1
|
Liu S, Lu SY, Patel M, Qureshi N, Dunlap C, Hoecker E, Skory CD. Production of a Bacteriocin Like Protein PEG 446 from Clostridium tyrobutyricum NRRL B-67062. Probiotics Antimicrob Proteins 2024; 16:1411-1426. [PMID: 38252201 PMCID: PMC11322243 DOI: 10.1007/s12602-023-10211-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2023] [Indexed: 01/23/2024]
Abstract
Clostridium tyrobutyricum strain NRRL B-67062 was previously isolated from an ethanol production facility and shown to produce high yields of butyric acid. In addition, the cell-free supernatant of the fermentation broth from NRRL B-67062 contained antibacterial activity against certain Gram-positive bacteria. To determine the source of this antibacterial activity, we report the genome and genome mining of this strain. The complete genome of NRRL B-67062 showed one circular chromosome of 3,242,608 nucleotides, 3114 predicted coding sequences, 79 RNA genes, and a G+C content of 31.0%. Analyses of the genome data for genes potentially associated with antimicrobial features were sought after by using BAGEL-4 and anti-SMASH databases. Among the leads, a polypeptide of 66 amino acids (PEG 446) contains the DUF4177 domain, which is an uncharacterized highly conserved domain (pfam13783). The cloning and expression of the peg446 gene in Escherichia coli and Bacillus subtilis confirmed the antibacterial property against Lactococcus lactis LM 0230, Limosilactobacillus fermentum 0315-25, and Listeria innocua NRRL B-33088 by gel overlay and well diffusion assays. Molecular modeling suggested that PEG 446 contains one alpha-helix and three anti-parallel short beta-sheets. These results will aid further functional studies and facilitate simultaneously fermentative production of both butyric acid and a putative bacteriocin from agricultural waste and lignocellulosic biomass materials.
Collapse
Affiliation(s)
- Siqing Liu
- U.S. Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Renewable Product Technology Research Unit, Peoria, IL, 61604, USA.
| | - Shao-Yeh Lu
- U.S. Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Renewable Product Technology Research Unit, Peoria, IL, 61604, USA
| | - Maulik Patel
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, 37830, USA
| | - Nasib Qureshi
- U.S. Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Bioenergy Research Unit, Peoria, IL, 61604, USA
| | - Christopher Dunlap
- U.S. Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Crop Bioprotection Research Unit, Peoria, IL, 61604, USA
| | - Eric Hoecker
- U.S. Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Renewable Product Technology Research Unit, Peoria, IL, 61604, USA
| | - Christopher D Skory
- U.S. Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Renewable Product Technology Research Unit, Peoria, IL, 61604, USA
| |
Collapse
|
2
|
Kou H, Zheng J, Ye G, Qiao Z, Zhang K, Luo H, Zou W. Optimization of Clostridium beijerinckii semi-solid fermentation of rape straw to produce butyric acid by genome analysis. BIORESOUR BIOPROCESS 2024; 11:24. [PMID: 38647595 PMCID: PMC10992193 DOI: 10.1186/s40643-024-00742-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/04/2024] [Indexed: 04/25/2024] Open
Abstract
Butyric acid is a volatile saturated monocarboxylic acid, which is widely used in the chemical, food, pharmaceutical, energy, and animal feed industries. This study focuses on producing butyric acid from pre-treated rape straw using simultaneous enzymatic hydrolysis semi-solid fermentation (SEHSF). Clostridium beijerinckii BRM001 screened from pit mud of Chinese nongxiangxing baijiu was used. The genome of C. beijerinckii BRM001 was sequenced and annotated. Using rape straw as the sole carbon source, fermentation optimization was carried out based on the genomic analysis of BRM001. The optimized butyric acid yield was as high as 13.86 ± 0.77 g/L, which was 2.1 times higher than that of the initial screening. Furthermore, under optimal conditions, non-sterile SEHSF was carried out, and the yield of butyric acid was 13.42 ± 0.83 g/L in a 2.5-L fermentor. This study provides a new approach for butyric acid production which eliminates the need for detoxification of straw hydrolysate and makes full use of the value of fermentation waste residue without secondary pollution, making the whole process greener and more economical, which has a certain industrial potential.
Collapse
Affiliation(s)
- Hui Kou
- College of Bioengineering, Sichuan University of Science & Engineering, No.1 Baita Road, Sangjiang District, Yibin, 644005, Sichuan, China
- School of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637007, Sichuan, China
| | - Jia Zheng
- Wuliangye Yibin Co., Ltd., Yibin, 644000, Sichuan, China
| | - Guangbin Ye
- College of Bioengineering, Sichuan University of Science & Engineering, No.1 Baita Road, Sangjiang District, Yibin, 644005, Sichuan, China
| | - Zongwei Qiao
- Wuliangye Yibin Co., Ltd., Yibin, 644000, Sichuan, China
| | - Kaizheng Zhang
- College of Bioengineering, Sichuan University of Science & Engineering, No.1 Baita Road, Sangjiang District, Yibin, 644005, Sichuan, China
| | - Huibo Luo
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin, 644005, Sichuan, China
| | - Wei Zou
- College of Bioengineering, Sichuan University of Science & Engineering, No.1 Baita Road, Sangjiang District, Yibin, 644005, Sichuan, China.
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin, 644005, Sichuan, China.
| |
Collapse
|
3
|
Zhang Y, Li J, Yong YC, Fang Z, Liu W, Yan H, Jiang H, Meng J. Efficient butyrate production from rice straw in an optimized cathodic electro-fermentation process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 336:117695. [PMID: 36907062 DOI: 10.1016/j.jenvman.2023.117695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/25/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Butyrate production from renewable biomass shows great potential against climate change and over-consumption of fossil fuels. Herein, key operational parameters of a cathodic electro-fermentation (CEF) process were optimized for efficient butyrate production from rice straw by mixed culture. The cathode potential, controlled pH and initial substrate dosage were optimized at -1.0 V (vs Ag/AgCl), 7.0 and 30 g/L, respectively. Under the optimal conditions, 12.50 g/L butyrate with yield of 0.51 g/g-rice straw were obtained in batch-operated CEF system. In fed-batch mode, butyrate production significantly increased to 19.66 g/L with the yield of 0.33 g/g-rice straw, but 45.99% butyrate selectivity still needs to be improved in future. Enriched butyrate producing bacteria (Clostridium cluster XIVa and IV) with proportion of 58.75% on the 21st day of the fed-batch fermentation, contributed to the high-level butyrate production. The study provides a promising approach for efficient butyrate production from lignocellulosic biomass.
Collapse
Affiliation(s)
- Yafei Zhang
- National Engineering Research Center for Safe Sludge Disposal and Resource Recovery, Harbin Institute of Technology, Harbin, 150090, China; Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jianzheng Li
- National Engineering Research Center for Safe Sludge Disposal and Resource Recovery, Harbin Institute of Technology, Harbin, 150090, China
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zhen Fang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Wenbin Liu
- National Engineering Research Center for Safe Sludge Disposal and Resource Recovery, Harbin Institute of Technology, Harbin, 150090, China
| | - Han Yan
- National Engineering Research Center for Safe Sludge Disposal and Resource Recovery, Harbin Institute of Technology, Harbin, 150090, China
| | - Haicheng Jiang
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, China
| | - Jia Meng
- National Engineering Research Center for Safe Sludge Disposal and Resource Recovery, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
4
|
Tomás-Pejó E, González-Fernández C, Greses S, Kennes C, Otero-Logilde N, Veiga MC, Bolzonella D, Müller B, Passoth V. Production of short-chain fatty acids (SCFAs) as chemicals or substrates for microbes to obtain biochemicals. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:96. [PMID: 37270640 DOI: 10.1186/s13068-023-02349-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 05/23/2023] [Indexed: 06/05/2023]
Abstract
Carboxylic acids have become interesting platform molecules in the last years due to their versatility to act as carbon sources for different microorganisms or as precursors for the chemical industry. Among carboxylic acids, short-chain fatty acids (SCFAs) such as acetic, propionic, butyric, valeric, and caproic acids can be biotechnologically produced in an anaerobic fermentation process from lignocellulose or other organic wastes of agricultural, industrial, or municipal origin. The biosynthesis of SCFAs is advantageous compared to chemical synthesis, since the latter relies on fossil-derived raw materials, expensive and toxic catalysts and harsh process conditions. This review article gives an overview on biosynthesis of SCFAs from complex waste products. Different applications of SCFAs are explored and how these acids can be considered as a source of bioproducts, aiming at the development of a circular economy. The use of SCFAs as platform molecules requires adequate concentration and separation processes that are also addressed in this review. Various microorganisms such as bacteria or oleaginous yeasts can efficiently use SCFA mixtures derived from anaerobic fermentation, an attribute that can be exploited in microbial electrolytic cells or to produce biopolymers such as microbial oils or polyhydroxyalkanoates. Promising technologies for the microbial conversion of SCFAs into bioproducts are outlined with recent examples, highlighting SCFAs as interesting platform molecules for the development of future bioeconomy.
Collapse
Affiliation(s)
- Elia Tomás-Pejó
- Biotechnological Processes Unit, IMDEA Energy, 28935, Móstoles, Madrid, Spain
| | - Cristina González-Fernández
- Biotechnological Processes Unit, IMDEA Energy, 28935, Móstoles, Madrid, Spain
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Valladolid, Spain
- Institute of Sustainable Processes, Valladolid, Spain
| | - Silvia Greses
- Biotechnological Processes Unit, IMDEA Energy, 28935, Móstoles, Madrid, Spain
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research, Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, E-15008, La Coruña, Spain
| | - Nuria Otero-Logilde
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research, Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, E-15008, La Coruña, Spain
| | - María C Veiga
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research, Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, E-15008, La Coruña, Spain
| | - David Bolzonella
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Bettina Müller
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7070, 75007, Uppsala, Sweden
| | - Volkmar Passoth
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7070, 75007, Uppsala, Sweden.
| |
Collapse
|
5
|
Patyal U, Kumar V, Singh M, Kumar A, Sharma AK, Ali SF, Syed SM. Butyric acid: fermentation production using organic waste as low-cost feedstocks. PHYSICAL SCIENCES REVIEWS 2023. [DOI: 10.1515/psr-2022-0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Abstract
Butyric acid is an important chemical which has many applications in the chemical, food, and pharmaceutical industries. Butyraldehyde, which is derived from propylene, is now converted into butyrate by petrochemical processes known as oxo synthesis. Because of its poor productivity and low butyrate concentration in the fermentation broth, biotechnological production of butyric acid is not economically viable. Typically, a sizable amount of the overall production expenses goes toward the cost of the fermentation substrate. If the fermentation process can use minimal biomass as the feedstock, a cost-competitive production of butyric acid from the fermentation technique would be generated with a strong market prospect. Organic wastes are recommended as a source of butyric acid fermentation feedstock because they are inexpensive, can be generated in huge numbers, and are biodegradable. With a focus on the low-cost feedstock, the many uses of butyric acid are discussed, with its present production status. As a result, this paper explores several butyric acid fermentation-related problems and offers ideas for potential solutions.
Collapse
Affiliation(s)
- Urvasha Patyal
- Department of Biotechnology , Maharishi Markandeshwar (Deemed to be University), MMEC , Mullana , Ambala , Haryana , India
| | - Vikas Kumar
- Department of Biotechnology , Maharishi Markandeshwar (Deemed to be University), MMEC , Mullana , Ambala , Haryana , India
- Department of Microbiology , International Medical School, UIB , Almaty , Kazakhstan
| | - Manoj Singh
- Department of Biotechnology , Maharishi Markandeshwar (Deemed to be University), MMEC , Mullana , Ambala , Haryana , India
| | - Amit Kumar
- Department of Biotechnology, School of Engineering and Technology , Sharda University , Great Noida , India
| | - Anil K. Sharma
- Department of Biotechnology , Maharishi Markandeshwar (Deemed to be University), MMEC , Mullana , Ambala , Haryana , India
| | - Syed Fahad Ali
- Department of Pharmacology , International Medical School, UIB , Almaty , Kazakhstan
| | - Sheikh Mudasir Syed
- Department of Genral surgery , International Medical School, UIB , Almaty , Kazakhstan
| |
Collapse
|
6
|
Zhao W, Yan B, Ren ZJ, Wang S, Zhang Y, Jiang H. Highly selective butyric acid production by coupled acidogenesis and ion substitution electrodialysis. WATER RESEARCH 2022; 226:119228. [PMID: 36244139 DOI: 10.1016/j.watres.2022.119228] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/01/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Selective production of carboxylic acids (CAs) from mixed culture fermentation remains a difficult task in organic waste valorization. Herein, we developed a facile and sustainable carbon loop strategy to regulate the fermentation micro-environment and steer acidogenesis towards selective butyric acid production. This new ion substitution electrodialysis-anaerobic membrane bioreactor (ISED-AnMBR) integrated system demonstrated a high butyric acid production at 11.19 g/L with a mass fraction of 76.05%. In comparison, only 1.04 g/L with a mass fraction of 30.56% was observed in the uncoupled control reactor. The carbon recovery reached a maximum of 96.09% with the assistance of ISED. Inorganic carbon assimilation was believed to be an important contributor, which was verified by 13C isotopic tracing. Microbial community structure shows the dominance of Clostridia (80.16%) in the unique micro-environment (e.g., pH 4.80-5.50) controlled by ISED, which is believed beneficial to the growth of such fermentative bacteria with main products of butyric acid and acetic acid. In addition, the emergence of chain elongators such as Clostridium sensu stricto 12 was observed to have a great influence on butyric acid production. This work provides a new approach to generate tailored longer chain carboxylic acids from organic waste with high titer thus contributing to a circular economy.
Collapse
Affiliation(s)
- Wenyan Zhao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Laoshan District, Qingdao 266101, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Binghua Yan
- College of Resources and Environment, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, China.
| | - Zhiyong Jason Ren
- Department of Civil and Environmental Engineering and the Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| | - Shanquan Wang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yang Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China.
| | - Heqing Jiang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Laoshan District, Qingdao 266101, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
7
|
Butyric Acid Production by Fermentation: Employing Potential of the Novel Clostridium tyrobutyricum Strain NRRL 67062. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, the ability of a novel strain of Clostridium tyrobutyricum NRRL 67062 to produce butyric acid during glucose fermentation was evaluated. The strain was evaluated for substrate and product inhibition in batch experiments using anaerobic tubes. To characterize glucose inhibition, initial glucose concentrations ranging from 60 to 250 g L−1 were used, and it was demonstrated that a glucose concentration of 250 g L−1 exerted strong inhibition on cell growth and fermentation. To evaluate butyric acid inhibition, the culture was challenged with 5–50 g L−1 of butyric acid at an initial pH of 6.5. These experiments were performed without pH control. When challenged with a butyric acid concentration of 50 g L−1, cell growth was slow; however, it produced 8.25 g L−1 of butyric acid. This suggested that the butyric acid tolerance of the culture was 58 g L−1. In a scaled-up batch experiment, which was performed in a 2.5 L fermentor with an initial glucose concentration of 100 g L−1, the pH was controlled at 6.5. In this experiment, the strain produced 57.86 g L−1 of butyric acid and 12.88 g L−1 of acetic acid, thus producing 70.74 g L−1 of total acids with a productivity of 0.69 g·L−1·h−1. A concentration of 70.74 g L−1 of acids equates to a yield of 0.71 g of acid per g consumed glucose. The maximum cell concentration was 3.80 g L−1, which may have been the reason for high productivity in the batch culture. Finally, corn steep liquor (CSL; a commercial nutrient solution) provided greater growth and acid production than the refined medium.
Collapse
|
8
|
Son J, Joo JC, Baritugo KA, Jeong S, Lee JY, Lim HJ, Lim SH, Yoo JI, Park SJ. Consolidated microbial production of four-, five-, and six-carbon organic acids from crop residues: Current status and perspectives. BIORESOURCE TECHNOLOGY 2022; 351:127001. [PMID: 35292386 DOI: 10.1016/j.biortech.2022.127001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
The production of platform organic acids has been heavily dependent on petroleum-based industries. However, petrochemical-based industries that cannot guarantee a virtuous cycle of carbons released during various processes are now facing obsolescence because of the depletion of finite fossil fuel reserves and associated environmental pollutions. Thus, the transition into a circular economy in terms of the carbon footprint has been evaluated with the development of efficient microbial cell factories using renewable feedstocks. Herein, the recent progress on bio-based production of organic acids with four-, five-, and six-carbon backbones, including butyric acid and 3-hydroxybutyric acid (C4), 5-aminolevulinic acid and citramalic acid (C5), and hexanoic acid (C6), is discussed. Then, the current research on the production of C4-C6 organic acids is illustrated to suggest future directions for developing crop-residue based consolidated bioprocessing of C4-C6 organic acids using host strains with tailor-made capabilities.
Collapse
Affiliation(s)
- Jina Son
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jeong Chan Joo
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Kei-Anne Baritugo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seona Jeong
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ji Yeon Lee
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hye Jin Lim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seo Hyun Lim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jee In Yoo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
9
|
Sun J, Zhang L, Loh KC. Review and perspectives of enhanced volatile fatty acids production from acidogenic fermentation of lignocellulosic biomass wastes. BIORESOUR BIOPROCESS 2021; 8:68. [PMID: 38650255 PMCID: PMC10992391 DOI: 10.1186/s40643-021-00420-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/22/2021] [Indexed: 12/13/2022] Open
Abstract
Lignocellulosic biomass wastes are abundant resources that are usually valorized for methane-rich biogas via anaerobic digestion. Conversion of lignocellulose into volatile fatty acids (VFA) rather than biogas is attracting attention due to the higher value-added products that come with VFA utilization. This review consolidated the latest studies associated with characteristics of lignocellulosic biomass, the effects of process parameters during acidogenic fermentation, and the intensification strategies to accumulate more VFA. The differences between anaerobic digestion technology and acidogenic fermentation technology were discussed. Performance-enhancing strategies surveyed included (1) alkaline fermentation; (2) co-digestion and high solid-state fermentation; (3) pretreatments; (4) use of high loading rate and short retention time; (5) integration with electrochemical technology, and (6) adoption of membrane bioreactors. The recommended operations include: mesophilic temperature (thermophilic for high loading rate fermentation), C/N ratio (20-40), OLR (< 12 g volatile solids (VS)/(L·d)), and the maximum HRT (8-12 days), alkaline fermentation, membrane technology or electrodialysis recovery. Lastly, perspectives were put into place based on critical analysis on status of acidogenic fermentation of lignocellulosic biomass wastes for VFA production.
Collapse
Affiliation(s)
- Jiachen Sun
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117576, Singapore
| | - Le Zhang
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore, 138602, Singapore
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore
| | - Kai-Chee Loh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117576, Singapore.
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore, 138602, Singapore.
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore.
| |
Collapse
|
10
|
Fonseca BC, Reginatto V, López-Linares JC, Lucas S, García-Cubero MT, Coca M. Ideal conditions of microwave-assisted acid pretreatment of sugarcane straw allow fermentative butyric acid production without detoxification step. BIORESOURCE TECHNOLOGY 2021; 329:124929. [PMID: 33706176 DOI: 10.1016/j.biortech.2021.124929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Sugarcane straw (SCS) was pretreated with dilute sulfuric acid assisted by microwave to magnify fermentable sugars and to minimize the concentration of inhibitors in the hydrolysates. The optimum conditions for maximum recovery of sugars were 162 °C and 0.6% (w/v) H2SO4. The low level of inhibitors, such as acetate (2.9 g/L) and total phenolics (1.4 g/L), in the SCS slurry from the pretreatment stage allowed the enzymatic hydrolysis and fermentation steps to occur without detoxification. Besides consuming the total sugar content (31.0 g/L), Clostridium beijerinckii Br21 was able to use acetate from the SCS hydrolysate, to give butyric acid at high conversion factor (0.49 g of butyric acid /g of sugar). The optimized pretreatment conditions spared acid, time, and the detoxification stage, making bio-butyric acid production from SCS extremely attractive.
Collapse
Affiliation(s)
- Bruna Constante Fonseca
- Department of Chemistry, University of São Paulo, Av. Bandeirantes, 3900, CEP 14040-901 Ribeirão Preto, Brazil
| | - Valeria Reginatto
- Department of Chemistry, University of São Paulo, Av. Bandeirantes, 3900, CEP 14040-901 Ribeirão Preto, Brazil.
| | - Juan Carlos López-Linares
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina s/n, Valladolid, Spain; Institute of Sustainable Processes, University of Valladolid, Spain
| | - Susana Lucas
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina s/n, Valladolid, Spain; Institute of Sustainable Processes, University of Valladolid, Spain
| | - M Teresa García-Cubero
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina s/n, Valladolid, Spain; Institute of Sustainable Processes, University of Valladolid, Spain
| | - Mónica Coca
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina s/n, Valladolid, Spain; Institute of Sustainable Processes, University of Valladolid, Spain
| |
Collapse
|
11
|
Assessment of Integration between Lactic Acid, Biogas and Hydrochar Production in OFMSW Plants. ENERGIES 2020. [DOI: 10.3390/en13246593] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Biological treatments such as anaerobic digestion and composting are known to be the most widespread methods to deal with Organic Fraction of Municipal Solid Waste (OFMSW). The production of biogas, a mix of methane and carbon dioxide, is worth but alone cannot solve the problems of waste disposal and recovery; moreover, the digestate could be stabilized by aerobic stabilization, which is one of the most widespread methods. The anaerobic digestion + composting integration converts 10% to 14% of the OFMSW into biogas, about 35–40% into compost and 35–40% into leachate. The economic sustainability could be rather increased by integrating the whole system with lactic acid production, because of the high added value and by substituting the composting process with the hydrothermal carbonization process. The assessment of this integrated scenario in term of mass balance demonstrates that the recovery of useful products with a potentially high economic added value increases, at the same time reducing the waste streams outgoing the plant. The economic evaluation of the operating costs for the traditional and the alternative systems confirms that the integration is a valid alternative and the most interesting solution is the utilization of the leachate produced during the anaerobic digestion process instead of fresh water required for the hydrothermal carbonization process.
Collapse
|
12
|
Stoklosa RJ, Moore C, Latona RJ, Nghiem NP. Butyric Acid Generation by Clostridium tyrobutyricum from Low-Moisture Anhydrous Ammonia (LMAA) Pretreated Sweet Sorghum Bagasse. Appl Biochem Biotechnol 2020; 193:761-776. [PMID: 33188509 DOI: 10.1007/s12010-020-03449-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/08/2020] [Indexed: 10/23/2022]
Abstract
Sweet sorghum bagasse (SSB) is an under-utilized feedstock for biochemical conversion to biofuels or high value chemicals. One such chemical that can be generated biochemically and applied to a wide array of industries from pharmaceuticals to the production of liquid transportation fuels is butyric acid. This work investigated cultivating the butyric acid producing strain Clostridium tyrobutyricum ATCC 25755 on low-moisture anhydrous ammonia (LMAA) pretreated SSB. Pretreated SSB hydrolysate was detoxified and supplemented with urea for shake flask batch fermentation to show that up to 11.4 g/L butyric acid could be produced with a selectivity of 87% compared to other organic acids. Bioreactor fermentation with pH control showed high biomass growth, but a similar output of 11.3 g/L butyric acid was achieved. However, the butyric acid productivity increased to 0.251 g/L∙hr with a butyric acid yield of 0.29 g/g sugar consumed. This butyric acid output represented an 83% theoretical yield. Further improvements in butyric acid titer and yield can be achieved by optimizing nutrient supplementation and incorporating fed-batch fermentation processing of pretreated SSB hydrolysate. Construction of ZGO:Sr NR- and ZGC@PDA NP-driven ratiometric aptasensor for CEA detection.
Collapse
Affiliation(s)
- Ryan J Stoklosa
- Sustainable Biofuels and Co-Products Research Unit, Eastern Regional Research Center, USDA, ARS, Wyndmoor, PA, 19038, USA.
| | - Carrington Moore
- Sustainable Biofuels and Co-Products Research Unit, Eastern Regional Research Center, USDA, ARS, Wyndmoor, PA, 19038, USA.,Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| | - Renee J Latona
- Sustainable Biofuels and Co-Products Research Unit, Eastern Regional Research Center, USDA, ARS, Wyndmoor, PA, 19038, USA
| | - Nhuan P Nghiem
- Sustainable Biofuels and Co-Products Research Unit, Eastern Regional Research Center, USDA, ARS, Wyndmoor, PA, 19038, USA
| |
Collapse
|
13
|
Fu H, Lin M, Tang IC, Wang J, Yang ST. Effects of benzyl viologen on increasing NADH availability, acetate assimilation, and butyric acid production by Clostridium tyrobutyricum. Biotechnol Bioeng 2020; 118:770-783. [PMID: 33058166 DOI: 10.1002/bit.27602] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022]
Abstract
Clostridium tyrobutyricum produces butyric and acetic acids from glucose. The butyric acid yield and selectivity in the fermentation depend on NADH available for acetate reassimilation to butyric acid. In this study, benzyl viologen (BV), an artificial electron carrier that inhibits hydrogen production, was used to increase NADH availability and butyric acid production while eliminating acetic acid accumulation by facilitating its reassimilation. To better understand the mechanism of and find the optimum condition for BV effect on enhancing acetate assimilation and butyric acid production, BV at various concentrations and addition times during the fermentation were studied. Compared with the control without BV, the addition of 1 μM BV increased butyric acid production from glucose by ∼50% in yield and ∼29% in productivity while acetate production was completely inhibited. Furthermore, BV also increased the coutilization of glucose and exogenous acetate for butyric acid production. At a concentration ratio of acetate (g/L) to BV (mM) of 4, both acetate assimilation and butyrate biosynthesis increased with increasing the concentrations of BV (0-6.25 μM) and exogenous acetate (0-25 g/L). In a fed-batch fermentation with glucose and ∼15 g/L acetate and 3.75 μM BV, butyrate production reached 55.9 g/L with productivity 0.93 g/L/h, yield 0.48 g/g, and 97.4% purity, which would facilitate product purification and reduce production cost. Manipulating metabolic flux and redox balance via BV and acetate addition provided a simple to implement metabolic process engineering approach for butyric acid production from sugars and biomass hydrolysates.
Collapse
Affiliation(s)
- Hongxin Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.,William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Meng Lin
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - I-Ching Tang
- Bioprocessing Innovative Company, Dublin, Ohio, USA
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shang-Tian Yang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
14
|
Recent advances in n-butanol and butyrate production using engineered Clostridium tyrobutyricum. World J Microbiol Biotechnol 2020; 36:138. [PMID: 32794091 DOI: 10.1007/s11274-020-02914-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 08/08/2020] [Indexed: 12/12/2022]
Abstract
Acidogenic clostridia naturally producing acetic and butyric acids has attracted high interest as a novel host for butyrate and n-butanol production. Among them, Clostridium tyrobutyricum is a hyper butyrate-producing bacterium, which re-assimilates acetate for butyrate biosynthesis by butyryl-CoA/acetate CoA transferase (CoAT), rather than the phosphotransbutyrylase-butyrate kinase (PTB-BK) pathway widely found in clostridia and other microbial species. To date, C. tyrobutyricum has been engineered to overexpress a heterologous alcohol/aldehyde dehydrogenase, which converts butyryl-CoA to n-butanol. Compared to conventional solventogenic clostridia, which produce acetone, ethanol, and butanol in a biphasic fermentation process, the engineered C. tyrobutyricum with a high metabolic flux toward butyryl-CoA produced n-butanol at a high yield of > 0.30 g/g and titer of > 20 g/L in glucose fermentation. With no acetone production and a high C4/C2 ratio, butanol was the only major fermentation product by the recombinant C. tyrobutyricum, allowing simplified downstream processing for product purification. In this review, novel metabolic engineering strategies to improve n-butanol and butyrate production by C. tyrobutyricum from various substrates, including glucose, xylose, galactose, sucrose, and cellulosic hydrolysates containing the mixture of glucose and xylose, are discussed. Compared to other recombinant hosts such as Clostridium acetobutylicum and Escherichia coli, the engineered C. tyrobutyricum strains with higher butyrate and butanol titers, yields and productivities are the most promising hosts for potential industrial applications.
Collapse
|
15
|
Fu H, Hu J, Guo X, Feng J, Zhang Y, Wang J. High-Selectivity Butyric Acid Production from Saccharina japonica Hydrolysate by Clostridium tyrobutyricum. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01279] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hongxin Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jialei Hu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xiaolong Guo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jun Feng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yanan Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
16
|
Pretreatment and Detoxification of Acid-Treated Wood Hydrolysates for Pyruvate Production by an Engineered Consortium of Escherichia coli. Appl Biochem Biotechnol 2020; 192:243-256. [PMID: 32372381 DOI: 10.1007/s12010-020-03320-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/23/2020] [Indexed: 10/24/2022]
Abstract
The biorefinery concept makes use of renewable lignocellulosic biomass to produce commodities sustainably. A synthetic microbial consortium can enable the simultaneous utilization of sugars such as glucose and xylose to produce biochemicals, where each consortium member converts one sugar into the target product. In this study, woody biomass was used to generate glucose and xylose after pretreatment with 20% (w/v) sulfuric acid and 60-min reaction time. We compared several strategies for detoxification with charcoal and sodium borohydride treatments to improve the fermentability of this hydrolysate in a defined medium for the production of the growth-associated product pyruvate. In shake flask culture, the highest pyruvate yield on xylose of 0.8 g/g was found using pH 6 charcoal-treated hydrolysate. In bioreactor studies, a consortium of two engineered E. coli strains converted the mixture of glucose and xylose in batch studies to 12.8 ± 2.7 g/L pyruvate in 13 h. These results demonstrate that lignocellulosic biomass as the sole carbon source can be used to produce growth-related products after employing suitable detoxification strategies.
Collapse
|
17
|
Vivek N, Nair LM, Mohan B, Nair SC, Sindhu R, Pandey A, Shurpali N, Binod P. Bio-butanol production from rice straw – Recent trends, possibilities, and challenges. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.100224] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Parlindungan E, May BK, Jones OAH. Metabolic Insights Into the Effects of Nutrient Stress on Lactobacillus plantarum B21. Front Mol Biosci 2019; 6:75. [PMID: 31544106 PMCID: PMC6730488 DOI: 10.3389/fmolb.2019.00075] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/09/2019] [Indexed: 12/12/2022] Open
Abstract
Lactobacillus plantarum B21 is a strain of lactic acid bacteria first isolated from a fermented meat product from Vietnam. It is also a promising biopreservative with potential use in the food industry as it is a source of a novel bacteriocin (Plantacyclin B21AG) which has inhibitory effects against a wide range of species, including several pathogenic and spoilage strains. Nutrient stress is known to increase the survivability, storage stability, and bacteriocin production capability of L. plantarum B21 during industrial processing. It is however, unknown what the underlying biochemical responses that control these abilities are. This study therefore investigates the metabolite profiles of L. plantarum B21 using NMR spectroscopy and GC-MS to further understand the biochemical responses of this strain to various stress events. Unstressed cells were found to use glucose as their primary energy source with high concentrations of metabolites involved in glycolysis and organic acid synthesis, such as lactic acid, acetic acid, propanoic acid, malic acid, and 2-butenedioic acid being present in these cells. In contrast, large numbers of metabolites involved in amino acid metabolism including alanine, glutamic acid, aspartic acid, valine, proline, and norleucine were upregulated in glucose stressed cells, indicating that they were using amino acids as their main source of energy. Differences in levels of fatty acids, particularly octadecenoic acid, tetracosanoic acid, and 7-hexadecenoic acid were also observed between stressed and unstressed cells. The results from this study provide insight on the biochemical response of this bacterial strain to stresses commonly found during industrial processing.
Collapse
Affiliation(s)
- Elvina Parlindungan
- School of Science, RMIT University, Melbourne, VIC, Australia
- Australian Centre for Research on Separation Science, School of Science, RMIT University, Melbourne, VIC, Australia
| | - Bee K. May
- School of Science, RMIT University, Melbourne, VIC, Australia
| | - Oliver A. H. Jones
- Australian Centre for Research on Separation Science, School of Science, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
19
|
Oh HJ, Kim KY, Lee KM, Lee SM, Gong G, Oh MK, Um Y. Enhanced butyric acid production using mixed biomass of brown algae and rice straw by Clostridium tyrobutyricum ATCC25755. BIORESOURCE TECHNOLOGY 2019; 273:446-453. [PMID: 30469134 DOI: 10.1016/j.biortech.2018.11.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 06/09/2023]
Abstract
A brown alga Saccharina japonica and rice straw are attractive feedstock for microbial butyric acid production. However, inefficient fermentation of mannitol (a dominant component in S. japonica) and toxicity of inhibitors in lignocellulosic hydrolysate are limitations. This study demonstrated that mixed biomass with S. japonica and rice straw was effective in butyric acid production over those restrictions. Mannitol was consumed only when acetic acid was present. Notably, acetic acid was not produced but consumed along with mannitol. By mixing S. japonica and rice straw to take advantage of glucose and acetic acid in rice straw, Clostridium tyrobutyricum effectively consumed mannitol by utilizing acetic acid in hydrolysate and acetic acid derived from glucose with the enhanced butyric acid production. Furthermore, cell growth was restored owing to the decreased inhibitor concentration. The results demonstrate the potential of butyric acid production from mixed biomass of macroalgae/lignocellulose overcoming the drawbacks of single biomass.
Collapse
Affiliation(s)
- Hyun Ju Oh
- Clean Energy Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, Republic of Korea; Department of Chemical and Biological Engineering, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
| | - Ki-Yeon Kim
- Clean Energy Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, Republic of Korea; Clean Energy and Chemical Engineering, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Kyung Min Lee
- Clean Energy Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, Republic of Korea
| | - Sun-Mi Lee
- Clean Energy Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, Republic of Korea; Clean Energy and Chemical Engineering, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Gyeongtaek Gong
- Clean Energy Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, Republic of Korea
| | - Min-Kyu Oh
- Department of Chemical and Biological Engineering, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, Republic of Korea; Clean Energy and Chemical Engineering, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea.
| |
Collapse
|
20
|
Suo Y, Liao Z, Qu C, Fu H, Wang J. Metabolic engineering of Clostridium tyrobutyricum for enhanced butyric acid production from undetoxified corncob acid hydrolysate. BIORESOURCE TECHNOLOGY 2019; 271:266-273. [PMID: 30278351 DOI: 10.1016/j.biortech.2018.09.095] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/15/2018] [Accepted: 09/17/2018] [Indexed: 06/08/2023]
Abstract
Resistance to furan derivatives and phenolic compounds plays an important role in the use of lignocellulosic biomass for biological production of chemicals and fuels. This study confirmed that expression of short-chain dehydrogenase/reductase (SDR) from Clostridium beijerinckii NCIMB 8052 significantly improved the tolerance of C. tyrobutyricum to furfural due to the enhanced activity for furfural reduction. And on this basis, co-expression of SDR and heat shock chaperones GroESL could simultaneously enhance the tolerance of C. tyrobutyricum to furan derivatives and phenolic compounds, which were the main inhibitors presented in dilute-acid lignocellulosic hydrolysates. Consequently, the recombinant strain ATCC 25755/sdr+groESL exhibited good performance in butyric acid production with corncob acid hydrolysate as the substrate. Batch fermentation in bioreactor showed that the butyrate produced by ATCC 25755/sdr+groESL was 32.8 g/L, increased by 28.1% as compared with the wild-type strain. Meanwhile, the butyrate productivity increased from 0.19 g/L·h to 0.29 g/L·h.
Collapse
Affiliation(s)
- Yukai Suo
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Zhengping Liao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Chunyun Qu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Hongxin Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
| | - Jufang Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
21
|
Jiang L, Fu H, Yang HK, Xu W, Wang J, Yang ST. Butyric acid: Applications and recent advances in its bioproduction. Biotechnol Adv 2018; 36:2101-2117. [PMID: 30266343 DOI: 10.1016/j.biotechadv.2018.09.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/24/2018] [Accepted: 09/24/2018] [Indexed: 12/20/2022]
Abstract
Butyric acid is an important C4 organic acid with broad applications. It is currently produced by chemosynthesis from petroleum-based feedstocks. However, the fermentative production of butyric acid from renewable feedstocks has received growing attention because of consumer demand for green products and natural ingredients in foods, pharmaceuticals, animal feed supplements, and cosmetics. In this review, strategies for improving microbial butyric acid production, including strain engineering and novel fermentation process development are discussed and compared regarding product yield, titer, purity and productivity. Future perspectives on strain and process improvements for butyric acid production are also discussed.
Collapse
Affiliation(s)
- Ling Jiang
- School of Biology & Biological Engineering, South China University of Technology, Guangzhou 510006, China; College of Food Science and Light Industry, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing 210009, China
| | - Hongxin Fu
- School of Biology & Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Hopen K Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Wei Xu
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA; School of Chemical and Biological Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Jufang Wang
- School of Biology & Biological Engineering, South China University of Technology, Guangzhou 510006, China; Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Shang-Tian Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
22
|
Chi X, Li J, Wang X, Zhang Y, Leu SY, Wang Y. Bioaugmentation with Clostridium tyrobutyricum to improve butyric acid production through direct rice straw bioconversion. BIORESOURCE TECHNOLOGY 2018; 263:562-568. [PMID: 29778795 DOI: 10.1016/j.biortech.2018.04.120] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/28/2018] [Accepted: 04/30/2018] [Indexed: 06/08/2023]
Abstract
One-pot bioconversion is an economically attractive biorefinery strategy to reduce enzyme consumption. Direct conversion of lignocellulosic biomass for butyric acid production is still challenging because of competition among microorganisms. In a consolidated hydrolysis/fermentation bioprocessing (CBP) the microbial structure may eventually prefer the production of caproic acid rather than butyric acid production. This paper presents a new bioaugmentation approach for high butyric acid production from rice straw. By dosing 0.03 g/L of Clostridium tyrobutyricum ATCC 25755 in the CBP, an increase of 226% higher butyric acid was yielded. The selectivity and concentration also increased to 60.7% and 18.05 g/L, respectively. DNA-sequencing confirmed the shift of bacterial community in the augmented CBP. Butyric acid producer was enriched in the bioaugmented bacterial community and the bacteria related to long chain acids production was degenerated. The findings may be useful in future research and process design to enhance productivity of desired bio-products.
Collapse
Affiliation(s)
- Xue Chi
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China.
| | - Xin Wang
- School of Resources and Environment, Northeast Agriculture University, 59 Mucai Road, Harbin 150001, China
| | - Yafei Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Shao-Yuan Leu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China.
| | - Ying Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| |
Collapse
|
23
|
Xiao Z, Cheng C, Bao T, Liu L, Wang B, Tao W, Pei X, Yang ST, Wang M. Production of butyric acid from acid hydrolysate of corn husk in fermentation by Clostridium tyrobutyricum: kinetics and process economic analysis. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:164. [PMID: 29946355 PMCID: PMC6003175 DOI: 10.1186/s13068-018-1165-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 06/06/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Butyric acid is an important chemical currently produced from petrochemical feedstocks. Its production from renewable, low-cost biomass in fermentation has attracted large attention in recent years. In this study, the feasibility of corn husk, an abundant agricultural residue, for butyric acid production by using Clostridium tyrobutyricum immobilized in a fibrous bed bioreactor (FBB) was evaluated. RESULTS Hydrolysis of corn husk (10% solid loading) with 0.4 M H2SO4 at 110 °C for 6 h resulted in a hydrolysate containing ~ 50 g/L total reducing sugars (glucose:xylose = 1.3:1.0). The hydrolysate was used for butyric acid fermentation by C. tyrobutyricum in a FBB, which gave 42.6 and 53.0% higher butyric acid production from glucose and xylose, respectively, compared to free-cell fermentations. Fermentation with glucose and xylose mixture (1:1) produced 50.37 ± 0.04 g L-1 butyric acid with a yield of 0.38 ± 0.02 g g-1 and productivity of 0.34 ± 0.03 g L-1 h-1. Batch fermentation with corn husk hydrolysate produced 21.80 g L-1 butyric acid with a yield of 0.39 g g-1, comparable to those from glucose. Repeated-batch fermentations consistently produced 20.75 ± 0.65 g L-1 butyric acid with an average yield of 0.39 ± 0.02 g g-1 in three consecutive batches. An extractive fermentation process can be used to produce, separate, and concentrate butyric acid to > 30% (w/v) sodium butyrate at an economically attractive cost for application as an animal feed supplement. CONCLUSION A high concentration of total reducing sugars at ~ 50% (w/w) yield was obtained from corn husk after acid hydrolysis. Stable butyric acid production from corn husk hydrolysate was achieved in repeated-batch fermentation with C. tyrobutyricum immobilized in a FBB, demonstrating that corn husk can be used as an economical substrate for butyric acid production.
Collapse
Affiliation(s)
- Zhiping Xiao
- College of Animal Science, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058 People’s Republic of China
| | - Chu Cheng
- College of Animal Science, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058 People’s Republic of China
| | - Teng Bao
- Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210 USA
| | - Lujie Liu
- College of Animal Science, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058 People’s Republic of China
| | - Bin Wang
- College of Animal Science, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058 People’s Republic of China
| | - Wenjing Tao
- College of Animal Science, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058 People’s Republic of China
| | - Xun Pei
- College of Animal Science, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058 People’s Republic of China
| | - Shang-Tian Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210 USA
| | - Minqi Wang
- College of Animal Science, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058 People’s Republic of China
| |
Collapse
|
24
|
Huang J, Tang W, Zhu S, Du M. Biosynthesis of butyric acid by Clostridium tyrobutyricum. Prep Biochem Biotechnol 2018; 48:427-434. [PMID: 29561227 DOI: 10.1080/10826068.2018.1452257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Butyric acid (C3H7COOH) is an important chemical that is widely used in foodstuffs along with in the chemical and pharmaceutical industries. The bioproduction of butyric acid through large-scale fermentation has the potential to be more economical and efficient than petrochemical synthesis. In this paper, the metabolic pathways involved in the production of butyric acid from Clostridium tyrobutyricum using hexose and pentose as substrates are investigated, and approaches to enhance butyric acid production through genetic modification are discussed. Finally, bioreactor modifications (including fibrous bed bioreactor, inner disk-shaped matrix bioreactor, fibrous matrix packed in porous levitated sphere carriers), low-cost feedstocks, and special treatments (including continuous fermentation with cell recycling, extractive fermentation with solvent, using different artificial electron carriers) intended to improve the feasibility of commercial butyric acid bioproduction are summarized.
Collapse
Affiliation(s)
- Jin Huang
- a College of Pharmaceutical Science , Zhejiang University of Technology , Hangzhou , China
| | - Wan Tang
- a College of Pharmaceutical Science , Zhejiang University of Technology , Hangzhou , China
| | - Shengquan Zhu
- a College of Pharmaceutical Science , Zhejiang University of Technology , Hangzhou , China
| | - Meini Du
- a College of Pharmaceutical Science , Zhejiang University of Technology , Hangzhou , China
| |
Collapse
|
25
|
Chi X, Li J, Wang X, Zhang Y, Antwi P. Hyper-production of butyric acid from delignified rice straw by a novel consolidated bioprocess. BIORESOURCE TECHNOLOGY 2018; 254:115-120. [PMID: 29413911 DOI: 10.1016/j.biortech.2018.01.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/07/2018] [Accepted: 01/08/2018] [Indexed: 06/08/2023]
Abstract
A novel consolidated bioprocess for hyper-production of butyric acid from delignified rice straw without exogenous enzymes involved was developed by co-fermentation of Clostridium thermocellum ATCC 27405 and C. thermobutyricum ATCC 49875. Feasibility of the consolidated bioprocess was approved by batch fermentations, with the optimum pH of 6.5. Fed-batch fermentation with a constant pH of 6.5 at 55 °C could enhance the butyric acid yield to a remarkable 33.9 g/L with a selectivity as high as 78%. Metabolic analysis of the co-culture indicated that sugars liberated by C. thermocellum ATCC 27405 were effectively converted to butyric acid by C. thermobutyricum ATCC 49875. Secondary metabolism of C. thermobutyricum ATCC 49875 also contributed to the hyper-production of butyric acid, resulting in the re-assimilation of by-products such as acetic acid and ethanol. This work provides a more effective fermentation process for butyric acid production from lignocellulosic biomass for future applications.
Collapse
Affiliation(s)
- Xue Chi
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China.
| | - Xin Wang
- School of Resources and Environment, Northeast Agriculture University, 59 Mucai Road, Harbin 150001, China
| | - Yafei Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Philip Antwi
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| |
Collapse
|
26
|
Fermentative production of butyric acid from paper mill sludge hydrolysates using Clostridium tyrobutyricum NRRL B-67062/RPT 4213. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Luo H, Yang R, Zhao Y, Wang Z, Liu Z, Huang M, Zeng Q. Recent advances and strategies in process and strain engineering for the production of butyric acid by microbial fermentation. BIORESOURCE TECHNOLOGY 2018; 253:343-354. [PMID: 29329775 DOI: 10.1016/j.biortech.2018.01.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/28/2017] [Accepted: 01/01/2018] [Indexed: 06/07/2023]
Abstract
Butyric acid is an important platform chemical, which is widely used in the fields of food, pharmaceutical, energy, etc. Microbial fermentation as an alternative approach for butyric acid production is attracting great attention as it is an environmentally friendly bioprocessing. However, traditional fermentative butyric acid production is still not economically competitive compared to chemical synthesis route, due to the low titer, low productivity, and high production cost. Therefore, reduction of butyric acid production cost by utilization of alternative inexpensive feedstock, and improvement of butyric acid production and productivity has become an important target. Recently, several advanced strategies have been developed for enhanced butyric acid production, including bioprocess techniques and metabolic engineering methods. This review provides an overview of advances and strategies in process and strain engineering for butyric acid production by microbial fermentation. Additionally, future perspectives on improvement of butyric acid production are also proposed.
Collapse
Affiliation(s)
- Hongzhen Luo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Rongling Yang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Zhaoyu Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Zheng Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Mengyu Huang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Qingwei Zeng
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| |
Collapse
|
28
|
Sunwoo IY, Hau NT, Ra CH, Jeong GT, Kim SK. Acetone–Butanol–Ethanol Production from Waste Seaweed Collected from Gwangalli Beach, Busan, Korea, Based on pH-Controlled and Sequential Fermentation Using Two Strains. Appl Biochem Biotechnol 2018; 185:1075-1087. [DOI: 10.1007/s12010-018-2711-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/24/2018] [Indexed: 12/19/2022]
|
29
|
Suo Y, Fu H, Ren M, Yang X, Liao Z, Wang J. Butyric acid production from lignocellulosic biomass hydrolysates by engineered Clostridium tyrobutyricum overexpressing Class I heat shock protein GroESL. BIORESOURCE TECHNOLOGY 2018; 250:691-698. [PMID: 29220814 DOI: 10.1016/j.biortech.2017.11.059] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/17/2017] [Accepted: 11/18/2017] [Indexed: 06/07/2023]
Abstract
Lignocellulosic biomass is the most abundant and renewable substrate for biological fermentation, but the inhibitors present in the lignocellulosic hydrolysates could severely inhibit the cell growth and productivity of industrial strains. This study confirmed that overexpressing of native groESL in Clostridium tyrobutyricum could significantly improve its tolerance to lignocellulosic hydrolysate-derived inhibitors, especially for phenolic compounds. Consequently, ATCC 25755/groESL showed a better performance in butyric acid fermentation with hydrolysates of corn cob, corn straw, rice straw, wheat straw, soybean hull and soybean straw, respectively. When corn straw and rice straw hydrolysates, which showed strong toxicity to C. tyrobutyricum, were used as the substrates, 29.6 g/L and 30.1 g/L butyric acid were obtained in batch fermentation, increased by 26.5% and 19.4% as compared with the wild-type strain, respectively. And more importantly, the butyric acid productivity reached 0.31 g/L·h (vs. 0.20-0.21 g/L·h for the wild-type strain) due to the shortened lag phase.
Collapse
Affiliation(s)
- Yukai Suo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Hongxin Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Mengmeng Ren
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xitong Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Zhengping Liao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
30
|
Zhou M, Yan B, Wong JWC, Zhang Y. Enhanced volatile fatty acids production from anaerobic fermentation of food waste: A mini-review focusing on acidogenic metabolic pathways. BIORESOURCE TECHNOLOGY 2018; 248:68-78. [PMID: 28693950 DOI: 10.1016/j.biortech.2017.06.121] [Citation(s) in RCA: 280] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 05/11/2023]
Abstract
Recently, efficient disposal of food waste (FW) with potential resource recovery has attracted great attentions. Due to its easily biodegradable nature, rich nutrient availability and high moisture content, FW is regarded as favorable substrate for anaerobic digestion (AD). Both waste disposal and energy recovery can be fulfilled during AD of FW. Volatile fatty acids (VFAs) which are the products of the first-two stages of AD, are widely applied in chemical industry as platform chemicals recently. Concentration and distribution of VFAs is the result of acidogenic metabolic pathways, which can be affected by the micro-environment (e.g. pH) in the digester. Hence, the clear elucidation of the acidogenic metabolic pathways is essential for optimization of acidogenic process for efficient product recovery. This review summarizes major acidogenic metabolic pathways and regulating strategies for enhancing VFAs recovery during acidogenic fermentation of FW.
Collapse
Affiliation(s)
- Miaomiao Zhou
- Lab of Waste Valorization and Water Reuse, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Laoshan District, Qingdao 266101, PR China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, PR China
| | - Binghua Yan
- Lab of Waste Valorization and Water Reuse, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Laoshan District, Qingdao 266101, PR China.
| | - Jonathan W C Wong
- Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, PR China
| | - Yang Zhang
- Lab of Waste Valorization and Water Reuse, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Laoshan District, Qingdao 266101, PR China
| |
Collapse
|
31
|
|
32
|
Sjöblom M, Risberg P, Filippova A, Öhrman OGW, Rova U, Christakopoulos P. In Situ Biocatalytic Synthesis of Butyl Butyrate in Diesel and Engine Evaluations. ChemCatChem 2017. [DOI: 10.1002/cctc.201700855] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Magnus Sjöblom
- Biochemical Process Engineering; Division of Chemical Engineering; Department of Civil; Environmental and Natural Resources Engineering; Luleå University of Technology; 971 87 Luleå Sweden
| | - Per Risberg
- Internal Combustion Engines; Department of Machine Design; Royal Institute of Technology; Brinellvägen 85 100 44 Stockholm Sweden
| | - Alfia Filippova
- Biochemical Process Engineering; Division of Chemical Engineering; Department of Civil; Environmental and Natural Resources Engineering; Luleå University of Technology; 971 87 Luleå Sweden
| | | | - Ulrika Rova
- Biochemical Process Engineering; Division of Chemical Engineering; Department of Civil; Environmental and Natural Resources Engineering; Luleå University of Technology; 971 87 Luleå Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering; Division of Chemical Engineering; Department of Civil; Environmental and Natural Resources Engineering; Luleå University of Technology; 971 87 Luleå Sweden
| |
Collapse
|
33
|
Liu J, Yuan M, Liu JN, Huang XF. Bioconversion of mixed volatile fatty acids into microbial lipids by Cryptococcus curvatus ATCC 20509. BIORESOURCE TECHNOLOGY 2017; 241:645-651. [PMID: 28609752 DOI: 10.1016/j.biortech.2017.05.085] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/13/2017] [Accepted: 05/15/2017] [Indexed: 05/17/2023]
Abstract
The oleaginous yeast Cryptococcus curvatus ATCC 20509 can use 5-40g/L of acetic, propionic, or butyric acid as sole carbon source to produce lipids. High concentrations (30g/L) of mixed volatile fatty acids (VFAs) were used to cultivate C. curvatus to explore the effects of different ratios of mixed VFAs on lipid production and composition. When mixed VFAs (VFA ratio was 15:5:10) were used as carbon sources, the highest cell mass and lipid concentration were 8.68g/L and 4.93g/L, respectively, which were significantly higher than those when 30g/L of acetic acid was used as sole carbon source. The highest content and yield of odd-numbered fatty acids were 45.1% (VFA ratio was 0:15:15) and 1.62g/L (VFA ratio was 5:15:10), respectively. These results indicate that adjusting the composition ratios of mixed VFAs effectively improves microbial lipid synthesis and the yield of odd-numbered fatty acids.
Collapse
Affiliation(s)
- Jia Liu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Collaborative Innovation Center for Regional Environmental Quality, Tongji University, Shanghai 200092, China
| | - Ming Yuan
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Collaborative Innovation Center for Regional Environmental Quality, Tongji University, Shanghai 200092, China
| | - Jia-Nan Liu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Collaborative Innovation Center for Regional Environmental Quality, Tongji University, Shanghai 200092, China
| | - Xiang-Feng Huang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Collaborative Innovation Center for Regional Environmental Quality, Tongji University, Shanghai 200092, China.
| |
Collapse
|
34
|
Fu H, Yang ST, Wang M, Wang J, Tang IC. Butyric acid production from lignocellulosic biomass hydrolysates by engineered Clostridium tyrobutyricum overexpressing xylose catabolism genes for glucose and xylose co-utilization. BIORESOURCE TECHNOLOGY 2017; 234:389-396. [PMID: 28343058 DOI: 10.1016/j.biortech.2017.03.073] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/08/2017] [Accepted: 03/10/2017] [Indexed: 06/06/2023]
Abstract
Clostridium tyrobutyricum can utilize glucose and xylose as carbon source for butyric acid production. However, xylose catabolism is inhibited by glucose, hampering butyric acid production from lignocellulosic biomass hydrolysates containing both glucose and xylose. In this study, an engineered strain of C. tyrobutyricum Ct-pTBA overexpressing heterologous xylose catabolism genes (xylT, xylA, and xylB) was investigated for co-utilizing glucose and xylose present in hydrolysates of plant biomass, including soybean hull, corn fiber, wheat straw, rice straw, and sugarcane bagasse. Compared to the wild-type strain, Ct-pTBA showed higher xylose utilization without significant glucose catabolite repression, achieving near 100% utilization of glucose and xylose present in lignocellulosic biomass hydrolysates in bioreactor at pH 6. About 42.6g/L butyrate at a productivity of 0.56g/L·h and yield of 0.36g/g was obtained in batch fermentation, demonstrating the potential of C. tyrobutyricum Ct-pTBA for butyric acid production from lignocellulosic biomass hydrolysates.
Collapse
Affiliation(s)
- Hongxin Fu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China; Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Shang-Tian Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA.
| | - Minqi Wang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Jufang Wang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - I-Ching Tang
- Bioprocessing Innovative Company, 4734 Bridle Path Ct., Dublin, OH 43017, USA
| |
Collapse
|
35
|
Fu H, Wang X, Sun Y, Yan L, Shen J, Wang J, Yang ST, Xiu Z. Effects of salting-out and salting-out extraction on the separation of butyric acid. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.02.042] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
36
|
Metabolic engineering of Clostridium tyrobutyricum for enhanced butyric acid production from glucose and xylose. Metab Eng 2017; 40:50-58. [DOI: 10.1016/j.ymben.2016.12.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/25/2016] [Accepted: 12/26/2016] [Indexed: 12/28/2022]
|
37
|
Ra CH, Jeong GT, Kim SK. Hyper-thermal acid hydrolysis and adsorption treatment of red seaweed, Gelidium amansii for butyric acid production with pH control. Bioprocess Biosyst Eng 2016; 40:403-411. [DOI: 10.1007/s00449-016-1708-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/15/2016] [Indexed: 11/24/2022]
|
38
|
Ai B, Chi X, Meng J, Sheng Z, Zheng L, Zheng X, Li J. Consolidated Bioprocessing for Butyric Acid Production from Rice Straw with Undefined Mixed Culture. Front Microbiol 2016; 7:1648. [PMID: 27822203 PMCID: PMC5076434 DOI: 10.3389/fmicb.2016.01648] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 10/04/2016] [Indexed: 11/13/2022] Open
Abstract
Lignocellulosic biomass is a renewable source with great potential for biofuels and bioproducts. However, the cost of cellulolytic enzymes limits the utilization of the low-cost bioresource. This study aimed to develop a consolidated bioprocessing without the need of supplementary cellulase for butyric acid production from lignocellulosic biomass. A stirred-tank reactor with a working volume of 21 L was constructed and operated in batch and semi-continuous fermentation modes with a cellulolytic butyrate-producing microbial community. The semi-continuous fermentation with intermittent discharging of the culture broth and replenishment with fresh medium achieved the highest butyric acid productivity of 2.69 g/(L· d). In semi-continuous operation mode, the butyric acid and total carboxylic acid concentrations of 16.2 and 28.9 g/L, respectively, were achieved. Over the 21-day fermentation period, their cumulative yields reached 1189 and 2048 g, respectively, corresponding to 41 and 74% of the maximum theoretical yields based on the amount of NaOH pretreated rice straw fed in. This study demonstrated that an undefined mixed culture-based consolidated bioprocessing for butyric acid production can completely eliminate the cost of supplementary cellulolytic enzymes.
Collapse
Affiliation(s)
- Binling Ai
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural SciencesHaikou, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of TechnologyHarbin, China
| | - Xue Chi
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Harbin, China
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Harbin, China
| | - Zhanwu Sheng
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences Haikou, China
| | - Lili Zheng
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences Haikou, China
| | - Xiaoyan Zheng
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences Haikou, China
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Harbin, China
| |
Collapse
|
39
|
Kim M, Kim KY, Lee KM, Youn SH, Lee SM, Woo HM, Oh MK, Um Y. Butyric acid production from softwood hydrolysate by acetate-consuming Clostridium sp. S1 with high butyric acid yield and selectivity. BIORESOURCE TECHNOLOGY 2016; 218:1208-1214. [PMID: 27474955 DOI: 10.1016/j.biortech.2016.07.073] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 06/06/2023]
Abstract
The aim of this work was to study the butyric acid production from softwood hydrolysate by acetate-consuming Clostridium sp. S1. Results showed that Clostridium sp. S1 produced butyric acid by simultaneously utilizing glucose and mannose in softwood hydrolysate and, more remarkably, it consumed acetic acid in hydrolysate. Clostridium sp. S1 utilized each of glucose, mannose, and xylose as well as mixed sugars simultaneously with partially repressed xylose utilization. When softwood (Japanese larch) hydrolysate containing glucose and mannose as the main sugars was used, Clostridium sp. S1 produced 21.17g/L butyric acid with the yield of 0.47g/g sugar and the selectivity of 1 (g butyric acid/g total acids) owing to the consumption of acetic acid in hydrolysate. The results demonstrate potential of Clostridium sp. S1 to produce butyric acid selectively and effectively from hydrolysate not only by utilizing mixed sugars simultaneously but also by converting acetic acid to butyric acid.
Collapse
Affiliation(s)
- Minsun Kim
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea
| | - Ki-Yeon Kim
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Clean Energy and Chemical Engineering, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Kyung Min Lee
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Sung Hun Youn
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Sun-Mi Lee
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Clean Energy and Chemical Engineering, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Han Min Woo
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Clean Energy and Chemical Engineering, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Min-Kyu Oh
- Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Clean Energy and Chemical Engineering, Korea University of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
40
|
Chandolias K, Pardaev S, Taherzadeh MJ. Biohydrogen and carboxylic acids production from wheat straw hydrolysate. BIORESOURCE TECHNOLOGY 2016; 216:1093-1097. [PMID: 27268482 DOI: 10.1016/j.biortech.2016.05.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/27/2016] [Accepted: 05/29/2016] [Indexed: 06/06/2023]
Abstract
Hydrolyzed wheat straw was converted into carboxylic acids and biohydrogen using digesting bacteria. The fermentations were carried out using both free and membrane-encased thermophilic bacteria (55°C) at various OLRs (4.42-17.95g COD/L.d), in semi-continuous conditions using one or two bioreactors in a series. The highest production of biohydrogen and acetic acid was achieved at an OLR of 4.42g COD/L.d, whilst the highest lactic acid production occurred at an OLR of 9.33g COD/L.d. Furthermore, the bioreactor with both free and membrane-encased cells produced 60% more lactic acid compared to the conventional, free-cell bioreactor. In addition, an increase of 121% and 100% in the production of acetic and isobutyric acid, respectively, was achieved in the 2nd-stage bioreactor compared to the 1st-stage bioreactor.
Collapse
Affiliation(s)
| | - Sindor Pardaev
- Samarkand Agricultural Institute, 140103 Samarkand, Uzbekistan
| | | |
Collapse
|
41
|
Microbial Production of Short Chain Fatty Acids from Lignocellulosic Biomass: Current Processes and Market. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8469357. [PMID: 27556042 PMCID: PMC4983341 DOI: 10.1155/2016/8469357] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 06/30/2016] [Indexed: 11/23/2022]
Abstract
Biological production of organic acids from conversion of biomass derivatives has received increased attention among scientists and engineers and in business because of the attractive properties such as renewability, sustainability, degradability, and versatility. The aim of the present review is to summarize recent research and development of short chain fatty acids production by anaerobic fermentation of nonfood biomass and to evaluate the status and outlook for a sustainable industrial production of such biochemicals. Volatile fatty acids (VFAs) such as acetic acid, propionic acid, and butyric acid have many industrial applications and are currently of global economic interest. The focus is mainly on the utilization of pretreated lignocellulosic plant biomass as substrate (the carbohydrate route) and development of the bacteria and processes that lead to a high and economically feasible production of VFA. The current and developing market for VFA is analyzed focusing on production, prices, and forecasts along with a presentation of the biotechnology companies operating in the market for sustainable biochemicals. Finally, perspectives on taking sustainable product of biochemicals from promise to market introduction are reviewed.
Collapse
|
42
|
Rebroš M, Dolejš I, Stloukal R, Rosenberg M. Butyric acid production with Clostridium tyrobutyricum immobilised to PVA gel. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
43
|
Wang L, Ou MS, Nieves I, Erickson JE, Vermerris W, Ingram LO, Shanmugam KT. Fermentation of sweet sorghum derived sugars to butyric acid at high titer and productivity by a moderate thermophile Clostridium thermobutyricum at 50°C. BIORESOURCE TECHNOLOGY 2015; 198:533-539. [PMID: 26432057 DOI: 10.1016/j.biortech.2015.09.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/11/2015] [Accepted: 09/13/2015] [Indexed: 06/05/2023]
Abstract
In this study, a moderate thermophile Clostridium thermobutyricum is shown to ferment the sugars in sweet sorghum juice treated with invertase and supplemented with tryptone (10 g L(-1)) and yeast extract (10 g L(-1)) at 50°C to 44 g L(-1) butyrate at a calculated highest volumetric productivity of 1.45 g L(-1)h(-1) (molar butyrate yield of 0.85 based on sugars fermented). This volumetric productivity is among the highest reported for batch fermentations. Sugars from acid and enzyme-treated sweet sorghum bagasse were also fermented to butyrate by this organism with a molar yield of 0.81 (based on the amount of cellulose and hemicellulose). By combining the results from juice and bagasse, the calculated yield of butyric acid is approximately 90 kg per tonne of fresh sweet sorghum stalk. This study demonstrates that C. thermobutyricum can be an effective microbial biocatalyst for production of bio-based butyrate from renewable feedstocks at 50°C.
Collapse
Affiliation(s)
- Liang Wang
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, FL 32611, USA
| | - Mark S Ou
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, FL 32611, USA
| | - Ismael Nieves
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, FL 32611, USA
| | - John E Erickson
- Department of Agronomy, IFAS, University of Florida, Gainesville, FL 32611, USA
| | - Wilfred Vermerris
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, FL 32611, USA
| | - L O Ingram
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, FL 32611, USA
| | - K T Shanmugam
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
44
|
Deng Y, Mao Y, Zhang X. Driving carbon flux through exogenous butyryl-CoA: Acetate CoA-transferase to produce butyric acid at high titer in Thermobifida fusca. J Biotechnol 2015; 216:151-7. [PMID: 26535965 DOI: 10.1016/j.jbiotec.2015.10.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/07/2015] [Accepted: 10/29/2015] [Indexed: 12/31/2022]
Abstract
Butyric acid, a 4-carbon short chain fatty acid, is widely used in chemical, food, and pharmaceutical industries. The low activity of butyryl-CoA: acetate CoA-transferase in Thermobifida fusca muS, a thermophilic actinobacterium whose optimal temperature was 55°C, was found to hinder the accumulation of high yield of butyric acid. In order to solve this problem, an exogenous butyryl-CoA: acetate CoA-transferase gene (actA) from Thermoanaerobacterium thermosaccharolyticum DSM571 was integrated into the chromosome of T. fusca muS by replacing celR gene, forming T. fusca muS-1. We demonstrated that on 5g/L cellulose, the yield of butyric acid by the engineered muS-1 strain was increased by 42.9 % compared to the muS strain. On 100g/L of cellulose, the muS-1 strain could consume 90.5% of total cellulose in 144h, with 33.2g/L butyric acid produced. Furthermore, on the mix substrates including the major components of biomass: cellulose, xylose, mannose and galactose, 70.4g/L butyric acid was produced in 168h by fed-batch fermentation. To validate the ability of fermenting biomass, the muS-1 strain was grown on the milled corn stover ranging from 200 to 250μm. The muS-1 strain had the highest butyrate titer 17.1g/L on 90g/L corn stover.
Collapse
Affiliation(s)
- Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Yin Mao
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xiaojuan Zhang
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
45
|
Baroi GN, Baumann I, Westermann P, Gavala HN. Butyric acid fermentation from pretreated and hydrolysed wheat straw by an adapted Clostridium tyrobutyricum strain. Microb Biotechnol 2015; 8:874-82. [PMID: 26230610 PMCID: PMC4554475 DOI: 10.1111/1751-7915.12304] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/13/2015] [Accepted: 05/28/2015] [Indexed: 11/29/2022] Open
Abstract
Butyric acid is a valuable building-block for the production of chemicals and materials and nowadays it is produced exclusively from petroleum. The aim of this study was to develop a suitable and robust strain of Clostridium tyrobutyricum that produces butyric acid at a high yield and selectivity from lignocellulosic biomasses. Pretreated (by wet explosion) and enzymatically hydrolysed wheat straw (PHWS), rich in C6 and C5 sugars (71.6 and 55.4 g l−1 of glucose and xylose respectively), was used as substrate. After one year of serial selections, an adapted strain of C. tyrobutyricum was developed. The adapted strain was able to grow in 80% (v v−1) PHWS without addition of yeast extract compared with an initial tolerance to less than 10% PHWS and was able to ferment both glucose and xylose. It is noticeable that the adapted C. tyrobutyricum strain was characterized by a high yield and selectivity to butyric acid. Specifically, the butyric acid yield at 60–80% PHWS lie between 0.37 and 0.46 g g−1 of sugar, while the selectivity for butyric acid was as high as 0.9–1.0 g g−1 of acid. Moreover, the strain exhibited a robust response in regards to growth and product profile at pH 6 and 7.
Collapse
Affiliation(s)
- G N Baroi
- Department of Chemistry and Bioscience, Aalborg University (AAU), A.C. Meyers Vaenge 15, DK 2450, Copenhagen, SV, Denmark
| | - I Baumann
- Department of Chemistry and Bioscience, Aalborg University (AAU), A.C. Meyers Vaenge 15, DK 2450, Copenhagen, SV, Denmark
| | - P Westermann
- Department of Chemistry and Bioscience, Aalborg University (AAU), A.C. Meyers Vaenge 15, DK 2450, Copenhagen, SV, Denmark
| | - H N Gavala
- Department of Chemistry and Bioscience, Aalborg University (AAU), A.C. Meyers Vaenge 15, DK 2450, Copenhagen, SV, Denmark
| |
Collapse
|
46
|
Upare PP, Hwang YK, Lee JM, Hwang DW, Chang JS. Chemical Conversions of Biomass-Derived Platform Chemicals over Copper-Silica Nanocomposite Catalysts. CHEMSUSCHEM 2015; 8:2345-2357. [PMID: 26192888 DOI: 10.1002/cssc.201500091] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/11/2015] [Indexed: 06/04/2023]
Abstract
Biomass and biomass-derived carbohydrates have a high extent of functionality, unlike petroleum, which has limited functionality. In biorefinery applications, the development of methods to control the extent of functionality in final products intended for use as fuels and chemicals is a challenge. In the chemical industry, heterogeneous catalysis is an important tool for the defunctionalization of functionalized feedstocks and biomass-derived platform chemicals to produce value-added chemicals. Herein, we review the recent progress in this field, mainly of vapor phase chemical conversion of biomass-derived C4 -C6 carboxylic acids and esters using copper-silica nanocomposite catalysts. We also demonstrate that these nanocomposite catalysts very efficiently convert biomass-derived platform chemicals into cyclic compounds, such as lactones and hydrofurans, with high selectivities and yields.
Collapse
Affiliation(s)
- Pravin P Upare
- Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology (KRICT), Jang-dong 100, Yuseong, Daejeon 305-600 (Korea)
| | - Young Kyu Hwang
- Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology (KRICT), Jang-dong 100, Yuseong, Daejeon 305-600 (Korea).
| | - Jong-Min Lee
- Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology (KRICT), Jang-dong 100, Yuseong, Daejeon 305-600 (Korea)
| | - Dong Won Hwang
- Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology (KRICT), Jang-dong 100, Yuseong, Daejeon 305-600 (Korea)
| | - Jong-San Chang
- Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology (KRICT), Jang-dong 100, Yuseong, Daejeon 305-600 (Korea). ,
- Department of Chemistry, Sungkyunkwan University, Suwon 440-476 (Korea). ,
| |
Collapse
|
47
|
Lee KM, Kim KY, Choi O, Woo HM, Kim Y, Han SO, Sang BI, Um Y. In situ detoxification of lignocellulosic hydrolysate using a surfactant for butyric acid production by Clostridium tyrobutyricum ATCC 25755. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.01.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Baroi GN, Skiadas IV, Westermann P, Gavala HN. Continuous Fermentation of Wheat Straw Hydrolysate by Clostridium tyrobutyricum with In-Situ Acids Removal. WASTE AND BIOMASS VALORIZATION 2015; 6:317-326. [PMID: 26855685 PMCID: PMC4734455 DOI: 10.1007/s12649-015-9348-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 01/15/2015] [Indexed: 06/05/2023]
Abstract
The present study focused on fermentative butyric acid production by Clostridium tyrobutyricum from pre-treated and hydrolysed wheat straw (PHWS) based on continuous operation mode and in situ acids extraction by reverse electro enhanced dialysis (REED). Different dilutions of PHWS in a synthetic medium (60-100 % v/v) were tested. It was found that continuous fermentation of PHWS greatly enhanced the sugar consumption rates and butyric acid productivity compared to batch tests, while application of REED enhanced them even further. Specifically, applying combined continuous operation mode and REED system for the fermentation of 70 % PHWS resulted in 19- and 53-fold higher glucose (1.37 g L-1 h-1) and xylose (0.80 g L-1 h-1) consumption rates, respectively, compared to those obtained by batch processing. Fermentation of 100 % PHWS continued unhindered with just urea and K2HPO4 added with butyric acid production rate, yield and selectivity being 1.30 g L-1 h-1, 0.45 g g-1 sugars and 0.88 g g-1 acids, respectively. These results were also confirmed in a 20 L pilot plant bioreactor system.
Collapse
Affiliation(s)
- G. N. Baroi
- Department of Chemistry and Bioscience, Section for Sustainable Biotechnology, Aalborg University (AAU), A C Meyers Vænge 15, 2450 Copenhagen SV, Denmark
| | - I. V. Skiadas
- Department of Chemistry and Bioscience, Section for Sustainable Biotechnology, Aalborg University (AAU), A C Meyers Vænge 15, 2450 Copenhagen SV, Denmark
| | - P. Westermann
- Department of Chemistry and Bioscience, Section for Sustainable Biotechnology, Aalborg University (AAU), A C Meyers Vænge 15, 2450 Copenhagen SV, Denmark
| | - H. N. Gavala
- Department of Chemistry and Bioscience, Section for Sustainable Biotechnology, Aalborg University (AAU), A C Meyers Vænge 15, 2450 Copenhagen SV, Denmark
| |
Collapse
|
49
|
Lee JM, Upare PP, Chang JS, Hwang YK, Lee JH, Hwang DW, Hong DY, Lee SH, Jeong MG, Kim YD, Kwon YU. Direct hydrogenation of biomass-derived butyric acid to n-butanol over a ruthenium-tin bimetallic catalyst. CHEMSUSCHEM 2014; 7:2998-3001. [PMID: 25123894 DOI: 10.1002/cssc.201402311] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/05/2014] [Indexed: 05/09/2023]
Abstract
Catalytic hydrogenation of organic carboxylic acids and their esters, for example, cellulosic ethanol from fermentation of acetic acid and hydrogenation of ethyl acetate is a promising possibility for future biorefinery concepts. A hybrid conversion process based on selective hydrogenation of butyric acid combined with fermentation of glucose has been developed for producing biobutanol. ZnO-supported Ru-Sn bimetallic catalysts exhibits unprecedentedly superior performance in the vapor-phase hydrogenation of biomass-derived butyric acid to n-butanol (>98% yield) for 3500 h without deactivation.
Collapse
Affiliation(s)
- Jong-Min Lee
- Biorefinery Research Group & Industrial Biochemical Research Group, Korea Research Institute of Chemical Technology (KRICT), Jang-dong 100, Yuseong, Daejeon 305-600 (Korea)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Production of butyric acid by a cellulolytic actinobacterium Thermobifida fusca on cellulose. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2014.06.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|