1
|
Hu Y, Feng Y, Yao L, Wu C, Chen M, Zhang H, Li Q. Destabilization mechanisms of Semi-aerobic aged refuse biofilters under harsh treatment conditions: Evidence from fluorescence and microbial characteristics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174436. [PMID: 38964403 DOI: 10.1016/j.scitotenv.2024.174436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Semi-aerobic aged refuse biofilters (SAARB) are commonly-used biotechnologies for treating landfill leachate. In actual operation, SAARB often faces harsh conditions characterized by high concentrations of chemical oxygen demand (COD) and Cl-, as well as a low carbon-to-nitrogen ratio (C/N), which can disrupt the microbial community within SAARB, leading to operational instability. Maintaining the stable operation of SAARB is crucial for the efficient treatment of landfill leachate. However, the destabilization mechanism of SAARB under harsh conditions remains unclear. To address this, the study simulated the operation of SAARB under three harsh conditions, namely, high COD loading (H-COD), high chloride ion (Cl-) concentration environment (H-Cl-), and low C/N ratio environment (L-C/N). The aim is to reveal the destabilization mechanism of SAARB under harsh conditions by analyzing the fluorescence characteristics of effluent DOM and the microbial community in aged refuse. The results indicate that three harsh conditions have different effects on SAARB. H-COD leads to the accumulation of proteins; H-Cl- impedes the reduction of nitrite nitrogen; L-C/N inhibits the degradation of humic substances. These outcomes are attributed to the specific effects of different factors on the microbial communities in different zones of SAARB. H-COD and L-C/N mainly affect the degradation of organic matter in aerobic zone, while H-Cl- primarily impedes the denitrification process in the anaerobic zone. The abnormal enrichment of Corynebacterium, Castellaniella, and Sporosarcina can indicate the instability of SAARB under three harsh conditions, respectively. To maintain the steady operation of SAARB, targeted acclimation of the microbial community in SAARB should be carried out to cope with potentially harsh operating conditions. Besides, timely mitigation of loads should be implemented when instability characteristics emerge, and carbon sources and electron donors should be provided to restore treatment performance effectively.
Collapse
Affiliation(s)
- Yuansi Hu
- School of Environmental Science an Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Yuanyuan Feng
- School of Environmental Science an Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Li Yao
- School of Environmental Science an Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Chuanwei Wu
- Three Gorges Group Sichuan Energy Investment Co., Ltd., Chengdu 610000, China
| | - Mengli Chen
- School of Environmental Science an Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Han Zhang
- School of Environmental Science an Engineering, Southwest Jiaotong University, Chengdu 611756, China.
| | - Qibin Li
- School of Environmental Science an Engineering, Southwest Jiaotong University, Chengdu 611756, China.
| |
Collapse
|
2
|
Bosco Mofatto PM, Cosenza A, Di Trapani D, Mannina G. Investigation of intermittent aeration and oxic settling anaerobic process combination for nitrogen removal and sewage sludge reduction. CHEMOSPHERE 2024; 363:142877. [PMID: 39019192 DOI: 10.1016/j.chemosphere.2024.142877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 07/19/2024]
Abstract
A pilot plant with a conventional activated sludge (CAS) system with intermittent aeration (IA) was monitored. The system was configured as an Oxic Settling Anaerobic (OSA) process with the insertion of one anaerobic side-stream reactor (ASSR). The pilot plant was fed with real wastewater and an intensive experimental campaign was carried out including sludge minimization, nitrogen and carbon removal, GHG emissions and biokinetic parameters. The experimental campaign was divided into periods: Period I, II, and III. In Periods I and II, the ASSR reactor was operated with two different hydraulic retention times (HRT), 4 and 6 h, with an aeration/non-aeration ratio of 30 min/30 min. In Period III, the HRT in the anaerobic reactor was the same as in Period II. In contrast, the biological reactor's aerated/non-aerated ratio was increased to 40 min/20 min. Results demonstrated that combining IA and OSA might be effective in the reduction of excess sludge production. The yield coefficient decreased from Period I to Period II (Yobs from 0.41 to 0.25 gTSS gCOD-1, in Period I and II, respectively). Nevertheless, the HRT increase in the ASSR compromised the system performance regarding nitrification and greenhouse gas emissions and worsened the sludge settleability. However, the increase in the aeration duration was beneficial in restoring the system's nitrification and denitrification ability and carbon footprint. The lowest carbon footprint was obtained during Period III (6.8 kgCO2/d).
Collapse
Affiliation(s)
| | - Alida Cosenza
- Engineering Department, Palermo University, Viale delle Scienze, Ed. 8, 90128, Palermo, Italy.
| | - Daniele Di Trapani
- Engineering Department, Palermo University, Viale delle Scienze, Ed. 8, 90128, Palermo, Italy
| | - Giorgio Mannina
- Engineering Department, Palermo University, Viale delle Scienze, Ed. 8, 90128, Palermo, Italy
| |
Collapse
|
3
|
Bosco Mofatto PM, Cosenza A, Di Trapani D, Mannina G. Reducing biosolids from a membrane bioreactor system: Assessing the effects on carbon and nutrient removal, membrane fouling and greenhouse gas emissions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120345. [PMID: 38401496 DOI: 10.1016/j.jenvman.2024.120345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/12/2024] [Accepted: 02/08/2024] [Indexed: 02/26/2024]
Abstract
This study presents the effects on carbon and nutrient removal, membrane fouling and greenhouse gas (GHG) emissions of an Oxic-Settling-Anaerobic (OSA) - Membrane Bioreactor (MBR) pilot plant fed with real wastewater. The influence of three sludge return internal ratios (IR) was investigated by testing 45, 75 and 100%. The results showed that with the increase of IR, the biological sludge production substantially decreased by 85.8% due to the combination of cell lysis and endogenous metabolism. However, a worsening of ammonia removal efficiencies occurred (from 94.5 % to 84.7 with an IR value of 45 and 100%, respectively) mostly due to the ammonia release caused by cell lysis under anaerobic conditions. The N2O emission factor increased with the rise of IR (namely, from 2.17% to 2.54% of the total influent nitrogen). In addition, a variation of carbon footprint (CF) (0.78, 0.62 and 0.75 kgCO2eq m-3 with 45, 75 and 100% IR, respectively) occurred with IR mainly due to the different energy consumption and carbon oxidation during the three periods. The study's relevance is to address the optimal operating conditions in view of reducing sludge production. In this light, the need to identify a trade-off between the advantages of reducing sludge production and the disadvantages of increasing membrane fouling and GHG emissions must be identified in the future.
Collapse
Affiliation(s)
| | - Alida Cosenza
- Engineering Department, Palermo University, Viale delle Scienze, Bdg. 8, 90128, Palermo, Italy
| | - Daniele Di Trapani
- Engineering Department, Palermo University, Viale delle Scienze, Bdg. 8, 90128, Palermo, Italy
| | - Giorgio Mannina
- Engineering Department, Palermo University, Viale delle Scienze, Bdg. 8, 90128, Palermo, Italy.
| |
Collapse
|
4
|
Bhattacharyya A, Liu L, Walsh M, Lee K. Membrane technology for treating decanted oily wastewater from marine oil spill operations: Comparison between membrane filtration and membrane bioreactor. MARINE POLLUTION BULLETIN 2023; 194:115397. [PMID: 37573669 DOI: 10.1016/j.marpolbul.2023.115397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/15/2023]
Abstract
Canadian oil spill response regulations require collection of all liquids from a response operation, this involves many vessels and frequent trips to shore to dispose of collected liquids, which mainly comprise of water. Onsite treatment of decanted oily seawater would benefit operations by addressing vessel storage and trip frequency issues. Membrane technology has proven effective at treating oily wastewater from various industries; therefore, is a good candidate for onsite treatment of wastewater generated from response operations. In this study, oily seawater treatment efficiency of a pilot-scale physical membrane filtration and a bench-scale membrane bioreactor (MBR) were compared. Three main parameters were considered, total petroleum hydrocarbon, petroleum hydrocarbon fractions, and polycyclic aromatic hydrocarbons. 99.1 % and 98.2 % TPH removal efficiency were achieved by MBR (93.1 ppm initial oil concentration) and membrane filtration (28.3 ppm initial oil concentration), respectively. The MBR showed more promise than membrane filtration for onsite treatment of decanted wastewater.
Collapse
Affiliation(s)
- Anisha Bhattacharyya
- Department of Civil and Resource Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Lei Liu
- Department of Civil and Resource Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| | - Margaret Walsh
- Department of Civil and Resource Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Kenneth Lee
- Ecosystem Science, Fisheries and Oceans Canada, Ottawa, ON K1A 0E6, Canada
| |
Collapse
|
5
|
Song Z, Sun F, Xing D, Liao R, Zhang X, Wang M, Su X, Wen Z, Dong W. Integrating electrochemical pre-treatment with carrier-based membrane bioreactor for efficient treatment of municipal waste transfer stations leachate. BIORESOURCE TECHNOLOGY 2023; 379:129003. [PMID: 37019412 DOI: 10.1016/j.biortech.2023.129003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/20/2023] [Accepted: 03/30/2023] [Indexed: 05/03/2023]
Abstract
An integrated process of electrochemical pre-treatment with carrier-based membrane bioreactor (MBR) was constructed for fresh leachate from waste transfer stations with high organic and NH4+-N content. Results showed that within a hydraulic retention time 40 h, the removal efficiencies of chemical oxygen demand (COD), NH4+-N, suspended solids (SS) and total phosphorus (TP) were over 98.5%, 91.2%, 98.3% and 98.4%, respectively, with the organic removal rate of 18.7 kg/m3. The effluent met the Grade A Standard of China (GB/T31962-2015). Pre-treatment contributed about 70 % of the degraded refractory organics and almost all the SS, with the transformation of the humic-like acid to readily biodegradable organics. Biotreatment further removed over 50% of nitrogen pollutants through simultaneous nitrification and denitrification (SND) and consumed about 30% of organics. Meanwhile, the addition of carriers in the oxic MBR enhanced the attached biomass and denitrification enzyme activity, alleviating membrane fouling.
Collapse
Affiliation(s)
- Zi Song
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Feiyun Sun
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dingyu Xing
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Joint Laboratory of Urban High Strength Wastewater Treatment and Resource Utilization, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Runfeng Liao
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Xinbo Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Mingming Wang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xiaoli Su
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zheng Wen
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wenyi Dong
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Joint Laboratory of Urban High Strength Wastewater Treatment and Resource Utilization, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
6
|
Ma XC, Wang K, Gao XL, Li XK, Liu GG, Chen HY, Piao CY, You SJ. Deciphering the fate of osmotic stress priming on enhanced microorganism acclimation for purified terephthalic acid wastewater treatment with high salinity and organic load. BIORESOURCE TECHNOLOGY 2023; 374:128656. [PMID: 36690216 DOI: 10.1016/j.biortech.2023.128656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Osmotic stress priming (OSP) was an effective management strategy for improving microbial acclimation to salt stress. In this study, the interaction between pollutants and microbiota, and microbial osmoregulation were investigated triggered by OSP (alternately increasing salinity and organic loading). Results showed that OSP significantly improved COD removal from 31.53 % to 67.99 % and mitigated the terephthalate inhibition produced by toluate, decreasing from 1908.08 mg/L to 837.16 mg/L compared with direct priming. Due to an increase in salinity, Pelotomaculum and Mesotoga were enriched to facilitate terephthalate degradation and syntrophic acetate oxidation (SAO). And organic load promoted acetate formation through syntrophic metabolism of Syntrophorhabdus/Pelotomaculum and SAO-dependent hydrogenotrophic methanogenesis. K+ absorbing, proline and trehalose synthesis participated in osmoregulation at 0.5 % salinity, while only ectoine alleviated intracellular osmolarity under 1.0 % salinity with OLR of 0.44 kg COD /m3. This study provided in-depth insight for microbial acclimation process of anaerobic priming of saline wastewater.
Collapse
Affiliation(s)
- Xiao-Chen Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ke Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; National Engineering Research Center for Safe Sludge Disposal and Resource Recovery, Harbin Institute of Technology, Harbin 150090, China; Harbin Institute of Technology National Engineering Research Center of Water Resources Co., Ltd, Guangdong Yuehai Water Investment Co., Ltd, Harbin 150090, China
| | - Xin-Lei Gao
- Harbin Institute of Technology National Engineering Research Center of Water Resources Co., Ltd, Guangdong Yuehai Water Investment Co., Ltd, Harbin 150090, China
| | - Xiang-Kun Li
- School of Civil and Transportation, Hebei University of Technology, Tianjin 300401, China.
| | - Gai-Ge Liu
- School of Civil and Transportation, Hebei University of Technology, Tianjin 300401, China
| | - Hong-Ying Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chen-Yu Piao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shi-Jie You
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
7
|
Alharthi MS, Bamaga O, Abulkhair H, Organji H, Shaiban A, Macedonio F, Criscuoli A, Drioli E, Wang Z, Cui Z, Jin W, Albeirutty M. Evaluation of a Hybrid Moving Bed Biofilm Membrane Bioreactor and a Direct Contact Membrane Distillation System for Purification of Industrial Wastewater. MEMBRANES 2022; 13:16. [PMID: 36676823 PMCID: PMC9863120 DOI: 10.3390/membranes13010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/13/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Integrated wastewater treatment processes are accepted as the best option for sustainable and unrestricted onsite water reuse. In this study, moving bed biofilm reactor (MBBR), membrane bioreactor (MBR), and direct contact membrane distillation (DCMD) treatment steps were integrated successively to obtain the combined advantages of these processes for industrial wastewater treatment. The MBBR step acts as the first step in the biological treatment and also mitigates foulant load on the MBR. Similarly, MBR acts as the second step in the biological treatment and serves as a pretreatment prior to the DCMD step. The latter acts as a final treatment to produce high-quality water. A laboratory scale integrated MBBR/MBR/DCMD experimental system was used for assessing the treatment efficiency of primary treated (PTIWW) and secondary treated (STIWW) industrial wastewater in terms of permeate water flux, effluent quality, and membrane fouling. The removal efficiency of total dissolved solids (TDS) and effluent permeate flux of the three-step process (MBBR/MBR/DCMD) were better than the two-step (MBR/DCMD) process. In the three-step process, the average removal efficiency of TDS was 99.85% and 98.16% when treating STIWW and PTIWW, respectively. While in the case of the two-step process, the average removal efficiency of TDS was 93.83% when treating STIWW. Similar trends were observed for effluent permeate flux values which were found, in the case of the three-step process, 62.6% higher than the two-step process, when treating STIWW in both cases. Moreover, the comparison of the quality of the effluents obtained with the analysed configurations with that obtained by Jeddah Industrial Wastewater Treatment Plant proved the higher performance of the proposed membrane processes.
Collapse
Affiliation(s)
- Mamdouh S. Alharthi
- Department of Mechanical Engineering, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
| | - Omar Bamaga
- Center of Excellence in Desalination Technology, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
| | - Hani Abulkhair
- Department of Mechanical Engineering, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
- Center of Excellence in Desalination Technology, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
| | - Husam Organji
- Center of Excellence in Desalination Technology, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
| | - Amer Shaiban
- Center of Excellence in Desalination Technology, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
| | - Francesca Macedonio
- Institute on Membrane Technology, National Research Council of Italy (CNR-ITM), Via P. Bucci 17/C, 87036 Rende, Italy
| | - Alessandra Criscuoli
- Institute on Membrane Technology, National Research Council of Italy (CNR-ITM), Via P. Bucci 17/C, 87036 Rende, Italy
| | - Enrico Drioli
- Institute on Membrane Technology, National Research Council of Italy (CNR-ITM), Via P. Bucci 17/C, 87036 Rende, Italy
| | - Zhaohui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhaoliang Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Mohammed Albeirutty
- Department of Mechanical Engineering, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
- Center of Excellence in Desalination Technology, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
| |
Collapse
|
8
|
Cao TND, Bui XT, Le LT, Dang BT, Tran DPH, Vo TKQ, Tran HT, Nguyen TB, Mukhtar H, Pan SY, Varjani S, Ngo HH, Vo TDH. An overview of deploying membrane bioreactors in saline wastewater treatment from perspectives of microbial and treatment performance. BIORESOURCE TECHNOLOGY 2022; 363:127831. [PMID: 36029979 DOI: 10.1016/j.biortech.2022.127831] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
The discharged saline wastewater has severely influenced the aquatic environment as the treatment performance of many wastewater treatment techniques is limited. In addition, the sources of saline wastewater are also plentiful from agricultural and various industrial fields such as food processing, tannery, pharmaceutical, etc. Although high salinity levels negatively impact the performance of both physicochemical and biological processes, membrane bioreactor (MBR) processes are considered as a potential technology to treat saline wastewater under different salinity levels depending on the adaption of the microbial community. Therefore, this study aims to systematically review the application of MBR widely used in the saline wastewater treatment from the perspectives of microbial structure and treatment efficiencies. At last, the concept of carbon dioxide capture and storage will be proposed for the MBR-treating saline wastewater technologies and considered toward the circular economy with the target of zero emission.
Collapse
Affiliation(s)
- Thanh Ngoc-Dan Cao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan ROC
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, district 10, Ho Chi Minh City 700000, Viet Nam; Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam.
| | - Linh-Thy Le
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, district 10, Ho Chi Minh City 700000, Viet Nam; Faculty of Public Health, University of Medicine and Pharmacy at Ho Chi Minh City (UMP), Ward 11, District 5, Ho Chi Minh City 72714, Viet Nam
| | - Bao-Trong Dang
- Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam; Faculty of Chemical Engineering, Ho Chi Minh University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City 700000, Viet Nam
| | - Duyen Phuc-Hanh Tran
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, district 10, Ho Chi Minh City 700000, Viet Nam; Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam
| | - Thi-Kim-Quyen Vo
- Faculty of Biology and Environment, Ho Chi Minh City University of Food Industry (HUFI), 140 Le Trong Tan street, Tay Thanh ward, Tan Phu district, Ho Chi Minh City 700000, Viet Nam
| | - Huu-Tuan Tran
- Department of Civil, Environmental & Architectural Engineering, The University of Kansas, Lawrence, KS 66045, United States
| | - Thanh-Binh Nguyen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Hussnain Mukhtar
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan ROC
| | - Shu-Yuan Pan
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan ROC
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Thi-Dieu-Hien Vo
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| |
Collapse
|
9
|
Caliani I, De Marco G, Cappello T, Giannetto A, Mancini G, Ancora S, Maisano M, Parrino V, Cappello S, Bianchi N, Oliva S, Luciano A, Mauceri A, Leonzio C, Fasulo S. Assessment of the effectiveness of a novel BioFilm-Membrane BioReactor oil-polluted wastewater treatment technology by applying biomarkers in the mussel Mytilus galloprovincialis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 243:106059. [PMID: 34991045 DOI: 10.1016/j.aquatox.2021.106059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/26/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Petrochemical industries and oil refineries are sources of hazardous chemicals into the aquatic environments, and often a leading cause of reduced oxygen availability, thus resulting in adverse effects in biota. This study is an expansion of our previous work on the assessment of the BioFilm-Membrane Bioreactor (BF-MBR) to mitigate the impact of oil-polluted wastewater on marine environments. Specifically, this study evaluated the reduction of selected chemical constituents (hydrocarbons and trace metals) and toxicity related to hypoxia and DNA damage to mussels Mytilus galloprovincialis, before and after treatment of oil-polluted wastewater with the BF-MBR. The application of a multidisciplinary approach provided evidence of the efficiency of BF-MBR to significantly reducing the pollutants load from oily contaminated seawaters. As result, the health status of mussels was preserved by a hypoxic condition due to oily pollutants, as evidenced by the modulation in the gene expression of HIF-1α and PHD and changes in the level of hypotaurine and taurine. Moreover, ameliorative effects in the energy metabolism were also found in mussel gills showing increased levels of glycogen, glucose and ATP, as well as a mitigated genotoxicity was revealed by the Micronucleus and Comet assays. Overall, findings from this study support the use of the BF-MBR as a promising treatment biotechnology to avoid or limiting the compromise of marine environments from oil pollution.
Collapse
Affiliation(s)
- Ilaria Caliani
- Department of Physics, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Giuseppe De Marco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Alessia Giannetto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Giuseppe Mancini
- Electric, Electronics and Computer Engineering Department, University of Catania, Catania, Italy
| | - Stefania Ancora
- Department of Physics, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Maria Maisano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy.
| | - Vincenzo Parrino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Simone Cappello
- Institute for Biological Resources and Marine Biotechnology (IRBIM)-National Research Center, Messina, Italy
| | - Nicola Bianchi
- Department of Physics, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Sabrina Oliva
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Antonella Luciano
- Energy and Sustainable Economic Development - Department for Sustainability, ENEA - Italian National Agency for the New Technologies, Casaccia Research Centre, Rome, Italy
| | - Angela Mauceri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Claudio Leonzio
- Department of Physics, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Salvatore Fasulo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| |
Collapse
|
10
|
Effect of biofilm media application on biomass characteristics and membrane permeability in the biological spatiotemporal phase-separation process. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Shao Y, Zhou Z, Jiang J, Jiang LM, Huang J, Zuo Y, Ren Y, Zhao X. Membrane fouling in anoxic/oxic membrane reactors coupled with carrier-enhanced anaerobic side-stream reactor: Effects of anaerobic hydraulic retention time and mechanism insights. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Mainardis M, Buttazzoni M, Cottes M, Moretti A, Goi D. Respirometry tests in wastewater treatment: Why and how? A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148607. [PMID: 34182438 DOI: 10.1016/j.scitotenv.2021.148607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/08/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Respirometry tests are a widely employed method in wastewater treatment field to characterize wastewater streams, assess toxic/inhibitory effects to the biomass, calibrate mathematical models. Respirometry can allow to fractionize the chemical oxygen demand (COD) in biodegradable and inert fractions, but also provide information related to biomass kinetics and stoichiometry through standardized laboratory techniques. Considering the increasing number of emerging contaminants detected in wastewater effluents, such as pharmaceuticals, personal care products and pesticides, respirometry can be a useful tool to promptly assess any toxic or inhibitory effect in wastewater treatment plants (WWTPs) operations. Beside conventional activated sludge (CAS), in recent years respirometric methods have been applied to innovative fields, such as moving-bed bio-reactors (MBBRs), fungi and microalgae, exploiting natural remediation methods. In particular, respirometry application to microalgae, through the so-called photo-respirometry, has been investigated in the latest years in the treatment of high-nutrient loaded streams, allowing resource recovery in biomass form. In this work, respirometric methods are first introduced from a theoretical basis and then critically discussed by considering the experimental apparatus, the available characterization protocols and the fields of application; the most recent literature findings on respirometry are coupled with authors' experience in the field. A comparison between physicochemical methods and respirometry is made, considering common protocols for WWTP modelling and calibration. The future research needed on the topic is finally outlined, including the coupling of respirometry with microbial community analysis, potentially leading to an enhanced process understanding, an extended respirometry utilization to get specific kinetic and stoichiometric parameters for modelling purposes, and a wider respirometry application as diagnosis tool in WWTP operations.
Collapse
Affiliation(s)
- Matia Mainardis
- Department Polytechnic of Engineering and Architecture, University of Udine, Via del Cotonificio 108, 33100 Udine, Italy.
| | - Marco Buttazzoni
- Department Polytechnic of Engineering and Architecture, University of Udine, Via del Cotonificio 108, 33100 Udine, Italy
| | - Mattia Cottes
- Department Polytechnic of Engineering and Architecture, University of Udine, Via del Cotonificio 108, 33100 Udine, Italy
| | - Alessandro Moretti
- Department Polytechnic of Engineering and Architecture, University of Udine, Via del Cotonificio 108, 33100 Udine, Italy
| | - Daniele Goi
- Department Polytechnic of Engineering and Architecture, University of Udine, Via del Cotonificio 108, 33100 Udine, Italy
| |
Collapse
|
13
|
Baghali M, Jayathilaka W, Ramakrishna S. The Role of Electrospun Nanomaterials in the Future of Energy and Environment. MATERIALS (BASEL, SWITZERLAND) 2021; 14:558. [PMID: 33503924 PMCID: PMC7865989 DOI: 10.3390/ma14030558] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 12/23/2022]
Abstract
Electrospinning is one of the most successful and efficient techniques for the fabrication of one-dimensional nanofibrous materials as they have widely been utilized in multiple application fields due to their intrinsic properties like high porosity, large surface area, good connectivity, wettability, and ease of fabrication from various materials. Together with current trends on energy conservation and environment remediation, a number of researchers have focused on the applications of nanofibers and their composites in this field as they have achieved some key results along the way with multiple materials and designs. In this review, recent advances on the application of nanofibers in the areas-including energy conversion, energy storage, and environmental aspects-are summarized with an outlook on their materials and structural designs. Also, this will provide a detailed overview on the future directions of demanding energy and environment fields.
Collapse
Affiliation(s)
| | | | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117576, Singapore; (M.B.); (W.A.D.M.J.)
| |
Collapse
|
14
|
Chen H, Zeng L, Wang D, Zhou Y, Yang X. Recent advances in nitrous oxide production and mitigation in wastewater treatment. WATER RESEARCH 2020; 184:116168. [PMID: 32683143 DOI: 10.1016/j.watres.2020.116168] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/17/2020] [Accepted: 07/10/2020] [Indexed: 05/21/2023]
Abstract
Nitrous oxide (N2O) emitted from wastewater treatment plants has caused widespread concern. Over the past decade, people have made tremendous efforts to discover the microorganisms responsible for N2O production, elucidate metabolic pathways, establish production models and formulate mitigation strategies. The ultimate goal of all these efforts is to shed new light on how N2O is produced and how to reduce it, and one of the best ways is to find key opportunities by integrating the information obtained. This review article critically evaluates the knowledge gained in the field within a decade, especially in N2O production microbiology, biochemistry, models and mitigation strategies, with a focus on denitrification. Previous research has greatly deepened the understanding of the N2O generation mechanism, but further efforts are still needed due to the lack of standardized methodology for establishing N2O mitigation strategies in full-scale systems. One of the challenges seems to be to convert the denitrification process from a net N2O source into an effective sink, which is recommended as a key opportunity to reduce N2O production in this review.
Collapse
Affiliation(s)
- Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| | - Long Zeng
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China.
| | - Yaoyu Zhou
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xiao Yang
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea
| |
Collapse
|
15
|
Lu Z, Li D, Jiang L, Chen G, Li K, Liu G. Characterizing the biofilm stoichiometry and kinetics on the media in situ based on pulse-flow respirometer coupling with a new breathing reactor. CHEMOSPHERE 2020; 252:126378. [PMID: 32199161 DOI: 10.1016/j.chemosphere.2020.126378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
Biofilm based systems and the hybrid between activated sludge and biofilms have been popularly applied for wastewater treatment. Unlike the suspended biomass, the biofilm concentration and kinetics on the media cannot be easily measured. In this study, a novel and easy-to-use approach has been developed based on pulse-flow respirometer to characterize the biofilm stoichiometry and kinetics in situ. With the new designed breathing reactor, the mutual interference between the magnetic stirring and biofilm media that happened in the conventional breathing reactor was solved. Moreover, Microsoft Excel based programs had been developed to fit the oxygen uptake rate curves with dynamic nonlinear regression. With this new approach, the yield coefficient, maximum oxidation capacity, and half-saturation constant of substrate for the heterotrophic biofilms in a fix bed reactor were determined to be 0.46 g-VSS/g-COD, 67.0 mg-COD/(h·L-media), and 4.4 mg-COD/L, respectively. Those parameters for biofilm ammonia oxidizers from a moving bed biofilm reactor were determined to be 0.17 g-VSS/g-N, 18.6 mg-N/(h·L-media), and 1.2 mg-N/L, respectively, and they were 0.11 g-VSS/g-N, 20.9 mg-N/(h·L-media), and 0.98 mg-N/L for nitrite oxidizers in the same biofilms. This study also found that the maximum specific substrate utilization rate for detached biofilms increased by 3.2 times, indicating that maintaining biofilm integrity was very important in the kinetic tests. Using this approach, the biofilm kinetics on the media can be regularly measured for treatment optimization.
Collapse
Affiliation(s)
- Zichuan Lu
- School of Environment, Guangdong Engineering Research Center of Water Treatment Processes and Materials, And Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Deyong Li
- School of Environment, Guangdong Engineering Research Center of Water Treatment Processes and Materials, And Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Lugao Jiang
- School of Environment, Guangdong Engineering Research Center of Water Treatment Processes and Materials, And Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Gaofeng Chen
- School of Environment, Guangdong Engineering Research Center of Water Treatment Processes and Materials, And Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Kaibin Li
- School of Environment, Guangdong Engineering Research Center of Water Treatment Processes and Materials, And Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Guoqiang Liu
- School of Environment, Guangdong Engineering Research Center of Water Treatment Processes and Materials, And Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
16
|
Leyva‐Díaz JC, Muñío MDM, Fenice M, Poyatos JM. Respirometric method for kinetic modeling of ammonium‐oxidizing and nitrite‐oxidizing bacteria in a membrane bioreactor. AIChE J 2020. [DOI: 10.1002/aic.16271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | | | - Massimiliano Fenice
- Department of Ecological and Biological SciencesUniversity of Tuscia Viterbo Italy
| | | |
Collapse
|
17
|
Almomani F, Bohsale RR. Optimizing nutrient removal of moving bed biofilm reactor process using response surface methodology. BIORESOURCE TECHNOLOGY 2020; 305:123059. [PMID: 32109732 DOI: 10.1016/j.biortech.2020.123059] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 05/12/2023]
Abstract
The potential of 3-stages process (anaerobic, anoxic and moving bed biofilm reactor (MBBR)) for organic matter and nutrient removals from secondary WWTP effluents at various hydraulic retention time (HRT) and nitrate recycle ratio (R) was investigated. Percentage removals of total nitrogen (%TNremoval) and phosphorous (%TPremoval) were optimized using response surface methodology (RSM). Under optimized conditions (HRTtotal = 12.8 hr and R = 1.5) significant chemical oxygen demand removal (%CODremoval), %TNremoval and %TPremoval of 95.5%, 96.2%, 94.70% were attained. The MMBR effectively reduced organic matter and nutrient under low HRT and R. %TNremoval was improved by increasing the HRTR2 up to 1.5 h at R ≤ 2. Bio-uptake of phosphorus and nitrate is controlled by release of secondary phosphorous. Reactors demonstrated stable biofilm characteristics except for a slight decrease in biofilm thickness due to flow-shear stress. The 3-stages process performed four times higher than suspended growth process and similar to 5-stage Bardenpho-MBBR.
Collapse
Affiliation(s)
- Fares Almomani
- Department of Chemical Engineering, College of Engineering, Qatar University, P. O. Box 2713, Doha, Qatar.
| | - Rahul R Bohsale
- Department of Chemical Engineering, College of Engineering, Qatar University, P. O. Box 2713, Doha, Qatar
| |
Collapse
|
18
|
Intermittent Aeration in a Hybrid Moving Bed Biofilm Reactor for Carbon and Nutrient Biological Removal. WATER 2020. [DOI: 10.3390/w12020492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The paper presents an experimental study on a lab scale hybrid moving bed biofilm reactor with intermittent aeration. Specifically, a comparison between two different operating conditions was analyzed: continuous and intermittent aeration. Both continuous and intermittent aeration were monitored and compared in order to get the best operational conditions. The intermittent aeration campaign was sub-divided in three phases with different duration of alternation of aerobic and anoxic times and organic and nitrogen loading rates. The efficiency of N-removal improved by 70% during the intermittent aeration. The best condition was observed with 40 min of aeration and 20 min of no-aeration, an organic loading rate of 2.2 kgCODm−3day−1 and a nitrogen loading rate of 0.25 kgNm−3day−1: under these operational conditions the removal efficiencies for carbon and nitrogen were 93% and 90%, respectively. The derived results provide the basis for WWTP upgrade in order to meet stricter effluent limits at low energy requirements.
Collapse
|
19
|
Song W, Lee LY, You H, Shi X, Ng HY. Microbial community succession and its correlation with reactor performance in a sponge membrane bioreactor coupled with fiber-bundle anoxic bio-filter for treating saline mariculture wastewater. BIORESOURCE TECHNOLOGY 2020; 295:122284. [PMID: 31669869 DOI: 10.1016/j.biortech.2019.122284] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/13/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
The application of MBR in high saline wastewater treatment is mainly constrained by poor nitrogen removal and severe membrane fouling caused by high salinity stress. A novel carriers-enhanced MBR system was successfully developed for treating saline mariculture wastewater, which showed efficient TN removal (93.2%) and fouling control. High-throughput sequencing revealed the enhancement mechanism of bio-carriers under high saline condition. Bio-carriers substantially improved the community structure, representatively, nitrifiers abundance (Nitrosomonas, Nitrospira) increased from 2.18% to 9.57%, abundance of denitrifiers (Sulfurimonas, Thermogutta, etc.) also rose from 3.81% to 14.82%. Thereby, the nitrogen removal process was enhanced. Noteworthy, ammonia oxidizer (Nitrosomonas, 8.26%) was the absolute dominant nitrifiers compared with nitrite oxidizer (Nitrospira, 1.13%). This supported the finding of shortcut nitrification-denitrification process in hybrid system. Moreover, a series of biomacromolecule degraders (Lutibacterium, Cycloclasticus, etc.) were detected in bio-carriers, which could account for the mitigation of membrane fouling as result of EPS and SMP degradation.
Collapse
Affiliation(s)
- Weilong Song
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore; State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, PR China
| | - Lai Yoke Lee
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore
| | - Hong You
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xueqing Shi
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore; School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, PR China
| | - How Yong Ng
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore.
| |
Collapse
|
20
|
Zhang H, Wang H, Jie M, Zhang K, Qian Y, Ma J. Performance and microbial communities of different biofilm membrane bioreactors with pre-anoxic tanks treating mariculture wastewater. BIORESOURCE TECHNOLOGY 2020; 295:122302. [PMID: 31678888 DOI: 10.1016/j.biortech.2019.122302] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
The performance of pollutant removals, activated sludge characteristics, and microbial communities of two biofilm membrane bioreactors coupled with pre-anoxic tanks (BF-AO-MBRs) (one using fiber bundle bio-carriers (FB-MBR) and the other using suspended bio-carriers (MB-MBR)) were compared at the salinity between zero and 60 g/L. At all salinities, three bioreactors showed good COD average removal efficiencies (>94.1%), and FB-MBR showed the best TN removal efficiency (90.4% at 30 g/L salinity). Moreover, FB-MBR had the faster process start-up time and better salt shock resistance. At high salinities (30-60 g/L), more extracellular polymeric substances were produced by the BF-AO-MBRs to avoid the penetration of salt and protect the bacterial community. Because of the different attachment patterns of biofilms, the microbial community structure in the FB-MBR exposed to 30 g/L salinity had higher nitrite-oxidizing/ammonia-oxidizing bacteria ratio (6.44) with more abundance of denitrifiers, which contribute to higher TN removal efficiency and lower nitrite accumulation.
Collapse
Affiliation(s)
- Huining Zhang
- Ningbo Institute of Technology, Zhejiang University, Ningbo 315000, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China; Ningbo Key Laboratory of Urban and Rural Water Pollution Control Technology, Ningbo 315100, China
| | - Hanqing Wang
- Polytechnic Institute, Zhejiang University, Hangzhou 310000, China; Ningbo Key Laboratory of Urban and Rural Water Pollution Control Technology, Ningbo 315100, China
| | - Mengrui Jie
- Ningbo Institute of Technology, Zhejiang University, Ningbo 315000, China; Ningbo Key Laboratory of Urban and Rural Water Pollution Control Technology, Ningbo 315100, China
| | - Kefeng Zhang
- Ningbo Institute of Technology, Zhejiang University, Ningbo 315000, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China; Ningbo Key Laboratory of Urban and Rural Water Pollution Control Technology, Ningbo 315100, China.
| | - Yongxing Qian
- Ningbo Institute of Technology, Zhejiang University, Ningbo 315000, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China; Ningbo Key Laboratory of Urban and Rural Water Pollution Control Technology, Ningbo 315100, China
| | - Jianqing Ma
- Ningbo Institute of Technology, Zhejiang University, Ningbo 315000, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China; Ningbo Key Laboratory of Urban and Rural Water Pollution Control Technology, Ningbo 315100, China
| |
Collapse
|
21
|
Gornati R, Maisano M, Pirrone C, Cappello T, Rossi F, Borgese M, Giannetto A, Cappello S, Mancini G, Bernardini G, Fasulo S. Mesocosm System to Evaluate BF-MBR Efficacy in Mitigating Oily Wastewater Discharges: an Integrated Study on Mytilus galloprovincialis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:773-790. [PMID: 31655935 DOI: 10.1007/s10126-019-09923-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
This work presents the results of recovery efficacy of the system "BioFilm Membrane BioReactor" (BF-MBR), in the treatment of oily contaminated seawaters. To this aim, we proposed a multidisciplinary approach that integrates traditional chemical-physical measures together with the assessment on biological sentinel Mytilus galloprovincialis, maintained in a medium-scale artificial system named mesocosm. The setup included: (1) a mesocosm consisting of uncontaminated seawater; (2) a mesocosm composed of an untreated oily wastewater discharge; and (3) a mesocosm receiving the same oily wastewater previously treated by a BF-MBR pilot scale plant. The multidisciplinary approach that included traditional chemical measures on mesocosms together with the evaluation of morphological organization, mRNA expression of those genes involved in cellular stress response, immunohistochemistry and metabolomic analysis on mussel tissues, was able to provide a robust and holistic evidence of how the proposed treatment is able to reduce the overall impact of oily wastewater discharges on the marine ecosystem.
Collapse
Affiliation(s)
- Rosalba Gornati
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100, Varese, Italy.
| | - Maria Maisano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via Ferdinando d'Alcontres, 31, 98166, Messina, Italy.
| | - Cristina Pirrone
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100, Varese, Italy
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via Ferdinando d'Alcontres, 31, 98166, Messina, Italy
| | - Federica Rossi
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100, Varese, Italy
| | - Marina Borgese
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100, Varese, Italy
| | - Alessia Giannetto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via Ferdinando d'Alcontres, 31, 98166, Messina, Italy
| | - Simone Cappello
- Institute for Coastal Marine Environment, National Research Center, Via San Raineri 86, 98122, Messina, Italy
| | - Giuseppe Mancini
- Electric, Electronics and Computer Engineering Department, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Giovanni Bernardini
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100, Varese, Italy
| | - Salvatore Fasulo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via Ferdinando d'Alcontres, 31, 98166, Messina, Italy
| |
Collapse
|
22
|
Yu Z, Li W, Tan S. Real-time monitoring of the membrane biofouling based on spectroscopic analysis in a marine MBBR-MBR (moving bed biofilm reactor-membrane bioreactor) for saline wastewater treatment. CHEMOSPHERE 2019; 235:1154-1161. [PMID: 31561306 DOI: 10.1016/j.chemosphere.2019.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 06/06/2019] [Accepted: 07/01/2019] [Indexed: 06/10/2023]
Abstract
A MBBR-MBR system has been developed with marine microorganisms enriched for saline wastewater treatment in this work, showing high COD and NH3-N removals. The behaviour of fouling-related components (EPS and SMP) has been studied as functions of operating time (40-90 days), salinity (0-30 g/L NaCl) and backflow ratio (0-300%, from MBR to MBBR). High biodegradability of the MBBR-MBR at optimal conditions can induce more biodegradation of humic acid-like (λex/λem: 350nm/430 nm) and fulvic acid-like (260nm/445 nm) molecules to soluble microbial by-product-like molecules (275nm/325 nm), reducing the membrane biofouling rate. The biodegradation process is suggested by the excitation-emission matrix (EEM) images. In the study of sudden salinity shock, results show that real-time monitoring the concentration of biofoulants is more effective (operative time extended by 60%) than monitoring the transmembrane pressure (operative time extended by 33%) to prevent membrane fouling. Due to an early warning from the real-time monitoring, the coming membrane-fouling is predictable and the operating conditions, such as backflow ratio, can be changed to minimize the biofouling rate.
Collapse
Affiliation(s)
- Zhengyu Yu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China; Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Weiguo Li
- Department of Environmental Engineering, Harbin Institute of Technology (Weihai), Weihai, Shandong, 264209, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China; Department of Environmental Engineering, Harbin Institute of Technology (Weihai), Weihai, Shandong, 264209, China.
| |
Collapse
|
23
|
Li C, Liang J, Lin X, Xu H, Tadda MA, Lan L, Liu D. Fast start-up strategies of MBBR for mariculture wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 248:109267. [PMID: 31325791 DOI: 10.1016/j.jenvman.2019.109267] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 07/06/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Moving bed biofilm reactor (MBBR) is widely used for ammonia removal in saline recirculating aquaculture systems but often faces a slow start-up problem. The aim of this study was to develop a strategy for the rapid start-up of MBBR treating synthetic mariculture wastewater. Changes in nitrification performance, biofilm characteristics and bacterial community were assessed in response to various start-up strategies: R1 as the control; R2 with step-decrease of inlet NH4+-N; R3 with step-increase of inlet salinity; R4 added with particulate organic matter (POM) and R5 inoculated with nitrifying bacteria. Results show that nitrification was completed on day 63 for R3, 16-18 days faster than the other strategies. The highest protein (28.2 ± 5.1 mg/g·VS) and polysaccharide (59.4 ± 0.4 mg/g·VS) contents were observed in R3, likely linked to the faster biofilm formation. Fourier Transform infrared spectroscopy (FTIR) analysis confirmed the typical constituents of carbohydrates, proteins, lipids and DNA in biofilms. Moreover, along with the biofilm development in R3, the intensity of the peak at 1400 cm-1 (assigned to specific amides) decreased. Pyrosequencing of 16s rRNA revealed that Gammaproteobacteria was the predominating microbial community at class level (35.6%) in R3. qPCR analysis further verified the significantly higher gene copies of amoA (1.57 × 104 copies/μL) and nxrB (5.51 × 103 copies/μL) in R3. Results obtained make the elevated salinity strategy a promising alternative for the rapid nitrification start-up of saline wastewater.
Collapse
Affiliation(s)
- Changwei Li
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jiawei Liang
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaochang Lin
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Hong Xu
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Musa Abubakar Tadda
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Lihua Lan
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Dezhao Liu
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
24
|
Tan X, Acquah I, Liu H, Li W, Tan S. A critical review on saline wastewater treatment by membrane bioreactor (MBR) from a microbial perspective. CHEMOSPHERE 2019; 220:1150-1162. [PMID: 33395802 DOI: 10.1016/j.chemosphere.2019.01.027] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/01/2019] [Accepted: 01/03/2019] [Indexed: 05/12/2023]
Abstract
This work has reviewed from a microbial perspective and listed the typical studies on MBR techniques for saline wastewater treatments. When the salinity of influent is lower than 10 g/L NaCl, conventional MBR can be easily applied with adjusted operating conditions. For better biodegradation and anti-fouling ability at higher salinities (10-100 g/L), modified and hybrid MBR systems may need to be wisely designed according to the change in the microbial community and contents of EPS/SMP. To treat hypersaline wastewaters with salinities of up to 100 g/L NaCl, inoculation of halophilic bacteria has been applied in MBR works. Microbial community structures in some typical works have been discussed from a microbial perspective to benefit the identification and isolation of halophilic bacteria for future works. The following aspects are also suggested in future MBR research for saline wastewater treatment: (1) The structure design of MBR and the manufacture of advanced membranes; (2) The maintenance of the microbial biodiversity for anti-membrane fouling; (3) The metabolic mechanism for halophilic (or salt-tolerant) microorganisms against salinity shocks; (4) The revolution stage and process of microorganisms during saline wastewater treatment in MBR; (5) The effects of characteristics (cell structure, shape and metabolic pathways) of microorganisms on the salt tolerance; (6) Applying halophilic microorganisms for salinities over 150 g/L NaCl.
Collapse
Affiliation(s)
- Xu Tan
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; Department of Civil and Environmental Engineering, University of Technology Sydney, Sydney 2007, Australia
| | - Isaac Acquah
- Programme of Biomedical Engineering, Kwame Nkrumah University of Science and Technology, PMB, University Post, Kumasi, Ghana
| | - Hanzhe Liu
- Department of Chemistry, Yanbian University, Yanji, 133002, China
| | - Weiguo Li
- Department of Environmental Engineering, Harbin Institute of Technology (Weihai), Weihai 264209, China
| | - Songwen Tan
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
25
|
Costa RE, Battistelli AA, Bernardelli JKB, Bassin JP, Belli TJ, Lapolli FR. Assessing the performance and microbial community of hybrid moving bed and conventional membrane bioreactors treating municipal wastewater. ENVIRONMENTAL TECHNOLOGY 2019; 40:716-729. [PMID: 29130402 DOI: 10.1080/09593330.2017.1404137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
A conventional (SB-CMBR) and a hybrid moving-bed (SB-HMBR) sequencing batch membrane bioreactor treating municipal wastewater were compared during their start-up in terms of organic matter and nutrient removal, membrane fouling characteristics and microbial community. Both systems exhibited similar COD, ammonium, total nitrogen (TN) and phosphorus removal efficiency, amounting up to 96%, 99%, 70% and 85%, respectively. Results from cycle tests revealed that the contribution of attached biomass to the overall ammonium removal in the hybrid reactor was marginal. Moreover, higher despite the similar phosphorus removal efficiency attained in both reactors, nitrate-dosing activity batch assays specifically revealed that the anoxic phosphate uptake rate (PUR) in the SB-HMBR was 1.71 times higher than in the SB-CMBR. Moreover, a higher frequency of Candidatus Accumulibacter-related polyphosphate-accumulating organisms was observed in the biofilm carriers of the hybrid reactor. These findings may explain why the overall PUR was almost 50% higher in the SB-HMBR. By operating the reactors in sequencing batch mode, adhesion of particles on the membrane surface was reduced while fouling was mitigated as compared to continuous MBR systems. Better filterability conditions with lower fouling rate were found in the SB-HMBR, important features of the hybrid reactor for reducing membrane cleaning-related energy demand.
Collapse
Affiliation(s)
- R E Costa
- a Department of Sanitary and Environmental Engineering , Federal University of Santa Catarina , Florianópolis , Brazil
| | - A A Battistelli
- a Department of Sanitary and Environmental Engineering , Federal University of Santa Catarina , Florianópolis , Brazil
| | - J K B Bernardelli
- b Department of Chemistry and Biology , Technological Federal University of Paraná , Curitiba , Brazil
| | - J P Bassin
- c Chemical Engineering Program - COPPE , Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| | - T J Belli
- d Department of Sanitary Engineering , State University of Santa Catarina , Ibirama , Brazil
| | - F R Lapolli
- a Department of Sanitary and Environmental Engineering , Federal University of Santa Catarina , Florianópolis , Brazil
| |
Collapse
|
26
|
Bella GD, Trapani DD. A Brief Review on the Resistance-in-Series Model in Membrane Bioreactors (MBRs). MEMBRANES 2019; 9:E24. [PMID: 30717246 PMCID: PMC6409801 DOI: 10.3390/membranes9020024] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 11/23/2022]
Abstract
The cake layer deposited on the membrane modules of membrane bioreactors (MBRs), especially under a submerged configuration, represents a relevant and fundamental mechanism deeply influencing the development of membrane fouling. It negatively affects the total resistance to filtration, while exerting a positive effect as a "pre-filter" promoting the "dynamic membrane" that protects the physical membrane from internal fouling. These two opposite phenomena should be properly managed, where the submerged membranes are usually subjected to a periodical cake layer removal through ordinary (permeate backwashing and air scouring) and/or irregular cleaning actions (manual physical cleaning). In this context, the physical removal of the cake layer is needed to maintain the design filtration characteristics. Nevertheless, the proper evaluation of the effect of physical cleaning operations is still contradictory and under discussion, referring in particular to the correct evaluation of fouling mechanisms. The aim of the present work was to summarize the different aspects that influence the fouling investigations, based on simple models for the evaluation of the resistance to filtration due to the cake layer, through physical cleaning operations.
Collapse
Affiliation(s)
- Gaetano Di Bella
- Facoltà di Ingegneria e Architettura, Università degli Studi di Enna "Kore", Cittadella universitaria, 94100 Enna, Italy.
| | - Daniele Di Trapani
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy.
| |
Collapse
|
27
|
Rodriguez-Sanchez A, Leyva-Diaz JC, Muñoz-Palazon B, Poyatos JM, Gonzalez-Lopez J. Influence of salinity cycles in bioreactor performance and microbial community structure of membrane-based tidal-like variable salinity wastewater treatment systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:514-527. [PMID: 30406593 DOI: 10.1007/s11356-018-3608-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/26/2018] [Indexed: 06/08/2023]
Abstract
A membrane bioreactor and two hybrid moving bed bioreactor-membrane bioreactors were operated for the treatment of variable salinity wastewater, changing in cycles of 6-h wastewater base salinity and 6-h maximum salinity (4.5 and 8.5 mS cm-1 electric conductivity, which relate to 2.4 and 4.8 g L-1 NaCl, respectively), under different hydraulic retention times (6, 9.5, and 12 h) and total solids concentrations (2500 and 3500 mg L-1). The evaluation of the performance of the systems showed that COD removal performance was unaffected by salinity conditions, while BOD5 and TN removals were significantly higher in the low-salinity scenario. The microbial community structure showed differences with respect to salinity conditions for Eukarya, suggesting their higher sensitivity for salinity with respect to Prokarya, which were similar at both salinity scenarios. Nevertheless, the intra-OTU distribution of consistently represented OTUs of Eukarya and Prokarya was affected by the different salinity maximums. Multivariate redundancy analyses showed that several genera such as Amphiplicatus (0.01-5.90%), Parvibaculum (0.27-1.19%), Thiothrix (0.30-1.19%), Rhodanobacter (2.81-5.85%), Blastocatella (0.21-2.01%), and Nitrobacter (0.80-0.99%) were positively correlated with BOD5 and TN removal, and the ecological roles of these were proposed. All these genera were substantially more represented under low-salinity conditions (10-500% higher relative abundance), demonstrating that they might be of importance for the treatment of variable salinity wastewater. Evaluation of Eukarya OTUs showed that many of them lack a consistent taxonomic classification, which highlights the lack of knowledge of the diversity and ecological role of Eukaryotes in saline wastewater treatment processes. The results obtained will be of interest for future design and operation of salinity wastewater treatment systems particularly because little is known on the effect of variable salinity conditions in wastewater treatment.
Collapse
Affiliation(s)
- Alejandro Rodriguez-Sanchez
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071, Granada, Spain.
- Department of Civil Engineering, University of Granada, Campus of Fuentenueva, 18071, Granada, Spain.
| | - Juan Carlos Leyva-Diaz
- Department of Chemical Engineering and Environmental Technology, University of Oviedo, Campus del Cristo, 33006, Oviedo, Spain
| | - Barbara Muñoz-Palazon
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071, Granada, Spain
| | - Jose Manuel Poyatos
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071, Granada, Spain
- Department of Civil Engineering, University of Granada, Campus of Fuentenueva, 18071, Granada, Spain
| | - Jesus Gonzalez-Lopez
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071, Granada, Spain
| |
Collapse
|
28
|
Millanar-Marfa JMJ, Borea L, de Luna MDG, Ballesteros FC, Belgiorno V, Naddeo V. Fouling Mitigation and Wastewater Treatment Enhancement through the Application of an Electro Moving Bed Membrane Bioreactor (eMB-MBR). MEMBRANES 2018; 8:E116. [PMID: 30469534 PMCID: PMC6316618 DOI: 10.3390/membranes8040116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/08/2018] [Accepted: 11/16/2018] [Indexed: 11/21/2022]
Abstract
High operational cost due to membrane fouling propensity remains a major drawback for the widespread application of membrane bioreactor (MBR) technology. As a result, studies on membrane fouling mitigation through the application of integrated processes have been widely explored. In this work, the combined application of electrochemical processes and moving bed biofilm reactor (MBBR) technology within an MBR at laboratory scale was performed by applying an intermittent voltage of 3 V/cm to a reactor filled with 30% carriers. The treatment efficiency of the electro moving bed membrane bioreactor (eMB-MBR) technology in terms of ammonium nitrogen (NH₄-N) and orthophosphate (PO₄-P) removal significantly improved from 49.8% and 76.7% in the moving bed membrane bioreactor (MB-MBR) control system to 55% and 98.7% in the eMB-MBR, respectively. Additionally, concentrations of known fouling precursors and membrane fouling rate were noticeably lower in the eMB-MBR system as compared to the control system. Hence, this study successfully demonstrated an innovative and effective technology (i.e., eMB-MBR) to improve MBR performance in terms of both conventional contaminant removal and fouling mitigation.
Collapse
Affiliation(s)
- Jessa Marie J Millanar-Marfa
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines.
| | - Laura Borea
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084 Fisciano, Italy.
| | - Mark Daniel G de Luna
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines.
- Department of Chemical Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines.
| | - Florencio C Ballesteros
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines.
- Department of Chemical Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines.
| | - Vincenzo Belgiorno
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084 Fisciano, Italy.
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084 Fisciano, Italy.
| |
Collapse
|
29
|
Mannina G, Ekama GA, Capodici M, Cosenza A, Di Trapani D, Ødegaard H. Integrated fixed-film activated sludge membrane bioreactors versus membrane bioreactors for nutrient removal: A comprehensive comparison. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 226:347-357. [PMID: 30130704 DOI: 10.1016/j.jenvman.2018.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/04/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
This research elucidates the pollutants (nutrients and carbon) removal performance and nitrous oxide (N2O) emissions of two pilot plants. Specifically, a University of Cape Town (UCT) Membrane Bioreactor (MBR) plant and an Integrated Fixed Film Activated Sludge (IFAS)-UCT-MBR plant were investigated. The plants were fed with real wastewater augmented with acetate and glycerol in order to control the influent carbon nitrogen ratio (C/N). The short-term effect of the inlet C/N ratio variation (C/N = 5 mgCOD/mgN and C/N = 10 mgCOD/mgN) on the behaviour of both plants was investigated. The results showed that the IFAS-UCT-MBR configuration provided the best performance in terms of pollutants removal at the two investigated C/N ratios. Furthermore, the lowest N2O emission (with respect to the influent nitrogen) was observed in the IFAS-UCT-MBR configuration, thus suggesting a potential beneficial effect of the biofilm in the emission reduction. However, the membrane of the IFAS-UCT-MBR showed a greater fouling tendency compared to the UCT-MBR configuration. This result, likely related to the biofilm detached from carriers, could seriously affect the indirect GreenHouse Gas emissions due to the increase of the energy requirement for permeate extraction with the increase of membrane fouling.
Collapse
Affiliation(s)
- Giorgio Mannina
- Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, Ed. 8, 90100, Palermo, Italy; Department of Earth and Environmental Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA.
| | - George A Ekama
- Water Research Group, Department of Civil Engineering, University of Cape Town, Rondebosch, 7700, Cape, South Africa
| | - Marco Capodici
- Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, Ed. 8, 90100, Palermo, Italy
| | - Alida Cosenza
- Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, Ed. 8, 90100, Palermo, Italy
| | - Daniele Di Trapani
- Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, Ed. 8, 90100, Palermo, Italy
| | - Hallvard Ødegaard
- NTNU - Norwegian University of Science and Technology, Department of Hydraulic and Environmental Engineering, 7491, Trondheim, Norway
| |
Collapse
|
30
|
Arias A, Alvarino T, Allegue T, Suárez S, Garrido JM, Omil F. An innovative wastewater treatment technology based on UASB and IFAS for cost-efficient macro and micropollutant removal. JOURNAL OF HAZARDOUS MATERIALS 2018; 359:113-120. [PMID: 30014906 DOI: 10.1016/j.jhazmat.2018.07.042] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/27/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
An innovative process based on the combination of a UASB reactor and an IFAS system is proposed in order to combine different redox conditions and biomass conformations to promote a high microbial diversity. The objective of this configuration is to enhance the biological removal of organic micropollutants (OMPs) as well as to achieve the abatement of nitrogen by using the dissolved methane as an inexpensive electron donor. Results showed high removals of COD (93%) and dissolved methane present in the UASB effluent (up to 85%) was biodegraded by a consortium of aerobic methanotrophs and heterotrophic denitrifiers. Total nitrogen removal decreased slightly along the operation (from 44 to 33%), depending on the availability of electron donor, biomass concentration, and configuration (floccules and biofilm). A high removal was achieved in the hybrid system (>80%) for 6 of the studied OMPs. Sulfamethoxazole, trimethoprim, naproxen, and estradiol were readily biotransformed under anaerobic conditions, whereas ibuprofen or bisphenol A were removed in the anoxic-aerobic compartment. Evidence of the cometabolic biotransformation of OMPs has been found, such as the influence of nitrification activity on the removal of bisphenol A, and of the denitrification activity on ethinylestradiol removal.
Collapse
Affiliation(s)
- A Arias
- Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Spain.
| | - T Alvarino
- Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Spain.
| | - T Allegue
- Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Spain.
| | - S Suárez
- Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Spain.
| | - J M Garrido
- Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Spain.
| | - F Omil
- Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Spain.
| |
Collapse
|
31
|
Enhancement of Organic Matter Removal in an Integrated Biofilm-Membrane Bioreactor Treating High-Salinity Wastewater. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2018; 2018:2148286. [PMID: 30245590 PMCID: PMC6136518 DOI: 10.1155/2018/2148286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/17/2018] [Indexed: 11/26/2022]
Abstract
High salinity can strongly inhibit microbial activity and decrease the sedimentation ability of activated sludge. The combination of biofilm and membrane bioreactor is a practical approach towards effective removal of pollutants and low fouling rate. An integrated biofilm-membrane bioreactor (BMBR) treating mustard tuber wastewater was investigated. An average COD removal efficiency of 94.81% and ammonium removal efficiency of 96.84% were achieved at an organic load of 0.5 kg COD/(m3·d). However, the reactor showed a relatively low efficiency in total nitrogen and soluble phosphorus removal due to the lack of anaerobic environment. The increase of influent organic load resulted in a performance degradation because a balance between the degradation ability and pollution has been reached. Images of scanning electron microscopy revealed that halophilic bacteria were the dominant microbe in the system that leads to a loose sludge structure and declined settling properties. It was found that membrane fouling was the consequence of the interaction of microbial activities and NaCl crystallization.
Collapse
|
32
|
Biofouling Formation and Bacterial Community Structure in Hybrid Moving Bed Biofilm Reactor-Membrane Bioreactors: Influence of Salinity Concentration. WATER 2018. [DOI: 10.3390/w10091133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Two pilot-scale hybrid moving bed biofilm reactor-membrane bioreactors were operated in parallel for the treatment of salinity-amended urban wastewater under 6 hours of hydraulic retention time and 2500 mg L−1 total solids concentration. Two salinity conditions were tested: the constant salinity of 6.5 mS cm−1 electric conductivity (3.6 g L−1 NaCl) and the tidal-like variable salinity with maximum 6.5 mS cm−1 electric conductivity. An investigation was developed on the biofouling produced on the ultrafiltration membrane surface evaluating its bacterial community structure and its potential function in the fouling processes. The results showed that biofouling was clearly affected by salinity scenarios in terms of α-diversity and β-diversity and bacterial community structure, which confirms lower bacterial diversity under variable salinity conditions with Rhodanobacter and Dyella as dominant phylotypes. Microorganisms identified as bio-mineral formers belonged to genera Bacillus, Citrobacter, and Brevibacterium. These findings will be of help for the prevention and control of biofouling in saline wastewater treatment systems.
Collapse
|
33
|
Wang X, Bi X, Hem LJ, Ratnaweera H. Microbial community composition of a multi-stage moving bed biofilm reactor and its interaction with kinetic model parameters estimation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 218:340-347. [PMID: 29698916 DOI: 10.1016/j.jenvman.2018.04.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/06/2018] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
Microbial community diversity determines the function of each chamber of multi-stage moving bed biofilm reactor (MBBR) systems. How the microbial community data can be further used to serve wastewater treatment process modelling and optimization has been rarely studied. In this study, a MBBR system was set up to investigate the microbial community diversity of biofilm in each functional chamber. The compositions of microbial community of biofilm from different chambers of MBBR were quantified by high-throughput sequencing. Significantly higher proportion of autotrophs were found in the second aerobic chamber (15.4%), while 4.3% autotrophs were found in the first aerobic chamber. Autotrophs in anoxic chamber were negligible. Moreover, ratios of active heterotrophic biomass and autotrophic biomass (XH/XA) were obtained by performing respiration tests. By setting heterotroph/autotroph ratios obtained from sequencing analysis equal to XH/XA, a novel approach for kinetic model parameters estimation was developed. This work not only investigated microbial community of MBBR system, but also it provided an approach to make further use of molecular microbiology analysis results.
Collapse
Affiliation(s)
- Xiaodong Wang
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003-IMT, 1432 Aas, Norway.
| | - Xuejun Bi
- Qingdao University of Technology, State and Local Joint Engineering Research Center of Urban Wastewater Treatment and Reclamation in China, Fushun Road 11, 266033 Qingdao, China
| | - Lars John Hem
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003-IMT, 1432 Aas, Norway; Oslo Water and Sewage Works, Herslebs Gate 5, 0561 Oslo, Norway
| | - Harsha Ratnaweera
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003-IMT, 1432 Aas, Norway; Qingdao University of Technology, State and Local Joint Engineering Research Center of Urban Wastewater Treatment and Reclamation in China, Fushun Road 11, 266033 Qingdao, China
| |
Collapse
|
34
|
de Oliveira TS, Corsino SF, Di Trapani D, Torregrossa M, Viviani G. Biological minimization of excess sludge in a membrane bioreactor: Effect of plant configuration on sludge production, nutrient removal efficiency and membrane fouling tendency. BIORESOURCE TECHNOLOGY 2018; 259:146-155. [PMID: 29550667 DOI: 10.1016/j.biortech.2018.03.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 06/08/2023]
Abstract
Excess sludge minimization was studied in a MBR with pre-denitrification scheme. Sludge minimization, nitrogen removal performance and membrane fouling tendency were investigated in two configurations, characterized by a different position of the sludge retention reactor (SRR). In particular, the SRR was placed: i) in the return activated sludge line (Anaerobic Side-Stream Reactor - ASSR configuration) and ii) in the mainstream between the anoxic and aerobic reactor (Anaerobic Main-Stream Reactor - AMSR configuration). The achieved results demonstrated that the ASSR enabled a higher excess sludge reduction (74% vs 32%), while achieving lower biological nitrogen removal (BNR) (TN = 63% vs 78%) and membrane fouling tendency (FR = 2.1 · 1012 m-1 d-1vs 4.0 · 1011 m-1 d-1) than the AMSR. It was found that metabolism uncoupling, destruction of EPS and endogenous decay simultaneously occurred in the ASSR. Conversely, selective enrichment of bacteria population with low biomass yield was found the main mechanism affecting sludge minimization in the AMSR.
Collapse
Affiliation(s)
- Taissa Silva de Oliveira
- Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy.
| | - Santo Fabio Corsino
- Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Daniele Di Trapani
- Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Michele Torregrossa
- Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Gaspare Viviani
- Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| |
Collapse
|
35
|
|
36
|
Pirrone C, Rossi F, Cappello S, Borgese M, Mancini G, Bernardini G, Gornati R. Evaluation of biomarkers in Mytilus galloprovincialis as an integrated measure of biofilm-membrane bioreactor (BF-MBR) system efficiency in mitigating the impact of oily wastewater discharge to marine environment: a microcosm approach. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 198:49-62. [PMID: 29501937 DOI: 10.1016/j.aquatox.2018.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/02/2018] [Accepted: 02/23/2018] [Indexed: 06/08/2023]
Abstract
The large volumes of oily wastewater discharged to marine environment cause heavy impacts on the coastal marine ecosystem. The selection of an appropriate technology to reduce these impacts should be based on the respect of the discharge limits and on the effective assessment and monitoring of its effects on biological organism preservation. To this aim, we set up a controlled microcosm-scale system to compare the effects of a treated and untreated oily wastewater discharge in which the restore process is performed through a Membrane Bio-Reactor. The system is completed by other three microcosms to control and isolate any possible concurrent effect on the Mytilus galloprovincialis, used as sentinel organism. Mytilus galloprovincialis have been kept in all these microcosms, and then mRNA expression and morphology were evaluated on gills and digestive gland. The genes considered in this work are Heat Shock Protein 70 and Metallothionein 10, involved in response to physicochemical sublethal stressors, Superoxide dismutase 1, Catalase, and Cytochrome P450 involved in oxidative stress response. Our results evidenced a significant overexpression, both in gills and digestive gland, of HSP70 in samples maintained in the microcosm receiving the untreated effluent, and of MT10 in those animals kept in microcosm where the effluent was treated. Even though the mRNA modifications are considered "primary" and transient responses which do not always correspond to protein content, the study of these modifications can help to gain insights into the mechanisms of action of xenobiotic exposure. Morphological analysis suggested that, although different, depending on the microcosm, the most serious damages were found in the gill epithelium accompanied with severe haemocyte infiltration, whilst in digestive gland the tissue architecture alterations and the haemocyte infiltration were less pronounced. These observations suggest that the immune system was activated as a general response to stressful stimuli such as the presence of toxic compounds. Moreover, the results indicate that the treatment process is useful. In fact, samples derived from the microcosm receiving the treated effluent, even though presenting some signs of stress, seemed to partially recover the normal structure, although their mRNA expression indicated some cellular suffering.
Collapse
Affiliation(s)
- Cristina Pirrone
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100, Varese, Italy
| | - Federica Rossi
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100, Varese, Italy
| | - Simone Cappello
- Institute for Coastal Marine Environment, National Research Center, Via San Raineri 86, 98122 Messina, Italy
| | - Marina Borgese
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100, Varese, Italy
| | - Giuseppe Mancini
- Electric, Electronics and Computer Engineering Department, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Giovanni Bernardini
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100, Varese, Italy; "The Protein Factory" Research Center, Politecnico di Milano, ICRM-CNR Milano and Università dell'Insubria, Via Mancinelli 7, 20131, Milano, Italy
| | - Rosalba Gornati
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100, Varese, Italy; "The Protein Factory" Research Center, Politecnico di Milano, ICRM-CNR Milano and Università dell'Insubria, Via Mancinelli 7, 20131, Milano, Italy.
| |
Collapse
|
37
|
Alvarino T, Suarez S, Lema J, Omil F. Understanding the sorption and biotransformation of organic micropollutants in innovative biological wastewater treatment technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:297-306. [PMID: 28982079 DOI: 10.1016/j.scitotenv.2017.09.278] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 06/07/2023]
Abstract
New technologies for wastewater treatment have been developed in the last years based on the combination of biological reactors operating under different redox conditions. Their efficiency in the removal of organic micropollutants (OMPs) has not been clearly assessed yet. This review paper is focussed on understanding the sorption and biotransformation of a selected group of 17 OMPs, including pharmaceuticals, hormones and personal care products, during biological wastewater treatment processes. Apart from considering the role of "classical" operational parameters, new factors such as biomass conformation and particle size, upward velocity applied or the addition of adsorbents have been considered. It has been found that the OMP removal by sorption not only depends on their physico-chemical characteristics and other parameters, such as the biomass conformation and particle size, or some operational conditions also relevant. Membrane biological reactors (MBR), have shown to enhance sorption and biotransformation of some OMPs. The same applies to technologies bases on direct addition of activated carbon in bioreactors. The OMP biotransformation degree and pathway is mainly driven by the redox potential and the primary substrate activity. The combination of different redox potentials in hybrid reactor systems can significantly enhance the overall OMP removal efficiency. Sorption and biotransformation can be synergistically promoted in biological reactors by the addition of activated carbon. The deeper knowledge of the main parameters influencing OMP removal provided by this review will allow optimizing the biological processes in the future.
Collapse
Affiliation(s)
- T Alvarino
- Department of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain.
| | - S Suarez
- Department of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - J Lema
- Department of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - F Omil
- Department of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| |
Collapse
|
38
|
Leyva-Díaz JC, Rodríguez-Sánchez A, González-López J, Poyatos JM. Effect of salinity variation on the autotrophic kinetics of the start-up of a membrane bioreactor and hybrid moving bed biofilm reactor-membrane bioreactor at low hydraulic retention time. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 77:714-720. [PMID: 29431716 DOI: 10.2166/wst.2017.585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A membrane bioreactor (MBR) and a hybrid moving bed biofilm reactor-membrane bioreactor (hybrid MBBR-MBR) for municipal wastewater treatment were studied to determine the effect of salinity on nitrogen removal and autotrophic kinetics. The biological systems were analyzed during the start-up phase with a hydraulic retention time (HRT) of 6 h, total biomass concentration of 2,500 mg L-1 in the steady state, and electric conductivities of 1.05 mS cm-1 for MBR and hybrid MBBR-MBR working under regular salinity and conductivity variations of 1.2-6.5 mS cm-1 for MBR and hybrid MBBR-MBR operating at variable salinity. The variable salinity affected the autotrophic biomass, which caused a reduction of the nitrogen degradation rate, an increase of time to remove ammonium from municipal wastewater and longer duration of the start-up phase for the MBR and hybrid MBBR-MBR.
Collapse
Affiliation(s)
- J C Leyva-Díaz
- Department of Civil Engineering, University of Granada, Granada 18071, Spain and Institute of Water Research, University of Granada, Granada, Spain E-mail:
| | - A Rodríguez-Sánchez
- Department of Civil Engineering, University of Granada, Granada 18071, Spain and Institute of Water Research, University of Granada, Granada, Spain E-mail:
| | - J González-López
- Department of Microbiology, University of Granada, Granada, Spain
| | - J M Poyatos
- Department of Civil Engineering, University of Granada, Granada 18071, Spain and Institute of Water Research, University of Granada, Granada, Spain E-mail:
| |
Collapse
|
39
|
Singh A, Kamble SJ, Sawant M, Chakravarthy Y, Kazmi A, Aymerich E, Starkl M, Ghangrekar M, Philip L. Technical, hygiene, economic, and life cycle assessment of full-scale moving bed biofilm reactors for wastewater treatment in India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:2552-2569. [PMID: 29127641 DOI: 10.1007/s11356-017-0605-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/24/2017] [Indexed: 02/05/2023]
Abstract
Moving bed biofilm reactor (MBBR) is a highly effective biological treatment process applied to treat both urban and industrial wastewaters in developing countries. The present study investigated the technical performance of ten full-scale MBBR systems located across India. The biochemical oxygen demand, chemical oxygen demand, total suspended solid, pathogens, and nutrient removal efficiencies were low as compared to the values claimed in literature. Plant 1 was considered for evaluation of environmental impacts using life cycle assessment approach. CML 2 baseline 2000 methodology was adopted, in which 11 impact categories were considered. The life cycle impact assessment results revealed that the main environmental hot spot of this system was energy consumption. Additionally, two scenarios were compared: scenario 1 (direct discharge of treated effluent, i.e., no reuse) and scenario 2 (effluent reuse and tap water replacement). The results showed that scenario 2 significantly reduce the environmental impact in all the categories ultimately decreasing the environmental burden. Moreover, significant economic and environmental benefits can be obtained in scenario 2 by replacing the freshwater demand for non-potable uses. To enhance the performance of wastewater treatment plant (WWTP), there is a need to optimize energy consumption and increase wastewater collection efficiency to maximize the operating capacity of plant and minimize overall environmental footprint. It was concluded that MBBR can be a good alternative for upgrading and optimizing existing municipal wastewater treatment plants with appropriate tertiary treatment. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Anju Singh
- Industrial Safety and Environmental Management, National Institute of Industrial Engineering (NITIE), Mumbai, India
| | - Sheetal Jaisingh Kamble
- Environmental Engineering and Management, National Institute of Industrial Engineering (NITIE), Mumbai, India.
| | - Megha Sawant
- Supporting Consolidation, Replication and Upscaling of Sustainable Wastewater Treatment and Reuse Technologies in India (SARASWATI), National Institute of Industrial Engineering (NITIE), Mumbai, India
| | - Yogita Chakravarthy
- Supporting Consolidation, Replication and Upscaling of Sustainable Wastewater Treatment and Reuse Technologies in India (SARASWATI), National Institute of Industrial Engineering (NITIE), Mumbai, India
| | - Absar Kazmi
- Department of Civil Engineering, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | | | - Markus Starkl
- Competence Centre for Decision Aid in Environmental Management, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Makarand Ghangrekar
- Department of Civil Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Ligy Philip
- Department of Civil Engineering, Indian Institute of Technology, Madras, Chennai, India
| |
Collapse
|
40
|
Mancini G, Panzica M, Fino D, Cappello S, Yakimov MM, Luciano A. Feasibility of treating emulsified oily and salty wastewaters through coagulation and bio-regenerated GAC filtration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 203:817-824. [PMID: 27449961 DOI: 10.1016/j.jenvman.2016.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 06/06/2023]
Abstract
In the present study, chemical oxygen demand (COD) removal by coagulation and packed-columns of both fresh and bioregenerated granular activated carbon (GAC) is reported as a feasible treatment for saline and oily wastewaters (slops) generated from marine oil tankers cleaning. The use of Ferric chloride (FeCl3), Aluminium sulphate (Al2(SO4)3) and Polyaluminum chloride (Al2(OH3)Cl3) was evaluated in the pre-treatment by coagulation of a real slop, after a de-oiling phase in a tank skimmer Comparison of coagulation process indicated that Polyaluminum chloride and Aluminium sulphate operate equally well (20-30% of COD removal) when applied at their optimal dose (40 and 90 mg/l respectively) but the latter should be preferred in order to significantly control the sludge production. The results from the column filtration tests indicated the feasibility of using the selected GAC (Filtrasorb 400 -Calgon Carbon Corporation) to achieve the respect of the discharge limits in the slops treatment with a carbon usage rate in the range 0.1-0.3 kg/m3 of treated effluent. Moreover, biological regeneration through Alcalinovorax borkumensis SK2 was proved to be a cost-effective procedure since the reuse of spent GAC through such regeneration process for further treatment could still achieve approximately 90% of the initial sorption capacity, reducing then costs for the use of new sorbents and also the need for waste disposal.
Collapse
Affiliation(s)
- Giuseppe Mancini
- Department of Industrial and Mechanical Engineering, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | - Michele Panzica
- Department of Industrial and Mechanical Engineering, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | - Debora Fino
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Simone Cappello
- Institute for Coastal Marine Environment (IAMC) - CNR U.O.S. of Messina, Spianata San Raineri 86, 98121 Messina, Italy.
| | - Michail M Yakimov
- Institute for Coastal Marine Environment (IAMC) - CNR U.O.S. of Messina, Spianata San Raineri 86, 98121 Messina, Italy.
| | - Antonella Luciano
- ENEA Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Via Anguillarese 301, Rome, Italy.
| |
Collapse
|
41
|
Mannina G, Capodici M, Cosenza A, Laudicina VA, Di Trapani D. The influence of solid retention time on IFAS-MBR systems: Assessment of nitrous oxide emission. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 203:391-399. [PMID: 28818711 DOI: 10.1016/j.jenvman.2017.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/21/2017] [Accepted: 08/05/2017] [Indexed: 06/07/2023]
Abstract
The aim of the present study was to investigate the nitrous oxide (N2O) emissions from a moving bed based Integrated Fixed Film Activated Sludge (IFAS) - membrane bioreactor (MBR) pilot plant, designed according to the University of Cape Town (UCT) layout. The experimental campaign had a duration of 110 days and was characterized by three different sludge retention time (SRT) values (∞, 30 d and 15 d). Results highlighted that N2O concentrations decreased when the biofilm concentrations increased within the aerobic reactor. Results have shown an increase of N2O with the decrease of SRT. Specifically, an increase of N2O-N emission factor occurred with the decrease of the SRT (0.13%, 0.21% and 0.76% of influent nitrogen for SRT = ∞, SRT = 30 d and SRT = 15 d, respectively). Moreover, the MBR tank resulted the key emission source (up to 70% of the total N2O emission during SRT = ∞ period) whereas the highest N2O production occurred in the anoxic reactor. Moreover, N2O concentrations measured in the permeate flow were not negligible, thus highlighting its potential detrimental contribution for the receiving water body. The role of each plant reactor as N2O-N producer/consumer varies with the SRT variation, indeed the aerobic reactor was a N2O consumer at SRT = ∞ and a producer at SRT = 30 d.
Collapse
Affiliation(s)
- Giorgio Mannina
- Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, Ed. 8, 90128, Palermo, Italy
| | - Marco Capodici
- Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, Ed. 8, 90128, Palermo, Italy
| | - Alida Cosenza
- Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, Ed. 8, 90128, Palermo, Italy.
| | - Vito Armando Laudicina
- Dipartimento di Scienze Agrarie e Forestali, Università di Palermo, Viale delle Scienze, Ed. 4, 90128, Palermo, Italy
| | - Daniele Di Trapani
- Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, Ed. 8, 90128, Palermo, Italy
| |
Collapse
|
42
|
Song W, You H, Li Z, Liu F, Qi P, Wang F, Li Y. Membrane fouling mitigation in a moving bed membrane bioreactor combined with anoxic biofilter for treatment of saline wastewater from mariculture. BIORESOURCE TECHNOLOGY 2017; 243:1051-1058. [PMID: 28764107 DOI: 10.1016/j.biortech.2017.07.092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/14/2017] [Accepted: 07/15/2017] [Indexed: 06/07/2023]
Abstract
Membrane fouling mitigation in a novel AF-MBMBR system (moving bed membrane bioreactor (10L) coupled with anoxic biofilter (4L)) under high salinity condition (35‰) was systematically investigated. Pre-positioned AF served as a pretreatment induced significant decrease of suspended biomass by 85% and dissolved organic matters by 51.7% in subsequent MBR, which resulted in a reduction of cake layer formation. Based on this, sponge bio-carriers in MBMBR further alleviated the fouling propensity by modifying extracellular polymeric substances (EPS) properties. The protein component in EPS decreased from 181.4 to 116.5mg/g MLSS, with a decline of protein/carbohydrate ratio from 4.6 to 3.4. In particular, elimination of hydrophobic groups like aromatic protein-like substance in EPS was detected. These caused the less biomass deposition on membrane surface, thereby alleviating membrane fouling. In summary, mitigation of membrane fouling in AF-MBMBR should be attributed to contributions from both pre-positioned AF and sponge bio-carriers.
Collapse
Affiliation(s)
- Weilong Song
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Hong You
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Zhipeng Li
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China.
| | - Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Peishi Qi
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Fang Wang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Yizhu Li
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| |
Collapse
|
43
|
Mannina G, Capodici M, Cosenza A, Di Trapani D, Olsson G. Greenhouse gas emissions and the links to plant performance in a fixed-film activated sludge membrane bioreactor - Pilot plant experimental evidence. BIORESOURCE TECHNOLOGY 2017; 241:1145-1151. [PMID: 28579177 DOI: 10.1016/j.biortech.2017.05.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/05/2017] [Accepted: 05/07/2017] [Indexed: 06/07/2023]
Abstract
The present study explores the interlinkages among the operational variables of a University of Cape Town (UCT) Integrated Fixed Film Activated Sludge (IFAS) membrane bioreactor (MBR) pilot plant. Specifically, dedicated experimental tests were carried out with the final aim to find-out a constitutive relationship among operational costs (OCs), effluent quality index (EQI), effluent fines (EF). Greenhouse gas (GHG) emissions were also included in the study. Results showed that the EQI increases at low flow rate likely due to the dissolved oxygen (DO) limitation in the biological processes. Direct GHGs increase with the increasing of the air flow due to the anoxic N2O contribution. Irreversible membrane fouling reduce from 98% to 85% at the air flow rate of 0.57m3h-1 and 2.56m3h-1, respectively. However, the increase of the air flow rate leads to the increase of the N2O-N flux emitted from the MBR (from 40% to 80%).
Collapse
Affiliation(s)
- Giorgio Mannina
- Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, Ed. 8, 90128 Palermo, Italy
| | - Marco Capodici
- Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, Ed. 8, 90128 Palermo, Italy
| | - Alida Cosenza
- Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, Ed. 8, 90128 Palermo, Italy
| | - Daniele Di Trapani
- Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, Ed. 8, 90128 Palermo, Italy.
| | - Gustaf Olsson
- Department of Industrial Electrical Engineering and Automation (IEA), Lund University, Box 118, SE-22100Ole Römers väg 1, Lund, Sweden
| |
Collapse
|
44
|
Moving bed membrane bioreactors for carbon and nutrient removal: The effect of C/N variation. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.05.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Characterization and Treatment Proposals of Shipboard Slop Wastewater Contaminated by Hydrocarbons. WATER 2017. [DOI: 10.3390/w9080581] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Shipboard slop wastewaters are produced by the activity of washing of oil tankers with seawater, and are characterized by high salinity and hydrocarbons. In this context, harbor authorities are forced to respect the international regulation IMO-MARPOL 73/78 and they must treat slop wastewater before discharging to the sea. This study compared data from three stand-alone treatments working with the same real slop wastewater: (1) a chemical treatment of coagulation-flocculation with aluminum sulphate as coagulant and an anionic flocculant (A57), (2) a physical treatment of adsorption on granular activated carbon (GAC), (3) two biological treatments represented by a membrane bioreactor (MBR) and a moving bed biofilm reactor (MB-MBR). GAC treatment registered the highest removal efficiency of total petroleum hydrocarbons (ηTPH) next to 85%, since the activated carbon had excellent adsorption properties towards organic substances. The coagulation-flocculation treatment reported the lowest ηTPH ≈ 57% due to the presence of emulsified hydrocarbons that were not affected by the coagulant and flocculant action, so remaining in liquid phase. ηTPH ≈ 70% obtained with MB-MBR fed with 100% volume of slop, suggested biomass acclimation to salinity and hydrocarbons. Based on the results of each process, three main treatment chains are proposed depending on the hydrocarbons load of the real slop wastewater.
Collapse
|
46
|
Mannina G, Capodici M, Cosenza A, Cinà P, Di Trapani D, Puglia AM, Ekama GA. Bacterial community structure and removal performances in IFAS-MBRs: A pilot plant case study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 198:122-131. [PMID: 28456028 DOI: 10.1016/j.jenvman.2017.04.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/21/2017] [Accepted: 04/09/2017] [Indexed: 06/07/2023]
Abstract
The paper reports the results of an experimental campaign carried out on a University of Cape Town (UCT) integrated fixed-film activated sludge (IFAS) membrane bioreactor (MBR) pilot plant. The pilot plant was analysed in terms of chemical oxygen demand (COD) and nutrients removal, kinetic/stoichiometric parameters, membrane fouling and sludge dewaterability. Moreover, the cultivable bacterial community structure was also analysed. The pilot plant showed excellent COD removal efficiency throughout experiments, with average value higher than 98%, despite the slight variations of the influent wastewater. The achieved nitrification efficiency was close to 98% for most of the experiments, suggesting that the biofilm in the aerobic compartment might have sustained the complete nitrification of the influent ammonia, even for concentrations higher than 100 mg L-1. The irreversible resistance due to superficial cake deposition was the mechanism that mostly affected the membrane fouling. Moreover, it was noticed an increase of the resistance due pore blocking likely due to the increase of the EPSBound fraction that could derive by biofilm detachment. The bacterial strains isolated from aerobic tank are wastewater bacteria known for exhibiting efficient heterotrophic nitrification-aerobic denitrification and producing biofilm.
Collapse
Affiliation(s)
- Giorgio Mannina
- Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, Ed. 8, 90100, Palermo, Italy
| | - Marco Capodici
- Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, Ed. 8, 90100, Palermo, Italy
| | - Alida Cosenza
- Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, Ed. 8, 90100, Palermo, Italy
| | - Paolo Cinà
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, Ed. 16, 90100, Palermo, Italy
| | - Daniele Di Trapani
- Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, Ed. 8, 90100, Palermo, Italy.
| | - Anna Maria Puglia
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, Ed. 16, 90100, Palermo, Italy
| | - George A Ekama
- Water Research Group, Department of Civil Engineering, University of Cape Town, Rondebosch, 7700, Cape, South Africa
| |
Collapse
|
47
|
Rodriguez-Sanchez A, Leyva-Diaz JC, Gonzalez-Martinez A, Poyatos JM. Linkage of microbial kinetics and bacterial community structure of MBR and hybrid MBBR-MBR systems to treat salinity-amended urban wastewater. Biotechnol Prog 2017; 33:1483-1495. [DOI: 10.1002/btpr.2513] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 06/04/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Alejandro Rodriguez-Sanchez
- Institute of Water Research; University of Granada; Granada 18071 Spain
- Department of Civil Engineering, School of Civil Engineering; University of Granada; Granada 18071 Spain
| | - Juan Carlos Leyva-Diaz
- Institute of Water Research; University of Granada; Granada 18071 Spain
- Department of Civil Engineering, School of Civil Engineering; University of Granada; Granada 18071 Spain
| | | | - Jose Manuel Poyatos
- Institute of Water Research; University of Granada; Granada 18071 Spain
- Department of Civil Engineering, School of Civil Engineering; University of Granada; Granada 18071 Spain
| |
Collapse
|
48
|
Abstract
The aim of the present work was to investigate the behavior of a membrane bioreactor (MBR) system for the treatment of oily wastewater. A bench scale MBR was fed with synthetic wastewater containing diesel fuel. Organic carbon, hydrocarbon and ammonium removal, kinetic constants, extracellular polymeric substances production, and membrane fouling rates were monitored. The MBR plant was operated for more than 200 days, and the results highlighted good carbon removal and nitrification, suggesting a sort of biomass adaptation to hydrocarbons. Membrane fouling analysis showed an increase in total resistance, likely due to hydrocarbons, which caused an irreversible fouling (pore blocking) mainly due to oil deposition.
Collapse
|
49
|
An Electro Moving Bed Membrane Bioreactor (eMB-MBR) as a Novel Technology for Wastewater Treatment and Reuse. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-3-319-58421-8_24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
50
|
Rodríguez-Sánchez A, Leyva-Díaz JC, Poyatos JM, González-López J. Performance and kinetics of membrane and hybrid moving bed biofilm-membrane bioreactors treating salinity wastewater. AIChE J 2017. [DOI: 10.1002/aic.15694] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alejandro Rodríguez-Sánchez
- Institute of Water Research; University of Granada; Granada 18071 Spain
- Dept. of Civil Engineering; University of Granada; Campus de Fuentenueva Granada 18071 Spain
| | - Juan Carlos Leyva-Díaz
- Institute of Water Research; University of Granada; Granada 18071 Spain
- Dept. of Civil Engineering; University of Granada; Campus de Fuentenueva Granada 18071 Spain
| | - José Manuel Poyatos
- Institute of Water Research; University of Granada; Granada 18071 Spain
- Dept. of Civil Engineering; University of Granada; Campus de Fuentenueva Granada 18071 Spain
| | | |
Collapse
|