1
|
Peng Z, Zhong L, Li Y, Feng S, Mou J, Miao Y, Lin CSK, Wang Z, Li X. Harnessing oleaginous protist Schizochytrium for docosahexaenoic acid: Current technologies in sustainable production and food applications. Food Res Int 2025; 205:115996. [PMID: 40032480 DOI: 10.1016/j.foodres.2025.115996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/17/2025] [Accepted: 02/10/2025] [Indexed: 03/05/2025]
Abstract
Docosahexaenoic acid (DHA) exerts versatile roles in nutrition supplementation and numerous health disorders prevention. Global consumption demand for DHA has also been consistently increasing with enhanced health awareness. Oleaginous marine protist Schizochytrium is praised as a potential DHA source due to short growth cycle, convenient artificial culture, harmless to the human body, and easy manipulation of the DHA synthesis pathway. However, factors including strain performances, fermentation parameters, product harvest and extraction strategies, safety and stability maintenance, and also application limitations in health and functional properties affect the widespread adoption of Schizochytrium DHA products. This review provides a comprehensive summary of the current biotechnologies used for tackling factors affecting the Schizochytrium DHA production, with special focuses on Schizochytrium strain improvement technologies, fermentation optimization projects, DHA oil extraction strategies, safety evaluations and stability maintenance schemes, and DHA product application approaches in foods. Inspired by systematic literature investigations and recent advances, suggestive observations composed of improving strain with multiple breeding technologies, considering artificial intelligence and machine learning to optimize the fermentative process, introducing nanoparticles packing technology to improve oxidation stability of DHA products, covering up DHA odor defect with characteristic flavor foods, and employing synthetic biology to construct the structured lipids with DHA to exploit potential functions are formed. This review will give a guideline for exploring more Schizochytrium DHA and propelling the application development in food and health.
Collapse
Affiliation(s)
- Zongfan Peng
- School of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Liang Zhong
- School of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Yuqin Li
- School of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China.
| | - Siran Feng
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Jinhua Mou
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Yahui Miao
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Zhenyao Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Xuan Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
2
|
Yang X, Wei L, Liang S, Wang Z, Li S. Comparative Transcriptomic Analysis on the Effect of Sesamol on the Two-Stages Fermentation of Aurantiochytrium sp. for Enhancing DHA Accumulation. Mar Drugs 2024; 22:371. [PMID: 39195487 DOI: 10.3390/md22080371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Aurantiochytrium is a well-known long-chain polyunsaturated fatty acids (PUFAs) producer, especially docosahexaenoic acid (DHA). In order to reduce the cost or improve the productivity of DHA, many researchers are focusing on exploring the high-yield strain, reducing production costs, changing culture conditions, and other measures. In this study, DHA production was improved by a two-stage fermentation. In the first stage, efficient and cheap soybean powder was used instead of conventional peptone, and the optimization of fermentation conditions (optimal fermentation conditions: temperature 28.7 °C, salinity 10.7‱, nitrogen source concentration 1.01 g/L, and two-nitrogen ratio of yeast extract to soybean powder 2:1) based on response surface methodology resulted in a 1.68-fold increase in biomass concentration. In the second stage, the addition of 2.5 mM sesamol increased the production of fatty acid and DHA by 93.49% and 98.22%, respectively, as compared to the optimal culture condition with unadded sesamol. Transcriptome analyses revealed that the addition of sesamol resulted in the upregulation of some genes related to fatty acid synthesis and antioxidant enzymes in Aurantiochytrium. This research provides a low-cost and effective culture method for the commercial production of DHA by Aurantiochytrium sp.
Collapse
Affiliation(s)
- Xuewei Yang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Liyang Wei
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Shitong Liang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Zongkang Wang
- Ecological Fertilizer Research Institute, Shenzhen Batian Ecological Engineering Co., Ltd., Shenzhen 518057, China
| | - Shuangfei Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
3
|
Song Y, Yang X, Li S, Luo Y, Chang JS, Hu Z. Thraustochytrids as a promising source of fatty acids, carotenoids, and sterols: bioactive compound biosynthesis, and modern biotechnology. Crit Rev Biotechnol 2024; 44:618-640. [PMID: 37158096 DOI: 10.1080/07388551.2023.2196373] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/20/2023] [Indexed: 05/10/2023]
Abstract
Thraustochytrids are eukaryotes and obligate marine protists. They are increasingly considered to be a promising feed additive because of their superior and sustainable application in the production of health-benefiting bioactive compounds, such as fatty acids, carotenoids, and sterols. Moreover, the increasing demand makes it critical to rationally design the targeted products by engineering industrial strains. In this review, bioactive compounds accumulated in thraustochytrids were comprehensively evaluated according to their chemical structure, properties, and physiological function. Metabolic networks and biosynthetic pathways of fatty acids, carotenoids, and sterols were methodically summarized. Further, stress-based strategies used in thraustochytrids were reviewed to explore the potential methodologies for enhancing specific product yields. There are internal relationships between the biosynthesis of fatty acids, carotenoids, and sterols in thraustochytrids since they share some branches of the synthetic routes with some intermediate substrates in common. Although there are classic synthesis pathways presented in the previous research, the metabolic flow of how these compounds are being synthesized in thraustochytrids still remains uncovered. Further, combined with omics technologies to deeply understand the mechanism and effects of different stresses is necessary, which could provide guidance for genetic engineering. While gene-editing technology has allowed targeted gene knock-in and knock-outs in thraustochytrids, efficient gene editing is still required. This critical review will provide comprehensive information to benefit boosting the commercial productivity of specific bioactive substances by thraustochytrids.
Collapse
Affiliation(s)
- Yingjie Song
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Xuewei Yang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Shuangfei Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Yanqing Luo
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| |
Collapse
|
4
|
Fracchia-Durán AG, Ramos-Zambrano E, Márquez-Rocha FJ, Martínez-Ayala AL. Bioprocess conditions and regulation factors to optimize squalene production in thraustochytrids. World J Microbiol Biotechnol 2023; 39:251. [PMID: 37442840 DOI: 10.1007/s11274-023-03689-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
Squalene is a widely distributed natural triterpene, as it is a key precursor in the biosynthesis of all sterols. It is a compound of high commercial value worldwide because it has nutritional, medicinal, pharmaceutical, and cosmetic applications, due to its different biological properties. The main source of extraction has been shark liver oil, which is currently unviable on a larger scale due to the impacts of overexploitation. Secondary sources are mainly vegetable oils, although a limited one, as they allow low productive yields. Due to the diversity of applications that squalene presents and its growing demand, there is an increasing interest in identifying sustainable sources of extraction. Wild species of thraustochytrids, which are heterotrophic protists, have been identified to have the highest squalene content compared to bacteria, yeasts, microalgae, and vegetable sources. Several studies have been carried out to identify the bioprocess conditions and regulation factors, such as the use of eustressors that promote an increase in the production of this triterpene; however, studies focused on optimizing their productive yields are still in its infancy. This review includes the current trends that also comprises the advances in genetic regulations in these microorganisms, with a view to identify the culture conditions that have been favorable in increasing the production of squalene, and the influences that both bioprocess conditions and applied regulation factors partake at a metabolic level.
Collapse
Affiliation(s)
- Ana Guadalupe Fracchia-Durán
- Department of Biotechnology, Instituto Politécnico Nacional, CEPROBI-IPN, Carretera Yautepec-Jojutla, Km 6, Calle Ceprobi 8, Col. San Isidro, Yautepec, 62731, Morelos, Mexico
| | - Emilia Ramos-Zambrano
- Department of Biotechnology, Instituto Politécnico Nacional, CEPROBI-IPN, Carretera Yautepec-Jojutla, Km 6, Calle Ceprobi 8, Col. San Isidro, Yautepec, 62731, Morelos, Mexico
| | - Facundo Joaquín Márquez-Rocha
- Instituto Politécnico Nacional, Centro Mexicano para la Producción más Limpia, Unidad Tabasco, 86691, Cunduacán, Tabasco, Mexico
| | - Alma Leticia Martínez-Ayala
- Department of Biotechnology, Instituto Politécnico Nacional, CEPROBI-IPN, Carretera Yautepec-Jojutla, Km 6, Calle Ceprobi 8, Col. San Isidro, Yautepec, 62731, Morelos, Mexico.
| |
Collapse
|
5
|
Chen ZL, Yang LH, He SJ, Du YH, Guo DS. Development of a green fermentation strategy with resource cycle for the docosahexaenoic acid production by Schizochytrium sp. BIORESOURCE TECHNOLOGY 2023:129434. [PMID: 37399951 DOI: 10.1016/j.biortech.2023.129434] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023]
Abstract
The fermentation production of docosahexaenoic acid (DHA) is an industrial process with huge consumption of freshwater resource and nutrient, such as carbon sources and nitrogen sources. In this study, seawater and fermentation wastewater were introduced into the fermentation production of DHA, which could solve the problem of fermentation industry competing with humans for freshwater. In addition, a green fermentation strategy with pH control using waste ammonia, NaOH and citric acid as well as FW recycling was proposed. It could provide a stable external environment for cell growth and lipid synthesis while alleviating the dependence on organic nitrogen sources of Schizochytrium sp. It was proved that this strategy has good industrialization potential for DHA production, and the biomass, lipid and DHA yield reached to 195.8 g/L, 74.4 g/L and 46.4 g/L in 50 L bioreactor, respectively. This study provides a green and economic bioprocess technology for DHA production by Schizochytrium sp.
Collapse
Affiliation(s)
- Zi-Lei Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Lin-Hui Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Shao-Jie He
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Yuan-Hang Du
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Dong-Sheng Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, People's Republic of China.
| |
Collapse
|
6
|
Hien HTM, Thom LT, Ha NC, Tam LT, Thu NTH, Nguyen TV, Loan VT, Dan NT, Hong DD. Characterization and Optimization of Culture Conditions for Aurantiochytrium sp. SC145 Isolated from Sand Cay (Son Ca) Island, Vietnam, and Antioxidative and Neuroprotective Activities of Its Polyunsaturated Fatty Acid Mixture. Mar Drugs 2022; 20:md20120780. [PMID: 36547927 PMCID: PMC9787583 DOI: 10.3390/md20120780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Aurantiochytrium is a heterotrophic marine microalga that has potential industrial applications. The main objectives of this study were to isolate an Aurantiochytrium strain from Sand Cay (Son Ca) Island, Vietnam, optimize its culture conditions, determine its nutritional composition, extract polyunsaturated fatty acids (PUFAs) in the free (FFA) and the alkyl ester (FAAE) forms, and evaluate the antioxidation and neuroprotection properties of the PUFAs. Aurantiochytrium sp. SC145 can be grown stably under laboratory conditions. Its culture conditions were optimized for a dry cell weight (DCW) of 31.18 g/L, with total lipids comprising 25.29%, proteins 7.93%, carbohydrates 15.21%, and carotenoid at 143.67 µg/L of DCW. The FAAEs and FFAs extracted from Aurantiochytrium sp. SC145 were rich in omega 3-6-9 fatty acids (40.73% and 44.00% of total fatty acids, respectively). No acute or subchronic oral toxicity was determined in mice fed with the PUFAs in FFA or FAAE forms at different doses over 90 days. Furthermore, the PUFAs in the FFA or FAAE forms and their main constituents of EPA, DHA, and ALA showed antioxidant and AChE inhibitory properties and neuroprotective activities against damage caused by H2O2- and amyloid-ß protein fragment 25-35 (Aβ25-35)-induced C6 cells. These data suggest that PUFAs extracted from Aurantiochytrium sp. SC145 may be a potential therapeutic target for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Hoang Thi Minh Hien
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam
- Vietnam Academy of Science and Technology, Graduate University of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam
- Correspondence: (H.T.M.H.); (D.D.H.); Tel.: +84-24-37911059 (H.T.M.H.); Fax: +84-24-38363144 (H.T.M.H.)
| | - Le Thi Thom
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam
| | - Nguyen Cam Ha
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam
| | - Luu Thi Tam
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam
| | - Ngo Thi Hoai Thu
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam
| | - Tru Van Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam
- Vietnam Academy of Science and Technology, Graduate University of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam
| | - Vu Thi Loan
- Joint Vietnam–Russia Tropical Science and Technology Research Center, 63 Nguyen Van Huyen Str., Cau Giay, Hanoi 100000, Vietnam
| | - Nguyen Trong Dan
- Joint Vietnam–Russia Tropical Science and Technology Research Center, 63 Nguyen Van Huyen Str., Cau Giay, Hanoi 100000, Vietnam
| | - Dang Diem Hong
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam
- Vietnam Academy of Science and Technology, Graduate University of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam
- Correspondence: (H.T.M.H.); (D.D.H.); Tel.: +84-24-37911059 (H.T.M.H.); Fax: +84-24-38363144 (H.T.M.H.)
| |
Collapse
|
7
|
Rajpurohit H, Eiteman MA. Nutrient-Limited Operational Strategies for the Microbial Production of Biochemicals. Microorganisms 2022; 10:2226. [PMID: 36363817 PMCID: PMC9695796 DOI: 10.3390/microorganisms10112226] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 08/24/2023] Open
Abstract
Limiting an essential nutrient has a profound impact on microbial growth. The notion of growth under limited conditions was first described using simple Monod kinetics proposed in the 1940s. Different operational modes (chemostat, fed-batch processes) were soon developed to address questions related to microbial physiology and cell maintenance and to enhance product formation. With more recent developments of metabolic engineering and systems biology, as well as high-throughput approaches, the focus of current engineers and applied microbiologists has shifted from these fundamental biochemical processes. This review draws attention again to nutrient-limited processes. Indeed, the sophisticated gene editing tools not available to pioneers offer the prospect of metabolic engineering strategies which leverage nutrient limited processes. Thus, nutrient- limited processes continue to be very relevant to generate microbially derived biochemicals.
Collapse
Affiliation(s)
| | - Mark A. Eiteman
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
8
|
Du Y, Tong L, Wang Y, Liu M, Yuan L, Mu X, He S, Wei S, Zhang Y, Chen Z, Zhang Z, Guo D. Development of a kinetics‐integrated
CFD
model for the industrial scale‐up of
DHA
fermentation using
Schizochytrium
sp. AIChE J 2022. [DOI: 10.1002/aic.17750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yuan‐Hang Du
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University Nanjing China
| | - Ling‐Ling Tong
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University Nanjing China
| | - Yue Wang
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University Nanjing China
| | - Meng‐Zhen Liu
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University Nanjing China
| | - Li Yuan
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University Nanjing China
| | - Xin‐Ya Mu
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University Nanjing China
| | - Shao‐Jie He
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University Nanjing China
| | - Shi‐Xiang Wei
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University Nanjing China
| | - Yi‐Dan Zhang
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University Nanjing China
| | - Zi‐Lei Chen
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University Nanjing China
| | - Zhi‐Dong Zhang
- Institute of Applied Microbiology Xinjiang Academy of Agricultural Sciences/Xinjiang Laboratory of Special Environmental Microbiology Urumqi Xinjiang China
| | - Dong‐Sheng Guo
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University Nanjing China
| |
Collapse
|
9
|
Chi G, Xu Y, Cao X, Li Z, Cao M, Chisti Y, He N. Production of polyunsaturated fatty acids by Schizochytrium (Aurantiochytrium) spp. Biotechnol Adv 2021; 55:107897. [PMID: 34974158 DOI: 10.1016/j.biotechadv.2021.107897] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/05/2021] [Accepted: 12/20/2021] [Indexed: 12/28/2022]
Abstract
Diverse health benefits are associated with dietary consumption of omega-3 long-chain polyunsaturated fatty acids (ω-3 LC-PUFA), particularly docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Traditionally, these fatty acids have been obtained from fish oil, but limited supply, variably quality, and an inability to sustainably increase production for a rapidly growing market, are driving the quest for alternative sources. DHA derived from certain marine protists (heterotrophic thraustochytrids) already has an established history of commercial production for high-value dietary use, but is too expensive for use in aquaculture feeds, a much larger potential market for ω-3 LC-PUFA. Sustainable expansion of aquaculture is prevented by its current dependence on wild-caught fish oil as the source of ω-3 LC-PUFA nutrients required in the diet of aquacultured animals. Although several thraustochytrids have been shown to produce DHA and EPA, there is a particular interest in Schizochytrium spp. (now Aurantiochytrium spp.), as some of the better producers. The need for larger scale production has resulted in development of many strategies for improving productivity and production economics of ω-3 PUFA in Schizochytrium spp. Developments in fermentation technology and metabolic engineering for enhancing LC-PUFA production in Schizochytrium spp. are reviewed.
Collapse
Affiliation(s)
- Guoxiang Chi
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Yiyuan Xu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Xingyu Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Zhipeng Li
- College of Food and Biological Engineering, Jimei University, Xiamen 361000, China
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China.
| | - Yusuf Chisti
- School of Engineering, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
10
|
Li Z, Meng T, Hang W, Cao X, Ni H, Shi Y, Li Q, Xiong Y, He N. Regulation of glucose and glycerol for production of docosahexaenoic acid in Schizochytrium limacinum SR21 with metabolomics analysis. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Optimization of docosahexaenoic acid production by Schizochytrium SP. – A review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Du F, Wang YZ, Xu YS, Shi TQ, Liu WZ, Sun XM, Huang H. Biotechnological production of lipid and terpenoid from thraustochytrids. Biotechnol Adv 2021; 48:107725. [PMID: 33727145 DOI: 10.1016/j.biotechadv.2021.107725] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/15/2021] [Accepted: 02/25/2021] [Indexed: 12/21/2022]
Abstract
As fungus-like protists, thraustochytrids have been increasingly studied for their faster growth rates and high lipid content. In the 1990s, thraustochytrids were used as docosahexaenoic acid (DHA) producers for the first time. Thraustochytrids genera, such as Thraustochytrium, Schizochytrium, and Aurantiochytrium have been developed and patented as industrial strains for DHA production. The high DHA yield is attributed to its unique and efficient polyketide-like synthase (PKS) pathway. Moreover, thraustochytrids possess a completed mevalonate (MVA) pathway, so it can be used as host for terpenoid production. In order to improve strain performance, the metabolic engineering strategies have been applied to promote or disrupt intracellular metabolic pathways, such as genetic engineering and addition of chemical activators. However, it is difficult to realize industrialization only by improving strain performance. Various operation strategies were developed to enlarge the production quantities from the laboratory-scale, including two-stage cultivation strategies, scale-up technologies and bioreactor design. Moreover, an economical and effective downstream process is also an important consideration for the industrial application of thraustochytrids. Downstream costs accounts for 20-60% of the overall process costs, which represents an attractive target for increasing the cost-competitiveness of thraustochytrids, including how to improve the efficiency of lipid extraction and the further application of biomass residues. This review aims to overview the whole lipid biotechnology of thraustochytrids to provide the background information for researchers.
Collapse
Affiliation(s)
- Fei Du
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Yu-Zhou Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Ying-Shuang Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Wen-Zheng Liu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, People's Republic of China
| |
Collapse
|
13
|
Effect of Nitrogen Sources on Omega-3 Polyunsaturated Fatty Acid Biosynthesis and Gene Expression in Thraustochytriidae sp. Mar Drugs 2020; 18:md18120612. [PMID: 33271856 PMCID: PMC7760700 DOI: 10.3390/md18120612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 11/17/2022] Open
Abstract
The molecular mechanism that contributes to nitrogen source dependent omega-3 polyunsaturated fatty acid (n-3 PUFA) synthesis in marine oleaginous protists Thraustochytriidae sp., was explored in this study. The fatty acid (FA) synthesis was significantly influenced by the supplement of various levels of sodium nitrate (SN) (1–50 mM) or urea (1–50 mM). Compared with SN (50 mM) cultivation, cells from urea (50 mM) cultivation accumulated 1.16-fold more n-3 PUFAs (49.49% docosahexaenoic acid (DHA) (w/w, of total FAs) and 5.28% docosapentaenoic acid (DPA) (w/w, of total FAs)). Strikingly higher quantities of short chain FAs (<18 carbons) (52.22-fold of that in urea cultivation) were produced from SN cultivation. Ten candidate reference genes (RGs) were screened by using four statistical methods (geNorm, NormFinder, Bestkeeper and RefFinder). MFT (Mitochondrial folate transporter) and NUC (Nucleolin) were determined as the stable RGs to normalize the RT-qPCR (real-time quantitative polymerase chain reaction) data of essential genes related to n-3 PUFAs-synthesis. Our results elucidated that the gene transcripts of delta(3,5)-delta(2,4)-dienoyl-CoA isomerase, enoyl-CoA hydratase, fatty acid elongase 3, long-chain fatty acid acyl-CoA ligase, and acetyl-CoA carboxylase were up-regulated under urea cultivation, contributing to the extension and unsaturated bond formation. These findings indicated that regulation of the specific genes through nitrogen source could greatly stimulate n-3 PUFA production in Thraustochytriidae sp.
Collapse
|
14
|
Efficient conversion of extracts from low-cost, rejected fruits for high-valued Docosahexaenoic acid production by Aurantiochytrium sp. SW1. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101977] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Yin F, Sun X, Zheng W, Luo X, Peng C, Jia Q, Fu Y. Improving the quality of microalgae DHA‐rich oil in the deodorization process using deoxygenated steam. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Fengwei Yin
- College of Life Science Taizhou University Taizhou People's Republic of China
| | - Xiaolong Sun
- College of Life Science Taizhou University Taizhou People's Republic of China
| | - Weilong Zheng
- College of Life Science Taizhou University Taizhou People's Republic of China
| | - Xi Luo
- College of Life Science Taizhou University Taizhou People's Republic of China
| | - Chao Peng
- COFCO Nutrition and Health Research Institute Beijing People's Republic of China
| | - Qiang Jia
- Seasons Biotechnology (Taizhou) Co., Ltd Taizhou People's Republic of China
| | - Yongqian Fu
- College of Life Science Taizhou University Taizhou People's Republic of China
| |
Collapse
|
16
|
Shafiq M, Zeb L, Cui G, Jawad M, Chi Z. High-Density pH-Auxostat Fed-Batch Culture of Schizochytrium limacinum SR21 with Acetic Acid as a Carbon Source. Appl Biochem Biotechnol 2020; 192:1163-1175. [PMID: 32700201 DOI: 10.1007/s12010-020-03396-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/16/2020] [Indexed: 01/10/2023]
Abstract
Schizochytrium limacinum SR21 is an important strain for industrial production of docosahexaenoic acid (DHA), which is an important omega-3 fatty acid used in the nutraceutical and food industry. However, the high cost of carbon sources has limited its further application in the market with much larger volume, such as animal feed for aquaculture, poultry, and livestock. To seek low-cost carbon source, acetic acid is tested in the present study. The effect of different factors, including initial carbon source concentration, pH, aeration rate, and nitrogen sources, on biomass, lipid, and DHA production were tested. With optimized culture conditions, the biomass concentration of 146 g/L, total fatty acids (TFAs) of 82.3 g/L, and DHA content of 23.0 g/L were achieved with a pH-auxostat fed-batch cultivation. These results suggested that acetic acid is a promising feedstock for the low-cost production of DHA. Graphical Abstract.
Collapse
Affiliation(s)
- Muhammad Shafiq
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, People's Republic of China
| | - Liaqat Zeb
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, People's Republic of China
| | - Guannan Cui
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Muhammad Jawad
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, People's Republic of China
| | - Zhanyou Chi
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, People's Republic of China.
| |
Collapse
|
17
|
Shi TQ, Wang LR, Zhang ZX, Sun XM, Huang H. Stresses as First-Line Tools for Enhancing Lipid and Carotenoid Production in Microalgae. Front Bioeng Biotechnol 2020; 8:610. [PMID: 32850686 PMCID: PMC7396513 DOI: 10.3389/fbioe.2020.00610] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/18/2020] [Indexed: 12/30/2022] Open
Abstract
Microalgae can produce high-value-added products such as lipids and carotenoids using light or sugars, and their biosynthesis mechanism can be triggered by various stress conditions. Under nutrient deprivation or environmental stresses, microalgal cells accumulate lipids as an energy-rich carbon storage battery and generate additional amounts of carotenoids to alleviate the oxidative damage induced by stress conditions. Though stressful conditions are unfavorable for biomass accumulation and can induce oxidative damage, stress-based strategies are widely used in this field due to their effectiveness and economy. For the overproduction of different target products, it is required and meaningful to deeply understand the effects and mechanisms of various stress conditions so as to provide guidance on choosing the appropriate stress conditions. Moreover, the underlying molecular mechanisms under stress conditions can be clarified by omics technologies, which exhibit enormous potential in guiding rational genetic engineering for improving lipid and carotenoid biosynthesis.
Collapse
Affiliation(s)
- Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Ling-Ru Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Zi-Xu Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| |
Collapse
|
18
|
Guo DS, Tong LL, Ji XJ, Ren LJ, Ding QQ. Development of a Strategy to Improve the Stability of Culture Environment for Docosahexaenoic Acid Fermentation by Schizochytrium sp. Appl Biochem Biotechnol 2020; 192:881-894. [DOI: 10.1007/s12010-020-03298-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/12/2020] [Indexed: 11/30/2022]
|
19
|
Chang M, Zhang T, Guo X, Liu Y, Liu R, Jin Q, Wang X. Optimization of cultivation conditions for efficient production of carotenoid-rich DHA oil by Schizochytrium sp. S31. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Use of Biofuel Industry Wastes as Alternative Nutrient Sources for DHA-Yielding Schizochytrium limacinum Production. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10124398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The simultaneous use of crude glycerol and effluent from anaerobic digestate, both wastes derived from the biofuel industry, were tested in the frame of circular economy concept, as potential low-cost nutrient sources for the cultivation of rich in docosahexaenoic acid (DHA) oil microalgae strain Schizochytrium limacinum SR21. Initially, the optimal carbon and nitrogen concentration levels for high S. limacinum biomass and lipids production were determined, in a culture media containing conventional, high cost, organic nitrogen sources (yeast extract and peptone), micronutrients and crude glycerol at varying concentrations. Then, the effect of a culture media composed of crude glycerol (as carbon source) and effluent digestate at varying proportions on biomass productivity, lipid accumulation, proximate composition, carbon assimilation and fatty acid content were determined. It was shown that the biomass and total lipid content increased considerably with varying effluent concentrations reaching 49.2 g L−1 at 48% (v/v) of effluent concentration, while the lipid yield at the same effluent concentration reached 10.15 g L−1, compared to 17.0 g L−1 dry biomass and 10.2 g L−1 lipid yield when yeast extract and peptone medium with micronutrients was used. Compared to the control treatment, the above production was obtained with 48% less inorganic salts, which are needed for the preparation of the artificial sea water. It was shown that Schizochytrium limacinum SR21 was able to remediate 40% of the total organic carbon content of the biofuel wastes, while DHA productivity remained at low levels with saturated fatty acids comprising the main fraction of total fatty acid content. The results of the present study suggest that the simultaneous use of two waste streams from the biofuel industry can serve as potential nutrient sources for the growth of Schizochytrium limacinum SR21, replacing the high cost organic nutrients and up to one half the required artificial sea water salts, but upregulation of DHA productivity through optimization of the abiotic environment is necessary for industrial application, including aqua feed production.
Collapse
|
21
|
Bagul VP, Annapure US. Effect of sequential recycling of spent media wastewater on docosahexaenoic acid production by newly isolated strain Aurantiochytrium sp. ICTFD5. BIORESOURCE TECHNOLOGY 2020; 306:123153. [PMID: 32197193 DOI: 10.1016/j.biortech.2020.123153] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
The main aim of this work was the optimization of recycled spent media wastewater (SMW) concentration for high biomass production of Aurantiochytrium sp. ICTFD5. Further, optimization for growth patterns and lipid accumulation capacity with three subsequent recycling runs was also performed. The biomass production after 96 h fermentation for recycling with 50% SMW was; 21.3 ± 1.5, 19.1 ± 1.3, 19 ± 1.2, and 23 ± 1.2 g/L for the first, second, third recycle runs, and control respectively. All the recycle runs were carried out with the same media and cultivation conditions. Subsequent recycling affected lipid accumulation, and it was decreased by ~4 to 9% compared to the control. The compositional shift of fatty acids was observed with sequential recycle runs, changing more towards saturated fatty acids content, suggesting it to be a new potential source for biodiesel feedstock.
Collapse
Affiliation(s)
- Vaishali P Bagul
- Food Engineering and Technology Department, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India
| | - Uday S Annapure
- Food Engineering and Technology Department, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India.
| |
Collapse
|
22
|
Liang L, Zheng X, Fan W, Chen D, Huang Z, Peng J, Zhu J, Tang W, Chen Y, Xue T. Genome and Transcriptome Analyses Provide Insight Into the Omega-3 Long-Chain Polyunsaturated Fatty Acids Biosynthesis of Schizochytrium limacinum SR21. Front Microbiol 2020; 11:687. [PMID: 32373097 PMCID: PMC7179369 DOI: 10.3389/fmicb.2020.00687] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/25/2020] [Indexed: 11/13/2022] Open
Abstract
Schizochytrium sp. is the best natural resource for omega-3 long-chain polyunsaturated fatty acids. We report a high-quality genome sequence of Schizochytrium limacinum SR21, which has a 63 Mb genome size, with a contig N50 of 2.67 Mb and 6,838 protein-coding genes. Phylogenomic and comparative genomic analyses revealed that DHA-producing Schizochytrium and Aurantiochytrium strains were highly similar and possessed similar genes. Analysis of the fatty acid synthase (FAS) for LC-PUFAs production results in the annotation of all genes in map00062 and map01212. A gene cluster and 10 ORFs related to PKS pathway were found in the genome. 1,402 differentially expressed genes (DEGs) of the treated groups (0.5 g/L yeast extract) were identified by comparing with the control groups (1.0 g/L yeast extract) at 36 h. A weighted gene coexpression network analysis revealed that 2 of 7 modules correlated highly with the fatty acid and DHA contents. The DEGs and transcription factors were significantly correlated with fatty acid biosynthesis, including MYB, Zinc Finger and ACOX. The results showed that these hub genes are regulated by genes involved in fatty acid biosynthesis pathways. The results providing an important reference for further research on promoting fatty acid and DHA accumulation in S. limacinum SR21.
Collapse
Affiliation(s)
- Limin Liang
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Xuehai Zheng
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Wenfang Fan
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Duo Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Zhen Huang
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Jiangtao Peng
- Institute of Oceanography, Marine Biotechnology Center, Minjiang University, Fuzhou, China
| | - Jinmao Zhu
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Weiqi Tang
- Institute of Oceanography, Marine Biotechnology Center, Minjiang University, Fuzhou, China
| | - Youqiang Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Ting Xue
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
23
|
|
24
|
Functions of Enyolreductase ( ER) Domains of PKS Cluster in Lipid Synthesis and Enhancement of PUFAs Accumulation in Schizochytrium limacinum SR21 Using Triclosan as a Regulator of ER. Microorganisms 2020; 8:microorganisms8020300. [PMID: 32098234 PMCID: PMC7074904 DOI: 10.3390/microorganisms8020300] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/09/2020] [Accepted: 02/19/2020] [Indexed: 01/10/2023] Open
Abstract
The polyketide synthase (PKS) cluster genes are supposed to synthesize polyunsaturated fatty acids (PUFAs) in S. limacinum. In this study, two enyolreductase (ER) genes located on PKS cluster were knocked out through homologous recombination to explore their functions. The knock-out of OrfB-ER (located on OrfB subunit) decreased lipid content and had obvious decrease on PUFAs content, indicating OrfB-ER domain played a vital role on PUFAs synthesis; the knock-out of OrfC-ER (located on OrfC subunit) decreased SFAs content and increased total lipid content, indicating OrfC-ER domain was likely to be related with SFAs synthesis, and lipid production could be improved by down-regulating OrfC-ER domain expression. Therefore, the addition of triclosan as a reported regulator of ER domain induced the increase of PUFAs production by 51.74% and lipids yield by 47.63%. Metabolic analysis indicated triclosan played its role through inhibiting the expression of OrfC-ER to reduce the feedback inhibition of SFAs and further to enhance NADPH synthesis for lipid production, and by weakening mevalonate pathway and tricarboxylic acid (TCA) cycle to shift precursors for lipid and PUFAs synthesis. This research illuminates functions of two ER domains in S. limacinum and provides a potential targets for improving lipid production.
Collapse
|
25
|
Ren L, Sun X, Zhang L, Huang H, Zhao Q. Exergy analysis for docosahexaenoic acid production by fermentation and strain improvement by adaptive laboratory evolution for Schizochytrium sp. BIORESOURCE TECHNOLOGY 2020; 298:122562. [PMID: 31838241 DOI: 10.1016/j.biortech.2019.122562] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/19/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Exergy analysis is powerful tool for process optimization and mechanism analysis. In this study, exergy analysis was performed for docosahexaenoic acid (DHA) fermentation process. More than 86% of input exergy was contributed by glucose. The exergy of biomass was about 64.66% of the total output exergy when the phosphate concentration was 4 g L-1. The exergy efficiencies of DHA (ηDHA) for the starting strains and the evolved strains under high oxygen concentration, low temperature, and two-factor conditions were also investigated. The ηDHA in the collected experimental data was not more than 20.9%. It was proved that there was a positive correlation between ηDHA and the biomass yield. It was indicated that adaptive laboratory evolution (ALE) improved biomass yield which had the most important effect on enhancing ηDHA and DHA yield (or DHA productivity). It is necessary to improve ηDHA through process optimization and ALE in future.
Collapse
Affiliation(s)
- Lujing Ren
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), People's Republic of China
| | - Xiaoman Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, People's Republic of China
| | - Lihui Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, People's Republic of China
| | - He Huang
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), People's Republic of China; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, People's Republic of China; School of Pharmaceutical Science, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, People's Republic of China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - Quanyu Zhao
- School of Pharmaceutical Science, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
26
|
Yu XJ, Huang CY, Chen H, Wang DS, Chen JL, Li HJ, Liu XY, Wang Z, Sun J, Wang ZP. High-Throughput Biochemical Fingerprinting of Oleaginous Aurantiochytrium sp. Strains by Fourier Transform Infrared Spectroscopy (FT-IR) for Lipid and Carbohydrate Productions. Molecules 2019; 24:molecules24081593. [PMID: 31013676 PMCID: PMC6514702 DOI: 10.3390/molecules24081593] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/19/2019] [Accepted: 04/19/2019] [Indexed: 11/16/2022] Open
Abstract
The traditional biochemical methods for analyzing cellular composition of oleaginous microorganisms are time-consuming, polluting, and expensive. In the present study, an FT-IR method was used to analyze the cellular composition of the marine oleaginous protist Aurantiochytrium sp. during various research processes, such as strains screening, medium optimization, and fermentation, and was evaluated as a green, low-cost, high throughput, and accurate method compared with the traditional methods. A total of 109 Aurantiochytrium sp. strains were screened for lipid and carbohydrate production and the best results were found for the strains No. 6 and No. 32. The yields and productivities could reach up to 47.2 g/L and 0.72 g/L/h for lipid, 21.6 g/L and 0.33 g/L/h for docosahexaenoic acid (DHA) in the strain No. 6, and 15.4 g/L and 0.18 g/L/h for carbohydrate in the strain No. 32, under the optimal conditions, respectively. These results confirmed potentials of the two Aurantiochytrium sp. strains for lipid, DHA, and carbohydrate productions at industrial scales. The FT-IR method in this study will facilitate research on the oleaginous Aurantiochytrium sp., and the obtained two strains for lipid and carbohydrate productions will provide the foundations for their applications in medical, food, and feed industries.
Collapse
Affiliation(s)
- Xin-Jun Yu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou 310014, Zhejiang, China.
| | - Chang-Yi Huang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou 310014, Zhejiang, China.
| | - Hong Chen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou 310014, Zhejiang, China.
| | - Dong-Sheng Wang
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, Jiangxi, China.
| | - Jing-Liang Chen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou 310014, Zhejiang, China.
| | - Hui-Juan Li
- Department of Bioengineering, College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Xiao-Yan Liu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian 223300, Jiangsu, China.
| | - Zhao Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou 310014, Zhejiang, China.
| | - Jie Sun
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou 310014, Zhejiang, China.
| | - Zhi-Peng Wang
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, Shandong, China.
| |
Collapse
|
27
|
Zhao Y, Wang HP, Han B, Yu X. Coupling of abiotic stresses and phytohormones for the production of lipids and high-value by-products by microalgae: A review. BIORESOURCE TECHNOLOGY 2019; 274:549-556. [PMID: 30558833 DOI: 10.1016/j.biortech.2018.12.030] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/07/2018] [Accepted: 12/09/2018] [Indexed: 05/03/2023]
Abstract
Microalgae can produce lipids and high-value by-products under abiotic stress conditions, including nutrient starvation, high light intensity, extreme temperature, high salinity and the presence of heavy metals. However, the growth and development of microalgae and the accumulation of metabolites may be inhibited by adverse stresses. In recent years, phytohormones have emerged as a topic of intense focus in microalgae research. Phytohormones could sustain the growth of microalgae under abiotic stress conditions. In addition, the combination of plant hormones and abiotic stresses could further promote the biosynthesis of metabolites and improve the ability of microalgae to tolerate abiotic stresses. This review primarily focuses on the regulatory effects of exogenous phytohormones on the biosynthesis of metabolites by microalgae under adverse environmental conditions and discusses the mechanisms of phytohormone-mediated cell growth, stress tolerance and lipid biosynthesis in microalgae under abiotic stress conditions.
Collapse
Affiliation(s)
- Yongteng Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Hui-Ping Wang
- Children's Hospital Affiliated to Kunming Medical University, Kunming 650228, China
| | - Benyong Han
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
28
|
Yin FW, Zhu SY, Guo DS, Ren LJ, Ji XJ, Huang H, Gao Z. Development of a strategy for the production of docosahexaenoic acid by Schizochytrium sp. from cane molasses and algae-residue. BIORESOURCE TECHNOLOGY 2019; 271:118-124. [PMID: 30265951 DOI: 10.1016/j.biortech.2018.09.114] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 06/08/2023]
Abstract
The aim of this work was to reduce the algae-residue emission and make use of cane molasses as fermentation materials for docosahexaenoic acid (DHA) fermentaion by Schizochytrium sp., which further could cut the cost of DHA production. Algae-residue and cane molasses were respectively used as nitrogen and carbon sources to replace yeast extract and glucose. A significant DHA yield of 18.58 g/L was obtained using algae-residue, while cane molasses could not be used well as sole carbon source due to the presence of undesirable substance. A two-stage culture strategy with glucose followed by pretreated cane molasses as carbon source was developed, resulting in a final DHA yield of 15.22 g/L. This study therefore offers an economical and green strategy for DHA production by Schizochytrium sp.
Collapse
Affiliation(s)
- Feng-Wei Yin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Si-Yu Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Dong-Sheng Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lu-Jing Ren
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - He Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - Zhen Gao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
29
|
Guo DS, Ji XJ, Ren LJ, Yin FW, Sun XM, Huang H, Zhen G. Development of a multi-stage continuous fermentation strategy for docosahexaenoic acid production by Schizochytrium sp. BIORESOURCE TECHNOLOGY 2018; 269:32-39. [PMID: 30149252 DOI: 10.1016/j.biortech.2018.08.066] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 06/08/2023]
Abstract
Docosahexaenoic acid (DHA) has wide-ranging benefits for normal development of the visual and nervous systems in infants. A sustainable source of DHA production through fermentation using Schizochytrium sp. has been developed. In this paper, we present the discovery of growth-uncoupled DHA production by Schizochytrium sp. and the development of corresponding kinetic models of fed-batch fermentations, which can be used to describe and predict the cell growth and substrate utilization as well as lipid and DHA production. Based on this kinetic model, a predictive model of multi-stage continuous fermentation process was established and used to analyze, optimize and design the process parameters. Optimal predicted processes of two-stage and three-stage continuous fermentation were developed and verified in lab-scale bioreactor based on the predicted process parameters. A successful three-stage continuous fermentation was achieved, which increased the lipid, DHA content and DHA productivity by 47.6, 64.3 and 97.1%, respectively, compared with two-stage continuous fermentation.
Collapse
Affiliation(s)
- Dong-Sheng Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - Lu-Jing Ren
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - Feng-Wei Yin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Xiao-Man Sun
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - He Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - Gao Zhen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
30
|
Yin FW, Guo DS, Ren LJ, Ji XJ, Huang H. Development of a method for the valorization of fermentation wastewater and algal-residue extract in docosahexaenoic acid production by Schizochytrium sp. BIORESOURCE TECHNOLOGY 2018; 266:482-487. [PMID: 29990764 DOI: 10.1016/j.biortech.2018.06.109] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
Fermentation wastewater (FW) and algal residue are major by-products of docosahexaenoic acid (DHA) fermentations utilizing Schizochytrium sp. In order to reduce production costs and environmental pollution, we explored the application of FW and algal-residue extract (AE) for DHA production. Components analysis showed that FW and AE contained some mineral elements and protein residues, respectively. When they were used for DHA fermentation, results showed that 20% replacement of fresh water by FW and 80% replacement of yeast extract nitrogen by AE reached DHA content of 22.23 g/L and 27.10 g/L, respectively. Furthermore, a novel medium that utilizes a mixture of FW and AE was applied for DHA fermentation, whereby the final DHA yield reached 28.45 g/L, 24.56% higher than conventional medium. The strategy of valorizing fermentation waste provides a new method for reducing the costs and reducing environmental pollution of microbial fermentations.
Collapse
Affiliation(s)
- Feng-Wei Yin
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Dong-Sheng Guo
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lu-Jing Ren
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| | - Xiao-Jun Ji
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - He Huang
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
31
|
Tang X, Chen H, Mei T, Ge C, Gu Z, Zhang H, Chen YQ, Chen W. Characterization of an Omega-3 Desaturase From Phytophthora parasitica and Application for Eicosapentaenoic Acid Production in Mortierella alpina. Front Microbiol 2018; 9:1878. [PMID: 30154780 PMCID: PMC6102326 DOI: 10.3389/fmicb.2018.01878] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 07/26/2018] [Indexed: 11/13/2022] Open
Abstract
Omega-3 long-chain polyunsaturated fatty acids (LC-PUFAs) have important therapeutic and nutritional benefits in humans. In the biosynthesis pathways of these LC-PUFAs, omega-3 desaturase plays a critical role. In this study, we report a new omega-3 desaturase (PPD17) from Phytophthora parasitica. This desaturase shares high similarities with the known omega-3 desaturases and was expressed in Saccharomyces cerevisiae for the activity and substrate specificity research. The desaturase has a wide omega-6 fatty acid substrate, containing both 18C and 20C fatty acids, and exhibits a strong activity of delta-17 desaturase but a weak activity of delta-15 desaturase. The new desaturase converted the omega-6 arachidonic acid (AA, C20:4) to EPA (an omega-3 LC-PUFA, C20:5) with a substrate conversion rate of 70%. To obtain a high EPA-producing strain, we transformed PPD17 into Mortierella alpina, an AA-producing filamentous fungus. The EPA content of the total fatty acids in reconstruction strains reached 31.5% and was followed by the fermentation optimization of the EPA yield of up to 1.9 g/L. This research characterized a new omega-3 desaturase and provides a possibility of industrially producing EPA using M. alpina.
Collapse
Affiliation(s)
- Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Tiantian Mei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Chengfeng Ge
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhennan Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
32
|
Hoang LAT, Nguyen HC, Le TT, Hoang THQ, Pham VN, Hoang MHT, Ngo HTT, Hong DD. Different fermentation strategies by Schizochytrium mangrovei strain pq6 to produce feedstock for exploitation of squalene and omega-3 fatty acids. JOURNAL OF PHYCOLOGY 2018; 54:550-556. [PMID: 29889307 DOI: 10.1111/jpy.12757] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
Schizochytrium mangrovei strain PQ6 was investigated for coproduction of docosahexaenoic acid (C22: 6ω-3, DHA) and squalene using a 30-L bioreactor with a working volume of 15 L under various batch and fed-batch fermentation process regimes. The fed-batch process was a more efficient cultivation strategy for achieving higher biomass production rich in DHA and squalene. The final biomass, total lipid, unsaponifiable lipid content, and DHA productivity were 105.25 g · L-1 , 43.40% of dry cell weight, 8.58% total lipid, and 61.66 mg · g-1 · L-1 , respectively, after a 96 h fed-batch fermentation. The squalene content was highest at 48 h after feeding glucose (98.07 mg · g-1 of lipid). Differences in lipid accumulation during fermentation were correlated with changes in ultrastructure using transmission electron microscopy and Nile Red staining of cells. The results may be of relevance to industrial-scale coproduction of DHA and squalene in heterotrophic marine microalgae such as Schizochytrium.
Collapse
Affiliation(s)
- Lan Anh Thi Hoang
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Ha Cam Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Thom Thi Le
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Thi Huong Quynh Hoang
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Van Nhat Pham
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Minh Hien Thi Hoang
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Hoai Thu Thi Ngo
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Dang Diem Hong
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| |
Collapse
|
33
|
Comparison of microalgal biomasses as functional food ingredients: Focus on the composition of cell wall related polysaccharides. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.03.017] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Chen CY, Yang YT. Combining engineering strategies and fermentation technology to enhance docosahexaenoic acid (DHA) production from an indigenous Thraustochytrium sp. BM2 strain. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Shao W, Pan X, Liu X, Teng F, Yuan S. Microencapsulation of Algal Oil Using Spray Drying Technology. Food Technol Biotechnol 2018. [PMID: 29795998 DOI: 10.17113/ftb10.17113/ftb.56.01.18.5452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
This work aims at developing a process of microencapsulation of algal oil containing ≥40% docosahexaenoic acid (DHA) using spray drying technology. Purity Gum® 2000 and Capsul®, both obtained from waxy corn starch, were chosen as the encapsulation materials. The effects of emulsification conditions on the droplet size, stability, viscosity and surface tension, and the effects of spraying conditions on the particle size, moisture content and surface oil content were investigated successively. The morphology of emulsion droplets and the microcapsules was observed by optical microscope and scanning electron microscopy. The results showed that the produced spherical microcapsules were smooth and free of pores, cracks, and surface indentation when shear velocity was 8.63 m/s in the first step of emulsification, homogenization pressure was 1.75·108 Pa and number of passes through homogenization unit was six for fine emulsification, rotational speed of spray disk was 400 s-1, and air inlet temperature was 170 °C. Therefore, it was concluded that the emulsification and encapsulation of algal oil containing DHA with above process was feasible.
Collapse
Affiliation(s)
- Wenyao Shao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 Fujian, PR China
| | - Xueshan Pan
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 Fujian, PR China
| | - Xiaoting Liu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 Fujian, PR China
| | - Feixue Teng
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 Fujian, PR China
| | - Shuai Yuan
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 Fujian, PR China
| |
Collapse
|
36
|
Mathematical modeling of fed-batch fermentation of Schizochytrium sp. FJU-512 growth and DHA production using a shift control strategy. 3 Biotech 2018. [PMID: 29527449 DOI: 10.1007/s13205-018-1187-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
To obtain high-cell-density cultures of Schizochytrium sp. FJU-512 for DHA production, two stages of fermentation strategy were used and carbon/nitrogen ratio, DO and temperature were controlled at different levels. The final dry cell weight, total lipid production and DHA yield in 15 l bioreactor reached 103.9, 37.2 and 16.0 g/l, respectively. For the further study of microbial growth and DHA production dynamics, we established a set of kinetic models for the fed-batch production of DHA by Schizochytrium sp. FJU-512 in 15 and 100 l fermenters and a compensatory parameter n was integrated into the model in order to find the optimal mathematical equations. A modified Logistic model was proposed to fit the cell growth data and the following kinetic parameters were obtained: µm = 0.0525/h, Xm = 100 g/l and n = 4.1717 for the 15 l bioreactor, as well as µm = 0.0382/h, Xm = 107.4371 g/l and n = 10 for the 100 l bioreactor. The Luedeking-Piret equations were utilized to model DHA production, yielding values of α = 0.0648 g/g and β = 0.0014 g/g/h for the 15 l bioreactor, while the values of α and β obtained for the 100 l fermentation were 0.0209 g/g and 0.0030 g/g/h. The predicted results compared with experimental data showed that the established models had a good fitting precision and were able to exactly depict the dynamic features of the DHA production process.
Collapse
|
37
|
Development of a scale-up strategy for fermentative production of docosahexaenoic acid by Schizochytrium sp. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2017.11.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
Enhancement of Schizochytrium DHA synthesis by plasma mutagenesis aided with malonic acid and zeocin screening. Appl Microbiol Biotechnol 2018; 102:2351-2361. [DOI: 10.1007/s00253-018-8756-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/28/2017] [Accepted: 12/30/2017] [Indexed: 12/28/2022]
|
39
|
Shao W, Pan X, Liu X, Teng F, Yuan S. Microencapsulation of Algal Oil Using Spray Drying Technology. Food Technol Biotechnol 2018; 56:65-70. [PMID: 29795998 DOI: 10.17113/ftb.56.01.18.5452] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This work aims at developing a process of microencapsulation of algal oil containing ≥40% docosahexaenoic acid (DHA) using spray drying technology. Purity Gum® 2000 and Capsul®, both obtained from waxy corn starch, were chosen as the encapsulation materials. The effects of emulsification conditions on the droplet size, stability, viscosity and surface tension, and the effects of spraying conditions on the particle size, moisture content and surface oil content were investigated successively. The morphology of emulsion droplets and the microcapsules was observed by optical microscope and scanning electron microscopy. The results showed that the produced spherical microcapsules were smooth and free of pores, cracks, and surface indentation when shear velocity was 8.63 m/s in the first step of emulsification, homogenization pressure was 1.75·108 Pa and number of passes through homogenization unit was six for fine emulsification, rotational speed of spray disk was 400 s-1, and air inlet temperature was 170 °C. Therefore, it was concluded that the emulsification and encapsulation of algal oil containing DHA with above process was feasible.
Collapse
Affiliation(s)
- Wenyao Shao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 Fujian, PR China
| | - Xueshan Pan
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 Fujian, PR China
| | - Xiaoting Liu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 Fujian, PR China
| | - Feixue Teng
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 Fujian, PR China
| | - Shuai Yuan
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 Fujian, PR China
| |
Collapse
|
40
|
Exploring the function of acyltransferase and domain replacement in order to change the polyunsaturated fatty acid profile of Schizochytrium sp. ALGAL RES 2018. [DOI: 10.1016/j.algal.2017.11.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
41
|
Jiang X, Zhang J, Zhao J, Gao Z, Zhang C, Chen M. Regulation of lipid accumulation in Schizochytrium
sp. ATCC 20888 in response to different nitrogen sources. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201700025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xin Jiang
- School of Biological Engineering; Dalian Polytechnic University; Dalian P. R. China
| | - Jia Zhang
- School of Biological Engineering; Dalian Polytechnic University; Dalian P. R. China
| | - Jing Zhao
- College of Life Science; Dalian Minzu University; Dalian P. R. China
| | - Ziqing Gao
- School of Biological Engineering; Dalian Polytechnic University; Dalian P. R. China
| | - Chunzhi Zhang
- School of Biological Engineering; Dalian Polytechnic University; Dalian P. R. China
| | - Ming Chen
- School of Biological Engineering; Dalian Polytechnic University; Dalian P. R. China
| |
Collapse
|
42
|
Zhang K, Chen L, Liu J, Gao F, He R, Chen W, Guo W, Chen S, Li D. Effects of butanol on high value product production in Schizochytrium limacinum B4D1. Enzyme Microb Technol 2017; 102:9-15. [DOI: 10.1016/j.enzmictec.2017.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/21/2017] [Accepted: 03/14/2017] [Indexed: 11/29/2022]
|
43
|
Ren L, Hu X, Zhao X, Chen S, Wu Y, Li D, Yu Y, Geng L, Ji X, Huang H. Transcriptomic Analysis of the Regulation of Lipid Fraction Migration and Fatty Acid Biosynthesis in Schizochytrium sp. Sci Rep 2017; 7:3562. [PMID: 28620184 PMCID: PMC5472558 DOI: 10.1038/s41598-017-03382-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/27/2017] [Indexed: 11/26/2022] Open
Abstract
Schizochytrium sp. is the main source of docosahexaenoic acid-rich oil, which is widely used in food additive and pharmaceutical industry. In this study, using RNA-seq, comparative transcriptomic analyses were performed at four stages of DHA fermentation by Schizochytrium sp to get potential genes related to cell transition from cell growth to lipid accumulation and then to lipid turnover. 1406, 385, 1384 differently expressed genes were identified by comparisons in pairs of S2 vs S1, S3 vs S2 and S4 vs S3. Functional analysis revealed that binding and single-organism process might be involve in the cell transition from cell growth to lipid accumulation while oxidation-reduction process played an important role in the transition from lipid accumulation to lipid turnover. pfaC in the PKS pathway showed higher sensitivity to the environmental change, which might be the key regulator for enhancing PUFA biosynthesis in the future. Some other genes in signal transduction and cell transport were revealed to be related to lipid turnover, which would enrich the current knowledge regarding lipid metabolism and help to enhance the DHA production and enrich different lipid fractions by Schizochytrium in the future.
Collapse
Affiliation(s)
- Lujing Ren
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Xuechao Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Xiaoyan Zhao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Shenglan Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Yi Wu
- Xiamen Kingdomway Group company, No. 299 West Yangguang Road, Haicang, Xiamen, 361022, China
| | - Dan Li
- Xiamen Kingdomway Group company, No. 299 West Yangguang Road, Haicang, Xiamen, 361022, China
| | - Yadong Yu
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Lingjun Geng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Xiaojun Ji
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - He Huang
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.
| |
Collapse
|
44
|
Guo DS, Ji XJ, Ren LJ, Li GL, Huang H. Improving docosahexaenoic acid production by Schizochytrium
sp. using a newly designed high-oxygen-supply bioreactor. AIChE J 2017. [DOI: 10.1002/aic.15783] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Dong-Sheng Guo
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; No. 30 South Puzhu Road Nanjing 211816 P.R. China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; No. 30 South Puzhu Road Nanjing 211816 P.R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); No. 5 Xinmofan Road Nanjing 210009 P.R. China
| | - Lu-Jing Ren
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; No. 30 South Puzhu Road Nanjing 211816 P.R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); No. 5 Xinmofan Road Nanjing 210009 P.R. China
| | - Gan-Lu Li
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; No. 30 South Puzhu Road Nanjing 211816 P.R. China
| | - He Huang
- School of Pharmaceutical Sciences; Nanjing Tech University; No. 30 South Puzhu Road Nanjing 211816 P.R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; No. 5 Xinmofan Road Nanjing 210009 P.R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); No. 5 Xinmofan Road Nanjing 210009 P.R. China
| |
Collapse
|
45
|
Regulation of the Docosapentaenoic Acid/Docosahexaenoic Acid Ratio (DPA/DHA Ratio) in Schizochytrium limacinum B4D1. Appl Biochem Biotechnol 2016; 182:67-81. [DOI: 10.1007/s12010-016-2311-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 10/30/2016] [Indexed: 12/30/2022]
|
46
|
Finco AMDO, Mamani LDG, Carvalho JCD, de Melo Pereira GV, Thomaz-Soccol V, Soccol CR. Technological trends and market perspectives for production of microbial oils rich in omega-3. Crit Rev Biotechnol 2016; 37:656-671. [PMID: 27653190 DOI: 10.1080/07388551.2016.1213221] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In recent years, foods that contain omega-3 lipids have emerged as important promoters of human health. These lipids are essential for the functional development of the brain and retina, and reduction of the risk of cardiovascular and Alzheimer's diseases. The global market for omega-3 production, particularly docosahexaenoic acid (DHA), saw a large expansion in the last decade due to the increasing use of this lipid as an important component of infant food formulae and supplements. The production of omega-3 lipids from fish and vegetable oil sources has some drawbacks, such as complex purification procedures, unwanted contamination by marine pollutants, reduction or even extinction of several species of fish, and aspects related to sustainability. A promising alternative system for the production of omega-3 lipids is from microbial metabolism of yeast, fungi, or microalgae. The aim of this review is to discuss the various omega-3 sources in the context of the global demand and market potential for these bioactive compounds. To summarize, it is clear that fish and vegetable oil sources will not be sufficient to meet the future needs of the world population. The biotechnological production of single-cell oil comes as a sustainable alternative capable of supplementing the global demand for omega-3, causing less environmental impact.
Collapse
Affiliation(s)
- Ana Maria de Oliveira Finco
- a Department of Bioprocess Engineering and Biotechnology , Federal University of Paraná (UFPR) , Curitiba , PR , Brazil
| | - Luis Daniel Goyzueta Mamani
- a Department of Bioprocess Engineering and Biotechnology , Federal University of Paraná (UFPR) , Curitiba , PR , Brazil
| | - Júlio Cesar de Carvalho
- a Department of Bioprocess Engineering and Biotechnology , Federal University of Paraná (UFPR) , Curitiba , PR , Brazil
| | | | - Vanete Thomaz-Soccol
- a Department of Bioprocess Engineering and Biotechnology , Federal University of Paraná (UFPR) , Curitiba , PR , Brazil
| | - Carlos Ricardo Soccol
- a Department of Bioprocess Engineering and Biotechnology , Federal University of Paraná (UFPR) , Curitiba , PR , Brazil
| |
Collapse
|
47
|
Aasen IM, Ertesvåg H, Heggeset TMB, Liu B, Brautaset T, Vadstein O, Ellingsen TE. Thraustochytrids as production organisms for docosahexaenoic acid (DHA), squalene, and carotenoids. Appl Microbiol Biotechnol 2016; 100:4309-21. [DOI: 10.1007/s00253-016-7498-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 03/19/2016] [Accepted: 03/22/2016] [Indexed: 01/09/2023]
|
48
|
|
49
|
Liu HH, Ji XJ, Huang H. Biotechnological applications of Yarrowia lipolytica: Past, present and future. Biotechnol Adv 2015; 33:1522-46. [DOI: 10.1016/j.biotechadv.2015.07.010] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 07/13/2015] [Accepted: 07/29/2015] [Indexed: 01/01/2023]
|
50
|
Ren LJ, Zhuang XY, Chen SL, Ji XJ, Huang H. Introduction of ω-3 Desaturase Obviously Changed the Fatty Acid Profile and Sterol Content of Schizochytrium sp. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:9770-6. [PMID: 26494394 DOI: 10.1021/acs.jafc.5b04238] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
ω-3 fatty acids play significant roles in brain development and cardiovascular disease prevention and have been widely used in food additives and the pharmaceutical industry. The aim of this study was to assess the feasibility of ω-3 desaturase for regulating fatty acid composition and sterol content in Schizochytrium sp. The exogenous ω-3 desaturase gene driven by ubiqutin promoter was introduced by 18S homologous sequence to the genome of Schizochytrium sp. Genetically modified strains had greater size and lower polar lipids than wild type strains. In addition, the introduction of ω-3 desaturase improved the ω-3/ω-6 ratio from 2.1 to 2.58 and converted 3% docosapentaenoic acid (DPA) to docosahexaenoic acid (DHA). Furthermore, squalene and sterol contents in lipid of the genetically modified strain reduced by 37.19 and 22.31%, respectively. The present study provided an advantageous genetically engineered Schizochytrium sp. for DHA production and effective metabolic engineering strategy for fatty acid producing microbes.
Collapse
Affiliation(s)
- Lu-jing Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Xiao-yan Zhuang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Sheng-lan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Xiao-jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - He Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| |
Collapse
|