1
|
Ma Q, Yi J, Tang Y, Geng Z, Zhang C, Sun W, Liu Z, Xiong W, Wu H, Xie X. Co-utilization of carbon sources in microorganisms for the bioproduction of chemicals. Biotechnol Adv 2024; 73:108380. [PMID: 38759845 DOI: 10.1016/j.biotechadv.2024.108380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/14/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
Carbon source is crucial for the cell growth and metabolism in microorganisms, and its utilization significantly affects the synthesis efficiency of target products in microbial cell factories. Compared with a single carbon source, co-utilizing carbon sources provide an alternative approach to optimize the utilization of different carbon sources for efficient biosynthesis of many chemicals with higher titer/yield/productivity. However, the efficiency of bioproduction is significantly limited by the sequential utilization of a preferred carbon source and secondary carbon sources, attributed to carbon catabolite repression (CCR). This review aimed to introduce the mechanisms of CCR and further focus on the summary of the strategies for co-utilization of carbon sources, including alleviation of CCR, engineering of the transport and metabolism of secondary carbon sources, compulsive co-utilization in single culture, co-utilization of carbon sources via co-culture, and evolutionary approaches. The findings of representative studies with a significant improvement in the bioproduction of chemicals via the co-utilization of carbon sources were discussed in this review. It suggested that by combining rational metabolic engineering and irrational evolutionary approaches, co-utilizing carbon sources can significantly contribute to the bioproduction of chemicals.
Collapse
Affiliation(s)
- Qian Ma
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jinhang Yi
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yulin Tang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zihao Geng
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chunyue Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wenchao Sun
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhengkai Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wenwen Xiong
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Heyun Wu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xixian Xie
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
2
|
Choi JW, Song NE, Hong SP, Rhee YK, Hong HD, Cho CW. Engineering Bacillus subtilis J46 for efficient utilization of galactose through adaptive laboratory evolution. AMB Express 2024; 14:14. [PMID: 38282124 PMCID: PMC10822834 DOI: 10.1186/s13568-024-01666-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/08/2024] [Indexed: 01/30/2024] Open
Abstract
Efficient utilization of galactose by microorganisms can lead to the production of valuable bio-products and improved metabolic processes. While Bacillus subtilis has inherent pathways for galactose metabolism, there is potential for enhancement via evolutionary strategies. This study aimed to boost galactose utilization in B. subtilis using adaptive laboratory evolution (ALE) and to elucidate the genetic and metabolic changes underlying the observed enhancements. The strains of B. subtilis underwent multiple rounds of adaptive laboratory evolution (approximately 5000 generations) in an environment that favored the use of galactose. This process resulted in an enhanced specific growth rate of 0.319 ± 0.005 h-1, a significant increase from the 0.03 ± 0.008 h-1 observed in the wild-type strains. Upon selecting the evolved strain BSGA14, a comprehensive whole-genome sequencing revealed the presence of 63 single nucleotide polymorphisms (SNPs). Two of them, located in the coding sequences of the genes araR and glcR, were found to be the advantageous mutations after reverse engineering. The strain with these two accumulated mutations, BSGALE4, exhibited similar specific growth rate on galactose to the evolved strain BSGA14 (0.296 ± 0.01 h-1). Furthermore, evolved strain showed higher productivity of protease and β-galactosidase in mock soybean biomass medium. ALE proved to be a potent tool for enhancing galactose metabolism in B. subtilis. The findings offer valuable insights into the potential of evolutionary strategies in microbial engineering and pave the way for industrial applications harnessing enhanced galactose conversion.
Collapse
Affiliation(s)
- Jae Woong Choi
- Research Group of Traditional Food, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, 55365, Republic of Korea
| | - Nho-Eul Song
- Research Group of Traditional Food, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, 55365, Republic of Korea
| | - Sang-Pil Hong
- Research Group of Traditional Food, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, 55365, Republic of Korea
| | - Young Kyoung Rhee
- Research Group of Traditional Food, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, 55365, Republic of Korea
| | - Hee-Do Hong
- Research Group of Traditional Food, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, 55365, Republic of Korea
| | - Chang-Won Cho
- Research Group of Traditional Food, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, 55365, Republic of Korea.
| |
Collapse
|
3
|
Gwon DA, Seok JY, Jung GY, Lee JW. Biosensor-Assisted Adaptive Laboratory Evolution for Violacein Production. Int J Mol Sci 2021; 22:ijms22126594. [PMID: 34205463 PMCID: PMC8233975 DOI: 10.3390/ijms22126594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022] Open
Abstract
Violacein is a naturally occurring purple pigment, widely used in cosmetics and has potent antibacterial and antiviral properties. Violacein can be produced from tryptophan, consequently sufficient tryptophan biosynthesis is the key to violacein production. However, the complicated biosynthetic pathways and regulatory mechanisms often make the tryptophan overproduction challenging in Escherichia coli. In this study, we used the adaptive laboratory evolution (ALE) strategy to improve violacein production using galactose as a carbon source. During the ALE, a tryptophan-responsive biosensor was employed to provide selection pressure to enrich tryptophan-producing cells. From the biosensor-assisted ALE, we obtained an evolved population of cells capable of effectively catabolizing galactose to tryptophan and subsequently used the population to obtain the best violacein producer. In addition, whole-genome sequencing of the evolved strain identified point mutations beneficial to the overproduction. Overall, we demonstrated that the biosensor-assisted ALE strategy could be used to rapidly and selectively evolve the producers to yield high violacein production.
Collapse
Affiliation(s)
- Da-ae Gwon
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea; (D.G.); (G.Y.J.)
| | - Joo Yeon Seok
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea;
| | - Gyoo Yeol Jung
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea; (D.G.); (G.Y.J.)
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea;
| | - Jeong Wook Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea; (D.G.); (G.Y.J.)
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea;
- Correspondence:
| |
Collapse
|
4
|
Wang H, Sun T, Zhao Z, Gu S, Liu Q, Wu T, Wang D, Tian C, Li J. Transcriptional Profiling of Myceliophthora thermophila on Galactose and Metabolic Engineering for Improved Galactose Utilization. Front Microbiol 2021; 12:664011. [PMID: 33995328 PMCID: PMC8113861 DOI: 10.3389/fmicb.2021.664011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/19/2021] [Indexed: 11/13/2022] Open
Abstract
Efficient biological conversion of all sugars from lignocellulosic biomass is necessary for the cost-effective production of biofuels and commodity chemicals. Galactose is one of the most abundant sugar in many hemicelluloses, and it will be important to capture this carbon for an efficient bioconversion process of plant biomass. Thermophilic fungus Myceliophthora thermophila has been used as a cell factory to produce biochemicals directly from renewable polysaccharides. In this study, we draw out the two native galactose utilization pathways, including the Leloir pathway and oxido-reductive pathway, and identify the significance and contribution of them, through transcriptional profiling analysis of M. thermophila and its mutants on galactose. We find that galactokinase was necessary for galactose transporter expression, and disruption of galK resulted in decreased galactose utilization. Through metabolic engineering, both galactokinase deletion and galactose transporter overexpression can activate internal the oxido-reductive pathway and improve the consumption rate of galactose. Finally, the heterologous galactose-degradation pathway, De Ley–Doudoroff (DLD) pathway, was successfully integrated into M. thermophila, and the consumption rate of galactose in the engineered strain was increased by 57%. Our study focuses on metabolic engineering for accelerating galactose utilization in a thermophilic fungus that will be beneficial for the rational design of fungal strains to produce biofuels and biochemicals from a variety of feedstocks with abundant galactose.
Collapse
Affiliation(s)
- Hanyu Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Tao Sun
- National Technology Innovation Center of Synthetic Biology, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Zhen Zhao
- National Technology Innovation Center of Synthetic Biology, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Shuying Gu
- National Technology Innovation Center of Synthetic Biology, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Qian Liu
- National Technology Innovation Center of Synthetic Biology, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Taju Wu
- National Technology Innovation Center of Synthetic Biology, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Depei Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Chaoguang Tian
- National Technology Innovation Center of Synthetic Biology, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jingen Li
- National Technology Innovation Center of Synthetic Biology, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
5
|
Fox KJ, Prather KLJ. Carbon catabolite repression relaxation in Escherichia coli: global and sugar-specific methods for glucose and secondary sugar co-utilization. Curr Opin Chem Eng 2020. [DOI: 10.1016/j.coche.2020.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Combinatorial strategy towards the efficient expression of lipoxygenase in Escherichia coli at elevated temperatures. Appl Microbiol Biotechnol 2020; 104:10047-10057. [PMID: 33037915 DOI: 10.1007/s00253-020-10941-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 08/31/2020] [Accepted: 10/04/2020] [Indexed: 02/07/2023]
Abstract
Lipoxygenases (LOXs) are a family of non-heme iron oxidoreductases, which catalyze the addition of oxygen into polyunsaturated fatty acids. They have applications in the food and medical industries. In most studies, the soluble expression of LOXs in microbes requires low temperature (< 20 °C), which increases the cost and fermentation time. Achievement of soluble expression in elevated temperatures (> 30 °C) would shorten the production phase, leading to cost-efficient industrial applications. In this study, a combinatorial strategy was used to enhance the expression of soluble LOXs, comprising plasmid stability systems plus optimized carbon source used for auto-induction expression. Plasmid stability analysis suggested that both active partition systems and plasmid-dependent systems were essential for plasmid stability. Among them, the parBCA in it resulted in the enzyme activity increasing by a factor of 2 (498 ± 13 units per gram dry cell weight (U/g-DCW) after 6-h induction). Furthermore, the optimized carbon source, composed of glucose, lactose, and glycerol, could be used as an auto-induction expression medium and effectively improve the total and soluble expression of LOX, which resulted in the soluble expression of LOX increased by 7 times. Finally, the soluble expression of LOX was 11 times higher with a combinatorial strategy that included both optimized plasmid partition and auto-induction medium. Our work provides a broad, generalizable, and combinatorial strategy for the efficient production of heterologous proteins at elevated temperatures in the E. coli system. KEY POINTS : • Soluble expression of lipoxygenase at 30 °C or higher temperatures is industrially beneficial. • Strategies comprise plasmid partition and optimized auto-induction medium with glucose, lactose, and glycerol as carbon source. • Combinatorial strategy further improved LOX soluble expression at 30 °C and 37 °C.
Collapse
|
7
|
Agarose degradation for utilization: Enzymes, pathways, metabolic engineering methods and products. Biotechnol Adv 2020; 45:107641. [PMID: 33035614 DOI: 10.1016/j.biotechadv.2020.107641] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/27/2020] [Accepted: 10/03/2020] [Indexed: 12/14/2022]
Abstract
Red algae are important renewable bioresources with very large annual outputs. Agarose is the major carbohydrate component of many red algae and has potential to be of value in the production of agaro-oligosaccharides, biofuels and other chemicals. In this review, we summarize the degradation pathway of agarose, which includes an upstream part involving transformation of agarose into its two monomers, D-galactose (D-Gal) and 3,6-anhydro-α-L-galactose (L-AHG), and a downstream part involving monosaccharide degradation pathways. The upstream part involves agarolytic enzymes such as α-agarase, β-agarase, α-neoagarobiose hydrolase, and agarolytic β-galactosidase. The downstream part includes the degradation pathways of D-Gal and L-AHG. In addition, the production of functional agaro-oligosaccharides such as neoagarobiose and monosaccharides such as L-AHG with different agarolytic enzymes is reviewed. Third, techniques for the setup, regulation and optimization of agarose degradation to increase utilization efficiency of agarose are summarized. Although heterologous construction of the whole agarose degradation pathway in an engineered strain has not been reported, biotechnologies applied to improve D-Gal utilization efficiency and construct L-AHG catalytic routes are reviewed. Finally, critical aspects that may aid in the construction of engineered microorganisms that can fully utilize agarose to produce agaro-oligosaccharides or as carbon sources for production of biofuels or other value-adding chemicals are discussed.
Collapse
|
8
|
Control of the galactose-to-glucose consumption ratio in co-fermentation using engineered Escherichia coli strains. Sci Rep 2020; 10:12132. [PMID: 32699275 PMCID: PMC7376015 DOI: 10.1038/s41598-020-69143-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/29/2020] [Indexed: 11/26/2022] Open
Abstract
Marine biomasses capable of fixing carbon dioxide have attracted attention as an alternative to fossil resources for fuel and chemical production. Although a simple co-fermentation of fermentable sugars, such as glucose and galactose, has been reported from marine biomass, no previous report has discussed the fine-control of the galactose-to-glucose consumption ratio in this context. Here, we sought to finely control the galactose-to-glucose consumption ratio in the co-fermentation of these sugars using engineered Escherichia coli strains. Toward this end, we constructed E. coli strains GR2, GR2P, and GR2PZ by knocking out galRS, galRS-pfkA, and galRS-pfkA-zwf, respectively, in parent strain W3110. We found that strains W3110, GR2, GR2P, and GR2PZ achieved 0.03, 0.09, 0.12, and 0.17 galactose-to-glucose consumption ratio (specific galactose consumption rate per specific glucose consumption rate), respectively, during co-fermentation. The ratio was further extended to 0.67 by integration of a brief process optimization for initial sugar ratio using GR2P strain. The strategy reported in this study will be helpful to expand our knowledge on the galactose utilization under glucose conditions.
Collapse
|
9
|
Woo JE, Seong HJ, Lee SY, Jang YS. Metabolic Engineering of Escherichia coli for the Production of Hyaluronic Acid From Glucose and Galactose. Front Bioeng Biotechnol 2019; 7:351. [PMID: 31824939 PMCID: PMC6881274 DOI: 10.3389/fbioe.2019.00351] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/06/2019] [Indexed: 11/17/2022] Open
Abstract
Hyaluronic acid is a glycosaminoglycan biopolymer widely present throughout connective and epithelial tissue, and has been of great interest for medical and cosmetic applications. In the microbial production of hyaluronic acid, it has not been established to utilize galactose enabling to be converted to UDP-glucuronic acid, which is a precursor for hyaluronic acid biosynthesis. In this study, we engineered Escherichia coli to produce hyaluronic acid from glucose and galactose. The galactose-utilizing Leloir pathway was activated by knocking out the galR and galS genes encoding the transcriptional repressors. Also, the hasA gene from Streptococcus zooepidemicus was introduced for the expression of hyaluronic acid synthase. The consumption rates of glucose and galactose were modulated by knockout of the pfkA and zwf genes, which encode 6-phosphofructokinase I and glucose-6-phosphate dehydrogenase, respectively. Furthermore, the precursor biosynthesis pathway for hyaluronic acid production was manipulated by separately overexpressing the gene clusters galU-ugd and glmS-glmM-glmU, which enable the production of UDP-glucuronic acid and UDP-N-acetyl-glucosamine, respectively. Batch culture of the final engineered strain produced 29.98 mg/L of hyaluronic acid from glucose and galactose. As a proof of concept, this study demonstrated the production of hyaluronic acid from glucose and galactose in the engineered E. coli.
Collapse
Affiliation(s)
- Ji Eun Woo
- Department of Agricultural Chemistry and Food Science Technology, Division of Applied Life Science (BK21 Plus Program), Institute of Agriculture & Life Science (IALS), Gyeongsang National University, Jinju, South Korea
| | - Hyeon Jeong Seong
- Department of Agricultural Chemistry and Food Science Technology, Division of Applied Life Science (BK21 Plus Program), Institute of Agriculture & Life Science (IALS), Gyeongsang National University, Jinju, South Korea
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), BioProcess Engineering Research Center, Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Yu-Sin Jang
- Department of Agricultural Chemistry and Food Science Technology, Division of Applied Life Science (BK21 Plus Program), Institute of Agriculture & Life Science (IALS), Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
10
|
Continuous production of bioethanol using microalgal sugars extracted from Nannochloropsis gaditana. KOREAN J CHEM ENG 2018. [DOI: 10.1007/s11814-018-0173-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Biotechnological production of mono- and diamines using bacteria: recent progress, applications, and perspectives. Appl Microbiol Biotechnol 2018. [DOI: 10.1007/s00253-018-8890-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Chappell TC, Nair NU. Co-utilization of hexoses by a microconsortium of sugar-specific E. coli strains. Biotechnol Bioeng 2017; 114:2309-2318. [PMID: 28600864 DOI: 10.1002/bit.26351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/08/2017] [Accepted: 06/07/2017] [Indexed: 11/12/2022]
Abstract
Escherichia coli is an important commercial species used for production of biofuels, biopolymers, organic acids, sugar alcohols, and natural compounds. Processed biomass and agroindustrial byproducts serve as low-cost nutrient sources and contain a variety of hexoses available for bioconversion. However, metabolism of hexose mixtures by E. coli is inefficient due to carbon catabolite repression (CCR), where the transport and catabolic activity of one or more carbon sources is repressed and/or inhibited by the transport and catabolism of another carbon source. In this work, we developed a microconsortium of different E. coli strains, each engineered to preferentially catabolize a different hexose-glucose, galactose, or mannose. We modified the specificity and preference of carbon source using a combination of rational strain design and adaptive evolution. The modifications ultimately resulted in strains that preferentially catabolized their specified sugar. Finally, comparative analysis in galactose- and mannose-rich sugar mixtures revealed that the consortium grew faster and to higher cell densities compared to the wild-type strain. Biotechnol. Bioeng. 2017;114: 2309-2318. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Todd C Chappell
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155
| | - Nikhil U Nair
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155
| |
Collapse
|
13
|
Kwak DH, Lim HG, Yang J, Seo SW, Jung GY. Synthetic redesign of Escherichia coli for cadaverine production from galactose. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:20. [PMID: 28127401 PMCID: PMC5251296 DOI: 10.1186/s13068-017-0707-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/11/2017] [Indexed: 05/05/2023]
Abstract
BACKGROUND With increasing concerns over the environment, biological production of cadaverine has been suggested as an alternative route to replace polyamides generated from the petroleum-based process. For an ideal bioprocess, cadaverine should be produced with high yield and productivity from various sugars abundant in biomass. However, most microorganisms are not able to efficiently metabolize other biomass-derived sugars as fast as glucose. This results in reduced growth rate and low carbon flux toward the production of desired bio-chemicals. Thus, redesign of microorganisms is necessary for utilizing those carbon sources with enhanced carbon flux and product formation. RESULTS In this study, we engineered Escherichia coli to produce cadaverine with rapid assimilation of galactose, a promising future feedstock. To achieve this, genes related to the metabolic pathway were maximally expressed to amplify the flux toward cadaverine production via synthetic expression cassettes consisting of predictive and quantitative genetic parts (promoters, 5'-untranslated regions, and terminators). Furthermore, the feedback inhibition of metabolic enzymes and degradation/re-uptake pathways was inactivated to robustly produce cadaverine. Finally, the resultant strain, DHK4, produced 8.80 g/L cadaverine with high yield (0.170 g/g) and productivity (0.293 g/L/h) during fed-batch fermentation, which was similar to or better than the previous glucose fermentation. CONCLUSIONS Taken together, synthetic redesign of a microorganism with predictive and quantitative genetic parts is a prerequisite for converting sugars from abundant biomass into desired platform chemicals. This is the first report to produce cadaverine from galactose. Moreover, the yield (0.170 g/g) was the highest among engineered E. coli systems.
Collapse
Affiliation(s)
- Dong Hun Kwak
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673 South Korea
| | - Hyun Gyu Lim
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673 South Korea
| | - Jina Yang
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826 South Korea
| | - Sang Woo Seo
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826 South Korea
| | - Gyoo Yeol Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673 South Korea
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673 South Korea
| |
Collapse
|
14
|
Lim JH, Jung GY. A simple method to control glycolytic flux for the design of an optimal cell factory. BIOTECHNOLOGY FOR BIOFUELS 2017. [PMID: 28649279 PMCID: PMC5480111 DOI: 10.1186/s13068-017-0847-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND A microbial cell factory with high yield and productivity are prerequisites for an economically feasible bio-based chemical industry. However, cell factories that show a kinetic imbalance between glycolysis and product formation pathways are not optimal. Glycolysis activity is highly robust for survival in nature, but is not optimized for chemical production. RESULTS Here, we propose a novel approach to balance glycolytic activity with the product formation capacity by precisely controlling expression level of ptsG (encoded glucose transporter) through UTR engineering. For various heterologous pathways with different maximum production rates, e.g., n-butanol, butyrate, and 2,3-butanediol, glycolytic fluxes could be successfully modulated to maximize yield and productivity, while minimizing by-product formation in Escherichia coli. CONCLUSIONS These results support the application of this simple method to explore the maximum yield and productivity when designing optimal cell factories for value-added products in the fields of metabolic engineering and synthetic biology.
Collapse
Affiliation(s)
- Jae Hyung Lim
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673 Korea
| | - Gyoo Yeol Jung
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673 Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673 Korea
| |
Collapse
|
15
|
Lim HG, Noh MH, Jeong JH, Park S, Jung GY. Optimum Rebalancing of the 3-Hydroxypropionic Acid Production Pathway from Glycerol in Escherichia coli. ACS Synth Biol 2016; 5:1247-1255. [PMID: 27056171 DOI: 10.1021/acssynbio.5b00303] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
3-Hydroxypropionic acid (3-HP) can be biologically produced from glycerol by two consecutive enzymatic reactions, dehydration of glycerol to 3-hydroxypropionaldehyde (3-HPA) and oxidation of 3-HPA. The pathway has been proved efficient, but imbalance between the rates of the two enzymatic reactions often results in the accumulation of the toxic 3-HPA, which severely reduces cell viability and 3-HP production. In this study, we used UTR engineering to maximally increase the activities of glycerol dehydratase (GDHt) and aldehyde dehydrogenase (ALDH) for the high conversion of glycerol to 3-HP. Thereafter, the activity of GDHt was precisely controlled to avoid the accumulation of 3-HPA by varying expression of dhaB1, a gene encoding a main subunit of GDHt. The optimally balanced E. coli HGL_DBK4 showed a substantially enhanced 3-HP titer and productivity compared with the parental strain. The yield on glycerol, 0.97 g 3-HP/g glycerol, in a fed-batch experiment, was the highest ever reported.
Collapse
Affiliation(s)
- Hyun Gyu Lim
- Department
of Chemical Engineering and School of Interdisciplinary Bioscience
and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Myung Hyun Noh
- Department
of Chemical Engineering and School of Interdisciplinary Bioscience
and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Jun Hong Jeong
- Department
of Chemical Engineering and School of Interdisciplinary Bioscience
and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Sunghoon Park
- School
of Chemical and Biomolecular Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Gyoo Yeol Jung
- Department
of Chemical Engineering and School of Interdisciplinary Bioscience
and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| |
Collapse
|
16
|
Wendisch VF, Brito LF, Gil Lopez M, Hennig G, Pfeifenschneider J, Sgobba E, Veldmann KH. The flexible feedstock concept in Industrial Biotechnology: Metabolic engineering of Escherichia coli, Corynebacterium glutamicum, Pseudomonas, Bacillus and yeast strains for access to alternative carbon sources. J Biotechnol 2016; 234:139-157. [DOI: 10.1016/j.jbiotec.2016.07.022] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/25/2016] [Accepted: 07/28/2016] [Indexed: 11/28/2022]
|
17
|
Metabolic Engineering Strategies for Co-Utilization of Carbon Sources in Microbes. Bioengineering (Basel) 2016; 3:bioengineering3010010. [PMID: 28952572 PMCID: PMC5597168 DOI: 10.3390/bioengineering3010010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/25/2016] [Indexed: 11/17/2022] Open
Abstract
Co-utilization of carbon sources in microbes is an important topic in metabolic engineering research. It is not only a way to reduce microbial production costs but also an attempt for either improving the yields of target products or decreasing the formation of byproducts. However, there are barriers in co-utilization of carbon sources in microbes, such as carbon catabolite repression. To overcome the barriers, different metabolic engineering strategies have been developed, such as inactivation of the phosphotransferase system and rewiring carbon assimilation pathways. This review summarizes the most recent developments of different strategies that support microbes to utilize two or more carbon sources simultaneously. The main content focuses on the co-utilization of glucose and pentoses, major sugars in lignocellulose.
Collapse
|
18
|
Yun EJ, Kim HT, Cho KM, Yu S, Kim S, Choi IG, Kim KH. Pretreatment and saccharification of red macroalgae to produce fermentable sugars. BIORESOURCE TECHNOLOGY 2016; 199:311-318. [PMID: 26276401 DOI: 10.1016/j.biortech.2015.08.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/30/2015] [Accepted: 08/01/2015] [Indexed: 05/28/2023]
Abstract
Red macroalgae are currently considered as renewable resources owing to their high carbohydrate and low lignin and hemicellulose contents. However, utilization of red macroalgae has been limited owing to the lack of established methods for pretreatment and an effective saccharification system. Furthermore, marine red macroalgae consist of the non-favorable mixed sugars for industrial microorganisms. In this review, we suggest strategies for converting red macroalgae to bio-based products, focusing on the pretreatment and saccharification of red macroalgae to produce fermentable sugars and the microbial fermentation of these sugars by industrial microorganisms. In particular, some recent breakthroughs for the efficient utilization of red macroalgae include the discovery of key enzymes for the complete monomerization of red macroalgal carbohydrate and the catabolic pathway of 3,6-anhydro-l-galactose, the most abundant sugar in red macroalgae. This review provides a comprehensive perspective for the efficient utilization of red macroalgae as sustainable resources to produce bio-based products.
Collapse
Affiliation(s)
- Eun Ju Yun
- Department of Biotechnology, Graduate School, Korea University, Seoul 136-713, Republic of Korea
| | - Hee Taek Kim
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology, Daejeon 305-600, Republic of Korea
| | - Kyung Mun Cho
- Department of Biotechnology, Graduate School, Korea University, Seoul 136-713, Republic of Korea
| | - Sora Yu
- Department of Biotechnology, Graduate School, Korea University, Seoul 136-713, Republic of Korea
| | - Sooah Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul 136-713, Republic of Korea
| | - In-Geol Choi
- Department of Biotechnology, Graduate School, Korea University, Seoul 136-713, Republic of Korea
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul 136-713, Republic of Korea.
| |
Collapse
|
19
|
Kim SC, Min BE, Hwang HG, Seo SW, Jung GY. Pathway optimization by re-design of untranslated regions for L-tyrosine production in Escherichia coli. Sci Rep 2015; 5:13853. [PMID: 26346938 PMCID: PMC4561953 DOI: 10.1038/srep13853] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/07/2015] [Indexed: 01/17/2023] Open
Abstract
L-tyrosine is a commercially important compound in the food, pharmaceutical, chemical, and cosmetic industries. Although several attempts have been made to improve L-tyrosine production, translation-level expression control and carbon flux rebalancing around phosphoenolpyruvate (PEP) node still remain to be achieved for optimizing the pathway. Here, we demonstrate pathway optimization by altering gene expression levels for L-tyrosine production in Escherichia coli. To optimize the L-tyrosine biosynthetic pathway, a synthetic constitutive promoter and a synthetic 5′-untranslated region (5′-UTR) were introduced for each gene of interest to allow for control at both transcription and translation levels. Carbon flux rebalancing was achieved by controlling the expression level of PEP synthetase using UTR Designer. The L-tyrosine productivity of the engineered E. coli strain was increased through pathway optimization resulting in 3.0 g/L of L-tyrosine titer, 0.0354 g L-tyrosine/h/g DCW of productivity, and 0.102 g L-tyrosine/g glucose yield. Thus, this work demonstrates that pathway optimization by 5′-UTR redesign is an effective strategy for the development of efficient L-tyrosine-producing bacteria.
Collapse
Affiliation(s)
- Seong Cheol Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-784, Korea
| | - Byung Eun Min
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-784, Korea
| | - Hyun Gyu Hwang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-784, Korea
| | - Sang Woo Seo
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-784, Korea
| | - Gyoo Yeol Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-784, Korea.,Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-784, Korea
| |
Collapse
|
20
|
Lim HG, Lim JH, Jung GY. Modular design of metabolic network for robust production of n-butanol from galactose-glucose mixtures. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:137. [PMID: 26347006 PMCID: PMC4559943 DOI: 10.1186/s13068-015-0327-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/25/2015] [Indexed: 05/15/2023]
Abstract
BACKGROUND Refactoring microorganisms for efficient production of advanced biofuel such as n-butanol from a mixture of sugars in the cheap feedstock is a prerequisite to achieve economic feasibility in biorefinery. However, production of biofuel from inedible and cheap feedstock is highly challenging due to the slower utilization of biomass-driven sugars, arising from complex assimilation pathway, difficulties in amplification of biosynthetic pathways for heterologous metabolite, and redox imbalance caused by consuming intracellular reducing power to produce quite reduced biofuel. Even with these problems, the microorganisms should show robust production of biofuel to obtain industrial feasibility. Thus, refactoring microorganisms for efficient conversion is highly desirable in biofuel production. RESULTS In this study, we engineered robust Escherichia coli to accomplish high production of n-butanol from galactose-glucose mixtures via the design of modular pathway, an efficient and systematic way, to reconstruct the entire metabolic pathway with many target genes. Three modular pathways designed using the predictable genetic elements were assembled for efficient galactose utilization, n-butanol production, and redox re-balancing to robustly produce n-butanol from a sugar mixture of galactose and glucose. Specifically, the engineered strain showed dramatically increased n-butanol production (3.3-fold increased to 6.2 g/L after 48-h fermentation) compared to the parental strain (1.9 g/L) in galactose-supplemented medium. Moreover, fermentation with mixtures of galactose and glucose at various ratios from 2:1 to 1:2 confirmed that our engineered strain was able to robustly produce n-butanol regardless of sugar composition with simultaneous utilization of galactose and glucose. CONCLUSIONS Collectively, modular pathway engineering of metabolic network can be an effective approach in strain development for optimal biofuel production with cost-effective fermentable sugars. To the best of our knowledge, this study demonstrated the first and highest n-butanol production from galactose in E. coli. Moreover, robust production of n-butanol with sugar mixtures with variable composition would facilitate the economic feasibility of the microbial process using a mixture of sugars from cheap biomass in the near future.
Collapse
Affiliation(s)
- Hyun Gyu Lim
- />Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Pohang, 37673 Gyeongbuk Korea
| | - Jae Hyung Lim
- />School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Pohang, 37673 Gyeongbuk Korea
| | - Gyoo Yeol Jung
- />Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Pohang, 37673 Gyeongbuk Korea
- />School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Pohang, 37673 Gyeongbuk Korea
| |
Collapse
|
21
|
Lewis DD, Villarreal FD, Wu F, Tan C. Synthetic biology outside the cell: linking computational tools to cell-free systems. Front Bioeng Biotechnol 2014; 2:66. [PMID: 25538941 PMCID: PMC4260521 DOI: 10.3389/fbioe.2014.00066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/23/2014] [Indexed: 12/22/2022] Open
Abstract
As mathematical models become more commonly integrated into the study of biology, a common language for describing biological processes is manifesting. Many tools have emerged for the simulation of in vivo synthetic biological systems, with only a few examples of prominent work done on predicting the dynamics of cell-free synthetic systems. At the same time, experimental biologists have begun to study dynamics of in vitro systems encapsulated by amphiphilic molecules, opening the door for the development of a new generation of biomimetic systems. In this review, we explore both in vivo and in vitro models of biochemical networks with a special focus on tools that could be applied to the construction of cell-free expression systems. We believe that quantitative studies of complex cellular mechanisms and pathways in synthetic systems can yield important insights into what makes cells different from conventional chemical systems.
Collapse
Affiliation(s)
- Daniel D. Lewis
- Integrative Genetics and Genomics, University of California Davis, Davis, CA, USA
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| | | | - Fan Wu
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| | - Cheemeng Tan
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| |
Collapse
|
22
|
Lim JH, Seo SW, Kim SY, Jung GY. Model-driven rebalancing of the intracellular redox state for optimization of a heterologous n-butanol pathway in Escherichia coli. Metab Eng 2013; 20:56-62. [DOI: 10.1016/j.ymben.2013.09.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 08/07/2013] [Accepted: 09/11/2013] [Indexed: 12/23/2022]
|
23
|
Seo SW, Yang J, Min BE, Jang S, Lim JH, Lim HG, Kim SC, Kim SY, Jeong JH, Jung GY. Synthetic biology: Tools to design microbes for the production of chemicals and fuels. Biotechnol Adv 2013; 31:811-7. [DOI: 10.1016/j.biotechadv.2013.03.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 03/14/2013] [Accepted: 03/28/2013] [Indexed: 10/27/2022]
|
24
|
Glasgow JE, Tullman-Ercek D. Synthetic biologists spring into action at the 245th American Chemical Society National Meeting. ACS Synth Biol 2013; 2:293-5. [PMID: 24884108 DOI: 10.1021/sb400046t] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As the field of synthetic biology continues to define itself, it has merged concepts from many related areas of research: molecular biology, genetics, bioengineering, and chemistry. At the 2013 Spring American Chemical Society National Meeting in New Orleans, LA, this mixture was manifested in a wealth of sessions emphasizing the use of modern synthetic biological approaches to solve many of today's biggest chemical problems. As a result of the field's diverse yet pervasive nature, synthetic biology concepts were present in several of the conferences many divisions, including Biological Chemistry, Biochemical Technology, Cellulose and Renewable Materials, and several others. Here we offer a snapshot of some of the exciting research discussed in the dedicated synthetic biology sessions throughout the week.
Collapse
Affiliation(s)
- Jeff E. Glasgow
- Department
of Chemistry and ‡Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720,
United States
| | - Danielle Tullman-Ercek
- Department
of Chemistry and ‡Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720,
United States
| |
Collapse
|