials Science, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Thanyalak Chaisuwan
- The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ancharida Savarajara
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Apanee Luengnaruemitchai
- The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence on Catalysis for Bioenergy and Renewable Chemicals (CBRC), Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
3
|
Cui Y, Ma X, Lee SH, He J, Yang KL, Zhou K. Production of butyl butyrate from lignocellulosic biomass through Escherichia coli-Clostridium beijerinckii G117 co-culture. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
4
|
Buranaprasopchai J, Boonvitthya N, Glinwong C, Chulalaksananukul W. Butanol production from Thai traditional beverage (Sato) factory wastewater using newly isolated Clostridium beijerinckii CUEA02. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
5
|
Zhao L, Chen H, Yuan Z, Guo J. Interactions of functional microorganisms and their contributions to methane bioconversion to short-chain fatty acids. WATER RESEARCH 2021; 199:117184. [PMID: 33984586 DOI: 10.1016/j.watres.2021.117184] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/05/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
Methane bioconversion to value-added liquid chemicals has been proposed as a promising solution to augment the petroleum-dominated chemical market. Recent investigations have reported that various electron acceptors (e.g., nitrite and nitrate) are available to drive methane bioconversion to short-chain fatty acids (SCFAs). However, little is known about effects of the rate electron acceptor supplied on liquid chemical production from methane. Herein, three independent membrane biofilm reactors (MBfRs) feeding with respective nitrate, nitrite, combined nitrate and nitrite were operated under high and low rate condition in succession, to study whether feeding rate of electron acceptors could impact the methane bioconversion to SCFAs and the associated microbiological features. Long-term operation showed that all tested electron acceptors with a high supply rate were favorable for methane bioconversion to SCFAs (990.9 mg L-1d-1, 1695.7 mg L-1d-1, and 2425.7 mg L-1d-1), while under a low electron acceptor feeding rate, the SCFA production rate decreased to 8.9 mg L-1d-1, 16.8 mg L-1d-1, and 260.1 mg L-1d-1, respectively. Microbial community characterization showed that the biofilm was predominated by Methanosarcina, Methanobacterium, Propionispora and Clostridium. On the basis of the known metabolism characteristics of these microorganisms, it was assumed that these methanogens and fermenters contributed jointly to methane bioconversion to SCFAs. The findings could be helpful to understand the role of electron acceptor rate in methane bioconversion to liquid chemicals.
Collapse
Affiliation(s)
- Lei Zhao
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia; School of Environment, State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Hui Chen
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia; Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia.
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
6
|
Aerobic acetone-butanol-isopropanol (ABI) fermentation through a co-culture of Clostridium beijerinckii G117 and recombinant Bacillus subtilis 1A1. Metab Eng Commun 2020; 11:e00137. [PMID: 32612931 PMCID: PMC7322341 DOI: 10.1016/j.mec.2020.e00137] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/14/2020] [Accepted: 06/06/2020] [Indexed: 02/07/2023] Open
Abstract
An engineered B. subtilis 1A1 strain (BsADH2) expressing a secondary alcohol dehydrogenase (CpSADH) was co-cultured with C. beijerinckii G117 under an aerobic condition. During the fermentation on glucose, B. subtilis BsADH2 depleted oxygen in culture media completely and created an anaerobic environment for C. beijerinckii G117, an obligate anaerobe, to grow. Meanwhile, lactate produced by B. subtilis BsADH2 was re-assimilated by C. beijerinckii G117. In return, acetone produced by C. beijerinckii G117 was reduced into isopropanol by B. subtilis BsADH2 via expressing the CpSADH, which helped maintain the redox balance of the engineered B. subtilis. In the symbiotic system consisting of two strains, 1.7 g/L of acetone, 4.8 g/L of butanol, and 0.9 g/L of isopropanol (with an isopropanol/acetone ratio of 0.53) was produced from 60 g/L of glucose. This symbiotic system also worked when oxygen was supplied to the culture, although less isopropanol was produced (0.9 g/L of acetone, 4.9 g/L of butanol, and 0.2 g/L of isopropanol). The isopropanol titer was increased substantially to 2.5 g/L when we increased the inoculum size of B. subtilis BsADH2 and optimized other process parameters. With the Bacillus-Clostridium co-culture, switching from the original acetone-butanol (AB) fermentation to an aerobic acetone-butanol-isopropanol (ABI) fermentation can be easily achieved without genetic engineering of Clostridium. This strategy of employing a recombinant Bacillus to co-culture with Clostridium should be potentially useful to modify traditional acetone-butanol-ethanol fermentation for the production of other value-added chemicals. A secondary alcohol dehydrogenase was expressed in Bacillus subtilis. Acetone-butanol was upgraded into acetone-butanol-isopropanol by B. subtilis. A mutualistic relationship was established between B. subtilis and C. beijerinckii. Aerobic co-culture of B. subtilis and C. beijerinckii was achieved. Clostridium fermentation was improved by introducing a genetically-modified strain.
Collapse
|
7
|
Al-Shorgani NKN, Shukor H, Abdeshahian P, Kalil MS, Yusoff WMW, Hamid AA. Enhanced butanol production by optimization of medium parameters using Clostridium acetobutylicum YM1. Saudi J Biol Sci 2018; 25:1308-1321. [PMID: 30505175 PMCID: PMC6251989 DOI: 10.1016/j.sjbs.2016.02.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 01/03/2016] [Accepted: 02/11/2016] [Indexed: 11/15/2022] Open
Abstract
A new isolate of the solvent-producing Clostridium acetobutylicum YM1 was used to produce butanol in batch culture fermentation. The effects of glucose concentration, butyric acid addition and C/N ratio were studied conventionally (one-factor-at-a-time). Moreover, the interactions between glucose concentration, butyric acid addition and C/N ratio were further investigated to optimize butanol production using response surface methodology (RSM). A central composite design was applied, and a polynomial regression model with a quadratic term was used to analyze the experimental data using analysis of variance (ANOVA). ANOVA revealed that the model was highly significant (p < 0.0001) and the effects of the glucose and butyric acid concentrations on butanol production were significant. The model validation experiment showed 13.82 g/L butanol was produced under optimum conditions. Scale up fermentation in optimized medium resulted in 17 g/L of butanol and 21.71 g/L of ABE. The experimental data of scale up in 5 L bioreactor and flask scale were fitted to kinetic mathematical models published in the literature to estimate the kinetic parameters of the fermentation. The models used gave the best fit for butanol production, biomass and glucose consumption for both flask scale and bioreactor scale up.
Collapse
Affiliation(s)
- Najeeb Kaid Nasser Al-Shorgani
- School of Biosciences and Biotechnology, Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
- Department of Applied Microbiology, Faculty of Applied Sciences, Taiz University, 6803 Taiz, Yemen
| | - Hafiza Shukor
- Department of Chemical and Process Engineering, Faculty of Engineering, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Peyman Abdeshahian
- Department of Chemical and Process Engineering, Faculty of Engineering, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Mohd Sahaid Kalil
- Department of Chemical and Process Engineering, Faculty of Engineering, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Wan Mohtar Wan Yusoff
- School of Biosciences and Biotechnology, Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Aidil Abdul Hamid
- School of Biosciences and Biotechnology, Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| |
Collapse
|
8
|
Md Razali NAA, Ibrahim MF, Kamal Bahrin E, Abd-Aziz S. Optimisation of Simultaneous Saccharification and Fermentation (SSF) for Biobutanol Production Using Pretreated Oil Palm Empty Fruit Bunch. Molecules 2018; 23:molecules23081944. [PMID: 30081514 PMCID: PMC6222772 DOI: 10.3390/molecules23081944] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 12/30/2022] Open
Abstract
This study was conducted in order to optimise simultaneous saccharification and fermentation (SSF) for biobutanol production from a pretreated oil palm empty fruit bunch (OPEFB) by Clostridium acetobutylicum ATCC 824. Temperature, initial pH, cellulase loading and substrate concentration were screened using one factor at a time (OFAT) and further statistically optimised by central composite design (CCD) using the response surface methodology (RSM) approach. Approximately 2.47 g/L of biobutanol concentration and 0.10 g/g of biobutanol yield were obtained after being screened through OFAT with 29.55% increment (1.42 fold). The optimised conditions for SSF after CCD were: temperature of 35 °C, initial pH of 5.5, cellulase loading of 15 FPU/g-substrate and substrate concentration of 5% (w/v). This optimisation study resulted in 55.95% increment (2.14 fold) of biobutanol concentration equivalent to 3.97 g/L and biobutanol yield of 0.16 g/g. The model and optimisation design obtained from this study are important for further improvement of biobutanol production, especially in consolidated bioprocessing technology.
Collapse
Affiliation(s)
- Nur Atheera Aiza Md Razali
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Mohamad Faizal Ibrahim
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Ezyana Kamal Bahrin
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Suraini Abd-Aziz
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
9
|
Xin F, Chen T, Jiang Y, Lu J, Dong W, Zhang W, Ma J, Zhang M, Jiang M. Enhanced biobutanol production with high yield from crude glycerol by acetone uncoupled Clostridium sp. strain CT7. BIORESOURCE TECHNOLOGY 2017; 244:575-581. [PMID: 28803108 DOI: 10.1016/j.biortech.2017.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 05/06/2023]
Abstract
This study reports a unique acetone uncoupled Clostridium species strain CT7, which shows efficient capability of glycerol utilization with high butanol ratio. Medium compositions, such as substrate concentration, micronutrients and pH show significant effects on butanol production from glycerol by strain CT7. To further maximize butanol production, fermentation conditions were optimized by using response surface methodology (RSM). Final butanol production of 16.6g/L with yield of 0.43g/g consumed glycerol was obtained, representing the highest butanol production and yield from glycerol in the batch fermentation mode. Furthermore, strain CT7 could directly convert crude glycerol to 11.8g/L of butanol without any pretreatment. Hence, strain CT7 shows immense potential for biofuels production using waste glycerol as cheap substrate.
Collapse
Affiliation(s)
- Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China
| | - Tianpeng Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Jiasheng Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China
| | - Jiangfeng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China
| | - Min Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
10
|
Johnravindar D, Murugesan K, Wong JWC, Elangovan N. Waste-to-biofuel: production of biobutanol from sago waste residues. ENVIRONMENTAL TECHNOLOGY 2017; 38:1725-1734. [PMID: 28091177 DOI: 10.1080/09593330.2017.1283362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 01/12/2017] [Indexed: 06/06/2023]
Abstract
The main concern of extensive production of biobutanol has been associated with the high cost of the substrate and the relatively low tolerance of Clostridia to biobutanol production. In this study, the use of fermentable cassava waste residue (CWR) as substrate for biobutanol production was investigated using solvent-tolerant Clostridium sp. Four of obligatory, solvent-producing bacteria were isolated from sago industry waste sites. The NSW, PNAS1, SB5 and SBI4 strains showed identical profiles of 16S rRNA gene sequence similarity of Bacillus coagulans, Clostridium bifermentans and Clostridium sp. (97% similarity) and a wide range of carbohydrate substrate; however, the CWR was found to be suitable for the production of biobutanol considerably. Batch culture study was carried out using parameters such as time and temperature and carbon sources have been studied and optimized. Using pre-optimized CWR medium, significant amount of solvent production was observed in NSW, PNAS1, SB5 and SBI4 with 1.53, 3.36, 1.56 and 2.5 g L-1of butanol yield and 6.84, 9.012, 8.32 and 8.22 g L-1of total solvents, respectively. On the basis of these studies, NSW is proposed to represent the B. coagulans for butanol production directly from sago waste residues.
Collapse
Affiliation(s)
- Davidraj Johnravindar
- a Department of Biotechnology , School of Biosciences, Periyar University , Salem , Tamil Nadu , India
| | - Kumarasamy Murugesan
- b Department of Environmental Science , Periyar University , Salem , Tamil Nadu , India
| | - Jonathan W C Wong
- c Applied Research Centre for Pearl River Delta Environment, Department of Biology , Hong Kong Baptist University , Kowloon , Hong Kong
| | - Namasivayam Elangovan
- a Department of Biotechnology , School of Biosciences, Periyar University , Salem , Tamil Nadu , India
| |
Collapse
|
11
|
Triphasic esterification of butanol and butyric acid in fermentation media. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Jamroskovic J, Chromikova Z, List C, Bartova B, Barak I, Bernier-Latmani R. Variability in DPA and Calcium Content in the Spores of Clostridium Species. Front Microbiol 2016; 7:1791. [PMID: 27891119 PMCID: PMC5104732 DOI: 10.3389/fmicb.2016.01791] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/25/2016] [Indexed: 01/31/2023] Open
Abstract
Spores of a number of clostridial species, and their resistance to thermal treatment is a major concern for the food industry. Spore resistance to wet heat is related to the level of spore hydration, which is inversely correlated with the content of calcium and dipicolinic acid (DPA) in the spore core. It is widely believed that the accumulation of DPA and calcium in the spore core is a fundamental component of the sporulation process for all endospore forming species. We have noticed heterogeneity in the heat resistance capacity and overall DPA/calcium content among the spores of several species belonging to Clostridium sensu stricto group: two C. acetobutylicum strains (DSM 792 and 1731), two C. beijerinckii strains (DSM 791 and NCIMB 8052), and a C. collagenovorans strain (DSM 3089). A C. beijerinckii strain (DSM 791) and a C. acetobutylicum strain (DSM 792) display low Ca and DPA levels. In addition, these two species, with the lowest average Ca/DPA content amongst the strains considered, also exhibit minimal heat resistance. There appears to be no correlation between the Ca/DPA content and the phylogenetic distribution of the C. acetobutylicum and C. beijerinckii species based either on the 16S rRNA or the spoVA gene. This finding suggests that a subset of Clostridium sensu stricto species produce spores with low resistance to wet heat. Additionally, analysis of individual spores using STEM-EDS and STXM revealed that DPA and calcium levels can also vary amongst individual spores in a single spore population.
Collapse
Affiliation(s)
- Jan Jamroskovic
- Swiss Federal Institute of Technology in Lausanne (EPFL)Lausanne, Switzerland; Institute of Molecular Biology, Slovak Academy of SciencesBratislava, Slovakia
| | - Zuzana Chromikova
- Institute of Molecular Biology, Slovak Academy of Sciences Bratislava, Slovakia
| | - Cornelia List
- Swiss Federal Institute of Technology in Lausanne (EPFL) Lausanne, Switzerland
| | - Barbora Bartova
- Swiss Federal Institute of Technology in Lausanne (EPFL) Lausanne, Switzerland
| | - Imrich Barak
- Institute of Molecular Biology, Slovak Academy of Sciences Bratislava, Slovakia
| | | |
Collapse
|
13
|
Yan Y, Basu A, Li T, He J. Direct conversion of xylan to butanol by a wild-typeClostridiumspecies strain G117. Biotechnol Bioeng 2016; 113:1702-10. [DOI: 10.1002/bit.25940] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Yu Yan
- Department of Civil and Environmental Engineering; National University of Singapore; Block E2-02-13, 1 Engineering Drive 3 117576 Singapore
| | - Anindya Basu
- Department of Civil and Environmental Engineering; National University of Singapore; Block E2-02-13, 1 Engineering Drive 3 117576 Singapore
| | - Tinggang Li
- Department of Civil and Environmental Engineering; National University of Singapore; Block E2-02-13, 1 Engineering Drive 3 117576 Singapore
| | - Jianzhong He
- Department of Civil and Environmental Engineering; National University of Singapore; Block E2-02-13, 1 Engineering Drive 3 117576 Singapore
| |
Collapse
|
14
|
Lipase in biphasic alginate beads as a biocatalyst for esterification of butyric acid and butanol in aqueous media. Enzyme Microb Technol 2016; 82:173-179. [DOI: 10.1016/j.enzmictec.2015.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 09/15/2015] [Accepted: 10/14/2015] [Indexed: 11/23/2022]
|
15
|
Hu G, Ji S, Yu Y, Wang S, Zhou G, Li F. Organisms for biofuel production: natural bioresources and methodologies for improving their biosynthetic potentials. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 147:185-224. [PMID: 24085385 DOI: 10.1007/10_2013_245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
In order to relieve the pressure of energy supply and environment contamination that humans are facing, there are now intensive worldwide efforts to explore natural bioresources for production of energy storage compounds, such as lipids, alcohols, hydrocarbons, and polysaccharides. Around the world, many plants have been evaluated and developed as feedstock for bioenergy production, among which several crops have successfully achieved industrialization. Microalgae are another group of photosynthetic autotroph of interest due to their superior growth rates, relatively high photosynthetic conversion efficiencies, and vast metabolic capabilities. Heterotrophic microorganisms, such as yeast and bacteria, can utilize carbohydrates from lignocellulosic biomass directly or after pretreatment and enzymatic hydrolysis to produce liquid biofuels such as ethanol and butanol. Although finding a suitable organism for biofuel production is not easy, many naturally occurring organisms with good traits have recently been obtained. This review mainly focuses on the new organism resources discovered in the last 5 years for production of transport fuels (biodiesel, gasoline, jet fuel, and alkanes) and hydrogen, and available methods to improve natural organisms as platforms for the production of biofuels.
Collapse
Affiliation(s)
- Guangrong Hu
- Shandong Provincial Key Laboratory of Energy Genetics, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | | | | | | | | | | |
Collapse
|
16
|
Purification and Characterization of a GH11 Xylanase from Biobutanol-Producing Clostridium beijerinckii G117. Appl Biochem Biotechnol 2015; 175:2832-44. [DOI: 10.1007/s12010-014-1470-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 12/23/2014] [Indexed: 10/24/2022]
|
17
|
Microbial and metabolic characterization of a denitrifying phosphorus-uptake/side stream phosphorus removal system for treating domestic sewage. Biodegradation 2014; 25:777-86. [DOI: 10.1007/s10532-014-9698-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 07/09/2014] [Indexed: 10/25/2022]
|
18
|
Simultaneous fermentation of glucose and xylose to butanol by Clostridium sp. strain BOH3. Appl Environ Microbiol 2014; 80:4771-8. [PMID: 24858088 DOI: 10.1128/aem.00337-14] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cellulose and hemicellulose constitute the major components in sustainable feedstocks which could be used as substrates for biofuel generation. However, following hydrolysis to monomer sugars, the solventogenic Clostridium will preferentially consume glucose due to transcriptional repression of xylose utilization genes. This is one of the major barriers in optimizing lignocellulosic hydrolysates that produce butanol. Unlike studies on existing bacteria, this study demonstrates that newly reported Clostridium sp. strain BOH3 is capable of fermenting 60 g/liter of xylose to 14.9 g/liter butanol, which is similar to the 14.5 g/liter butanol produced from 60 g/liter of glucose. More importantly, strain BOH3 consumes glucose and xylose simultaneously, which is shown by its capability for generating 11.7 g/liter butanol from a horticultural waste cellulosic hydrolysate containing 39.8 g/liter glucose and 20.5 g/liter xylose, as well as producing 11.9 g/liter butanol from another horticultural waste hemicellulosic hydrolysate containing 58.3 g/liter xylose and 5.9 g/liter glucose. The high-xylose-utilization capability of strain BOH3 is attributed to its high xylose-isomerase (0.97 U/mg protein) and xylulokinase (1.16 U/mg protein) activities compared to the low-xylose-utilizing solventogenic strains, such as Clostridium sp. strain G117. Interestingly, strain BOH3 was also found to produce riboflavin at 110.5 mg/liter from xylose and 76.8 mg/liter from glucose during the fermentation process. In summary, Clostridium sp. strain BOH3 is an attractive candidate for application in efficiently converting lignocellulosic hydrolysates to biofuels and other value-added products, such as riboflavin.
Collapse
|
19
|
Abstract
n-butanol is a basic chemical compound with lower volatility, intersolubility and higher heating value, making it suitable to be used as a potential alternative biofuel. One butanol producing strain was isolated from soil and identified by 16S rDNA sequencing. Two universal primers (27F, 1492R) were used. Squence analysis indicated 16S rDNA sequence (Accession Number KF418240) of this strain was 99% identical to that ofBacillus amyloliquefaciens. This strain was designed asBacillus amyloliquefaciensNELB-12. Optimaization of fermentation medium composition and fermentation conditions were carried out. The optimal medium main components were 30 g/l starch, 4 g/l ammonium nitrate, and 30 g/l beef extract. The optimal fermentation cultured with working volume of 120 ml in 250 ml flask at pH 6.5, 39°C, and 100 rpm. Bacillus NELB-12 could produce butanol at higher concentration that reached 8.9 g/l with a total ABE of 12.7 g/l and showed a high butanol tolerance.B. amyloliquefaciensNELB-12 is considered as an economical and cost effective potential producer for butanol industry.
Collapse
|
20
|
Schiel-Bengelsdorf B, Montoya J, Linder S, Dürre P. Butanol fermentation. ENVIRONMENTAL TECHNOLOGY 2013; 34:1691-1710. [PMID: 24350428 DOI: 10.1080/09593330.2013.827746] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This review provides an overview on bacterial butanol production and recent developments concerning strain improvement, newly built butanol production plants, and the importance of alternative substrates, especially lignocellulosic hydrolysates. The butanol fermentation using solventogenic clostridial strains, particularly Clostridium acetobutylicum, is a very old industrial process (acetone-butanol-ethanol-ABE fermentation). The genome of this organism has been sequenced and analysed, leading to important improvements in rational strain construction. As the traditional ABE fermentation process is economically unfavourable, novel butanol production strains are being developed. In this review, some newly engineered solvent-producing Clostridium strains are described and strains of which sequences are available are compared with C. acetobutylicum. Furthermore, the past and present of commercial butanol fermentation are presented, including active plants and companies. Finally, the use of biomass as substrate for butanol production is discussed. Some advances concerning processing of biomass in a biorefinery are highlighted, which would allow lowering the price of the butanol fermentation process at industrial scale.
Collapse
Affiliation(s)
- Bettina Schiel-Bengelsdorf
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - José Montoya
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Sonja Linder
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Peter Dürre
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| |
Collapse
|
21
|
Draft genome sequence of butanol-acetone-producing Clostridium beijerinckii strain G117. J Bacteriol 2012; 194:5470-1. [PMID: 22965093 DOI: 10.1128/jb.01139-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A recently discovered wild-type strain, Clostridium beijerinckii G117, is unique in producing butanol and acetone but negligible amounts of ethanol, unlike previously identified acetone-butanol-ethanol (ABE)-generating microbes. Here we report the draft genome sequence of strain G117 (5,806,675 bp; GC content, 29.7%) and the novel findings obtained from its genome annotations.
Collapse
|