1
|
Zheng WX, Li TX, Xie YH, Lv YD, Xie DL, Wu F. Preparation of multi-colored carbon dots via pH-controlled degradation of wheat bran/ o-phenylenediamine for Fe 3+ ion detection. RSC Adv 2025; 15:12028-12041. [PMID: 40248139 PMCID: PMC12004230 DOI: 10.1039/d4ra09117e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 04/04/2025] [Indexed: 04/19/2025] Open
Abstract
Multi-colored carbon dots (CDs) have attracted significant research interest due to their wide range of applications. However, the mechanisms underlying their luminescence and regulation still require further exploration. Herein, blue, green, and orange CDs with different quantum yields were successfully prepared, by changing the thermal degradation behavior of the waste wheat bran/o-phenylenediamine via adjusting the pH of the acidic hydrothermal conditions. The structure-photoluminescence property relationship of the prepared multi-colored CDs was thoroughly analyzed and discussed, aiming to provide new insights into the luminescence red-shift mechanisms of CDs. It was found that the larger sp2 domains, higher graphitization of carbon cores, increased graphitic nitrogen, and elevated levels of C[double bond, length as m-dash]O functional groups contribute to the CDs' lower band gap, resulting in a red-shift of the emission fluorescence. Among them, the elevated levels of C[double bond, length as m-dash]O functional groups are normally neglected for their contribution in the red-shift of CDs. Additionally, the prepared CDs were explored for their application in monitoring Fe3+ content in aquatic environments. A detection limit of 378.76 nM was obtained for the prepared CDs.
Collapse
Affiliation(s)
- Wen Xuan Zheng
- Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Faculty of Chemical Engineering, Kunming University of Science and Technology Yunnan 650500 China
- The International Joint Laboratory for Sustainable Polymers of Yunnan Province, Engineering Research Center of Biodegradable Polymers, Educational Commission of Yunnan Province Kunming Yunnan China 650500
| | - Tian Xiang Li
- Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Faculty of Chemical Engineering, Kunming University of Science and Technology Yunnan 650500 China
- The International Joint Laboratory for Sustainable Polymers of Yunnan Province, Engineering Research Center of Biodegradable Polymers, Educational Commission of Yunnan Province Kunming Yunnan China 650500
| | - Yu-Hui Xie
- Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Faculty of Chemical Engineering, Kunming University of Science and Technology Yunnan 650500 China
- The International Joint Laboratory for Sustainable Polymers of Yunnan Province, Engineering Research Center of Biodegradable Polymers, Educational Commission of Yunnan Province Kunming Yunnan China 650500
| | - Ya Dong Lv
- College of Polymer Science and Engineering, Sichuan University Sichuan 610000 China
| | - De Long Xie
- Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Faculty of Chemical Engineering, Kunming University of Science and Technology Yunnan 650500 China
- The International Joint Laboratory for Sustainable Polymers of Yunnan Province, Engineering Research Center of Biodegradable Polymers, Educational Commission of Yunnan Province Kunming Yunnan China 650500
| | - Feng Wu
- Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Faculty of Chemical Engineering, Kunming University of Science and Technology Yunnan 650500 China
- The International Joint Laboratory for Sustainable Polymers of Yunnan Province, Engineering Research Center of Biodegradable Polymers, Educational Commission of Yunnan Province Kunming Yunnan China 650500
| |
Collapse
|
2
|
Liu X, Yun X, Cheng Z, Guo Y, Yuan J, Nie W. Determination and prediction of standardized ileal amino acid digestibility of wheat bran in broiler chickens. Anim Biosci 2024; 37:1788-1798. [PMID: 38665080 PMCID: PMC11366519 DOI: 10.5713/ab.24.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/19/2024] [Accepted: 03/12/2024] [Indexed: 09/03/2024] Open
Abstract
OBJECTIVE The objective of this experiment was to determine the standard ileal digestibility (SID) of amino acid (AA) in 10 different sources of wheat bran fed to broilers and establish the SID AA prediction based on the chemical composition. METHODS A total of 660 1-day-old broilers were randomly divided into 11 treatments with 6 replicates of 10 chickens each. Diets included 10 semi-purified mash diets and 1 nitrogenfree diet. Titanium dioxide (TiO2) 0.50% was used as an indigestible index. On day 13, 6 chickens from each replicate were selected for slaughter to collect ileal contents. On day 28, 4 chickens from each replicate were selected for slaughter to collect ileal contents. RESULTS Results showed that the coefficient of variation of the conventional nutrients (except for gross energy, and dry matter) and all AAs was greater than 8.00%. The average SID of essential AA in wheat bran for 13-day-old broilers was 37.24% and the average SID of nonessential AA was 42.02%; the average SID of essential AA for 28-day-old broilers was 67.13% and the average SID of nonessential AA was 69.51%. A correlation was observed (p<0.05) between most SID AA and crude protein (CP), crude fiber (CF), acid detergent fiber (ADF), and ash at day 13. A correlation was observed (p<0.05) between most SID AA and CF, and ADF at day 28. The R2 value of stepwise regression equations for predicting the SID AA at day 13 and day 28 was best for glutamic acid (R2 = 0.97 using CP, ash, CF, ether extract (EE), and neutral detergent fiber [NDF]) and lysine (R2 = 0.74 using ash, ADF, EE, and NDF), respectively. CONCLUSION In conclusion, broiler age had a significant effect on the SID AA values of wheat bran. The chemical composition of wheat bran varied widely between sources, and CP, CF, ADF, NDF, and ash were reasonable predictors of the SID AA of wheat bran.
Collapse
Affiliation(s)
- Xingbo Liu
- National Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing,
China
| | - Xianglong Yun
- National Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing,
China
| | - Zichen Cheng
- National Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing,
China
| | - Yuming Guo
- National Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing,
China
| | - Jianmin Yuan
- National Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing,
China
| | - Wei Nie
- National Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing,
China
| |
Collapse
|
3
|
Rudjito RC, Matute AC, Jiménez-Quero A, Olsson L, Stringer MA, Krogh KBRM, Eklöf J, Vilaplana F. Integration of subcritical water extraction and treatment with xylanases and feruloyl esterases maximises release of feruloylated arabinoxylans from wheat bran. BIORESOURCE TECHNOLOGY 2024; 395:130387. [PMID: 38295956 DOI: 10.1016/j.biortech.2024.130387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Wheat bran is an abundant and low valued agricultural feedstock rich in valuable biomolecules as arabinoxylans (AX) and ferulic acid with important functional and biological properties. An integrated bioprocess combining subcritical water extraction (SWE) and enzymatic treatments has been developed for maximised recovery of feruloylated arabinoxylans and oligosaccharides from wheat bran. A minimal enzymatic cocktail was developed combining one xylanase from different glycosyl hydrolase families and a feruloyl esterase. The incorporation of xylanolytic enzymes in the integrated SWE bioprocess increased the AX yields up to 75%, higher than traditional alkaline extraction, and SWE or enzymatic treatment alone. The process isolated AX with tailored molecular structures in terms of substitution, molar mass, and ferulic acid, which can be used for structural biomedical applications, food ingredients and prebiotics. This study demonstrates the use of hydrothermal and enzyme technologies for upcycling agricultural side streams into functional bioproducts, contributing to a circular food system.
Collapse
Affiliation(s)
- Reskandi C Rudjito
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, SE-106 91 Stockholm, Sweden
| | - Alvaro C Matute
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, SE-106 91 Stockholm, Sweden
| | - Amparo Jiménez-Quero
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, SE-106 91 Stockholm, Sweden
| | - Lisbeth Olsson
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden; Wallenberg Wood Science Center, Chalmers University of Technology, Kemigården 4, 412 96 Gothenburg, Sweden
| | | | | | - Jens Eklöf
- Novozymes A/S, Krogshøjvej 36, 2880 Bagsværd, Denmark
| | - Francisco Vilaplana
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, SE-106 91 Stockholm, Sweden; Wallenberg Wood Science Centre, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
4
|
Sztupecki W, Rhazi L, Depeint F, Aussenac T. Functional and Nutritional Characteristics of Natural or Modified Wheat Bran Non-Starch Polysaccharides: A Literature Review. Foods 2023; 12:2693. [PMID: 37509785 PMCID: PMC10379113 DOI: 10.3390/foods12142693] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Wheat bran (WB) consists mainly of different histological cell layers (pericarp, testa, hyaline layer and aleurone). WB contains large quantities of non-starch polysaccharides (NSP), including arabinoxylans (AX) and β-glucans. These dietary fibres have long been studied for their health effects on management and prevention of cardiovascular diseases, cholesterol, obesity, type-2 diabetes, and cancer. NSP benefits depend on their dose and molecular characteristics, including concentration, viscosity, molecular weight, and linked-polyphenols bioavailability. Given the positive health effects of WB, its incorporation in different food products is steadily increasing. However, the rheological, organoleptic and other problems associated with WB integration are numerous. Biological, physical, chemical and combined methods have been developed to optimise and modify NSP molecular characteristics. Most of these techniques aimed to potentially improve food processing, nutritional and health benefits. In this review, the physicochemical, molecular and functional properties of modified and unmodified WB are highlighted and explored. Up-to-date research findings from the clinical trials on mechanisms that WB have and their effects on health markers are critically reviewed. The review points out the lack of research using WB or purified WB fibre components in randomized, controlled clinical trials.
Collapse
Affiliation(s)
| | | | | | - Thierry Aussenac
- Institut Polytechnique Unilasalle, Université d’Artois, ULR 7519, 60026 Beauvais, France; (W.S.); (L.R.); (F.D.)
| |
Collapse
|
5
|
Barssoum R, Al Kassis G, Nassereddine R, Saad J, El Ghoul M, Abboud J, Fayad N, Dupoiron S, Cescut J, Aceves-Lara CA, Fillaudeau L, Awad MK. Biochemical limitations of Bacillus thuringiensis based biopesticides production in a wheat bran culture medium. Res Microbiol 2023; 174:104043. [PMID: 36764472 DOI: 10.1016/j.resmic.2023.104043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023]
Abstract
Bacillus thuringiensis, a gram-positive sporulating bacteria found in the environment, produces, during its sporulation phase, crystals responsible for its insecticidal activity, constituted of an assembly of pore-forming δ-endotoxins. This has led to its use as a biopesticide, an eco-friendly alternative to harmful chemical pesticides. To minimize production cost, one endemic Bacillus thuringiensis sv. kurstaki (Btk) strain Lip, isolated from Lebanese soil, was cultivated in a wheat bran (WB) based medium (IPM-4-Citrus project EC n° 734921). With the aim of studying the biochemical limitations of Btk biopesticide production in a wheat bran based medium, the WB was sieved into different granulometries, heat treated, inoculated with Btk Lip at flask scale, then filtered and separated into an insoluble and a permeate fractions. Several biochemical analyses, ie. bio performances, starch, elemental composition, total nitrogen and ashes, were then conducted on both fractions before and after culture. On a morphological level, two populations were distinguished, the fine starch granules and the coarse lignocellulosic particles. The biochemical analyses showed that both the raw and sieved WB have a similar proteins content (0.115 g/gdm WB), water content (0.116 g/gdm WB) and elemental composition (carbon: 45%, oxygen: 37%, nitrogen: 3%, hydrogen: 6%, ashes: 5%). The starch content was 17%, 14% and 34% and the fermentable fraction was estimated to 32.1%, 36.1% and 51.1% respectively for classes 2, 3 and 4. Both the elemental composition and Kjeldahl analyses showed that the nitrogen is the limiting nutrient of the culture.
Collapse
Affiliation(s)
- Rita Barssoum
- Saint-Joseph University of Beirut, UR- EGP, Functional Genomic and Proteomic Laboratory, Faculty of Sciences, Mar Roukos- Dekwaneh, B.P. 17-5208, Mar Mikhael, Beirut, 1104 2020, Lebanon; Toulouse Biotechnology Institute, Bio & Chemical Engineering, Université de Toulouse- (CNRS UMR5504- INRAE UMR792, INSA), 135 Avenue de Rangueil, 31077 Toulouse, Cedex 04, France.
| | - Gabrielle Al Kassis
- Saint-Joseph University of Beirut, UR- EGP, Functional Genomic and Proteomic Laboratory, Faculty of Sciences, Mar Roukos- Dekwaneh, B.P. 17-5208, Mar Mikhael, Beirut, 1104 2020, Lebanon.
| | - Rayan Nassereddine
- Saint-Joseph University of Beirut, UR- EGP, Functional Genomic and Proteomic Laboratory, Faculty of Sciences, Mar Roukos- Dekwaneh, B.P. 17-5208, Mar Mikhael, Beirut, 1104 2020, Lebanon.
| | - Jihane Saad
- Saint-Joseph University of Beirut, UR- EGP, Functional Genomic and Proteomic Laboratory, Faculty of Sciences, Mar Roukos- Dekwaneh, B.P. 17-5208, Mar Mikhael, Beirut, 1104 2020, Lebanon; Toulouse White Biotechnology (INRAE UMS1337, CNRS UMS3582, INSA), INSA-Toulouse, 135 Avenue de Rangueil 31077, Toulouse Cedex 04, France.
| | - Meriem El Ghoul
- Pharmacological Laboratory Médis, Route de Tunis Km 7-BP 206, Nabeul 8000, Tunisia.
| | - Joanna Abboud
- Saint-Joseph University of Beirut, UR- EGP, Functional Genomic and Proteomic Laboratory, Faculty of Sciences, Mar Roukos- Dekwaneh, B.P. 17-5208, Mar Mikhael, Beirut, 1104 2020, Lebanon; Toulouse White Biotechnology (INRAE UMS1337, CNRS UMS3582, INSA), INSA-Toulouse, 135 Avenue de Rangueil 31077, Toulouse Cedex 04, France.
| | - Nancy Fayad
- Saint-Joseph University of Beirut, UR- EGP, Functional Genomic and Proteomic Laboratory, Faculty of Sciences, Mar Roukos- Dekwaneh, B.P. 17-5208, Mar Mikhael, Beirut, 1104 2020, Lebanon; Multi-Omics Laboratory, School of Pharmacy, Lebanese American University, P.O. Box 36, Byblos 1401, Lebanon.
| | - Stéphanie Dupoiron
- Toulouse White Biotechnology (INRAE UMS1337, CNRS UMS3582, INSA), INSA-Toulouse, 135 Avenue de Rangueil 31077, Toulouse Cedex 04, France.
| | - Julien Cescut
- Toulouse White Biotechnology (INRAE UMS1337, CNRS UMS3582, INSA), INSA-Toulouse, 135 Avenue de Rangueil 31077, Toulouse Cedex 04, France.
| | - César Arturo Aceves-Lara
- Toulouse Biotechnology Institute, Bio & Chemical Engineering, Université de Toulouse- (CNRS UMR5504- INRAE UMR792, INSA), 135 Avenue de Rangueil, 31077 Toulouse, Cedex 04, France.
| | - Luc Fillaudeau
- Toulouse Biotechnology Institute, Bio & Chemical Engineering, Université de Toulouse- (CNRS UMR5504- INRAE UMR792, INSA), 135 Avenue de Rangueil, 31077 Toulouse, Cedex 04, France.
| | - Mireille Kallassy Awad
- Saint-Joseph University of Beirut, UR- EGP, Functional Genomic and Proteomic Laboratory, Faculty of Sciences, Mar Roukos- Dekwaneh, B.P. 17-5208, Mar Mikhael, Beirut, 1104 2020, Lebanon.
| |
Collapse
|
6
|
Kong F, Zeng Q, Li Y, Zhao Y, Guo X. Improving bioaccessibility and physicochemical property of blue-grained wholemeal flour by steam explosion. Front Nutr 2022; 9:877704. [PMID: 35967773 PMCID: PMC9363763 DOI: 10.3389/fnut.2022.877704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/06/2022] [Indexed: 11/18/2022] Open
Abstract
Whole grain contains many health-promoting ingredients, but due to its poor bioaccessibility and processibility, it is not widely accepted by consumers. The steam explosion was exploited to modify the nutritional bioaccessibility and the physicochemical properties of wholemeal flour in this study. In vitro starch digestibility, in vitro protein digestibility of wholemeal flour, total flavonoids content, and total phenolics content of digestive juice were used to evaluate the bioaccessibility, and a significant variation (p < 0.05) was noted. Results showed that steam explosion enhanced the gastric protein digestibility ranged from 5.67 to 6.92% and the intestinal protein digestibility ranged from 16.77 to 49.12%. Steam-exploded wholemeal flour (0.5 MPa, 5 min) had the highest protein digestibility and rapidly digestible starch content. Compared with native flour, steam explosion (0.5 MPa, 5 min) contributed to a 0.72-fold and 0.33-fold increment of total flavonoids content and total phenolics content in digestible juice. Chemical changes of wholemeal flour, induced by steam explosion, caused the changes in the solvent retention capacity, rheological property of wholemeal flour, and altered the falling number (and liquefaction number). An increasing tendency to solid-like behavior and the gel strength of wholemeal flour was significantly enhanced by the steam explosion at 0.5 MPa for 5 min, while the gluten was not weakened. This study indicated that steam-exploded wholemeal flour (0.5 MPa, 5 min) could serve as a potential ingredient with the noticeable bioaccessibility and physicochemical properties in cereal products.
Collapse
Affiliation(s)
| | | | | | | | - Xingfeng Guo
- College of Agronomy, Liaocheng University, Liaocheng, China
| |
Collapse
|
7
|
Awasthi MK, Sindhu R, Sirohi R, Kumar V, Ahluwalia V, Binod P, Juneja A, Kumar D, Yan B, Sarsaiya S, Zhang Z, Pandey A, Taherzadeh MJ. Agricultural waste biorefinery development towards circular bioeconomy. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2022; 158:112122. [DOI: 10.1016/j.rser.2022.112122] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
8
|
Liu Z, Shi E, Ma F, Zhou X, Jiang K. Improved Release of Monosaccharides and Ferulic Acid Using Enzyme Blends From Aspergillus Niger and Eupenicillium Parvum. Front Bioeng Biotechnol 2022; 9:814246. [PMID: 35155413 PMCID: PMC8830502 DOI: 10.3389/fbioe.2021.814246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/17/2021] [Indexed: 11/14/2022] Open
Abstract
Supplementing commercial xylanase and cellulase with selected debranching enzymes only resulted in slight enhancement of the enzymatic hydrolysis of wheat bran autohydrolysis residues (WBAR) which was obtained at 160°C over a 30-min period of autohdyrolysis, while a blend of enzymes from Aspergillus niger and Eupenicillium parvum achieved synergistic efficacy in this context. Using an equal mixture blend of these enzymes at a 0.5% (w/w) enzyme loading dosage with the addition of ferulic acid esterase (1 U/g substrate), the obtained hydrolysis yields were desirable, including 84.98% of glucose, 84.74% of xylose, 80.24% of arabinose, and 80.86% of ferulic acid. Following further separation using an HP-20 resin, the final ferulic acid recovery levels were as high as 62.5% of the esterified ferulic acid present within the initial WBAR input. Together, these data suggest that a combination of autohydrolysis and enzymatic hydrolysis using crude enzyme blends can efficiently achieve wheat bran enzymatic saccharification and associated ferulic acid release.
Collapse
Affiliation(s)
- Zhenghui Liu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Enze Shi
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Feng Ma
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Xin Zhou
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Kankan Jiang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Kankan Jiang,
| |
Collapse
|
9
|
Sun Q, Chen WJ, Pang B, Sun Z, Lam SS, Sonne C, Yuan TQ. Ultrastructural change in lignocellulosic biomass during hydrothermal pretreatment. BIORESOURCE TECHNOLOGY 2021; 341:125807. [PMID: 34474237 DOI: 10.1016/j.biortech.2021.125807] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
In recent years, visualization and characterization of lignocellulose at different scales elucidate the modifications of its ultrastructural and chemical features during hydrothermal pretreatment which include degradation and dissolving of hemicelluloses, swelling and partial hydrolysis of cellulose, melting and redepositing a part of lignin in the surface. As a result, cell walls are swollen, deformed and de-laminated from the adjacent layer, lead to a range of revealed droplets that appear on and within cell walls. Moreover, the certain extent morphological changes significantly promote the downstream processing steps, especially for enzymatic hydrolysis and anaerobic fermentation to bioethanol by increasing the contact area with enzymes. However, the formation of pseudo-lignin hinders the accessibility of cellulase to cellulose, which decreases the efficiency of enzymatic hydrolysis. This review is intended to bridge the gap between the microstructure studies and value-added applications of lignocellulose while inspiring more research prospects to enhance the hydrothermal pretreatment process.
Collapse
Affiliation(s)
- Qian Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No.35 Tsinghua East Road, Beijing 100083, PR China
| | - Wei-Jing Chen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No.35 Tsinghua East Road, Beijing 100083, PR China
| | - Bo Pang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No.35 Tsinghua East Road, Beijing 100083, PR China
| | - Zhuohua Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No.35 Tsinghua East Road, Beijing 100083, PR China
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (Akuatrop), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Christian Sonne
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark
| | - Tong-Qi Yuan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No.35 Tsinghua East Road, Beijing 100083, PR China.
| |
Collapse
|
10
|
Cassarini M, Besaury L, Rémond C. Valorisation of wheat bran to produce natural pigments using selected microorganisms. J Biotechnol 2021; 339:81-92. [PMID: 34364925 DOI: 10.1016/j.jbiotec.2021.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 11/27/2022]
Abstract
Pigments are compounds with highly diverse structures and wide uses, which production is increasing worldwide. An eco-friendly method of bioproduction is to use the ability of some microorganisms to ferment on renewable carbon sources. Wheat bran (WB) is a cheap and abundant lignocellulosic co-product of low recalcitrance to biological conversion. Microbial candidates with theoretical ability to degrade WB were first preselected using specific databases. The microorganisms were Ashbya gossypii (producing riboflavin), Chitinophaga pinensis (producing flexirubin), Chromobacterium vaccinii (violacein) and Gordonia alkanivorans (carotenoids). Growth was shown for each on minimal salt medium supplemented with WB at 5 g.L-1. Activities of the main enzymes consuming WB were measured, showing leucine amino-peptidase (up to 8.45 IU. mL-1) and β-glucosidase activities (none to 6.44 IU. mL-1). This was coupled to a FTIR (Fourier Transform Infra-Red) study of the WB residues that showed main degradation of the WB protein fraction for C. pinensis, C. vaccinii and G. alkanivorans. Production of the pigments on WB was assessed for all the strains except Ashbya, with values of production reaching up to 1.47 mg.L-1. The polyphasic approach used in this study led to a proof of concept of pigment production from WB as a cheap carbon source.
Collapse
Affiliation(s)
- Mathieu Cassarini
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, Chaire AFERE, 51097, Reims, France.
| | - Ludovic Besaury
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, Chaire AFERE, 51097, Reims, France.
| | - Caroline Rémond
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, Chaire AFERE, 51097, Reims, France.
| |
Collapse
|
11
|
Mitchell DA, Moreira I, Krieger N. Potential of time-stepping stochastic models as tools for guiding the design and operation of processes for the enzymatic hydrolysis of polysaccharides - A review. BIORESOURCE TECHNOLOGY 2021; 323:124559. [PMID: 33388211 DOI: 10.1016/j.biortech.2020.124559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
Processes for the enzymatic hydrolysis of polysaccharides in biorefineries are becoming increasingly important. The complex network of reactions involved in polysaccharide hydrolysis can be described by stochastic models that advance in steps of time. Such models have the potential to be important tools for guiding process design and operation, and several have been developed over the last two decades. We evaluate these models. Many of the current stochastic models for the hydrolysis of colloidal polysaccharides use empirical parameters that have no recognized biological meaning. Only one model uses classical parameters of enzyme kinetics, namely specificity constants and saturation constants. Recent stochastic models for the hydrolysis of insoluble cellulose give valuable insights into the molecular-level phenomenon that limit hydrolysis rates. We conclude that, if stochastic models of enzymatic polysaccharide hydrolysis are to become widely used tools for guiding process development, then further improvements are required.
Collapse
Affiliation(s)
- David Alexander Mitchell
- Postgraduate Program in Chemical Engineering, Federal University of Paraná, P.O. Box 19011, Central Polytechnic, Curitiba 81531-980, Paraná, Brazil; Department of Biochemistry and Molecular Biology, Federal University of Paraná, P.O. Box 19046, Central Polytechnic, Curitiba 81531-980, Paraná, Brazil
| | - Isabelle Moreira
- Postgraduate Program in Chemical Engineering, Federal University of Paraná, P.O. Box 19011, Central Polytechnic, Curitiba 81531-980, Paraná, Brazil
| | - Nadia Krieger
- Postgraduate Program in Chemical Engineering, Federal University of Paraná, P.O. Box 19011, Central Polytechnic, Curitiba 81531-980, Paraná, Brazil; Department of Chemistry, Federal University of Paraná, P.O. Box 19061, Central Polytechnic, Curitiba 81531-980, Paraná, Brazil.
| |
Collapse
|
12
|
Zhao G, Gao Q, Hadiatullah H, Zhang J, Zhang A, Yao Y. Effect of wheat bran steam explosion pretreatment on flavors of nonenzymatic browning products. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Bio-based films from wheat bran feruloylated arabinoxylan: Effect of extraction technique, acetylation and feruloylation. Carbohydr Polym 2020; 250:116916. [DOI: 10.1016/j.carbpol.2020.116916] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 01/05/2023]
|
14
|
Simha P, Lalander C, Nordin A, Vinnerås B. Alkaline dehydration of source-separated fresh human urine: Preliminary insights into using different dehydration temperature and media. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 733:139313. [PMID: 32446074 DOI: 10.1016/j.scitotenv.2020.139313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
For sanitation systems aiming at recycling nutrients, separately collecting urine at source is desirable as urine contains most of the nutrients in wastewater. However, reducing the volume of the collected urine and recovering majority of its nutrients is necessary, as this improves the transportability and the end-application of urine-based fertilisers. In this study, we present an innovative method, alkaline dehydration, for treating fresh human urine into a nutrient-rich dry solid. Our aim was to investigate whether fresh urine (pH < 7) added to five different alkaline media (pH > 11) could be dehydrated at elevated temperatures (50 and 60 °C) with minimal loss of urea, urine's principal nitrogen compound. We found that it was possible to concentrate urine 48 times, yielding dry end-products with high fertiliser value: approximately, 10% N, 1% P, and 4% K. We monitored the physicochemical properties and the composition of various dehydration media to provide useful insights into their suitability for dehydrating urine. We demonstrated that it is possible to recover >90% nitrogen when treating fresh urine by alkaline dehydration by inhibiting the enzymatic hydrolysis of urea at elevated pH and minimising the chemical hydrolysis of urea with high urine dehydration rates.
Collapse
Affiliation(s)
- Prithvi Simha
- Swedish University of Agricultural Sciences, Department of Energy and Technology, Box 7032, SE-750 07 Uppsala, Sweden.
| | - Cecilia Lalander
- Swedish University of Agricultural Sciences, Department of Energy and Technology, Box 7032, SE-750 07 Uppsala, Sweden
| | - Annika Nordin
- Swedish University of Agricultural Sciences, Department of Energy and Technology, Box 7032, SE-750 07 Uppsala, Sweden
| | - Björn Vinnerås
- Swedish University of Agricultural Sciences, Department of Energy and Technology, Box 7032, SE-750 07 Uppsala, Sweden
| |
Collapse
|
15
|
Caldeira C, Vlysidis A, Fiore G, De Laurentiis V, Vignali G, Sala S. Sustainability of food waste biorefinery: A review on valorisation pathways, techno-economic constraints, and environmental assessment. BIORESOURCE TECHNOLOGY 2020; 312:123575. [PMID: 32521468 DOI: 10.1016/j.biortech.2020.123575] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 05/15/2023]
Abstract
The need to increase circularity of industrial systems to address limited resources availability and climate change has triggered the development of the food waste biorefinery concept. However, for the development of future sustainable industrial processes focused on the valorisation of food waste, critical aspects such as (i) the technical feasibility of the processes at industrial scale, (ii) the analysis of their techno-economic potential, including available quantities of waste, and (iii) a life cycle-based environmental assessment of benefits and burdens need to be considered. The goal of this review is to provide an overview of food waste valorisation pathways and to analyse to which extent these aspects have been considered in the literature. Although a plethora of food waste valorisation pathways exist, they are mainly developed at lab-scale. Further research is necessary to assess upscaled performance, feedstock security, and economic and environmental assessment of food waste valorisation processes.
Collapse
Affiliation(s)
- Carla Caldeira
- European Commission-Joint Research Centre, Via Enrico Fermi 2749, I-21027 Ispra, VA, Italy
| | - Anestis Vlysidis
- European Commission-Joint Research Centre, Via Enrico Fermi 2749, I-21027 Ispra, VA, Italy
| | - Gianluca Fiore
- European Commission-Joint Research Centre, Via Enrico Fermi 2749, I-21027 Ispra, VA, Italy
| | - Valeria De Laurentiis
- European Commission-Joint Research Centre, Via Enrico Fermi 2749, I-21027 Ispra, VA, Italy
| | - Giuseppe Vignali
- University of Parma, Department of Engineering and Architecture, Viale delle Scienze 181/A, 43124 Parma, Italy
| | - Serenella Sala
- European Commission-Joint Research Centre, Via Enrico Fermi 2749, I-21027 Ispra, VA, Italy.
| |
Collapse
|
16
|
Pihlajaniemi V, Mattila O, Koitto T, Nikinmaa M, Heiniö RL, Sorsamäki L, Siika-aho M, Nordlund E. Production of syrup rich in arabinoxylan oligomers and antioxidants from wheat bran by alkaline pretreatment and enzymatic hydrolysis, and applicability in baking. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.103043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Barcelos MCS, Ramos CL, Kuddus M, Rodriguez-Couto S, Srivastava N, Ramteke PW, Mishra PK, Molina G. Enzymatic potential for the valorization of agro-industrial by-products. Biotechnol Lett 2020; 42:1799-1827. [DOI: 10.1007/s10529-020-02957-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022]
|
18
|
Yilmaz-Turan S, Jiménez-Quero A, Moriana R, Arte E, Katina K, Vilaplana F. Cascade extraction of proteins and feruloylated arabinoxylans from wheat bran. Food Chem 2020; 333:127491. [PMID: 32659672 DOI: 10.1016/j.foodchem.2020.127491] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/28/2020] [Accepted: 07/02/2020] [Indexed: 12/18/2022]
Abstract
A cascade process for the sequential recovery of proteins and feruloylated arabinoxylan from wheat bran is proposed, involving a protein isolation step, enzymatic destarching and subcritical water extraction. The protein isolation step combining lactic acid fermentation and cold alkaline extraction reduced the recalcitrance of wheat bran, thus improving the total yields of the subsequent subcritical water extraction. The time evolution of subcritical water extraction of feruloylated arabinoxylan was compared at two temperatures (160 °C and 180 °C). Longer residence times enhanced the purity of target feruloylated arabinoxylans, whereas higher temperatures resulted in faster extraction at the expense of significant molar mass reduction. The radical scavenging activity of the extracted feruloylated arabinoxylans was preserved after the initial protein isolation step. This study opens new possibilities for the cascade valorization of wheat bran into enriched protein and non-starch polysaccharide fractions, which show potential to be used as functional food ingredients.
Collapse
Affiliation(s)
- Secil Yilmaz-Turan
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Amparo Jiménez-Quero
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Rosana Moriana
- Division of Polymeric Materials, Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden; Department of Molecular Sciences, SLU-Swedish University of Agricultural Sciences, Almas Allé 5, Uppsala, Sweden
| | - Elisa Arte
- Department of Food and Nutrition, University of Helsinki, P.O. Box 66, FI-00014, Finland
| | - Kati Katina
- Department of Food and Nutrition, University of Helsinki, P.O. Box 66, FI-00014, Finland
| | - Francisco Vilaplana
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
19
|
Mao M, Wang P, Shi K, Lu Z, Bie X, Zhao H, Zhang C, Lv F. Effect of solid state fermentation by Enterococcus faecalis M2 on antioxidant and nutritional properties of wheat bran. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.102997] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Kong F, Wang L, Gao H, Chen H. Process of steam explosion assisted superfine grinding on particle size, chemical composition and physico-chemical properties of wheat bran powder. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.05.067] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Li Q, Sun H, Zhang M, Wu T. Characterization of the flavor compounds in wheat bran and biochemical conversion for application in food. J Food Sci 2020; 85:1427-1437. [PMID: 32339265 DOI: 10.1111/1750-3841.14965] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/15/2019] [Accepted: 10/22/2019] [Indexed: 12/27/2022]
Abstract
Wheat bran, an abundant and low-cost by-product from agricultural processing, can be used as an alternative food resource. Biochemical conversion of wheat bran to food ingredient involves pretreatments of bran to enhance its acceptability. In this work, the effects of the Maillard reaction and enzymolysis on flavor properties of wheat bran and sensory evaluation of steamed buns fortified with wheat bran were analyzed using GC-MS combined with sensory evaluation. The results showed that the Maillard reaction and enzymatic hydrolysis, as well as flavoring process, could effectively improve the flavor profiles of wheat bran. The flavor compounds in modified wheat bran products as well as its fuzzy sensory score increased significantly (P < 0.05) compared with those in commercially available dry malt extract. Additionally, steamed buns fortified with wheat bran had enhanced flavor and overall acceptability. The study can be useful in valorization a plethora of grain bran (waste) into valuable resources.
Collapse
Affiliation(s)
- Qian Li
- State Key Laboratory of Nutrition and Safety, Tianjin Univ. of Science & Technology, Tianjin, 300457, PR China
| | - Haoran Sun
- State Key Laboratory of Nutrition and Safety, Tianjin Univ. of Science & Technology, Tianjin, 300457, PR China
| | - Min Zhang
- State Key Laboratory of Nutrition and Safety, Tianjin Univ. of Science & Technology, Tianjin, 300457, PR China.,Tianjin Agricultural Univ., Tianjin, 300384, PR China.,Tianjin Univ. of Science and Technology, Inst. for New Rural Development, Tianjin, China
| | - Tao Wu
- State Key Laboratory of Nutrition and Safety, Tianjin Univ. of Science & Technology, Tianjin, 300457, PR China
| |
Collapse
|
22
|
Zhao J, Xu Y, Zhang M, Wang D. Integrating bran starch hydrolysates with alkaline pretreated soft wheat bran to boost sugar concentration. BIORESOURCE TECHNOLOGY 2020; 302:122826. [PMID: 32000133 DOI: 10.1016/j.biortech.2020.122826] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 05/17/2023]
Abstract
Soft wheat bran (SWB), one of the most abundant byproducts from the wheat milling industry, is a potential candidate for biofuel production. In this study, bran starch hydrolysates were separately integrated with dilute acid pretreated SWB and alkaline pretreated SWB to boost fermentable sugar concentration. Alkaline pretreatment showed higher sugar recoveries than acid pretreatment. Significant sugar degradation for acid pretreatment was observed when pretreatment temperature higher than 170 ℃. The optimal pretreatment condition was 15% solid loading with 0.08 mol/L NaOH at 150 ℃ for 20 min. The neutralization reaction between dilute alkaline and released acids reduced sugar decomposition and inhibitors formation. Integrating bran starch hydrolysates with alkaline pretreated SWB yielded the highest glucose concentration of 50.91 g/L and a total sugar concentration of 101.29 g/L.
Collapse
Affiliation(s)
- Jikai Zhao
- Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, KS 66506, United States
| | - Youjie Xu
- Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, KS 66506, United States
| | - Meng Zhang
- Department of Industrial and Manufacturing Systems Engineering, Kansas State University, Manhattan, KS 66506, United States
| | - Donghai Wang
- Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, KS 66506, United States.
| |
Collapse
|
23
|
Lamp A, Kaltschmitt M, Lüdtke O. Protein recovery from bioethanol stillage by liquid hot water treatment. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2019.104624] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Sardari RRR, Sutiono S, Azeem HA, Galbe M, Larsson M, Turner C, Nordberg Karlsson E. Evaluation of Sequential Processing for the Extraction of Starch, Lipids, and Proteins From Wheat Bran. Front Bioeng Biotechnol 2019; 7:413. [PMID: 31921817 PMCID: PMC6923635 DOI: 10.3389/fbioe.2019.00413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/28/2019] [Indexed: 01/07/2023] Open
Abstract
In line with the need to better utilize agricultural resources, and valorize underutilized fractions, we have developed protocols to increase the use of wheat bran, to improve utilization of this resource to additional products. Here, we report sequential processing for extraction of starch, lipids, and proteins from wheat brans with two different particle sizes leaving a rest-material enriched in dietary fiber. Mild water-based extraction of starch resulted in maximum 81.7 ± 0.67% yield. Supercritical fluid extraction of lipids by CO2 resulted in 55.2 ± 2.4% yield. This was lower than the corresponding yield using Soxhlet extraction, which was used as a reference method, but allowed a continued extraction sequence without denaturation of the proteins remaining in the raw-material. Alkaline extraction of non-degraded proteins resulted in a yield corresponding to one third of the total protein in the material, which was improved to reach 62 ± 8% by a combination of wheat bran enzymes activation followed by Osborne fractionation. The remaining proteins were extracted in degraded form, resulting in maximum 91.6 ± 1.6% yield of the total proteins content. The remaining material in both fine and coarse bran had a fiber content that on average corresponded to 73 ± 3%. The current work allows separation of several compounds, which is enabling valorization of the bran raw-material into several products.
Collapse
Affiliation(s)
- Roya R R Sardari
- Division of Biotechnology, Department of Chemistry, Lund University, Lund, Sweden
| | - Samuel Sutiono
- Division of Biotechnology, Department of Chemistry, Lund University, Lund, Sweden.,Chair of Chemistry of Biogenic Resources, Technical University of Munich, Munich, Germany
| | - Hafiz Abdul Azeem
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Lund, Sweden
| | - Mats Galbe
- Department of Chemical Engineering, Lund University, Lund, Sweden
| | | | - Charlotta Turner
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Lund, Sweden
| | | |
Collapse
|
25
|
Saqib NU, Sharma HB, Baroutian S, Dubey B, Sarmah AK. Valorisation of food waste via hydrothermal carbonisation and techno-economic feasibility assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:261-276. [PMID: 31288117 DOI: 10.1016/j.scitotenv.2019.06.484] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 06/09/2023]
Abstract
Food waste constitutes a remarkable portion of municipal solid waste. About one-third of the global food waste produced is lost with the food supply chain. Food waste in many countries is still dumped of in landfill or incinerated simultaneously with other municipal wastes. Food waste requires proper management and recycling techniques in order to minimise its environmental burden and risk to human life. Despite considerable research on food waste conversion still, there is a shortage of comprehensive reviews of the published literature. In this review, we provide a mini global perspective of food waste with special emphasis on New Zealand and their conversion into the useful material through hydrothermal carbonisation (HTC). Other thermal technologies such as incineration and pyrolysis are also briefly discussed. The review discusses why HTC is more suitable thermal technology than others, which are currently available. Recognising the importance of techno-economic feasibility of HTC, we present a cost analysis on the production of value-added products via HTC with examples taken from the literature to gather information in the feasibility assessment process. Finally, key challenges and future directions for a better productive way of handling food waste are being suggested.
Collapse
Affiliation(s)
- Najam Ul Saqib
- Department of Civil & Environmental Engineering, Faulty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Hari Bhakta Sharma
- Department of Civil Engineering, Indian Institute of Technology - Kharagpur, Kharagpur, West Bengal 721302, India
| | - Saeid Baroutian
- Department of Chemical & Materials Engineering, Faculty of Engineering, The University of Auckland, 1010, New Zealand
| | - Brajesh Dubey
- Department of Civil Engineering, Indian Institute of Technology - Kharagpur, Kharagpur, West Bengal 721302, India
| | - Ajit K Sarmah
- Department of Civil & Environmental Engineering, Faulty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
26
|
Effect of Wheat Bran Incorporation on the Physical and Sensory Properties of a South African Cereal Fried Dough. Foods 2019; 8:foods8110559. [PMID: 31703318 PMCID: PMC6915424 DOI: 10.3390/foods8110559] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/22/2019] [Accepted: 11/01/2019] [Indexed: 11/25/2022] Open
Abstract
This study investigated the effect of wheat bran (WB) supplementation on the physical and sensory properties of a South African cereal fried dough (magwinya). The physical properties, instrumental texture, and sensory profile were determined for magwinya (100:0, control) and for wheat flour to wheat-bran ratios of 95:5 (MWB5), 90:10 (MWB10), 85:15 (MWB15), and 80:20 (MWB20). An increase in the proportion of WB in the fried dough showed no significant difference on the specific volume (1.47–1.54) of samples. The chroma value (30.19–22.29), lightness (35.92–28.98), and hue angle (55.03–47.77) decreased, while ∆E increased distinctly with the addition of WB. Magwinya supplemented with WB was less cohesive and easy to chew. Significant correlations were found between instrumental hardness and sensory springiness (r = −0.63; p < 0.05), as well as between instrumental cohesiveness and sensory springiness (r = −0.71; p < 0.01). Two principal components were identified, which accounted for 85.1% of the variance in the instrumental data. A substitution level of 5 and 10% WB was similar to the sensory properties of the control in taste, texture, and overall acceptability and can replace part of the wheat flour in the cereal fried dough production.
Collapse
|
27
|
Javed U, Ansari A, Aman A, Ul Qader SA. Fermentation and saccharification of agro-industrial wastes: A cost-effective approach for dual use of plant biomass wastes for xylose production. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Roth M, Jekle M, Becker T. Opportunities for upcycling cereal byproducts with special focus on Distiller's grains. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.07.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
29
|
Araya-Farias M, Husson E, Saavedra-Torrico J, Gérard D, Roulard R, Gosselin I, Rakotoarivonina H, Lambertyn V, Rémond C, Sarazin C. Wheat Bran Pretreatment by Room Temperature Ionic Liquid-Water Mixture: Optimization of Process Conditions by PLS-Surface Response Design. Front Chem 2019; 7:585. [PMID: 31508408 PMCID: PMC6716547 DOI: 10.3389/fchem.2019.00585] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/05/2019] [Indexed: 01/22/2023] Open
Abstract
Room Temperature Ionic Liquids (RTILs) pretreatment are well-recognized to improve the enzymatic production of platform molecules such as sugar monomers from lignocellulosic biomass (LCB). The conditions for implementing this key step requires henceforth optimization to reach a satisfactory compromise between energy saving, required RTIL amount and hydrolysis yields. Wheat bran (WB) and destarched wheat bran (DWB), which constitute relevant sugar-rich feedstocks were selected for this present study. Pretreatments of these two distinct biomasses with various 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc])-water mixtures prior to hydrolysis catalyzed by hemicellulolytic cocktail (Cellic CTec2) were finely investigated. The main operating conditions such as pretreatment temperature (25–150°C), time (40–180 min), WB and DWB loading (2–5% w/v) and concentration of [C2mim][OAc] in water [10–100% (v/v)] were screened through glucose and xylose yields and then optimized through a Partial Least Square (PLS)—Second Order Design. In an innovative way, the PLS results showed that the four factors and their interactions could be well-fitted by a second-order model (p < 0.05). The quadratic PLS models were used to predict optimal pretreatment conditions. Thus, maximum glucose (83%) and xylose (95%) yields were obtained from enzymatic hydrolysis of WB pretreated at 150°C for 40 min with 10% of [C2mim][OAc] in water and 5% of WB loading. For DWB, maximum glucose (100%) and xylose (57%) yields were achieved for pretreatment temperatures of 150°C and 25°C, respectively. The required duration was still 40 min, with 20% of [C2mim][OAc] in water and a 5% DWB loading. Then, Multiple Response Optimization (MRO) performed by Nelder-Mead Simplex Method displayed sugar yields similar to those obtained by individual PLS optimization. This complete statistical study confirmed that the established models were appropriate to predict the sugar yields achieved after different pretreatment conditions from WB and DWB biomasses. Finally, Scanning Electron microscopy (SEM) studies allowed us to establish clearer link between structural changes induced by pretreatment and the best enzymatic performances obtained.
Collapse
Affiliation(s)
- Monica Araya-Farias
- Unité de Génie Enzymatique et Cellulaire, UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, France
| | - Eric Husson
- Unité de Génie Enzymatique et Cellulaire, UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, France
| | - Jorge Saavedra-Torrico
- Escuela de Ingenieria de Alimentos, Pontificia Universidad Catolica de Valparaíso, Valparaíso, Chile
| | - Doriane Gérard
- Chaire AFERE, UMR Fractionnement des AgroRessources et Environnement 614 INRA, Université de Reims Champagne-Ardenne, Reims, France
| | - Romain Roulard
- Plate-forme de Microscopie Electronique, Université de Picardie Jules Verne, Amiens, France
| | - Isabelle Gosselin
- Unité de Génie Enzymatique et Cellulaire, UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, France
| | - Harivoni Rakotoarivonina
- Chaire AFERE, UMR Fractionnement des AgroRessources et Environnement 614 INRA, Université de Reims Champagne-Ardenne, Reims, France
| | - Virginie Lambertyn
- Unité de Génie Enzymatique et Cellulaire, UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, France
| | - Caroline Rémond
- Chaire AFERE, UMR Fractionnement des AgroRessources et Environnement 614 INRA, Université de Reims Champagne-Ardenne, Reims, France
| | - Catherine Sarazin
- Unité de Génie Enzymatique et Cellulaire, UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, France
| |
Collapse
|
30
|
Zhang MY, Liao AM, Thakur K, Huang JH, Zhang JG, Wei ZJ. Modification of wheat bran insoluble dietary fiber with carboxymethylation, complex enzymatic hydrolysis and ultrafine comminution. Food Chem 2019; 297:124983. [PMID: 31253271 DOI: 10.1016/j.foodchem.2019.124983] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/29/2019] [Accepted: 06/10/2019] [Indexed: 11/29/2022]
Abstract
To improve the industrial application of wheat bran insoluble dietary fiber (W-IDF), three modification methods (carboxymethylation, complex enzymatic hydrolysis, and ultrafine comminution) were compared on the basis of structural, physicochemical, functional, and antioxidant properties of W-IDF. FT-IR, DSC and SEM analysis showed that modifications contributed to alteration in morphology and arrangement of chemical bonds in W-IDF. Carboxymethylation effectively improved the water retention (WRC), water swelling (WSC), and glucose adsorption capacities (GAC); complex enzymatic hydrolysis greatly improved the oil retention (ORC), GAC, and nitrite ion adsorption capacities (NIAC). Although ultrafine comminution reduced the WRC and ORC, while positively influenced the GAC and NIAC. Moreover, total phenol content, total antioxidant capacity, DPPH radical scavenging capacity, Fe2+ chelating capacity and total reducing power were improved in modified W-IDF. Our results confirmed that carboxymethylation can improve the nutritive quality and sensory properties of W-IDF (nutritive ingredient) in food products.
Collapse
Affiliation(s)
- Meng-Yun Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Ai-Mei Liao
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China.
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| | - Ji-Hong Huang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China; Henan Cooperation Science and Technology Institute, Luoyang 471003, People's Republic of China.
| | - Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China; Anhui Province Key Laboratory of Functional Compound Seasoning, Anhui Qiangwang Seasoning Food Co., Ltd, Jieshou 236500, People's Republic of China.
| |
Collapse
|
31
|
Vötterl J, Zebeli Q, Hennig-Pauka I, Metzler-Zebeli B. Soaking in lactic acid lowers the phytate-phosphorus content and increases the resistant starch in wheat and corn grains. Anim Feed Sci Technol 2019. [DOI: 10.1016/j.anifeedsci.2019.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
32
|
Influence of air and nitrogen sparging on flux during ultrafiltration of hemicelluloses extracted from wheat bran. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Sui W, Xie X, Liu R, Wu T, Zhang M. Effect of wheat bran modification by steam explosion on structural characteristics and rheological properties of wheat flour dough. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.06.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
34
|
Reisinger M, Tirpanalan Ö, Pruksasri S, Kneifel W, Novalin S. Disintegration of the agricultural by-product wheat bran under subcritical conditions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:4296-4303. [PMID: 29427290 DOI: 10.1002/jsfa.8952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 01/23/2018] [Accepted: 02/04/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The disintegration of destarched wheat bran in water and sulfuric acid (pH 3) under subcritical conditions (275-300 °C) and at short reaction times (1-4 min) was investigated. A cascade process comprising a stepwise separation of the liquid was applied to reduce the formation of undesired degradation products. RESULTS The highest degree of biomass disintegration (67% dry mass solubilization) was achieved by application of a cascade process at 275 °C (pH 3). Regarding the dissolution of carbohydrates (monomeric and oligomeric form), the total glucose yields remained below 60%, while the total xylose and arabinose yields were about 76% and 67%. Approximately 74% of the protein and 95% of the mineral fraction could be extracted. The application of the cascade process enabled a substantially reduced formation of degradation products. CONCLUSION When operating hydrothermally and subcritically in order to avoid some problematic aspects of a biorefinery, an extensive disintegration and monomerization of wheat bran and its constituents remains difficult even under the tested conditions (300 °C, pH 3). However, the applied cascade process proved to be useful to increase the yields and to substantially reduce the formation of undesired degradation products. Despite this fact, increased water consumption has to be conceded. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Michael Reisinger
- Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Özge Tirpanalan
- Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Suwattana Pruksasri
- Department of Biotechnology, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom, Thailand
| | - Wolfgang Kneifel
- Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Senad Novalin
- Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
35
|
The role of supercritical fluids in the fractionation pretreatments of a wheat bran-based biorefinery. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2017.09.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Wu T, Li Z, Liu R, Sui W, Zhang M. Effect of Extrusion, Steam Explosion and Enzymatic Hydrolysis on Functional Properties of Wheat Bran. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2018. [DOI: 10.3136/fstr.24.591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Tao Wu
- State Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology); Engineering Research Center of Food Biotechnology, Ministry of Education
| | - Zhi Li
- State Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology); Engineering Research Center of Food Biotechnology, Ministry of Education
| | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology); Engineering Research Center of Food Biotechnology, Ministry of Education
| | - Wenjie Sui
- State Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology); Engineering Research Center of Food Biotechnology, Ministry of Education
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology); Engineering Research Center of Food Biotechnology, Ministry of Education
| |
Collapse
|
37
|
Li SY, Ng IS, Chen PT, Chiang CJ, Chao YP. Biorefining of protein waste for production of sustainable fuels and chemicals. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:256. [PMID: 30250508 PMCID: PMC6146663 DOI: 10.1186/s13068-018-1234-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/22/2018] [Indexed: 05/21/2023]
Abstract
To mitigate the climate change caused by CO2 emission, the global incentive to the low-carbon alternatives as replacement of fossil fuel-derived products continuously expands the need for renewable feedstock. There will be accompanied by the generation of enormous protein waste as a result. The economical viability of the biorefinery platform can be realized once the surplus protein waste is recycled in a circular economy scenario. In this context, the present review focuses on the current development of biotechnology with the emphasis on biotransformation and metabolic engineering to refine protein-derived amino acids for production of fuels and chemicals. Its scope starts with the explosion of potential feedstock sources rich in protein waste. The availability of techniques is applied for purification and hydrolysis of various feedstock proteins to amino acids. Useful lessons are leaned from the microbial catabolism of amino acids and lay a foundation for the development of the protein-based biotechnology. At last, the future perspective of the biorefinery scheme based on protein waste is discussed associated with remarks on possible solutions to overcome the technical bottlenecks.
Collapse
Affiliation(s)
- Si-Yu Li
- Department of Chemical Engineering, National Chung Hsing University, Taichung, 402 Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101 Taiwan
| | - Po Ting Chen
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, 710 Taiwan
| | - Chung-Jen Chiang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, No. 91, Hsueh-Shih Road, Taichung, 40402 Taiwan
| | - Yun-Peng Chao
- Department of Chemical Engineering, Feng Chia University, 100 Wenhwa Road, Taichung, 40724 Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, 41354 Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, 40447 Taiwan
| |
Collapse
|
38
|
Wanzenböck E, Apprich S, Tirpanalan Ö, Zitz U, Kracher D, Schedle K, Kneifel W. Wheat bran biodegradation by edible Pleurotus fungi – A sustainable perspective for food and feed. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.07.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
39
|
Li Q, Liu R, Wu T, Zhang M. Aggregation and rheological behavior of soluble dietary fibers from wheat bran. Food Res Int 2017; 102:291-302. [PMID: 29195951 DOI: 10.1016/j.foodres.2017.09.064] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/10/2017] [Accepted: 09/22/2017] [Indexed: 01/12/2023]
Abstract
The present study assesses the aggregation behavior of wheat bran arabinoxylan-rich soluble dietary fiber (SDF) fractions with diverse molecular weight and substitution in order to provide useful information to prevent the formation of a block network. In the present work, dynamic and static light scattering, diffusing wave spectroscopy, small amplitude dynamic rheology, atomic force microscopy, and the water-holding and swelling capacities were evaluated to assess the SDF aggregation behavior induced by intrinsic and extrinsic factors. Furthermore, the rheological behavior was explained by the physically cross-linked or interpenetrating hydrocolloid network established during SDF self-aggregation, dependent on its molecular structure. The results indicated that the SDF fractions exhibiting a high molecular weight and a lower substitution degree and di-substituted ratio led to more significant aggregation due to the formation of disordered tangles coupled with a more solid-like behavior. The obtained information will prove useful for the development of more stable and compatible SDF fractions.
Collapse
Affiliation(s)
- Qian Li
- Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Ministry of Education, Tianjin 300457, China
| | - Rui Liu
- Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Ministry of Education, Tianjin 300457, China; Tianjin Food Safety & Low Carbon Manufacturing Collaborative Innovation Center, Tianjin 300457, China
| | - Tao Wu
- Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Ministry of Education, Tianjin 300457, China
| | - Min Zhang
- Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Ministry of Education, Tianjin 300457, China; Tianjin Food Safety & Low Carbon Manufacturing Collaborative Innovation Center, Tianjin 300457, China.
| |
Collapse
|
40
|
Processing, Valorization and Application of Bio-Waste Derived Compounds from Potato, Tomato, Olive and Cereals: A Review. SUSTAINABILITY 2017. [DOI: 10.3390/su9081492] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Sánchez-Bastardo N, Romero A, Alonso E. Extraction of arabinoxylans from wheat bran using hydrothermal processes assisted by heterogeneous catalysts. Carbohydr Polym 2017; 160:143-152. [DOI: 10.1016/j.carbpol.2016.12.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/16/2016] [Accepted: 12/16/2016] [Indexed: 10/20/2022]
|
42
|
Interactions between soluble dietary fibers and wheat gluten in dough studied by confocal laser scanning microscopy. Food Res Int 2017; 95:19-27. [PMID: 28395821 DOI: 10.1016/j.foodres.2017.02.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/23/2017] [Accepted: 02/26/2017] [Indexed: 11/24/2022]
Abstract
Four soluble dietary fiber (SDF) fractions characterized by major components of AXs, relatively narrow molecular weight distribution, different substituted ratio, and structure-sensitive parameter (ρ) were prepared from wheat bran. The fractions were added to wheat dough to determine the interactions between the dough's network and the SDF fractions relative to their physicochemical characteristics. Furthermore, a comprehensive study focusing on the dough texture characteristic, tensile properties, thermodynamic stability, and the microstructure was conducted by performing texture profile analysis (TPA), differential scanning calorimetry (DSC), and confocal laser scanning microscopy (CLSM) experiments. Additionally, an estimation function of the interactions parameters between the dough's network and the SDF fractions related to the factor molecular weight and ρ of the SDFs was established. The results indicated that the SDF fractions exhibiting a medium molecular weight, and a higher substitution degree and di-substituted ratio, were the most suitable fortifier providing benefits to the dough's qualities. Furthermore, the research methodology might support the high potential of SDF fractions as fortifier for flour-based products.
Collapse
|
43
|
Iwai K, Yoshikawa Y, Miyoshi N, Fukutomi R, Asada K, Ohashi N. Effects of Short-Term Intake of Wheat Bran with Different Particle Sizes on the Murine Intestinal Environment. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2017. [DOI: 10.3136/fstr.23.733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Katsuki Iwai
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, Department of Food and Nutritional Sciences, University of Shizuoka
| | - Yuko Yoshikawa
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, Department of Food and Nutritional Sciences, University of Shizuoka
| | - Noriyuki Miyoshi
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, Department of Food and Nutritional Sciences, University of Shizuoka
| | | | | | - Norio Ohashi
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, Department of Food and Nutritional Sciences, University of Shizuoka
| |
Collapse
|
44
|
Wolters N, Schabronath C, Schembecker G, Merz J. Efficient conversion of pretreated brewer's spent grain and wheat bran by submerged cultivation of Hericium erinaceus. BIORESOURCE TECHNOLOGY 2016; 222:123-129. [PMID: 27716564 DOI: 10.1016/j.biortech.2016.09.121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 06/06/2023]
Abstract
Brewer's spent grain (BSG) and wheat bran (WB) are industrial byproducts that accumulate in millions of tons per year and are typically applied as animal feed. Since both byproducts show a great potential as substrates for fermentation, the approach developed in this study consists of utilizing these lignocellulosic byproducts for biomass production of the medicinal fungus Hericium erinaceus through submerged cultivation. To increase the biological efficiency of the bioconversion, acidic pretreatment was applied yielding a bioconversion of 38.6% for pretreated BSG and 34.8% for pretreated WB. This study shows that the complete degradation of (hemi)cellulose into monosaccharides was not required for an efficient bioconversion. The produced fungal biomass was applied in a second fermentation step to induce the secondary metabolite erinacine C production. Thus, biomass was produced as a functional food ingredient with erinacine C contents of 174.8mg/g for BSG and 99.3mg/g for WB based bioconversions.
Collapse
Affiliation(s)
- Niklas Wolters
- Laboratory of Plant and Process Design, Department of Biochemical and Chemical Engineering, Emil-Figge-Straße 70, D-44227 Dortmund, Germany
| | - Christoph Schabronath
- Laboratory of Plant and Process Design, Department of Biochemical and Chemical Engineering, Emil-Figge-Straße 70, D-44227 Dortmund, Germany
| | - Gerhard Schembecker
- Laboratory of Plant and Process Design, Department of Biochemical and Chemical Engineering, Emil-Figge-Straße 70, D-44227 Dortmund, Germany
| | - Juliane Merz
- Laboratory of Plant and Process Design, Department of Biochemical and Chemical Engineering, Emil-Figge-Straße 70, D-44227 Dortmund, Germany.
| |
Collapse
|
45
|
Li Q, Liu R, Wu T, Wang M, Zhang M. Soluble Dietary Fiber Fractions in Wheat Bran and Their Interactions with Wheat Gluten Have Impacts on Dough Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8735-8744. [PMID: 27744696 DOI: 10.1021/acs.jafc.6b03451] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Six soluble dietary fiber (SDF) fractions were prepared via stepwise ethanol precipitation from natural and fermented wheat bran. The chemical composition, molecular weight distribution, and glycosidic linkage and substitution pattern of each SDF fraction were elucidated by sugar analysis, periodate oxidation and Smith degradation, molecular determination, and 1H nuclear magnetic resonance (NMR) analysis. The impacts of SDF fractions on the rheological properties and morphologies of doughs were investigated by farinography, rheometry, and scanning electron microscopy (SEM) to clarify the relationship between the microstructural features of SDF fractions and the macroscopic properties of SDF-containing doughs. The interactions between SDF fractions and wheat glutens in doughs were further studied by confocal laser scanning microscopy (CLSM). The experimental results indicated that the SDF fraction with an intermediate molecular weight but a higher substitution degree and a larger disubstitution ratio was most compatible with the dough network and beneficial to dough quality.
Collapse
Affiliation(s)
- Qian Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science & Technology , Tianjin 300457, China
| | - Rui Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science & Technology , Tianjin 300457, China
- Tianjin Food Safety & Low Carbon Manufacturing Collaborative Innovation Center , Tianjin 300457, China
| | - Tao Wu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science & Technology , Tianjin 300457, China
| | - Man Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science & Technology , Tianjin 300457, China
| | - Min Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science & Technology , Tianjin 300457, China
- Tianjin Food Safety & Low Carbon Manufacturing Collaborative Innovation Center , Tianjin 300457, China
| |
Collapse
|
46
|
Wood IP, Cook NM, Wilson DR, Ryden P, Robertson JA, Waldron KW. Ethanol from a biorefinery waste stream: Saccharification of amylase, protease and xylanase treated wheat bran. Food Chem 2016; 198:125-31. [DOI: 10.1016/j.foodchem.2015.09.108] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 09/04/2015] [Accepted: 09/29/2015] [Indexed: 11/30/2022]
|
47
|
Arte E, Katina K, Holopainen-Mantila U, Nordlund E. Effect of Hydrolyzing Enzymes on Wheat Bran Cell Wall Integrity and Protein Solubility. Cereal Chem 2016. [DOI: 10.1094/cchem-03-15-0060-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Elisa Arte
- University of Helsinki, Department of Food and Environmental Sciences, P.O. Box 27, Fin-00014, Finland
| | - Kati Katina
- University of Helsinki, Department of Food and Environmental Sciences, P.O. Box 27, Fin-00014, Finland
| | | | - Emilia Nordlund
- VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Finland
| |
Collapse
|
48
|
Onipe OO, Jideani AIO, Beswa D. Composition and functionality of wheat bran and its application in some cereal food products. Int J Food Sci Technol 2015. [DOI: 10.1111/ijfs.12935] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Oluwatoyin O. Onipe
- Department of Food Science and Technology School of Agriculture University of Venda Private Bag X5050 Thohoyandou 0950 Limpopo Province South Africa
| | - Afam I. O. Jideani
- Department of Food Science and Technology School of Agriculture University of Venda Private Bag X5050 Thohoyandou 0950 Limpopo Province South Africa
| | - Daniso Beswa
- Department of Food Science and Technology School of Agriculture University of Venda Private Bag X5050 Thohoyandou 0950 Limpopo Province South Africa
| |
Collapse
|
49
|
Pham TPT, Kaushik R, Parshetti GK, Mahmood R, Balasubramanian R. Food waste-to-energy conversion technologies: current status and future directions. WASTE MANAGEMENT (NEW YORK, N.Y.) 2015; 38:399-408. [PMID: 25555663 DOI: 10.1016/j.wasman.2014.12.004] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 11/04/2014] [Accepted: 12/09/2014] [Indexed: 05/18/2023]
Abstract
Food waste represents a significantly fraction of municipal solid waste. Proper management and recycling of huge volumes of food waste are required to reduce its environmental burdens and to minimize risks to human health. Food waste is indeed an untapped resource with great potential for energy production. Utilization of food waste for energy conversion currently represents a challenge due to various reasons. These include its inherent heterogeneously variable compositions, high moisture contents and low calorific value, which constitute an impediment for the development of robust, large scale, and efficient industrial processes. Although a considerable amount of research has been carried out on the conversion of food waste to renewable energy, there is a lack of comprehensive and systematic reviews of the published literature. The present review synthesizes the current knowledge available in the use of technologies for food-waste-to-energy conversion involving biological (e.g. anaerobic digestion and fermentation), thermal and thermochemical technologies (e.g. incineration, pyrolysis, gasification and hydrothermal oxidation). The competitive advantages of these technologies as well as the challenges associated with them are discussed. In addition, the future directions for more effective utilization of food waste for renewable energy generation are suggested from an interdisciplinary perspective.
Collapse
Affiliation(s)
- Thi Phuong Thuy Pham
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Republic of Singapore
| | - Rajni Kaushik
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Republic of Singapore
| | - Ganesh K Parshetti
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Republic of Singapore
| | - Russell Mahmood
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Republic of Singapore
| | - Rajasekhar Balasubramanian
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Republic of Singapore.
| |
Collapse
|
50
|
Tirpanalan Ö, Reisinger M, Smerilli M, Huber F, Neureiter M, Kneifel W, Novalin S. Wheat bran biorefinery--an insight into the process chain for the production of lactic acid. BIORESOURCE TECHNOLOGY 2015; 180:242-249. [PMID: 25616238 DOI: 10.1016/j.biortech.2015.01.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/05/2015] [Accepted: 01/06/2015] [Indexed: 06/04/2023]
Abstract
The present study investigates a wheat bran biorefinery including major processing steps pre-extraction, pre-treatment and lactic acid fermentation. Concerning the dry mass distribution, during the pre-extraction 32% of the feedstock was recovered, offering some perspectives for applications in food area. The pre-treatment (hydrothermal/enzymatic hydrolysis) of the remaining cake solubilized 34% of dry mass and led to a fermentable sugar concentration of 21g/L. The fermentation resulted in a lactic acid yield of 0.73g/g substrate. Concentrating the fermentation feed via nanofiltration did not improve the lactic acid productivity. Taking into account that Lactobacillus pentosus, a heterofermentative microorganism was used, the dry mass balance revealed a product yield of 47% (32% extract, 15% lactic acid). Based on a theoretical consideration involving a cellulolytic enzyme production (10% feedstock allocation) and lignin utilization, under optimized conditions a maximum product yield of around 80% (35% extract, 39% lactic acid, 6% lignin) could be expected.
Collapse
Affiliation(s)
- Özge Tirpanalan
- Department of Food Science and Technology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria; Christian Doppler Research Laboratory for Innovative Bran Biorefinery, Muthgasse 18, 1190 Vienna, Austria.
| | - Michael Reisinger
- Department of Food Science and Technology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria; Christian Doppler Research Laboratory for Innovative Bran Biorefinery, Muthgasse 18, 1190 Vienna, Austria
| | - Marina Smerilli
- Institute for Environmental Biotechnology, Department for Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - Florian Huber
- Department of Food Science and Technology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria; Christian Doppler Research Laboratory for Innovative Bran Biorefinery, Muthgasse 18, 1190 Vienna, Austria
| | - Markus Neureiter
- Institute for Environmental Biotechnology, Department for Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - Wolfgang Kneifel
- Department of Food Science and Technology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria; Christian Doppler Research Laboratory for Innovative Bran Biorefinery, Muthgasse 18, 1190 Vienna, Austria
| | - Senad Novalin
- Department of Food Science and Technology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria; Christian Doppler Research Laboratory for Innovative Bran Biorefinery, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|