1
|
Hernandez-Hosaka C, Park BR, Zhao Y, Jung J. Effect of pretreatment and peracetic acid pulping on cellulosic materials converted from spent coffee grounds. J Food Sci 2024; 89:9407-9419. [PMID: 39495581 DOI: 10.1111/1750-3841.17416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/22/2024] [Accepted: 09/09/2024] [Indexed: 11/06/2024]
Abstract
Spent coffee grounds (SCG) are the waste byproducts of coffee brewing. While SCG can be valorized to produce functional biopolymers due to their valuable structural components, the lignocellulosic structure of SCG is resistant to degradation because of the tightly bound lignin. Therefore, a pretreatment step is required before pulping with peracetic acid (PAA), an eco-friendlier alternative to traditional pulping methods, to facilitate the extraction of these desired cellulosic materials. Formic acid:acetic acid:deionized water (FA:AA:W = 30:50:20) or 60% (v/v) ethanol pretreatments were applied to SCG to compare the characteristics of the resulting cellulosic materials after PAA pulping. Lignocellulose analysis showed that the lignin content (7.06%) of ethanol pretreated SCG was significantly lower (p < 0.05), and the cellulose content (29.52%) was significantly higher (p < 0.05) than the untreated SCG (15.50% and 11.50%, respectively), indicating that an adequate amount of lignin was removed to obtain the cellulosic materials after the pretreatment process. Morphological and structural changes in the lignin and hemicellulose were observed in all the pretreated SCG, which further confirmed that these components were degraded with pretreatments and pulping. Ethanol pretreated SCG showed the most optimal results based on the greatest lignin decrease seen from its lignocellulose composition, appearance, and structure. This study exemplified a conversion process to extract cellulosic materials from SCG more efficiently to utilize for cellulose-based products and verify its potential to be valorized as a waste byproduct. PRACTICAL APPLICATION: Coffee companies can provide the spent coffee grounds (SCG) they produce to develop cellulose-based materials to make biodegradable packaging products rather than throwing them out or burning them. Using SCG for producing cellulose-based materials can help promote sustainability and reduce food waste worldwide. SCG can be utilized as an alternative source based on their abundance and desired biopolymeric properties, providing innovative solutions to industries and increasing consumer awareness of this cause.
Collapse
Affiliation(s)
| | - Bo-Ram Park
- Department of Agro-food Resources, National Institute of Agricultural Sciences, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Yanyun Zhao
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Jooyeoun Jung
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
2
|
Saharan BS, Dhanda D, Mandal NK, Kumar R, Sharma D, Sadh PK, Jabborova D, Duhan JS. Microbial contributions to sustainable paddy straw utilization for economic gain and environmental conservation. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100264. [PMID: 39205828 PMCID: PMC11350505 DOI: 10.1016/j.crmicr.2024.100264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Paddy straw is a versatile and valuable resource with multifaceted benefits for nutrient cycling, soil health, and climate mitigation. Its role as a rich nutrient source and organic matter significantly enhances soil vitality while improving soil structure and moisture retention. The impact of paddy straw extends beyond traditional agricultural benefits, encompassing the promotion of microbial activity, erosion control, and carbon sequestration, highlighting its crucial role in maintaining ecological balance. Furthermore, the potential of paddy straw in bioenergy is explored, encompassing its conversion into biogas, biofuels, and thermal energy. The inherent characteristics of paddy straw, including its high cellulose, hemicellulose, and lignin content, position it as a viable candidate for bioenergy production through innovative processes like pyrolysis, gasification, anaerobic digestion, and combustion. Recent research has uncovered state-of-the-art techniques and innovative technologies capable of converting paddy straw into valuable products, including sugar, ethanol, paper, and fiber, broadening its potential applications. This paper aims to underscore the possibilities for value creation through paddy straw, emphasizing its potential use in bioenergy, bio-products, and other environmental applications. Therefore, by recognizing and harnessing the value of paddy straw, we can advocate for sustainable farming practices, reduce waste, and pave the way for a resource-efficient circular economy. Incorporating paddy straw utilization into agricultural systems can pave the way for enhanced resource efficiency and a more sustainable circular economy.
Collapse
Affiliation(s)
- Baljeet Singh Saharan
- Department of Microbiology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, India
- Department of Botany and Plant Physiology (Environmental Science), Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, India
| | - Deepika Dhanda
- Department of Microbiology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, India
- Department of Botany and Plant Physiology (Environmental Science), Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, India
| | - Neelam Kumari Mandal
- Department of Botany, Government P.G. College, Panchkula, Haryana, 134112, India
| | - Ramesh Kumar
- Agriculture Extension, Krishi Vigyan Kendra, Ambala, 133104, India
| | - Deepansh Sharma
- Department of Life Sciences, J C Bose University of Science and Technology, YMCA, Faridabad, 121006, India
| | - Pardeep Kumar Sadh
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, 125055, India
| | - Dilfuza Jabborova
- Institute of Genetics and Plant Experimental Biology, Uzbekistan Academy of Sciences, Kibray 111208, Uzbekistan
| | - Joginder Singh Duhan
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, 125055, India
| |
Collapse
|
3
|
Chawla SK, Goyal D. Enhanced production of lactic acid from pretreated rice straw using co-cultivation of Bacillus licheniformis and Bacillus sonorenesis. 3 Biotech 2024; 14:169. [PMID: 38828100 PMCID: PMC11143171 DOI: 10.1007/s13205-024-04014-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
Lactic acid (LA) production from sugar mixture derived from lignocellulosic rice straw employing co- culture system of thermotolerant and inhibitor tolerant Bacillus licheniformis DGB and Bacillus sonorenesis DGS15 was carried out. In minimal media, both the strains of Bacillus DGB and DGS15 worked together by efficiently utilising glucose and xylose respectively. Response Surface Methodology (RSM) was used for optimisation of pretreatment of rice straw to achieve maximum yield of 50.852 g/L total reducing sugar (TRS) from 100 gm of rice straw biomass. Pretreatment of rice straw resulted in its delignification, as confirmed by FTIR spectroscopy, since the peak at 1668 cm-1 disappeared due to removal of lignin and scanning electron microscopy (SEM) revealed disruption in structural and morphological features. Crystallinity index (CrI) of treated rice straw increased by 15.54% in comparison to native biomass. DGB and DGS15 individually yielded 0.64 g/g and 0.82 g/g lactic acid respectively, where as their co-cultivation led to effective utilisation of both glucose and xylose within 15 h (70%) and complete utilisation in 48 h, producing 49.75 g/L LA with a yield of 0.98 g/g and productivity of 1.036 g/L/h, and resulting in reduction in fermentation time. Separate hydrolysis of rice straw and co-fermentation (SHCF) of hydrolysates by Bacillus spp. enhanced the production of lactic acid, can circumvent challenges in biorefining of lignocellulosic biomass.
Collapse
Affiliation(s)
- Simarpreet Kaur Chawla
- Department of Biotechnology, Thapar Institute of Engineering and Technology (Deemed to be University), Patiala, Punjab 147001 India
| | - Dinesh Goyal
- Department of Biotechnology, Thapar Institute of Engineering and Technology (Deemed to be University), Patiala, Punjab 147001 India
| |
Collapse
|
4
|
Zolfaghari S, Soltaninejad A, Okoro OV, Shavandi A, Denayer JFM, Sadeghi M, Karimi K. Starch biocomposites preparation by incorporating organosolv lignins from potato crop residues. Int J Biol Macromol 2024; 259:129140. [PMID: 38199558 DOI: 10.1016/j.ijbiomac.2023.129140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Plastic wastes accumulated due to food packaging pose environmental threats. This study proposes biopolymeric films containing lignins extracted from potato crop residues (PCR) through organosolv treatment as a green alternative to non-degradable food packaging. The isolation process yielded 43.9 wt% lignins with a recovery rate of 73.5 wt% achieved under optimum conditions at 180 °C with 50 % v/v ethanol. The extracted lignins were then incorporated into a starch matrix to create biocomposite films. ATR-FTIR analysis confirmed interactions between the starch matrix and extracted lignins, and XRD analysis showed the amorphous structure of lignins, reducing film crystallinity. The addition of 1 wt% of extracted lignins resulted in a 87 % reduction in oxygen permeability, a 25 % increase in the thermal stability of the film, and a 78 % enhancement in antioxidant. Furthermore, introducing 3 wt% lignins led to the lowest water vapor transmission rate, measuring 9.3 × 10-7 kg/s·m2. Morphological studies of the films demonstrated a homogeneous and continuous structure on both the surface and cross-sectional areas when the lignins content was below 7 wt%. These findings highlight the potential of using organosolv lignins derived from potato crop residues as a promising additive for developing eco-friendly films designed for sustainable food packaging.
Collapse
Affiliation(s)
- Shiva Zolfaghari
- Department of Chemical Engineering, Ifsahan University of Technology, Isfahan 84156-83111, Iran
| | - Ali Soltaninejad
- Department of Chemical Engineering, Ifsahan University of Technology, Isfahan 84156-83111, Iran
| | - Oseweuba Valentine Okoro
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Joeri F M Denayer
- Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Morteza Sadeghi
- Department of Chemical Engineering, Ifsahan University of Technology, Isfahan 84156-83111, Iran; School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Keikhosro Karimi
- Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium.
| |
Collapse
|
5
|
Wang J, Ma D, Lou Y, Ma J, Xing D. Optimization of biogas production from straw wastes by different pretreatments: Progress, challenges, and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166992. [PMID: 37717772 DOI: 10.1016/j.scitotenv.2023.166992] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/09/2023] [Accepted: 09/09/2023] [Indexed: 09/19/2023]
Abstract
Lignocellulosic biomass (LCB) presents a promising feedstock for carbon management due to enormous potential for achieving carbon neutrality and delivering substantial environmental and economic benefit. Bioenergy derived from LCB accounts for about 10.3 % of the global total energy supply. The generation of bioenergy through anaerobic digestion (AD) in combination with carbon capture and storage, particularly for methane production, provides a cost-effective solution to mitigate greenhouse gas emissions, while concurrently facilitating bioenergy production and the recovery of high-value products during LCB conversion. However, the inherent recalcitrant polymer crystal structure of lignocellulose impedes the accessibility of anaerobic bacteria, necessitating lignocellulosic residue pretreatment before AD or microbial chain elongation. This paper seeks to explore recent advances in pretreatment methods for LCB biogas production, including pulsed electric field (PEF), electron beam irradiation (EBI), freezing-thawing pretreatment, microaerobic pretreatment, and nanomaterials-based pretreatment, and provide a comprehensive overview of the performance, benefits, and drawbacks of the traditional and improved treatment methods. In particular, physical-chemical pretreatment emerges as a flexible and effective option for methane production from straw wastes. The burgeoning field of nanomaterials has provoked progress in the development of artificial enzyme mimetics and enzyme immobilization techniques, compensating for the intrinsic defect of natural enzyme. However, various complex factors, such as economic effectiveness, environmental impact, and operational feasibility, influence the implementation of LCB pretreatment processes. Techno-economic analysis (TEA), life cycle assessment (LCA), and artificial intelligence technologies provide efficient means for evaluating and selecting pretreatment methods. This paper addresses current issues and development priorities for the achievement of the appropriate and sustainable utilization of LCB in light of evolving economic and environmentally friendly social development demands, thereby providing theoretical basis and technical guidance for improving LCB biogas production of AD systems.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dongmei Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu Lou
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
6
|
Palaniswamy S, Ashoor S, Eskasalam SR, Jang YS. Harnessing lignocellulosic biomass for butanol production through clostridia for sustainable waste management: recent advances and perspectives. Front Bioeng Biotechnol 2023; 11:1272429. [PMID: 37954017 PMCID: PMC10634440 DOI: 10.3389/fbioe.2023.1272429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
The escalating waste generation rates, driven by population growth, urbanization, and consumption patterns, have made waste management a critical global concern with significant environmental, social, and economic repercussions. Among the various waste sources, lignocellulosic biomass represents a significant proportion of agricultural, agro-industrial, and municipal wastes. Biofuels are gaining attention as a promising substitute to fossil fuels, and butanol is one such biofuel that has been identified as a potential candidate due to its compatibility with existing fuel infrastructure, lower volatility, and higher energy density. Sustainable management of lignocellulosic biomass waste and its utilization in fermentation are viable alternatives to produce butanol via the promising microbial catalyst clostridia. This review provides an overview of lignocellulosic biomass waste management, focusing on recent advances in strain development for butanol production from renewable biomass with an emphasis on future perspectives.
Collapse
Affiliation(s)
- Sampathkumar Palaniswamy
- Division of Applied Life Science (BK21 Four), Department of Applied Life Chemistry, Institute of Agriculture and Life Science (IALS), Gyeongsang National University (GNU), Jinju, Republic of Korea
| | - Selim Ashoor
- Division of Applied Life Science (BK21 Four), Department of Applied Life Chemistry, Institute of Agriculture and Life Science (IALS), Gyeongsang National University (GNU), Jinju, Republic of Korea
- Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Syafira Rizqi Eskasalam
- Division of Applied Life Science (BK21 Four), Department of Applied Life Chemistry, Institute of Agriculture and Life Science (IALS), Gyeongsang National University (GNU), Jinju, Republic of Korea
| | - Yu-Sin Jang
- Division of Applied Life Science (BK21 Four), Department of Applied Life Chemistry, Institute of Agriculture and Life Science (IALS), Gyeongsang National University (GNU), Jinju, Republic of Korea
| |
Collapse
|
7
|
Zhu W, Sun H, Zhang Y, Wang N, Li Y, Liu S, Gao M, Wang Y, Wang Q. Improving lactic acid yield of hemicellulose from garden garbage through pretreatment of a high solid loading coupled with semi-hydrolysis using low enzyme loading. BIORESOURCE TECHNOLOGY 2023:129330. [PMID: 37329990 DOI: 10.1016/j.biortech.2023.129330] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Byproduct (acetate and ethanol) generation and carbon catabolite repression are two critical impediments to lactic acid production from the hemicellulose of lignocellulosic biomass. To reduce byproduct generations, acid pretreatment with high solid loading (solid-liquid ratio 1:7) of garden garbage was conducted. The byproduct yield was only 0.30 g/g during in the subsequent lactic acid fermentation from acid pretreatment liquid and 40.8% lower than that of low solid loading (0.48 g/g). Furthermore, semi-hydrolysis with low enzyme loading (10 FPU/g garden garbage cellulase) was conducted to regulate and reduce glucose concentration in the hydrolysate, thereby relieving carbon catabolite repression. During the lactic acid fermentation process, the xylose conversion rate was restored from 48.2% (glucose-oriented hydrolysis) to 85.7%, eventually achieving a 0.49 g/g lactic acid yield of hemicellulose. Additionally, RNA-seq revealed that semi-hydrolysis with low enzyme loading down-regulated the expression of ptsH and ccpA, thereby relieving carbon catabolite repression.
Collapse
Affiliation(s)
- Wenbin Zhu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Haishu Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuanchun Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Nuohan Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuan Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shuo Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ming Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China.
| | - Ying Wang
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu 610101, Sichuan, China
| | - Qunhui Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| |
Collapse
|
8
|
Downstream process development of biobutanol using deep eutectic solvent. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1265-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
9
|
Lay CH, Dharmaraja J, Shobana S, Arvindnarayan S, Krishna Priya R, Jeyakumar RB, Saratale RG, Park YK, Kumar V, Kumar G. Lignocellulose biohydrogen towards net zero emission: A review on recent developments. BIORESOURCE TECHNOLOGY 2022; 364:128084. [PMID: 36220533 DOI: 10.1016/j.biortech.2022.128084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
This review mainly determines novel and advance physical, chemical, physico-chemical, microbiological and nanotechnology-based pretreatment techniques in lignocellulosic biomass pretreatment for bio-H2 production. Further, aim of this review is to gain the knowledge on the lignocellulosic biomass pretreatment and its priority on the efficacy of bio-H2 and positive findings. The influence of various pretreatment techniques on the structure of lignocellulosic biomass have presented with the pros and cons, especially about the cellulose digestibility and the interference by generation of inhibitory compounds in the bio-enzymatic technique as such compounds is toxic. The result implies that the stepwise pretreatment technique only can ensure eventually the lignocellulosic biomass materials fermentation to yield bio-H2. Though, the mentioned pretreatment steps are still a challenge to procure cost-effective large-scale conversion of lignocellulosic biomass into fermentable sugars along with low inhibitory concentration.
Collapse
Affiliation(s)
- Chyi-How Lay
- Master's Program of Green Energy Science and Technology, Feng Chia University, Taichung, Taiwan
| | - Jeyaprakash Dharmaraja
- Division of Chemistry, Faculty of Science and Humanities, AAA College of Engineering and Technology, Amathur-626005, Virudhunagar District, Tamil Nadu, India
| | - Sutha Shobana
- Green Technology and Sustainable Development in Construction Research Group, Van Lang School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Sundaram Arvindnarayan
- Department of Mechanical Engineering, Lord Jegannath College of Engineering and Technology, Marungoor - 629402, Kanyakumari District, Tamil Nadu, India
| | - Retnam Krishna Priya
- Research Department of Physics, Holy Cross College (Autonomous), Nagercoil - 629004, Kanyakumari District, Tamil Nadu, India
| | - Rajesh Banu Jeyakumar
- Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur 610005, India
| | - Rijuta Ganesh Saratale
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, United Kingdom
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
10
|
Deng B, Hou Y, Wang F, Bao Y, Zeng F, Qin C, Liang C, Huang C, Ma J, Yao S. Highly selective separation of eucalyptus hemicellulose by salicylic acid treatment with both aromatic and hydroxy acids. BIORESOURCE TECHNOLOGY 2022; 355:127304. [PMID: 35562023 DOI: 10.1016/j.biortech.2022.127304] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Aromatic and hydroxyl acid treatments demonstrate their respective characteristics for the separation of lignocellulosic biomass. In this study, the effect of salicylic acid (SA-A) treatment on the separation of eucalyptus components with both aromatic and hydroxyl acid properties was analyzed. The optimal conditions were SA-A concentration 9.0%, reaction temperature 140 °C and time 75 min. The separation yield of xylose was 85.93%. The separation of cellulose and lignin was inhibited by SA-A treatment in contrast to the separation by glycolic acid and p-toluenesulfonic acid treatment. Moreover, SA-A treatment resulted in a larger fiber crystallinity index and higher thermal stability. The SA-A-treated samples contained lignin that was rich in β-O-4 and hydroxyl groups. The degradation and condensation of lignin was inhibited. The selectivity of aromatic acids for separating hemicellulose and protecting the lignin structure using hydroxy acids was demonstrated. Thus, new and efficient organic acid treatments can be developed.
Collapse
Affiliation(s)
- Baojuan Deng
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Yajun Hou
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Fei Wang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Yuqi Bao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Fanyan Zeng
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Chengrong Qin
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Chen Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Jiliang Ma
- College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
11
|
Guo Y, Liu Y, Guan M, Tang H, Wang Z, Lin L, Pang H. Production of butanol from lignocellulosic biomass: recent advances, challenges, and prospects. RSC Adv 2022; 12:18848-18863. [PMID: 35873330 PMCID: PMC9240921 DOI: 10.1039/d1ra09396g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/27/2022] [Indexed: 11/21/2022] Open
Abstract
Due to energy and environmental concerns, biobutanol is gaining increasing attention as an alternative renewable fuel owing to its desirable fuel properties. Biobutanol production from lignocellulosic biomass through acetone-butanol-ethanol (ABE) fermentation has gained much interest globally due to its sustainable supply and non-competitiveness with food, but large-scale fermentative production suffers from low product titres and poor selectivity. This review presents recent developments in lignocellulosic butanol production, including pretreatment and hydrolysis of hemicellulose and cellulose during ABE fermentation. Challenges are discussed, including low concentrations of fermentation sugars, inhibitors, detoxification, and carbon catabolite repression. Some key process improvements are also summarised to guide further research and development towards more profitable and commercially viable butanol fermentation.
Collapse
Affiliation(s)
- Yuan Guo
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences 98 Daling Road Nanning 530007 China +86-771-2503940 +86-771-2503973
| | - Yi Liu
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences 98 Daling Road Nanning 530007 China +86-771-2503940 +86-771-2503973
| | - Mingdong Guan
- College of Life Science and Technology, Guangxi University Nanning 530004 China
| | - Hongchi Tang
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences 98 Daling Road Nanning 530007 China +86-771-2503940 +86-771-2503973
| | - Zilong Wang
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences 98 Daling Road Nanning 530007 China +86-771-2503940 +86-771-2503973
| | - Lihua Lin
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences 98 Daling Road Nanning 530007 China +86-771-2503940 +86-771-2503973
| | - Hao Pang
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences 98 Daling Road Nanning 530007 China +86-771-2503940 +86-771-2503973
| |
Collapse
|
12
|
Khan MU, Usman M, Ashraf MA, Dutta N, Luo G, Zhang S. A review of recent advancements in pretreatment techniques of lignocellulosic materials for biogas production: Opportunities and Limitations. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100263] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
13
|
Kaniapan S, Pasupuleti J, Patma Nesan K, Abubackar HN, Umar HA, Oladosu TL, Bello SR, Rene ER. A Review of the Sustainable Utilization of Rice Residues for Bioenergy Conversion Using Different Valorization Techniques, Their Challenges, and Techno-Economic Assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:3427. [PMID: 35329114 PMCID: PMC8953080 DOI: 10.3390/ijerph19063427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 11/24/2022]
Abstract
The impetus to predicting future biomass consumption focuses on sustainable energy, which concerns the non-renewable nature of fossil fuels and the environmental challenges associated with fossil fuel burning. However, the production of rice residue in the form of rice husk (RH) and rice straw (RS) has brought an array of benefits, including its utilization as biofuel to augment or replace fossil fuel. Rice residue characterization, valorization, and techno-economic analysis require a comprehensive review to maximize its inherent energy conversion potential. Therefore, the focus of this review is on the assessment of rice residue characterization, valorization approaches, pre-treatment limitations, and techno-economic analyses that yield a better biofuel to adapt to current and future energy demand. The pre-treatment methods are also discussed through torrefaction, briquetting, pelletization and hydrothermal carbonization. The review also covers the limitations of rice residue utilization, as well as the phase structure of thermochemical and biochemical processes. The paper concludes that rice residue is a preferable sustainable biomass option for both economic and environmental growth.
Collapse
Affiliation(s)
- Sivabalan Kaniapan
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang 43000, Malaysia;
| | - Jagadeesh Pasupuleti
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang 43000, Malaysia;
| | - Kartikeyan Patma Nesan
- Chemical Engineering Department, Universiti Teknologi Petronas, Seri Iskandar 32610, Malaysia
| | | | - Hadiza Aminu Umar
- Mechanical Engineering Department, Bayero University Kano, Kano PMB 3011, Nigeria;
- Mechanical Engineering Department, Universiti Teknologi Petronas, Seri Iskandar 32610, Malaysia;
| | - Temidayo Lekan Oladosu
- Mechanical Engineering Department, Universiti Teknologi Petronas, Seri Iskandar 32610, Malaysia;
| | - Segun R. Bello
- Department of Agricultural and Bioenvironmental Engineering Technology, Federal College of Agriculture Ishiagu, Ishiagu 402143, Nigeria;
| | - Eldon R. Rene
- Department of Environmental Engineering and Water Technology, IHE Delft Institute for Water Education, P.O. Box 3015, 2601 DA Delft, The Netherlands;
| |
Collapse
|
14
|
Post-hydrolysis of cellulose oligomers by cellulase immobilized on chitosan-grafted magnetic nanoparticles: A key stage of butanol production from waste textile. Int J Biol Macromol 2022; 207:324-332. [PMID: 35259435 DOI: 10.1016/j.ijbiomac.2022.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 11/24/2022]
Abstract
The recently developed technologies for immobilization of cellulase may address the challenges in costly hydrolysis of cellulose for cellulosic butanol production. In this study, a "hybrid" hydrolysis was developed based on chemical hydrolysis of cellulose to its oligomers followed by enzymatic post-hydrolysis of the resulting "soluble oligomers" by cellulase immobilized on chitosan-coated Fe3O4 nanoparticles. This hybrid hydrolysis stage was utilized in the process of biobutanol production from a waste textile, jeans waste, leading to selective formation of glucose and high yield of butanol production by Clostridium acetobutylicum. After validating the immobilization process, the optimum immobilization parameters including enzyme concentration and time were achieved on 8 h and 15.0 mg/mL, respectively. The reusability of immobilized enzyme showed that immobilized cellulase could retain 51.5% of its initial activity after three times reuses. Dilute acid hydrolysis of regenerated cellulose at 120-180 °C for 60 min 0.5-1.0% phosphoric acid led to less than 10 g/L glucose production, and enzymatic post-hydrolysis of the oligomers resulted in up to 51.5 g/L glucose. Fermentation of the hydrolysate was accompanied by 5.3 g/L acetone-butanol-ethanol (ABE) production. The simultaneous co-saccharification and fermentation (SCSF) of soluble and insoluble oligomers of cellulose led to 17.4 g/L ABE production.
Collapse
|
15
|
Abd‐Aziz S, Jenol MA, Ramle IK. Biovanillin from Oil Palm Biomass. BIOREFINERY OF OIL PRODUCING PLANTS FOR VALUE‐ADDED PRODUCTS 2022:493-514. [DOI: 10.1002/9783527830756.ch25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
16
|
Chavan S, Yadav B, Atmakuri A, Tyagi RD, Wong JWC, Drogui P. Bioconversion of organic wastes into value-added products: A review. BIORESOURCE TECHNOLOGY 2022; 344:126398. [PMID: 34822979 DOI: 10.1016/j.biortech.2021.126398] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Rapid urbanization has increased the demand for food, feed, and chemicals that have in turn augmented the use of fossil-based resources and generation of organic waste. Owning to the characteristics like high abundance, renewability, and ease of accessibility, valorization of organic wastes serves as a potential solution for waste management issues. Several industrial wastes, due to their organic and nutrient-rich composition, have been utilized as a resource for the production of value-added products such as biofuels, biopesticides, biohydrogen, enzymes, and bioplastics via microbial fermentation processes. The process consists of pre-treatment of the waste biomass, production of value-added product in reactors and downstream processing for product's recovery. The integration of new comprehensive technologies for organic waste utilization will also stimulate the transition towards a circular economy. Therefore, the feasibility and sustainability of the production of various value-added products from biowastes and byproduct streams will be discussed in the present review.
Collapse
Affiliation(s)
- Shraddha Chavan
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - Bhoomika Yadav
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - Anusha Atmakuri
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - R D Tyagi
- BOSK-Bioproducts, 100-399 rue Jacquard, Québec QC G1N 4J6, Canada; School of Technology, Huzhou University, Huzhou 311800, PR China.
| | - Jonathan W C Wong
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong; School of Technology, Huzhou University, Huzhou 311800, PR China
| | - Patrick Drogui
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| |
Collapse
|
17
|
Yang M, Guo X, Liu G, Nan Y, Zhang J, Noyazzesh H, Kuittinen S, Vepsäläinen J, Pappinen A. Effect of solvent mixture pretreatment on sugar release from short-rotation coppice Salix schwerinii for biobutanol production. BIORESOURCE TECHNOLOGY 2022; 344:126262. [PMID: 34728360 DOI: 10.1016/j.biortech.2021.126262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
This study investigated the effects of pretreatment using an acetone-butanol-ethanol (ABE) mixture with and without H2SO4 (H+) as a catalyst on sugar recovery from Salix schwerinii biomass. The sugar recovery was susceptible to both the temperature and the catalyst. Moreover, the relatively higher concentration of ABE (H+ABE4) at 200 °C yielded glucose recovery of 85.5% from the pretreated solid, higher than the recovery under other conditions. This result was mainly attributed to the compositional changes in the biomass, as the xylan and lignin were removed in large quantities by ABE pretreatment at 200 °C. Correspondingly, xylose recovery of 53.8% and glucose recovery of 12.1% were obtained from the liquid in which more sugar degradation products were formed. Ultimately, a fermentation broth containing a low concentration of ABE was successfully employed for pretreatment and showed great potential in producing fermentable sugars from S. schwerinii for biobutanol production.
Collapse
Affiliation(s)
- Ming Yang
- Engineering Research Center of Hebei for Agricultural Waste Resource Utilization, College of Life Sciences, Hebei Agricultural University, Baoding 071001, Hebei, China; Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding 071001, Hebei, China.
| | - Xiaojun Guo
- Engineering Research Center of Hebei for Agricultural Waste Resource Utilization, College of Life Sciences, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Guozhen Liu
- Engineering Research Center of Hebei for Agricultural Waste Resource Utilization, College of Life Sciences, Hebei Agricultural University, Baoding 071001, Hebei, China; Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Yufei Nan
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Junhua Zhang
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hossain Noyazzesh
- School of Forest Sciences, University of Eastern Finland, P.O. Box 111, FI80101 Joensuu, Finland
| | - Suvi Kuittinen
- School of Forest Sciences, University of Eastern Finland, P.O. Box 111, FI80101 Joensuu, Finland
| | - Jouko Vepsäläinen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI70211 Kuopio, Finland
| | - Ari Pappinen
- School of Forest Sciences, University of Eastern Finland, P.O. Box 111, FI80101 Joensuu, Finland
| |
Collapse
|
18
|
Ajeje SB, Hu Y, Song G, Peter SB, Afful RG, Sun F, Asadollahi MA, Amiri H, Abdulkhani A, Sun H. Thermostable Cellulases / Xylanases From Thermophilic and Hyperthermophilic Microorganisms: Current Perspective. Front Bioeng Biotechnol 2021; 9:794304. [PMID: 34976981 PMCID: PMC8715034 DOI: 10.3389/fbioe.2021.794304] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
The bioconversion of lignocellulose into monosaccharides is critical for ensuring the continual manufacturing of biofuels and value-added bioproducts. Enzymatic degradation, which has a high yield, low energy consumption, and enhanced selectivity, could be the most efficient and environmentally friendly technique for converting complex lignocellulose polymers to fermentable monosaccharides, and it is expected to make cellulases and xylanases the most demanded industrial enzymes. The widespread nature of thermophilic microorganisms allows them to proliferate on a variety of substrates and release substantial quantities of cellulases and xylanases, which makes them a great source of thermostable enzymes. The most significant breakthrough of lignocellulolytic enzymes lies in lignocellulose-deconstruction by enzymatic depolymerization of holocellulose into simple monosaccharides. However, commercially valuable thermostable cellulases and xylanases are challenging to produce in high enough quantities. Thus, the present review aims at giving an overview of the most recent thermostable cellulases and xylanases isolated from thermophilic and hyperthermophilic microbes. The emphasis is on recent advancements in manufacturing these enzymes in other mesophilic host and enhancement of catalytic activity as well as thermostability of thermophilic cellulases and xylanases, using genetic engineering as a promising and efficient technology for its economic production. Additionally, the biotechnological applications of thermostable cellulases and xylanases of thermophiles were also discussed.
Collapse
Affiliation(s)
- Samaila Boyi Ajeje
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yun Hu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Guojie Song
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Sunday Bulus Peter
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Richmond Godwin Afful
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Fubao Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Mohammad Ali Asadollahi
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Hamid Amiri
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Ali Abdulkhani
- Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Haiyan Sun
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
19
|
Oh HW, Lee SC, Woo HC, Han Kim Y. Energy‐Efficient Biobutanol Recovery Process Using 1‐Heptanol Extraction. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202100154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hyeon Woo Oh
- Pukyong National University Department of Chemical Engineering 365 Shinsun-ro, Nam-gu 48547 Busan South Korea
| | - Seong Chan Lee
- Pukyong National University Department of Chemical Engineering 365 Shinsun-ro, Nam-gu 48547 Busan South Korea
| | - Hee Chul Woo
- Pukyong National University Department of Chemical Engineering 365 Shinsun-ro, Nam-gu 48547 Busan South Korea
| | - Young Han Kim
- Pukyong National University Department of Chemical Engineering 365 Shinsun-ro, Nam-gu 48547 Busan South Korea
| |
Collapse
|
20
|
Qaiser H, Kaleem A, Abdullah R, Iqtedar M, Hoessli DC. Overview of lignocellulolytic enzyme systems with special reference to valorization of lignocellulosic biomass. Protein Pept Lett 2021; 28:1349-1364. [PMID: 34749601 DOI: 10.2174/0929866528666211105110643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 11/22/2022]
Abstract
Lignocellulosic biomass, one of the most valuable natural resources, is abundantly present on earth. Being a renewable feedstock, it harbors a great potential to be exploited as a raw material, to produce various value-added products. Lignocellulolytic microorganisms hold a unique position regarding the valorization of lignocellulosic biomass as they contain efficient enzyme systems capable of degrading this biomass. The ubiquitous nature of these microorganisms and their survival under extreme conditions have enabled their use as an effective producer of lignocellulolytic enzymes with improved biochemical features crucial to industrial bioconversion processes. These enzymes can prove to be an exquisite tool when it comes to the eco-friendly manufacturing of value-added products using waste material. This review focuses on highlighting the significance of lignocellulosic biomass, microbial sources of lignocellulolytic enzymes and their use in the formation of useful products.
Collapse
Affiliation(s)
- Hina Qaiser
- Department of Biology, Lahore Garrison University, Lahore. Pakistan
| | - Afshan Kaleem
- Department of Biotechnology, Lahore College for Women University, Lahore. Pakistan
| | - Roheena Abdullah
- Department of Biotechnology, Lahore College for Women University, Lahore. Pakistan
| | - Mehwish Iqtedar
- Department of Biotechnology, Lahore College for Women University, Lahore. Pakistan
| | - Daniel C Hoessli
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi. Pakistan
| |
Collapse
|
21
|
Aggarwal N, Pal P, Sharma N, Saravanamurugan S. Consecutive Organosolv and Alkaline Pretreatment: An Efficient Approach toward the Production of Cellulose from Rice Straw. ACS OMEGA 2021; 6:27247-27258. [PMID: 34693145 PMCID: PMC8529666 DOI: 10.1021/acsomega.1c04030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Indexed: 06/13/2023]
Abstract
The efficient removal of silica from rice straw and separation of its major components is essential for further valorization to produce value-added products. With regard to this, the isolation of cellulose (CEL), hemicellulose (HEM), and lignin (LIG) is imperative but quite challenging. Among several pretreatments of lignocellulosic biomass, the organosolv approach is deemed as one of the promising methods. Here, we present two different two-step approaches for the removal of silica and disintegration of significant components from rice straw, especially CEL; (i) base pretreatment, followed by organosolv treatment in the presence of organic acid, and (ii) organosolv pretreatment in the presence of organic acid, followed by base treatment. After each treatment, the recovered solid components are confirmed by various characterization techniques such as Fourier-transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, and thermogravimetric analysis. Method 2 demonstrates 82% total removal of HEM and LIG along with 90.4% of silica removal from rice straw to obtain CEL. Furthermore, the obtained crude CEL is found to be with a purity of 78%. Excellent removal of silica (90.4%) reflects that in a test study, the crude CEL obtained from method 2 gives a higher yield of butyl glucosides (59.6%) than rice straw, which affords 45.0% of butyl glucosides.
Collapse
|
22
|
Prasanth SM, Kumar PS, Harish S, Rishikesh M, Nanda S, Vo DVN. Application of biomass derived products in mid-size automotive industries: A review. CHEMOSPHERE 2021; 280:130723. [PMID: 34162084 DOI: 10.1016/j.chemosphere.2021.130723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/19/2021] [Accepted: 04/27/2021] [Indexed: 06/13/2023]
Abstract
The automotive industry is directly affected by the shortage of fossil fuels and the excessive pollution resulting from crude oil-based fuels has many adverse effects on the environment. The search for a greener and sustainable source of materials and fuels to power automobiles has ultimately led to the usage of biomass and biobased sources as the main precursor due to its graft availability and renewability. Biobased fuels developed have been shown to easily blend in with the existing automobile engines and to provide sustainable performance. Similarly, the usage of various biobased polymers, plastics, and composite materials as the structural materials for the construction of automobiles instead of crude oil sources have shown to be invaluable. The powering of automobiles with electricity is the future of the transportation industry to address the greenhouse gas emissions caused by fossil fuels. Hence, biobased lithium-ion batteries and supercapacitors have started to enter the mid-sized automotive industry. However, extensive commercialization of biobased products application in the automotive sector is underdeveloped. Hence it is customary to assess the various drawbacks of using biobased materials and identify the correct pathway for new research and development in this field. Therefore, this review covers various applications of biobased products in the automotive industries and mentions the active researches going on in this field to replace petroleum and crude oil-based sources with biobased sources.
Collapse
Affiliation(s)
- S M Prasanth
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India.
| | - S Harish
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India
| | - M Rishikesh
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India
| | - Sonil Nanda
- Department of Chemical and Biological Engineering University of Saskatchewan, Saskatchewan, S7N 5A9, Canada
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
23
|
David GF, Pereira SDPS, Fernandes SA, Cubides-Roman DC, Siqueira RK, Perez VH, Lacerda V. Fast pyrolysis as a tool for obtaining levoglucosan after pretreatment of biomass with niobium catalysts. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 126:274-282. [PMID: 33784571 DOI: 10.1016/j.wasman.2021.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/01/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Levoglucosan (LGA) is a promising chemical platform derived from the pyrolysis of biomass that offers access to a variety of value-added products. We report an efficient route to produce LGA via the pretreatment of biomass with niobium compounds (oxalate, chloride and oxide) followed by fast pyrolysis coupled with gas chromatography-mass spectrometry (Py-GC-MS) at temperatures of 350-600 °C. Catalytic pretreatment reduces the quantity of lignin in the biomass, concentrates the cellulose and enhance LGA formation during fast pyrolysis. The pretreatment also removes alkaline metals, preventing competitive side reactions. The effect of several parameters such as catalyst weight, time, temperature, and solvent, with the optimal pretreatment conditions determined to be 3 (wt.%) niobium oxalate for 1 h at 23 °C in water. Pretreatment increased the LGA yields by 6.40-fold for sugarcane bagasse, 4.15-fold for elephant grass, 4.13-fold for rice husk, 2.86-fold for coffee husk, and 1.86-fold for coconut husk as compared to the raw biomasses. These results indicate that biomass pretreatment using niobium derivates prior fast pyrolysis can be a promising technique for biomass thermochemical conversion in LGA and others important pyrolytic products.
Collapse
Affiliation(s)
- Geraldo Ferreira David
- Laboratório de Química Orgânica, Departamento de Química, Universidade Federal do Espírito Santo (UFES), Avenida Fernando Ferrari, 514, Goiabeiras, Vitória, ES 29075-910, Brazil
| | - Sarah de Paiva Silva Pereira
- Grupo de Química Supramolecular e Biomimética (GQSB), Departamento de Química, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Sergio Antonio Fernandes
- Grupo de Química Supramolecular e Biomimética (GQSB), Departamento de Química, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Diana Catalina Cubides-Roman
- Laboratório de Química Orgânica, Departamento de Química, Universidade Federal do Espírito Santo (UFES), Avenida Fernando Ferrari, 514, Goiabeiras, Vitória, ES 29075-910, Brazil
| | - Rogério Krohling Siqueira
- Laboratório de Química Orgânica, Departamento de Química, Universidade Federal do Espírito Santo (UFES), Avenida Fernando Ferrari, 514, Goiabeiras, Vitória, ES 29075-910, Brazil
| | - Victor Haber Perez
- Center of Sciences and Agricultural Technologies, State University of Northern of Rio de Janeiro, RJ 28013-602, Brazil
| | - Valdemar Lacerda
- Laboratório de Química Orgânica, Departamento de Química, Universidade Federal do Espírito Santo (UFES), Avenida Fernando Ferrari, 514, Goiabeiras, Vitória, ES 29075-910, Brazil.
| |
Collapse
|
24
|
Efficient Co-Utilization of Biomass-Derived Mixed Sugars for Lactic Acid Production by Bacillus coagulans Azu-10. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7010028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lignocellulosic and algal biomass are promising substrates for lactic acid (LA) production. However, lack of xylose utilization and/or sequential utilization of mixed-sugars (carbon catabolite repression, CCR) from biomass hydrolysates by most microorganisms limits achievable titers, yields, and productivities for economical industry-scale production. This study aimed to design lignocellulose-derived substrates for efficient LA production by a thermophilic, xylose-utilizing, and inhibitor-resistant Bacillus coagulans Azu-10. This strain produced 102.2 g/L of LA from 104 g/L xylose at a yield of 1.0 g/g and productivity of 3.18 g/L/h. The CCR effect and LA production were investigated using different mixtures of glucose (G), cellobiose (C), and/or xylose (X). Strain Azu-10 has efficiently co-utilized GX and CX mixture without CCR; however, total substrate concentration (>75 g/L) was the only limiting factor. The strain completely consumed GX and CX mixture and homoferemnatively produced LA up to 76.9 g/L. On the other hand, fermentation with GC mixture exhibited obvious CCR where both glucose concentration (>25 g/L) and total sugar concentration (>50 g/L) were the limiting factors. A maximum LA production of 50.3 g/L was produced from GC mixture with a yield of 0.93 g/g and productivity of 2.09 g/L/h. Batch fermentation of GCX mixture achieved a maximum LA concentration of 62.7 g/L at LA yield of 0.962 g/g and productivity of 1.3 g/L/h. Fermentation of GX and CX mixture was the best biomass for LA production. Fed-batch fermentation with GX mixture achieved LA production of 83.6 g/L at a yield of 0.895 g/g and productivity of 1.39 g/L/h.
Collapse
|
25
|
Efficient and Selective Catalytic Conversion of Hemicellulose in Rice Straw by Metal Catalyst under Mild Conditions. SUSTAINABILITY 2020. [DOI: 10.3390/su122410601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Rice straw is an abundant material with the potential to be converted into a sustainable energy resource. Transition-metal catalysis activated the C–O bond in the hemicellulose of raw rice straw, cleaving it to form monosaccharides. The mechanism of rice straw catalytic conversion had a synergistic effect due to in situ acid catalysis and metal catalysis. The conditions for the hydrogenation of hemicellulose from rice straw were optimized: catalyst to rice straw solid/solid ratio of 3:10, stirring speed of 600 r/min, temperature of 160 °C, time of 3 h, solid/liquid ratio of 1:15, and H2 gas pressure of 1.5 MPa. An excellent hemicellulose conversion of 97.3% with the yields of xylose and arabinose at 53.0% and 17.3%, respectively, were obtained. The results from FTIR and SEM experiments also confirmed the destruction of the rigidity and reticulate structure of rice straw after the catalytic reaction.
Collapse
|
26
|
Mohapatra S, Ranjan Mishra R, Nayak B, Chandra Behera B, Das Mohapatra PK. Development of co-culture yeast fermentation for efficient production of biobutanol from rice straw: A useful insight in valorization of agro industrial residues. BIORESOURCE TECHNOLOGY 2020; 318:124070. [PMID: 32942093 DOI: 10.1016/j.biortech.2020.124070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 06/11/2023]
Abstract
Escalating environmental concerns and petroleum demands leads into the present study. In this investigation delignification of rice straw was optimized by NaOH and H2SO4 pretreatment using L16 Taguchi orthogonal array. NaOH pretreatment revealed higher delignification as compared to H2SO4 and; further subjected to separate enzymatic hydrolysis and co-fermentation (SHCF) using RSM as the SHCF demonstrated a maximum glucose and xylose yield of 575 and 205 mg/g. Further, butanol concentration of 4.32 g/L was achieved from 20 g/L of sugar loadings by co-culture of Saccharomyces cerevisiae and Pichia sp. at 72 h of incubation time which was 79.25% higher as compared to monocultures of Pichia sp. Scale-up experiments with higher sugar loadings (90 g/L) demonstrated a butanol concentration of 13.3 g/L. The release of amino acids in co-culture and monoculture systems demonstrated that the addition of S. cerevisiae promoted the butanol synthesis pathway which led to higher butanol concentration.
Collapse
Affiliation(s)
- Sonali Mohapatra
- Department of Biotechnology, College of Engg. & Technology, Kalinga Nagar, Ghatikia, Bhubaneswar, Odisha 751003, India
| | - Rashmi Ranjan Mishra
- Department of Biotechnology, MITS School of Biotechnology, KIIT Road, Infocity, Patia, Bhubaneswar, Odisha 751024, India
| | - Bikash Nayak
- Department of Biotechnology, MITS School of Biotechnology, KIIT Road, Infocity, Patia, Bhubaneswar, Odisha 751024, India
| | | | | |
Collapse
|
27
|
da Silva GF, Mathias SL, de Menezes AJ, Vicente JGP, Delforno TP, Varesche MBA, Duarte ICS. Orange Bagasse Pellets as a Carbon Source for Biobutanol Production. Curr Microbiol 2020; 77:4053-4062. [PMID: 33057752 DOI: 10.1007/s00284-020-02245-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022]
Abstract
Due to the environmental concerns, the conversion of lignocellulosic waste can be the key to produce bioproducts and biofuels such as butanol. This study aimed to present and evaluate orange bagasse pellets (OBP) as a carbon source to produce butan-1-ol production via ABE fermentation using Clostridium beijerinckii. These bagasse pellets were characterized, holocellulose (18.99%), alfacellulose (5.37%), hemicellulose (13.62%), lignin (6.16%), pectin (7.21%), protein (3.14%), and was tested under three different pretreatments, which were the following: (a) ultrasound, (b) autohydrolysis, and (c) acid-diluted hydrolysis followed by enzymatic hydrolysis to verify an amount of fermentable total reducing sugars. ANOVA was used and pretreatments followed by enzymatic hydrolysis do not enhance a significant amount of available sugars compared to raw bagasse. The ABE fermentation was carried out in batch reactors at 37 °C under agitation of 160 rpm and anaerobic conditions, using OBP without treatment followed by enzymatic hydrolysis. Using a non-mutant microorganism, the fermentation achieved butyric acid yields of 3762.68 mg L-1 for control and 2488.82 mg L-1 for OBP and the butanol production was 63.86 mg L-1 and 196.80 mg L-1 for OBP and the control (glucose) assay, respectively. The results of this solvent's production have shown that OBP has the potential for ABE fermentation and a promising feedstock.
Collapse
Affiliation(s)
- Gabriela Fiori da Silva
- Department of Biology, Federal University of São Carlos-UFSCar, Campus Sorocaba, Rodovia João Leme dos Santos km 110 SP-264, Bairro Itinga, Sorocaba, SP, 18052-780, Brazil.
| | - Samir Leite Mathias
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos-UFSCar, Campus Sorocaba, Sorocaba, SP, 18052-780, Brazil
| | - Aparecido Junior de Menezes
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos-UFSCar, Campus Sorocaba, Sorocaba, SP, 18052-780, Brazil
| | | | - Tiago Palladino Delforno
- Department of Biology, Federal University of São Carlos-UFSCar, Campus Sorocaba, Rodovia João Leme dos Santos km 110 SP-264, Bairro Itinga, Sorocaba, SP, 18052-780, Brazil
| | - Maria Bernadete Amâncio Varesche
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo-USP, São Paulo, SP, Brazil
| | - Iolanda Cristina Silveira Duarte
- Department of Biology, Federal University of São Carlos-UFSCar, Campus Sorocaba, Rodovia João Leme dos Santos km 110 SP-264, Bairro Itinga, Sorocaba, SP, 18052-780, Brazil
| |
Collapse
|
28
|
Ebrahimian F, Karimi K, Kumar R. Sustainable biofuels and bioplastic production from the organic fraction of municipal solid waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 116:40-48. [PMID: 32784120 DOI: 10.1016/j.wasman.2020.07.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/12/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
Municipal solid waste is an environmental threat worldwide; however, the organic fraction of municipal solid waste (OF-MSW) has a great potential for the generation of fuels and high-value products. In the current study, OF-MSW was utilized for the production of ethanol, hydrogen, as well as 2,3-butanediol, an octane booster, by using Enterobacter aerogenes. Furthermore, a promising alternative to non-biodegradable petrochemical-based polymers, polyhydroxyalkanoates (PHAs), was produced. The OF-MSW was first pretreated by an acetic acid catalyzed ethanol organosolv pretreatment at 120 and 160 °C followed by enzymatic hydrolysis of the residual solids. The residual unhydrolyzed solids resulting from enzymatic hydrolysis were further anaerobically digested for methane production. The enzymatic hydrolysis of the solids prepared at 120 °C for 60 min led to the production of hydrolysate with the highest glucose production yield of 498.5 g/kg dry untreated OF-MSW, which was fermented to 139.1 g 2,3-butanediol, 98.3 g ethanol, 28.6 g acetic acid, 71.4 L biohydrogen, and 40 g PHAs. Moreover, 23.1 L biomethane was produced through the anaerobic digestion of the enzymatic hydrolysis residue solids. Thus, appreciable amounts of energy (8236.9 kJ) and an eco-friendly bioplastic were produced by the valorization of carbon sources available in OF-MSW.
Collapse
Affiliation(s)
- Farinaz Ebrahimian
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Keikhosro Karimi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Industrial Biotechnology Group, Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Rajeev Kumar
- Center of Environmental and Research Technology (CE-CERT), Bourns College of Engineering, University of California, Riverside, CA 92507, USA.
| |
Collapse
|
29
|
Utilization of waste straw and husks from rice production: A review. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2020. [DOI: 10.1016/j.jobab.2020.07.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
30
|
Wu J, Dong L, Liu B, Xing D, Zhou C, Wang Q, Wu X, Feng L, Cao G. A novel integrated process to convert cellulose and hemicellulose in rice straw to biobutanol. ENVIRONMENTAL RESEARCH 2020; 186:109580. [PMID: 32668543 DOI: 10.1016/j.envres.2020.109580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/24/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
A novel integrated process was established in this study to produce butanol from rice straw. In the first pretreatment, an alternative NaOH/Urea preatment operated at -12 oC efficiently removed 10.9 g lignin and preserved 91.54% cellulose and hemicellulose in 100 g rice straw. Subsequently, crude cellulase produced from Trichoderma viride was used to convert pretreated rice straw to mono-sugars for fermentation. The yields of glucose, xylose and arabiose obtained from 100 g rice straw were 31 g, 13.4 g and 0.48 g, respectively, resulting in a 69.45% saccharification efficiency of crude enzyme. Finally, to alleviate the carbon catabolite repression (CCR) and enhance butanol production, the coculture system of Clostridium beijerinckii and Saccharomyces cerevisiae was applied. Compared to monoculture of C. beijerinckii F-6, more sugars were consumed, especially the reduction rate of xylose reached to 81.87%, 32.99% higher than that in monoculture system. With more substrate facilitied into metabolism, the butanol concentration reached to 10.62 g/L corresponding to 0.28 g/g substrate, 115.38% higher than that in monoculture system. Overall, this integrated process was a low-energy consumption and efficient method for butanol production from rice straw.
Collapse
Affiliation(s)
- Jiwen Wu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lili Dong
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Bingfeng Liu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Chunshuang Zhou
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Qi Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xiukun Wu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Liping Feng
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Guangli Cao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
31
|
Ebrahimian F, Karimi K. Efficient biohydrogen and advanced biofuel coproduction from municipal solid waste through a clean process. BIORESOURCE TECHNOLOGY 2020; 300:122656. [PMID: 31893536 DOI: 10.1016/j.biortech.2019.122656] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
The cleanest form of energy, i.e., biohydrogen, and advanced biofuel, i.e., biobutanol, were produced from the organic fraction of municipal solid waste (OFMSW). Ethanol as a byproduct of this process was used for the pretreatment of this substrate, and this pretreatment was improved by other process byproducts, i.e., acetic acid and butyric acid. The pretreatment was conducted with 85% ethanol and 0-1% (w/w) acetic/butyric acid at 120 and 160 °C for 30 min. The pretreatment catalyzed by 1% (w/w) acetic acid at 120 °C resulted in a hydrolysate with 49.8 g/L total fermentable sugars, which was fermented to the highest overall yield of acetone, butanol, and ethanol (ABE) and hydrogen. Through this process, 114.1 g butanol, 43.8 g acetone, 15.1 g ethanol, 97.5 L hydrogen were obtained from each kg of OFMSW, producing 270 g ABE and 151 L H2 from each kg of substrate, corresponding to 6000 kJ energy production.
Collapse
Affiliation(s)
- Farinaz Ebrahimian
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Keikhosro Karimi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Industrial Biotechnology Group, Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| |
Collapse
|
32
|
Regmi S, Choi YS, Kim YK, Khan MM, Lee SH, Cho SS, Jin YY, Lee DY, Yoo JC, Suh JW. Endoglucanase Produced by Bacillus subtilis Strain CBS31: Biochemical Characterization, Thermodynamic Study, Enzymatic Hydrolysis, and Bio-industrial Applications. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0338-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
|
34
|
Anandharaj SJ, Gunasekaran J, Udayakumar GP, Meganathan Y, Sivarajasekar N. Biobutanol: Insight, Production and Challenges. SPRINGER PROCEEDINGS IN ENERGY 2020. [DOI: 10.1007/978-981-15-4638-9_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
35
|
Rahmati S, Doherty W, Dubal D, Atanda L, Moghaddam L, Sonar P, Hessel V, Ostrikov K(K. Pretreatment and fermentation of lignocellulosic biomass: reaction mechanisms and process engineering. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00241k] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
At a time of rapid depletion of oil resources, global food shortages and solid waste problems, it is imperative to encourage research into the use of appropriate pre-treatment techniques using regenerative raw materials such as lignocellulosic biomass.
Collapse
Affiliation(s)
- Shahrooz Rahmati
- School of Chemistry and Physics
- Queensland University of Technology (QUT)
- Brisbane 4000
- Australia
- Centre for Agriculture and the Bioeconomy
| | - William Doherty
- Centre for Agriculture and the Bioeconomy
- Institute for Future Environments
- Queensland University of Technology (QUT)
- Brisbane 4000
- Australia
| | - Deepak Dubal
- School of Chemistry and Physics
- Queensland University of Technology (QUT)
- Brisbane 4000
- Australia
- Centre for Materials Science
| | - Luqman Atanda
- Centre for Agriculture and the Bioeconomy
- Institute for Future Environments
- Queensland University of Technology (QUT)
- Brisbane 4000
- Australia
| | - Lalehvash Moghaddam
- Centre for Agriculture and the Bioeconomy
- Institute for Future Environments
- Queensland University of Technology (QUT)
- Brisbane 4000
- Australia
| | - Prashant Sonar
- School of Chemistry and Physics
- Queensland University of Technology (QUT)
- Brisbane 4000
- Australia
- Centre for Agriculture and the Bioeconomy
| | - Volker Hessel
- School of Chemical Engineering and Advanced Materials
- The University of Adelaide
- Adelaide
- Australia
- School of Engineering
| | - Kostya (Ken) Ostrikov
- School of Chemistry and Physics
- Queensland University of Technology (QUT)
- Brisbane 4000
- Australia
- Centre for Agriculture and the Bioeconomy
| |
Collapse
|
36
|
Zhao T, Tashiro Y, Sonomoto K. Smart fermentation engineering for butanol production: designed biomass and consolidated bioprocessing systems. Appl Microbiol Biotechnol 2019; 103:9359-9371. [PMID: 31720773 DOI: 10.1007/s00253-019-10198-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 12/18/2022]
Abstract
There is a renewed interest in acetone-butanol-ethanol (ABE) fermentation from renewable substrates for the sustainable and environment-friendly production of biofuel and platform chemicals. However, the ABE fermentation is associated with several challenges due to the presence of heterogeneous components in the renewable substrates and the intrinsic characteristics of ABE fermentation process. Hence, there is a need to select optimal substrates and modify their characteristics suitable for the ABE fermentation process or microbial strain. This "designed biomass" can be used to establish the consolidated bioprocessing systems. As there are very few reports on designed biomass, the main objectives of this review are to summarize the main challenges associated with ABE fermentation from renewable substrates and to introduce feasible strategies for designing the substrates through pretreatment and hydrolysis technologies as well as through the establishment of consolidated bioprocessing systems. This review offers new insights on improving the efficiency of ABE fermentation from designed renewable substrates.
Collapse
Affiliation(s)
- Tao Zhao
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.,Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, College of Life Science, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109, China
| | - Yukihiro Tashiro
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.,Laboratory of Microbial Environmental Protection, Tropical Microbiology Unit, Center for International Education and Research of Agriculture, Faculty of Agriculture, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kenji Sonomoto
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
37
|
Nawaz A, Mukhtar H, ul Haq I, Mazhar Z, Mumtaz MW. Laccase: An Environmental Benign Pretreatment Agent for Efficient Bioconversion of Lignocellulosic Residues to Bioethanol. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190722163046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abrupt urbanization and industrialization around the world resulted in elevated environmental pollution and depletion of natural energy resources. An eco-friendly and economical alternative for energy production is the need of an hour. This can be achieved by converting the waste material into energy. One such waste is lignocellulosic agricultural residues, produced in billions of tons every year all around the world, which can be converted into bioethanol. The main challenge in this bioconversion is the recalcitrant nature of lignocellulosic material. The removal of cementing material is lignin and to overcome the potential inhibitors produced during the disintegration of lignin is the challenging task for biotechnologist. This task can be achieved by a number of different methods but laccase is the most effective and eco-friendly method that can be used for effective removal of lignin along with the increase the accessibility of cellulose and bioethanol yield.
Collapse
Affiliation(s)
- Ali Nawaz
- Institute of Industrial Biotechnology, GC University, Lahore, Pakistan
| | - Hamid Mukhtar
- Institute of Industrial Biotechnology, GC University, Lahore, Pakistan
| | - Ikram ul Haq
- Institute of Industrial Biotechnology, GC University, Lahore, Pakistan
| | - Zainab Mazhar
- Institute of Industrial Biotechnology, GC University, Lahore, Pakistan
| | | |
Collapse
|
38
|
Kainthola J, Kalamdhad AS, Goud VV. A review on enhanced biogas production from anaerobic digestion of lignocellulosic biomass by different enhancement techniques. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.05.023] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
39
|
Vivek N, Nair LM, Mohan B, Nair SC, Sindhu R, Pandey A, Shurpali N, Binod P. Bio-butanol production from rice straw – Recent trends, possibilities, and challenges. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.100224] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
40
|
Birgen C, Dürre P, Preisig HA, Wentzel A. Butanol production from lignocellulosic biomass: revisiting fermentation performance indicators with exploratory data analysis. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:167. [PMID: 31297155 PMCID: PMC6598312 DOI: 10.1186/s13068-019-1508-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/19/2019] [Indexed: 05/09/2023]
Abstract
After just more than 100 years of history of industrial acetone-butanol-ethanol (ABE) fermentation, patented by Weizmann in the UK in 1915, butanol is again today considered a promising biofuel alternative based on several advantages compared to the more established biofuels ethanol and methanol. Large-scale fermentative production of butanol, however, still suffers from high substrate cost and low product titers and selectivity. There have been great advances the last decades to tackle these problems. However, understanding the fermentation process variables and their interconnectedness with a holistic view of the current scientific state-of-the-art is lacking to a great extent. To illustrate the benefits of such a comprehensive approach, we have developed a dataset by collecting data from 175 fermentations of lignocellulosic biomass and mixed sugars to produce butanol that reported during the past three decades of scientific literature and performed an exploratory data analysis to map current trends and bottlenecks. This review presents the results of this exploratory data analysis as well as main features of fermentative butanol production from lignocellulosic biomass with a focus on performance indicators as a useful tool to guide further research and development in the field towards more profitable butanol manufacturing for biofuel applications in the future.
Collapse
Affiliation(s)
- Cansu Birgen
- Department of Chemical Engineering, NTNU, 7491 Trondheim, Norway
| | - Peter Dürre
- Institute of Microbiology and Biotechnology, Ulm University, 89069 Ulm, Germany
| | - Heinz A. Preisig
- Department of Chemical Engineering, NTNU, 7491 Trondheim, Norway
| | | |
Collapse
|
41
|
Zhang C, Yang L, Tsapekos P, Zhang Y, Angelidaki I. Immobilization of Clostridium kluyveri on wheat straw to alleviate ammonia inhibition during chain elongation for n-caproate production. ENVIRONMENT INTERNATIONAL 2019; 127:134-141. [PMID: 30913458 DOI: 10.1016/j.envint.2019.03.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/18/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
Biosynthesis of n-caproate from waste streams rich in acetate and ethanol through chain elongation has offered a potentially sustainable way for future production of liquid biofuels. However, most of the waste streams that fit with the purpose (e.g., digestate) are also rich in ammonium which at high concentration may cause toxic effects on the bioconversion process. This study aims to develop a robust, efficient, and cost-effective chain elongation process with high caproate productivity and tolerance to high ammonia concentration, through immobilization of Clostridium kluyveri on biomass particles as immobilization material. The threshold ammonia concentration for suspended cells cultivation was 2.1 g/L, while it was higher than 5.0 g/L for the wheat straw immobilized system. The caproate production process was dependent on the selected carriers and was performing in the order of: wheat straw > grass straw > saw dust. The biofilm immobilized on the wheat straw showed good reuse capability for caproate production under high ammonia concentration. Moreover, the lag phase for caproate production was shortened from 72 to 30 h after 8 times reuse. These results proved that caproate production and tolerance of chain elongation to ammonia toxicity could be enhanced via cell immobilization. This study offers insight into future development of efficient and cost-effective chain elongation system for production of caproate and other value-added products.
Collapse
Affiliation(s)
- Cunsheng Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Li Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Panagiotis Tsapekos
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
42
|
Chambon CL, Chen M, Fennell PS, Hallett JP. Efficient Fractionation of Lignin- and Ash-Rich Agricultural Residues Following Treatment With a Low-Cost Protic Ionic Liquid. Front Chem 2019; 7:246. [PMID: 31058135 PMCID: PMC6478884 DOI: 10.3389/fchem.2019.00246] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 03/27/2019] [Indexed: 11/13/2022] Open
Abstract
Agricultural residues from rice, wheat and sugarcane production are annually available at the gigaton-scale worldwide, particularly in Asia. Due to their high sugar content and ash compositions, their conversion to bioethanol is an attractive alternative to their present disposal by open-field burning and landfilling. In this work, we demonstrate application of the low-cost protic ionic liquid triethylammonium hydrogen sulfate ([TEA][HSO4]) for pretreatment of rice straw, rice husk, wheat straw and sugarcane bagasse. The feedstocks had high ash (up to 13 wt%) and lignin content (up to 28 wt%). Pretreatment effectiveness was examined at 150 and 170°C and an optimal pretreatment time was identified and characterized by glucose release following enzymatic saccharification (i.e., hydrolysis), biomass delignification observed by compositional analysis, and lignin recovery. The isolated lignin fractions were analyzed by 2D HSQC NMR to obtain insights into the structural changes occurring following ionic liquid pretreatment. After treatment at 170°C for 30-45 min, enzymatic hydrolysis of three agroresidues gave near-quantitative glucose yields approaching 90% while rice husk gave 73% yield. Glucose release from the pulps was enhanced by saccharifying wet pulps without an air-drying step to reduce hornification. According to pulp compositional analysis, up to 82% of lignin was removed from biomass during pretreatment, producing highly digestible cellulose-rich pulps. HSQC NMR of the extracted lignins showed that delignification proceeded via extensive cleavage of β-O-4' aryl ether linkages which was accompanied by condensation reactions in the isolated lignins. The high saccharification yields obtained indicate excellent potential for valorization of low-cost agroresidues in large volumes, which is promising for commercialization of biofuels production using the ionoSolv pretreatment technology.
Collapse
Affiliation(s)
- Clementine L Chambon
- Laboratory of Sustainable Chemical Technology, Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Meng Chen
- Laboratory of Sustainable Chemical Technology, Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Paul S Fennell
- Laboratory of Sustainable Chemical Technology, Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Jason P Hallett
- Laboratory of Sustainable Chemical Technology, Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, United Kingdom
| |
Collapse
|
43
|
Jiang TT, Liang Y, Zhou X, Shi ZW, Xin ZJ. Optimization of a pretreatment and hydrolysis process for the efficient recovery of recycled sugars and unknown compounds from agricultural sweet sorghum bagasse stem pith solid waste. PeerJ 2019; 6:e6186. [PMID: 30647997 PMCID: PMC6330209 DOI: 10.7717/peerj.6186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/29/2018] [Indexed: 11/20/2022] Open
Abstract
Background Sweet sorghum bagasse (SSB), comprising both a dermal layer and pith, is a solid waste generated by agricultural activities. Open burning was previously used to treat agricultural solid waste but is harmful to the environment and human health. Recent reports showed that certain techniques can convert this agricultural waste into valuable products. While SSB has been considered an attractive raw material for sugar extraction and the production of value-added products, the pith root in the SSB can be difficult to process. Therefore, it is necessary to pretreat bagasse before conventional hydrolysis. Methods A thorough analysis and comparison of various pretreatment methods were conducted based on physicochemical and microscopic approaches. The responses of agricultural SSB stem pith with different particle sizes to pretreatment temperature, acid and alkali concentration and enzyme dosage were investigated to determine the optimal pretreatment. The integrated methods are beneficial to the utilization of carbohydrate-based and unknown compounds in agricultural solid waste. Results Acid (1.5−4.5%, v/v) and alkali (5−8%, w/v) reagents were used to collect cellulose from different meshes of pith at 25–100 °C. The results showed that the use of 100 mesh pith soaked in 8% (w/v) NaOH solution at 100 °C resulted in 32.47% ± 0.01% solid recovery. Follow-up fermentation with 3% (v/v) acid and 6.5% (w/v) alkali at 50 °C for enzymolysis was performed with the optimal enzyme ratio. An analysis of the surface topography and porosity before and after pretreatment showed that both the pore size of the pith and the amount of exposed cellulose increased as the mesh size increased. Interestingly, various compounds, including 42 compounds previously known to be present and 13 compounds not previously known to be present, were detected in the pretreatment liquid, while 10 types of monosaccharides, including D-glucose, D-xylose and D-arabinose, were found in the enzymatic solution. The total monosaccharide content of the pith was 149.48 ± 0.3 mg/g dry matter. Discussion An integrated technique for obtaining value-added products from sweet sorghum pith is presented in this work. Based on this technique, lignin and hemicellulose were effectively broken down, amorphous cellulose was obtained and all sugars in the sweet sorghum pith were hydrolysed into monosaccharides. A total of 42 compounds previously found in these materials, including alcohol, ester, acid, alkene, aldehyde ketone, alkene, phenolic and benzene ring compounds, were detected in the pretreatment pith. In addition, several compounds that had not been previously observed in these materials were found in the pretreatment solution. These findings will improve the transformation of lignocellulosic biomass into sugar to create a high-value-added coproduct during the integrated process and to maximize the potential utilization of agricultural waste in current biorefinery processing.
Collapse
Affiliation(s)
- Ting-Ting Jiang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, P.R. China.,University of Chinese Academy, Beijing, P.R. China
| | - Yan Liang
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, P.R. China
| | - Xiang Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, P.R. China
| | - Zi-Wei Shi
- Gansu Agricultural University, Lanzhou, Gansu, P.R. China
| | - Zhi-Jun Xin
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, P.R. China
| |
Collapse
|
44
|
|
45
|
Liao Z, Guo X, Hu J, Suo Y, Fu H, Wang J. The significance of proline on lignocellulose-derived inhibitors tolerance in Clostridium acetobutylicum ATCC 824. BIORESOURCE TECHNOLOGY 2019; 272:561-569. [PMID: 30396113 DOI: 10.1016/j.biortech.2018.10.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
When lignocellulosic biomass was used for acetone-butanol-ethanol (ABE) fermentation, several lignocellulose-derived inhibitors, which are toxic to Clostridium acetobutylicum, were generated during acid hydrolysis process and seriously hindered the industrialization of lignocellulosic butanol. In this study, an engineered strain 824(proABC) with significantly improved tolerance to multiple lignocellulose-derived inhibitors (formic acid and phenolic compounds) was constructed by strengthening the proline biosynthesis. The engineered strain exhibited more effective synthesis ability of proline and scavenging ability of reactive oxygen species (ROS). Consequently, the butanol produced by 824(proABC) was 1-, 2.4- or 3.4-fold higher than that of the wild type strain when using the undetoxified hydrolysate of soybean straw, rice straw or corn straw as the substrate, respectively. Therefore, enhancing the proline biosynthesis can be used as an effective strategy to improve the tolerance of C. acetobutylicum to multiple lignocellulose-derived inhibitors, and 824(proABC) has great potential to produce butanol from undetoxified lignocellulosic hydrolysates.
Collapse
Affiliation(s)
- Zhengping Liao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xiaolong Guo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jialei Hu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yukai Suo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Hongxin Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
46
|
Amiri H, Karimi K. Pretreatment and hydrolysis of lignocellulosic wastes for butanol production: Challenges and perspectives. BIORESOURCE TECHNOLOGY 2018; 270:702-721. [PMID: 30195696 DOI: 10.1016/j.biortech.2018.08.117] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 06/08/2023]
Abstract
Butanol is acknowledged as a drop-in biofuel that can be used in the existing transportation infrastructure, addressing the needs for sustainable liquid fuel. However, before becoming a thoughtful alternative for fossil fuel, butanol should be produced efficiently from a widely-available, renewable, and cost-effective source. In this regard, lignocellulosic materials, the main component of organic wastes from agriculture, forestry, municipalities, and even industries seems to be the most promising source. The butanol-producing bacteria, i.e., Clostridia sp., can uptake a wide range of hexoses, pentoses, and oligomers obtained from hydrolysis of cellulose and hemicellulose content of lignocelluloses. The present work is dedicated to reviewing different processes containing pretreatment and hydrolysis of hemicellulose and cellulose developed for preparing fermentable hydrolysates for biobutanol production.
Collapse
Affiliation(s)
- Hamid Amiri
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 81746-73441, Iran; Environmental Research Institute, University of Isfahan, Isfahan 81746-73441, Iran.
| | - Keikhosro Karimi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Industrial Biotechnology Group, Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
47
|
Farmanbordar S, Amiri H, Karimi K. Simultaneous organosolv pretreatment and detoxification of municipal solid waste for efficient biobutanol production. BIORESOURCE TECHNOLOGY 2018; 270:236-244. [PMID: 30219575 DOI: 10.1016/j.biortech.2018.09.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/01/2018] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
Municipal solid waste (MSW) was used as a source for biobutanol production via acetone, butanol, and ethanol (ABE) fermentation. Organosolv pretreatment was used for simultaneous extraction of inhibitors, particularly tannins, and pretreatment of lignocellulosic fraction prior to hydrolysis. The hydrolysates of the pretreated MSW contained appreciable amounts of sugars and soluble starch together with a tolerable amount of inhibitors for Clostridium acetobutylicum. The hydrolysate obtained from MSW pretreated with 85% ethanol at 120 °C for 30 min fermented to the highest ABE concentration of 13.06 g/L with the yield of 0.33 g/g carbon source. Through this process, 102.4 mg butanol, 40.16 mg acetone, and 13.14 mg ethanol were produced from each g of organic fraction of MSW (OFMSW). The pretreatment at mild conditions with higher ethanol concentration accompanied with the lowest glucose yield (0.145 g/g) and the highest starch recovery resulted in the uppermost ABE yield of 0.16 g/g OFMSW.
Collapse
Affiliation(s)
- Sara Farmanbordar
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Hamid Amiri
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 81746-73441, Iran; Environmental Research Institute, University of Isfahan, Isfahan 81746-73441, Iran
| | - Keikhosro Karimi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Industrial Biotechnology Group, Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| |
Collapse
|
48
|
Gautam A, Kumar A, Bharti AK, Dutt D. Rice straw fermentation by Schizophyllum commune ARC-11 to produce high level of xylanase for its application in pre-bleaching. J Genet Eng Biotechnol 2018; 16:693-701. [PMID: 30733790 PMCID: PMC6353721 DOI: 10.1016/j.jgeb.2018.02.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/09/2018] [Accepted: 02/15/2018] [Indexed: 11/16/2022]
Abstract
Rice straw is valuable resource that has been used as substrate for cost effective production of xylanase under solid-state fermentation by a newly isolated white rot fungi, S. commune ARC-11. Out of eleven carbon sources tested, rice straw was found most effective for the induction of xylanase that produced 4288.3 IU/gds of xylanase by S. commune ARC-11. Maximum xylanase production (6721.9 IU/gds) was observed on 8th day of incubation at temperature (30 °C), initial pH (7.0) and initial moisture content (70.0%). The supplementation of ammonium sulphate (0.08% N, as available nitrogen) enhanced the xylanase production up to 8591.4 IU/gds. The xylanase production by S. commune ARC-11 was further improved by the addition of 0.10%, (w/v) of Tween-20 as surfactant. The maximum xylanase activities were found at pH 5.0 and temperature 55 °C with a longer stability (180 min) at temperature 45, 50 and 55 °C. This xylanase preparation was also evaluated for the pre-bleaching of ethanol-soda pulp from Eulaliopsis binata. An enzyme dosage of 10 IU/g of xylanase resulted maximum decrease in kappa number (14.51%) with a maximum improvement 2.9% in ISO brightness compared to control.
Collapse
Affiliation(s)
- Archana Gautam
- Department of Paper Technology, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur 247 001, India
| | - Amit Kumar
- Department of Biotechnology, College of Natural and Computational Sciences, Debre Markos University, Ethiopia
| | - Amit Kumar Bharti
- Department of Paper Technology, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur 247 001, India
| | - Dharm Dutt
- Department of Paper Technology, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur 247 001, India
| |
Collapse
|
49
|
Zhou Z, Lei F, Li P, Jiang J. Lignocellulosic biomass to biofuels and biochemicals: A comprehensive review with a focus on ethanol organosolv pretreatment technology. Biotechnol Bioeng 2018; 115:2683-2702. [DOI: 10.1002/bit.26788] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 04/22/2018] [Accepted: 06/26/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Ziyuan Zhou
- Department of Chemistry and Chemical EngineeringMOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry UniversityBeijing China
| | - Fuhou Lei
- Guangxi Key Laboratory of Chemistry and Engineering of Forest ProductsCollege of Chemistry and Chemical Engineering, Guangxi University for NationalitiesNanning China
| | - Pengfei Li
- Guangxi Key Laboratory of Chemistry and Engineering of Forest ProductsCollege of Chemistry and Chemical Engineering, Guangxi University for NationalitiesNanning China
| | - Jianxin Jiang
- Department of Chemistry and Chemical EngineeringMOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry UniversityBeijing China
| |
Collapse
|
50
|
Zhao T, Tashiro Y, Zheng J, Sakai K, Sonomoto K. Semi-hydrolysis with low enzyme loading leads to highly effective butanol fermentation. BIORESOURCE TECHNOLOGY 2018; 264:335-342. [PMID: 29886308 DOI: 10.1016/j.biortech.2018.05.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 06/08/2023]
Abstract
To improve butanol fermentation efficiencies, semi-hydrolysate with low enzyme loading using H2SO4 pretreated rice straw was designed, which preferably produced cellobiose with xylose (instead of glucose). Fermentation of semi-hydrolysates avoided carbon catabolite repression (CCR) and produced higher butanol yield to enzyme loading (0.0290 g U-1), a newly proposed parameter, than the conventional glucose-oriented hydrolysate (0.00197 g U-1). Further, overall butanol productivity was improved from 0.0628 g L-1 h-1 to 0.265 g L-1 h-1 during fermentation of undetoxified semi-hydrolysate by using high cell density. A novel simultaneously repeated hydrolysis and fermentation (SRHF) was constructed by recycling of enzymes and cells, which further improved butanol yield to enzyme loading by 183% and overall butanol productivity by 6.04%. Thus, semi-hydrolysate with SRHF is a smartly designed biomass for efficient butanol fermentation of lignocellulosic materials.
Collapse
Affiliation(s)
- Tao Zhao
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Yukihiro Tashiro
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan; Laboratory of Microbial Environmental Protection, Tropical Microbiology Unit, Center for International Education and Research of Agriculture, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Jin Zheng
- State Key Lab of Petroleum Pollution Control, Beijing 102206, China; Research Division of Environment Technology, CNPC Research Institute of Safety & Environmental Technology, Beijing 102206, China
| | - Kenji Sakai
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan; Laboratory of Microbial Environmental Protection, Tropical Microbiology Unit, Center for International Education and Research of Agriculture, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Kenji Sonomoto
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
| |
Collapse
|