1
|
Ahmad AF, Zulkurnain N, Rosid SJM, Azid A, Endut A, Toemen S, Ismail S, Abdullah WNW, Aziz SM, Yusoff NM, Rosid SM, Nasir NA. Catalytic Transesterification of Coconut Oil in Biodiesel Production: A Review. CATALYSIS SURVEYS FROM ASIA 2022. [DOI: 10.1007/s10563-022-09358-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
2
|
Wang X, Lyu T, Dong R, Wu S. Revealing the link between evolution of electron transfer capacity of humic acid and key enzyme activities during anaerobic digestion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113914. [PMID: 34628280 DOI: 10.1016/j.jenvman.2021.113914] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/19/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Humic acid (HA) is an important active compound formed during anaerobic digestion process, with a complex structure and dynamic electron transfer capacity (ETC). However, the mechanisms by which these macromolecular organic compounds dynamically interact with the microbial anaerobic digestion process at different operating temperatures are still unclear. In this study, the link between the evolution of the ETC of HAs and the microbial community under mesophilic and thermophilic conditions was investigated. The results showed an increasing trend in the ETC of HAs in both mesophilic (671-1479 μmol gHA-1) and thermophilic (774-1506 μmol gHA-1) anaerobic digestion (AD) until day 25. The ETC was positively correlated with the bacterial community of hydrolytic and acidogenic phases, but negatively correlated with the archaeal community of the methanogenic phase. Furthermore, the relationship between ETC and key enzyme activity was explored using a co-occurrence network analysis. HAs revealed a high potential to promote key enzyme activities during hydrolysis (amylase and protease) and acidification (acetate kinase, butyrate kinase, and phosphotransacetylase) while inhibiting the key enzyme activity in the methanogenic phase during the anaerobic digestion process. Moreover, HAs formed under thermophilic conditions had a greater influence on key enzyme activities than those formed under mesophilic conditions. This study advances our understanding of the mechanisms underlying the influence of HAs on anaerobic digestion performance.
Collapse
Affiliation(s)
- Xiqing Wang
- Key Laboratory of Clean Utilization Technology for Renewable Energy, Ministry of Agriculture, College of Engineering, China Agricultural University, 100083, Beijing, PR China
| | - Tao Lyu
- Cranfield Water Science Institute, Cranfield University, College Road, Cranfield, Bedfordshire, MK43 0AL, UK
| | - Renjie Dong
- Key Laboratory of Clean Utilization Technology for Renewable Energy, Ministry of Agriculture, College of Engineering, China Agricultural University, 100083, Beijing, PR China
| | - Shubiao Wu
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830, Tjele, Denmark.
| |
Collapse
|
3
|
Comparison of Ex-Situ and In-Situ Transesterification for the Production of Microbial Biodiesel. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2021. [DOI: 10.9767/bcrec.16.4.11044.733-743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Microbial biodiesel is converted from microbial lipids via transesterification process. Most microbial biodiesel studies are focusing on the use of microalgal lipids as feedstock. Apart from using microalgae for lipid biosynthesis, lipids can also be extracted from other oleaginous microorganisms like fungi and yeast. However, there are gaps in the studies of lipid production from filamentous fungi, especially in-situ transesterification process. The aim of this project is to compare in-situ with the ex-situ transesterification of fungal biomass from Aspergillus oryzae. In ex-situ transesterification, two methods of lipid extraction, the Soxhlet extraction and the Bligh and Dyer extraction, were performed. For in-situ transesterification, two methods using different catalysts were investigated. Base-catalyzed in-situ transesterification of fungal biomass resulted on the highest Fatty Acid Methyl Esters (FAME) yield. The base-catalyzed in-situ transesterification was further optimized via Central Composite Design (CCD) of Response Surface Methodology (RSM). The parameters investigated were the catalyst loading, methanol to biomass ratio and reaction time. The optimization showed that the highest FAME yield was at 25.1% (w/w) with 10 minutes reaction time, 5% catalyst and 360:1 of the ratio of the methanol to biomass. Based on Analysis of Variance (ANOVA), the model was found to be significant according to the value of “Prob >F” of 0.0028. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
4
|
Chen SJ, Kuan IC, Tu YF, Lee SL, Yu CY. Surfactant-assisted in situ transesterification of wet Rhodotorula glutinis biomass. J Biosci Bioeng 2020; 130:397-401. [PMID: 32586661 DOI: 10.1016/j.jbiosc.2020.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/12/2020] [Accepted: 05/24/2020] [Indexed: 10/24/2022]
Abstract
In situ transesterification of oleaginous microbes with short chain alcohol has been developed as a renewable process for the production of biodiesel. Dry biomass is often a requisite for the process to avoid the adverse effect of water on the productivity. As a consequence, large amount of energy consumption is required for prior biomass drying. In this study, the wet biomass of Rhodotorula glutinis, an oleaginous yeast, was used directly in in situ transesterification without biomass drying. The reaction conditions were optimized for the production of fatty acid methyl esters (FAME) and the effects of adding different surfactants were also studied. The highest FAME yield of 110% was achieved with a methanol loading of 1:100 at 90°C for 8 h as catalyzed by 0.36 M H2SO4, and the FAME content was 97%, which meets the 96.5% specified in both European biodiesel standards and Taiwanese biodiesel standards. The addition of 50 mM 3-(N,N-dimethylmyristylammonio)propanesulfonate (3-DMAPS, a zwitterionic surfactant) improved the FAME yield from 69% to 83%, which was obtained with a low methanol loading of 1:10 at 90°C for 10 h. Hence, the production of FAME with wet biomass under optimized reaction conditions was as effective as that with the dry form. This clearly indicates that using wet R. glutinis as the feedstock is feasible for the production of biodiesel by in situ transesterification.
Collapse
Affiliation(s)
- Shih-Jie Chen
- Department of Chemical Engineering and Biotechnology, Tatung University, 40 Chungshan N. Rd. Sec. 3, Taipei 10452, Taiwan
| | - I-Ching Kuan
- Department of Chemical Engineering and Biotechnology, Tatung University, 40 Chungshan N. Rd. Sec. 3, Taipei 10452, Taiwan
| | - Yu-Feng Tu
- Department of Chemical Engineering and Biotechnology, Tatung University, 40 Chungshan N. Rd. Sec. 3, Taipei 10452, Taiwan
| | - Shiow-Ling Lee
- Department of Chemical Engineering and Biotechnology, Tatung University, 40 Chungshan N. Rd. Sec. 3, Taipei 10452, Taiwan
| | - Chi-Yang Yu
- Department of Chemical Engineering and Biotechnology, Tatung University, 40 Chungshan N. Rd. Sec. 3, Taipei 10452, Taiwan.
| |
Collapse
|
5
|
Abstract
An attractive alternative to the use of fossil fuels is biodiesel, which can be obtained from a variety of feedstock through different transesterification systems such as ultrasound, microwave, biological, chemical, among others. The efficient and cost-effective biodiesel production depends on several parameters such as free fatty acid content in the feedstock, transesterification reaction efficiency, alcohol:oil ratio, catalysts type, and several parameters during the production process. However, biodiesel production from vegetable oils is under development, causing the final price of biodiesel to be higher than diesel derived from petroleum. An alternative to decrease the production costs will be the use of economical feedstocks and simple production processes. Castor oil is an excellent raw material in terms of price and quality, but especially this non-edible vegetable oil does not have any issues or compromise food security. Recently, the use of castor oil has attracted attention for producing and optimizing biodiesel production, due to high content of ricinoleic fatty acid and the possibility to esterify with only methanol, which assures low production costs. Additionally, biodiesel from castor oil has different advantages over conventional diesel. Some of them are biodegradable, non-toxic, renewable, they can be used alone, low greenhouse gas emission, among others. This review discusses and analyzes different transesterification processes, technologies, as well as different technical aspects during biodiesel production using castor oil as a feedstock.
Collapse
|
6
|
Application of Simultaneous Oil Extraction and Transesterification in Biodiesel Fuel Synthesis: A Review. ENERGIES 2020. [DOI: 10.3390/en13092204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Increasing concentrations of greenhouse gases in the atmosphere are leading to increased production and use of biofuels. The industrial development of biodiesel production and the use of biodiesel in the EU transport sector have been ongoing for almost two decades. Compared to mineral diesel production, the process of producing biodiesel is quite complex and expensive, and the search for new raw materials and advanced technologies is needed to maintain production value and expand the industrial production of biodiesel. The purpose of this article is to review the application possibilities of one of the new technologies—simultaneous extraction of oil from oily feedstock and transesterification (in situ)—and to evaluate the effectiveness of the abovementioned process under various conditions.
Collapse
|
7
|
Sitepu EK, Jones DB, Zhang Z, Tang Y, Leterme SC, Heimann K, Raston CL, Zhang W. Turbo thin film continuous flow production of biodiesel from fungal biomass. BIORESOURCE TECHNOLOGY 2019; 273:431-438. [PMID: 30466021 DOI: 10.1016/j.biortech.2018.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/03/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
Direct biodiesel production from wet fungal biomass may significantly reduce production costs, but there is a lack of fast and cost-effective processing technology. A novel thin film continuous flow process has been applied to study the effects of its operational parameters on fatty acid (FA) extraction and FA to fatty acid methyl ester (FAME) conversion efficiencies. Single factor experiments evaluated the effects of catalyst concentration and water content of biomass, while factorial experimental designs determined the interactions between catalyst concentration and biomass to methanol ratio, flow rate, and rotational speed. Direct transesterification (DT) of wet Mucor plumbeus biomass at ambient temperature and pressure achieved a FA to FAME conversion efficiency of >90% using 3 wt/v % NaOH concentration, if the water content was ≤50% (w/w). In comparison to existing DT methods, this continuous flow processing technology has an estimated 90-94% reduction in energy consumption, showing promise for up-scaling.
Collapse
Affiliation(s)
- Eko K Sitepu
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, South Australia 5042, Australia; Medical Biotechnology, College of Medicine and Public Health, Flinders University, South Australia 5042, Australia
| | - Darryl B Jones
- Flinders Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, South Australia 5042, Australia; College of Science and Engineering, Flinders University, South Australia 5042, Australia
| | - Zhanying Zhang
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Queensland 4001, Australia
| | - Youhong Tang
- Flinders Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, South Australia 5042, Australia; College of Science and Engineering, Flinders University, South Australia 5042, Australia
| | - Sophie C Leterme
- Flinders Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, South Australia 5042, Australia; College of Science and Engineering, Flinders University, South Australia 5042, Australia
| | - Kirsten Heimann
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, South Australia 5042, Australia; Medical Biotechnology, College of Medicine and Public Health, Flinders University, South Australia 5042, Australia
| | - Colin L Raston
- Flinders Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, South Australia 5042, Australia; College of Science and Engineering, Flinders University, South Australia 5042, Australia
| | - Wei Zhang
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, South Australia 5042, Australia; Medical Biotechnology, College of Medicine and Public Health, Flinders University, South Australia 5042, Australia.
| |
Collapse
|
8
|
Ma Y, Gao Z, Wang Q, Liu Y. Biodiesels from microbial oils: Opportunity and challenges. BIORESOURCE TECHNOLOGY 2018; 263:631-641. [PMID: 29759818 DOI: 10.1016/j.biortech.2018.05.028] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/06/2018] [Accepted: 05/07/2018] [Indexed: 05/26/2023]
Abstract
Although biodiesel has been extensively explored as an important renewable energy source, the raw materials-associated cost poses a serious challenge on its large-scale commercial production. The first and second generations of biodiesel are mainly produced from usable raw materials, e.g. edible oils, crops etc. Such a situation inevitably imposes higher demands on land and water usage, which in turn compromise future food and water supply. Obviously, there is an urgent need to explore alternative feedstock, e.g. microbial oils which can be produced by many types of microorganisms including microalgae, fungi and bacteria with the advantages of small footprint, high lipid content and efficient uptake of carbon dioxide. Therefore, this review offers a comprehensive picture of microbial oil-based technology for biodiesel production. The perspectives and directions forward are also outlined for future biodiesel production and commercialization.
Collapse
Affiliation(s)
- Yingqun Ma
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Zhen Gao
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; Department of Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Qunhui Wang
- Department of Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Yu Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
9
|
Microbial Biodiesel Production by Direct Transesterification of Rhodotorula glutinis Biomass. ENERGIES 2018. [DOI: 10.3390/en11051036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Chen J, Li J, Zhang X, Tyagi RD, Dong W. Ultra-sonication application in biodiesel production from heterotrophic oleaginous microorganisms. Crit Rev Biotechnol 2018; 38:902-917. [DOI: 10.1080/07388551.2017.1418733] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jiaxin Chen
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, P.R. China
- Eau, Terre et Environnement, INRS, Québec, Canada
| | - Ji Li
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, P.R. China
| | - Xiaolei Zhang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, P.R. China
| | | | - Wenyi Dong
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, P.R. China
| |
Collapse
|
11
|
Recovery of yeast lipids using different cell disruption techniques and supercritical CO 2 extraction. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.06.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Yellapu SK, Kaur R, Tyagi RD. Detergent assisted ultrasonication aided in situ transesterification for biodiesel production from oleaginous yeast wet biomass. BIORESOURCE TECHNOLOGY 2017; 224:365-372. [PMID: 27866805 DOI: 10.1016/j.biortech.2016.11.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/31/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
In situ transesterification of oleaginous yeast wet biomass for fatty acid methyl esters (FAMEs) production using acid catalyst, methanol with or without N-Lauroyl sarcosine (N-LS) treatment was performed. The maximum FAMEs yield obtained with or without N-LS treatment in 24h reaction time was 96.1±1.9 and 71±1.4% w/w, respectively. The N-LS treatment of biomass followed by with or without ultrasonication revealed maximum FAMEs yield of 94.3±1.9% and 82.9±1.8% w/w using methanol to lipid molar ratio 360:1 and catalyst concentration 360mM (64μL H2SO4/g lipid) within 5 and 25min reaction time, respectively. The FAMEs composition obtained in in situ transesterification was similar to that obtained with conventional two step lipid extraction and transesterification process. Biodiesel fuel properties (density, kinematic viscosity, cetane number and total glycerol) were in accordance with international standard (ASTM D6751), which suggests the suitability of biodiesel as a fuel.
Collapse
Affiliation(s)
- Sravan Kumar Yellapu
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - Rajwinder Kaur
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - Rajeshwar D Tyagi
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada.
| |
Collapse
|
13
|
Lee J, Tsang YF, Jung JM, Oh JI, Kim HW, Kwon EE. In-situ pyrogenic production of biodiesel from swine fat. BIORESOURCE TECHNOLOGY 2016; 220:442-447. [PMID: 27611027 DOI: 10.1016/j.biortech.2016.08.100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 08/27/2016] [Accepted: 08/29/2016] [Indexed: 06/06/2023]
Abstract
In-situ production of fatty acid methyl esters from swine fat via thermally induced pseudo-catalytic transesterification on silica was investigated in this study. Instead of methanol, dimethyl carbonate (DMC) was used as acyl acceptor to achieve environmental benefits and economic viability. Thermo-gravimetric analysis of swine fat reveals that swine fat contains 19.57wt.% of water and impurities. Moreover, the fatty acid profiles obtained under various conditions (extracted swine oil+methanol+NaOH, extracted swine oil+DMC+pseudo-catalytic, and swine fat+DMC+pseudo-catalytic) were compared. These profiles were identical, showing that the introduced in-situ transesterification is technically feasible. This also suggests that in-situ pseudo-catalytic transesterification has a high tolerance against impurities. This study also shows that FAME yield via in-situ pseudo-catalytic transesterification of swine fat reached up to 97.2% at 380°C. Therefore, in-situ pseudo-catalytic transesterification can be applicable to biodiesel production of other oil-bearing biomass feedstocks.
Collapse
Affiliation(s)
- Jechan Lee
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong
| | - Jong-Min Jung
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Jeong-Ik Oh
- Environmental Energy Division, Land & Housing Institute, Daejeon 34047, Republic of Korea
| | - Hyung-Wook Kim
- College of Life Sciences, Sejong University, Seoul 05006, Republic of Korea
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea.
| |
Collapse
|
14
|
Naveena B, Armshaw P, Tony Pembroke J. Ultrasonic intensification as a tool for enhanced microbial biofuel yields. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:140. [PMID: 26379772 PMCID: PMC4570611 DOI: 10.1186/s13068-015-0321-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/19/2015] [Indexed: 05/09/2023]
Abstract
Ultrasonication has recently received attention as a novel bioprocessing tool for process intensification in many areas of downstream processing. Ultrasonic intensification (periodic ultrasonic treatment during the fermentation process) can result in a more effective homogenization of biomass and faster energy and mass transfer to biomass over short time periods which can result in enhanced microbial growth. Ultrasonic intensification can allow the rapid selective extraction of specific biomass components and can enhance product yields which can be of economic benefit. This review focuses on the role of ultrasonication in the extraction and yield enhancement of compounds from various microbial sources, specifically algal and cyanobacterial biomass with a focus on the production of biofuels. The operating principles associated with the process of ultrasonication and the influence of various operating conditions including ultrasonic frequency, power intensity, ultrasonic duration, reactor designs and kinetics applied for ultrasonic intensification are also described.
Collapse
Affiliation(s)
- Balakrishnan Naveena
- Molecular Biochemistry Laboratory, Materials and Surface Science Institute, Department of Chemical and Environmental Sciences, University of Limerick, Limerick, Ireland
| | - Patricia Armshaw
- Molecular Biochemistry Laboratory, Materials and Surface Science Institute, Department of Chemical and Environmental Sciences, University of Limerick, Limerick, Ireland
| | - J. Tony Pembroke
- Molecular Biochemistry Laboratory, Materials and Surface Science Institute, Department of Chemical and Environmental Sciences, University of Limerick, Limerick, Ireland
| |
Collapse
|
15
|
Jin M, Slininger PJ, Dien BS, Waghmode S, Moser BR, Orjuela A, Sousa LDC, Balan V. Microbial lipid-based lignocellulosic biorefinery: feasibility and challenges. Trends Biotechnol 2014; 33:43-54. [PMID: 25483049 DOI: 10.1016/j.tibtech.2014.11.005] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 10/29/2014] [Accepted: 11/10/2014] [Indexed: 10/24/2022]
Abstract
Although single-cell oil (SCO) has been studied for decades, lipid production from lignocellulosic biomass has received substantial attention only in recent years as biofuel research moves toward producing drop-in fuels. This review gives an overview of the feasibility and challenges that exist in realizing microbial lipid production from lignocellulosic biomass in a biorefinery. The aspects covered here include biorefinery technologies, the microbial oil market, oleaginous microbes, lipid accumulation metabolism, strain development, process configurations, lignocellulosic lipid production, technical hurdles, lipid recovery, and technoeconomics. The lignocellulosic SCO-based biorefinery will be feasible only if a combination of low- and high-value lipids are coproduced, while lignin and protein are upgraded to high-value products.
Collapse
Affiliation(s)
- Mingjie Jin
- Biomass Conversion Research Laboratory (BCRL), Department of Chemical Engineering and Materials Science, Michigan State University, MBI Building, 3815 Technology Boulevard, Lansing, MI 48910, USA.
| | - Patricia J Slininger
- National Center for Agricultural Utilization Research, USDA-ARS, 1815 North University Street, Peoria, IL 61604, USA
| | - Bruce S Dien
- National Center for Agricultural Utilization Research, USDA-ARS, 1815 North University Street, Peoria, IL 61604, USA
| | - Suresh Waghmode
- Biomass Conversion Research Laboratory (BCRL), Department of Chemical Engineering and Materials Science, Michigan State University, MBI Building, 3815 Technology Boulevard, Lansing, MI 48910, USA
| | - Bryan R Moser
- National Center for Agricultural Utilization Research, USDA-ARS, 1815 North University Street, Peoria, IL 61604, USA
| | - Andrea Orjuela
- Biomass Conversion Research Laboratory (BCRL), Department of Chemical Engineering and Materials Science, Michigan State University, MBI Building, 3815 Technology Boulevard, Lansing, MI 48910, USA
| | - Leonardo da Costa Sousa
- Biomass Conversion Research Laboratory (BCRL), Department of Chemical Engineering and Materials Science, Michigan State University, MBI Building, 3815 Technology Boulevard, Lansing, MI 48910, USA
| | - Venkatesh Balan
- Biomass Conversion Research Laboratory (BCRL), Department of Chemical Engineering and Materials Science, Michigan State University, MBI Building, 3815 Technology Boulevard, Lansing, MI 48910, USA.
| |
Collapse
|