1
|
Mohanta A, Prasad N, Khadim SR, Singh P, Singh S, Singh A, Kayastha AM, Asthana RK. Optimizing light regimes for neutral lipid accumulation in Dunaliella salina MCC 43: a study on physiological status and carbon allocation. World J Microbiol Biotechnol 2024; 40:82. [PMID: 38285311 DOI: 10.1007/s11274-024-03893-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/10/2024] [Indexed: 01/30/2024]
Abstract
Dunaliella salina is a favourable source of high lipid feedstock for biofuel and medicinal chemicals. Low biomass output from microalgae is a significant barrier to industrial-scale commercialisation. The current study aimed to determine how photosynthetic efficiency, carbon fixation, macromolecular synthesis, accumulation of neutral lipids, and antioxidative defence (ROS scavenging enzyme activities) of D. salina cells were affected by different light intensities (LI) (50, 100, 200, and 400 µmol m-2 s-1). The cells when exposed to strong light (400 µmol m-2 s-1) led to reduction in chlorophyll a but the carotenoid content increased by 19% in comparison to the control (LI 100). The amount of carbohydrate changed significantly under high light and in spite of stress inflicted on the cells by high irradiation, a considerable increase in activity of carbonic anhydrase and fixation rate of CO2 were recorded, thus, preserving the biomass content. The high light exposed biomass when subjected to nitrogen-deficient medium led to increase in lipid content (59.92% of the dry cell weight). However, neutral lipid made up 78.26% of the total lipid while other lipids like phospholipid and glycolipid content decreased, showing that the lipid was redistributed in these cells under nitrogen deprivation, making the organism more appropriate for biodiesel/jet fuel use. Although D. salina cells had a relatively longer generation time (3.5 d) than other microalgal cells, an economic analysis concluded that the amount of carotenoid they produced and the quality of their lipids made them more suited for commercialization.
Collapse
Affiliation(s)
- Abhishek Mohanta
- R. N. Singh Memorial Laboratory, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Nitesh Prasad
- R. N. Singh Memorial Laboratory, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Sk Riyazat Khadim
- P.G. Department of Botany, Dhenkanal Autonomous College, Dhenkanal, Odisha, India
| | - Prabhakar Singh
- Biochemistry Department, North-Eastern Hill University, Shillong, Meghalaya, 793022, India
| | - Savita Singh
- R. N. Singh Memorial Laboratory, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Avinash Singh
- R. N. Singh Memorial Laboratory, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, 221005, India
| | - A M Kayastha
- School of Biotechnology, Banaras Hindu University, Varanasi, 221005, India
| | - R K Asthana
- R. N. Singh Memorial Laboratory, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
Dai JL, He YJ, Chen HH, Jiang JG. Dual Roles of Two Malic Enzymes in Lipid Biosynthesis and Salt Stress Response in Dunaliella salina. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37906521 DOI: 10.1021/acs.jafc.3c04810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Triacylglycerols (TAG) from microalgae can be used as feedstocks for biofuel production to address fuel shortages. Most of the current research has focused on the enzymes involved in TAG biosynthesis. In this study, the effects of malic enzyme (ME), which provides precursor and reducing power for TAG biosynthesis, on biomass and lipid accumulation and its response to salt stress in Dunaliella salina were investigated. The overexpression of DsME1 and DsME2 improved the lipid production, which reached 0.243 and 0.253 g/L and were 30.5 and 36.3% higher than wild type, respectively. The transcript levels of DsME1 and DsME2 increased with increasing salt concentration (0, 1, 2, 3, and 4.5 mol/L NaCl), indicating that DsMEs participated in the salt stress response in D. salina. It was found that cis-acting elements associated with the salt stress response were present on the promoters of two DsMEs. The deletion of the MYB binding site (MBS) on the DsME2 promoter confirmed that MBS drives the expression of DsME2 to participate in osmotic regulation in D. salina. In conclusion, MEs are the critical enzymes that play pivotal roles in lipid accumulation and osmotic regulation.
Collapse
Affiliation(s)
- Jv-Liang Dai
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yu-Jing He
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hao-Hong Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jian-Guo Jiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
3
|
Yang H, Zhang J, Li H. Strategies of NaCl Tolerance in Saline-Alkali-Tolerant Green Microalga Monoraphidium dybowskii LB50. PLANTS (BASEL, SWITZERLAND) 2023; 12:3495. [PMID: 37836235 PMCID: PMC10575140 DOI: 10.3390/plants12193495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/25/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023]
Abstract
Studying how freshwater cells modify metabolism and membrane lipids in response to salt stress is important for understanding how freshwater organisms adapt to salt stress and investigating new osmoregulatory ways. Physiological, biochemical, metabolic, and proteomic analyses were applied in a novel saline-alkali-tolerant microalga Monoraphidium dybowskii LB50 under different NaCl concentrations. Cells adopt a variety of strategies to adapt to salt stress, including increasing ion transport and osmolytes, regulating cell cycle and life history, and accumulating triacylglycerol (TAG). A large number of metabolic activities point to TAG accumulation. With increasing NaCl concentration, the C resource for TAG accumulation went from photosynthetically fixed C and a small amount of lipid remodeling to macromolecule degradation and a mass of lipid remodeling, respectively. The energy for TAG accumulation went from linear electron transfer and oxidative phosphate pentose pathway to cyclic electron flow, substrate phosphorylation, oxidation phosphorylation, and FA oxidation. Additionally, digalacturonic acid and amino acids of the N-acetyl group, which usually were the osmotica for marine organisms, were important for M. dybowskii LB50. Freshwater organisms evolved many biological ways to adapt to salt stress. This insight enriches our understanding of the adaptation mechanisms underlying abiotic stress.
Collapse
Affiliation(s)
- Haijian Yang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
| | - Jing Zhang
- Analysis and Testing Center of Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Hua Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
| |
Collapse
|
4
|
Kumar L, Mohan L, Anand R, Joshi V, Chugh M, Bharadvaja N. A review on unit operations, challenges, opportunities, and strategies to improve algal based biodiesel and biorefinery. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.998289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Globally, the demand for energy is increasing with an emphasis on green fuels for a sustainable future. As the urge for alternative fuels is accelerating, microalgae have emerged as a promising source that can not only produce high lipid but many other platform chemicals. Moreover, it is a better alternative in comparison to conventional feedstock due to yearlong easy and mass cultivation, carbon fixation, and value-added products extraction. To date, numerous studies have been done to elucidate these organisms for large-scale fuel production. However, enhancing the lipid synthesis rate and reducing the production cost still remain a major bottleneck for its economic viability. Therefore, this study compiles information on algae-based biodiesel production with an emphasis on its unit operations from strain selection to biofuel production. Additionally, strategies to enhance lipid accumulation by incorporating genetic, and metabolic engineering and the use of leftover biomass for harnessing bio-products have been discussed. Besides, implementing a biorefinery for extracting oil followed by utilizing leftover biomass to generate value-added products such as nanoparticles, biofertilizers, biochar, and biopharmaceuticals has also been discussed.
Collapse
|
5
|
Chaturvedi S, Sadaf A, Bhattacharya A, Rout PK, Nain L, Khare SK. Environment‐Friendly Synergistic Abiotic Stress for Enhancing the Yield of Lipids from Oleaginous Yeasts. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202000376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Shivani Chaturvedi
- Enzyme and Microbial Biochemistry Laboratory Department of Chemistry Indian Institute of Technology New Delhi 110016 India
| | - Ayesha Sadaf
- Enzyme and Microbial Biochemistry Laboratory Department of Chemistry Indian Institute of Technology New Delhi 110016 India
| | - Amrik Bhattacharya
- Enzyme and Microbial Biochemistry Laboratory Department of Chemistry Indian Institute of Technology New Delhi 110016 India
| | - Prasant Kumar Rout
- Phytochemistry Division CSIR‐Central Institute of medicinal and Aromatic Plants Lucknow Uttar Pradesh 226015 India
| | - Lata Nain
- Division of Microbiology ICAR‐Indian Agricultural Research Institute New Delhi 110014 India
| | - Sunil Kumar Khare
- Enzyme and Microbial Biochemistry Laboratory Department of Chemistry Indian Institute of Technology New Delhi 110016 India
| |
Collapse
|
6
|
Su H, Feng J, Lv J, Liu Q, Nan F, Liu X, Xie S. Molecular Mechanism of Lipid Accumulation and Metabolism of Oleaginous Chlorococcum sphacosum GD from Soil under Salt Stress. Int J Mol Sci 2021; 22:ijms22031304. [PMID: 33525606 PMCID: PMC7865546 DOI: 10.3390/ijms22031304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 01/05/2023] Open
Abstract
The oleaginous microalgae species Chlorococcum sphacosum GD is a promising feedstock for biodiesel production from soil. However, its metabolic mechanism of lipid production remains unclear. In this study, the lipid accumulation and metabolism mechanisms of Chlorococcum sphacosum GD were analyzed under salt stress based on transcriptome sequencing. The biomass and lipid content of the alga strain were determined under different NaCl concentrations, and total RNA from fresh cells were isolated and sequenced by HiSeq 2000 high throughput sequencing technology. As the salt concentration increased in culture medium, the algal lipid content increased but the biomass decreased. Following transcriptome sequencing by assembly and splicing, 24,128 unigenes were annotated, with read lengths mostly distributed in the 200-300 bp interval. Statistically significant differentially expressed unigenes were observed in different experimental groups, with 2051 up-regulated genes and 1835 down-regulated genes. The lipid metabolism pathway analysis showed that, under salt stress, gene-related fatty acid biosynthesis (ACCase, KASII, KAR, HAD, FATA) was significantly up-regulated, but some gene-related fatty acid degradation was significantly down-regulated. The comprehensive results showed that salt concentration can affect the lipid accumulation and metabolism of C. sphacosum GD, and the lipid accumulation is closely related to the fatty acid synthesis pathway.
Collapse
|
7
|
Improving ‘Lipid Productivity’ in Microalgae by Bilateral Enhancement of Biomass and Lipid Contents: A Review. SUSTAINABILITY 2020. [DOI: 10.3390/su12219083] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Microalgae have received widespread interest owing to their potential in biofuel production. However, economical microalgal biomass production is conditioned by enhancing the lipid accumulation without decreasing growth rate or by increasing both simultaneously. While extensive investigation has been performed on promoting the economic feasibility of microalgal-based biofuel production that aims to increase the productivity of microalgae species, only a handful of them deal with increasing lipid productivity (based on lipid contents and growth rate) in the feedstock production process. The purpose of this review is to provide an overview of the recent advances and novel approaches in promoting lipid productivity (depends on biomass and lipid contents) in feedstock production from strain selection to after-harvesting stages. The current study comprises two parts. In the first part, bilateral improving biomass/lipid production will be investigated in upstream measures, including strain selection, genetic engineering, and cultivation stages. In the second part, the enhancement of lipid productivity will be discussed in the downstream measure included in the harvesting and after-harvesting stages. An integrated approach involving the strategies for increasing lipid productivity in up- and down-stream measures can be a breakthrough approach that would promote the commercialization of market-driven microalgae-derived biofuel production.
Collapse
|
8
|
Yang H, Hu C. Regulation and remodeling of intermediate metabolite and membrane lipid during NaCl-induced stress in freshwater microalga Micractinium sp. XJ-2 for biofuel production. Biotechnol Bioeng 2020; 117:3727-3738. [PMID: 32749671 DOI: 10.1002/bit.27528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/25/2020] [Accepted: 08/03/2020] [Indexed: 01/23/2023]
Abstract
Microalgae can accumulate a large fraction of reduced carbon as lipids under NaCl stress. This study investigated the mechanism of carbon allocation and reduction and triacylglycerol (TAG) accumulation in microalgae under NaCl-induced stress. Micractinium sp. XJ-2 was exposed to NaCl stress and cells were subjected to physiological, biochemical, and metabolic analyses to elucidate the stress-responsive mechanism. Lipid increased with NaCl concentration after 0-12 hr, then stabilized after 12-48 hr, and finally decreased after 48-72 hr, whereas TAG increased (0-48 hr) and then decreased (48-72 hr). Under NaCl-induced stress at lower concentrations, TAG accumulation, at first, mainly shown to rely on the carbon fixation through photosynthetic fixation, carbohydrate degradation, and membrane lipids remodeling. Moreover, carbon compounds generated by the degradation of some amino acids were reallocated and enhanced fatty acid synthesis. The remodeling of the membrane lipids of NaCl-induced microalgae relied on the following processes: (a) Increase in the amount of phospholipids and reduction in the amount of glycolipids and (b) extension of long-chain fatty acids. This study enhances our understanding of TAG production under NaCl stress and thus will provide a theoretical basis for the industrial application of NaCl-induced in the microalgal biodiesel industry.
Collapse
Affiliation(s)
- Haijian Yang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Chunxiang Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
9
|
Jiang L, Zhang L, Nie C, Pei H. Lipid productivity in limnetic Chlorella is doubled by seawater added with anaerobically digested effluent from kitchen waste. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:68. [PMID: 29563971 PMCID: PMC5851330 DOI: 10.1186/s13068-018-1064-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/02/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND An economical strategy for producing microalgae as biofuel feedstock is driven by the freshwater and nutrients input. In this study, seawater was applied to limnetic algal cultivation and the behavior of algae in seawater media was observed including growth, lipid synthesis, and ultrastructure. To make seawater cater algae, a kind of wastewater, anaerobically digested effluent from kitchen waste (ADE-KW), was used as nutrient sources. RESULTS Pure seawater cannot support the growth demand of freshwater microalga, due to high salinity and lack of nutrients. However, it is the conditions triggered the algae to synthesize lipids of 60%, double of lipid content in standard medium BG11. Introducing 3 or 5% ADE-KW (volume percentage) into seawater made algal growth reach the level attained in BG11, while lipid content compared favourably with the level (60%) in pure seawater. This method achieved the goal of fast growth and lipid accumulation simultaneously with the highest lipid productivity (19 mg/L day) at the exponential stage, while BG11 obtained 10.55 mg/L day at the stationary stage as the highest lipid productivity, almost half of that in seawater media. Moreover, the condition for highest lipid productivity enlarged algal cells compared to BG11. Under the condition for highest lipid productivity, Chlorella sorokiniana SDEC-18 had enlarged cells and increased settling efficiency compared to BG11, which facilitated harvest in an energy saving way. CONCLUSIONS The results suggested that combining seawater with ADE-KW to cultivate microalgae had a double function: nutrients and water for algal growth, and high salinity for stimulating lipid accumulation. If this technology was operated in practice, freshwater and non-waste nutrient consumption would be completely obviated.
Collapse
Affiliation(s)
- Liqun Jiang
- School of Environmental Science and Engineering, Shandong University, No. 27 Shanda Nan Road, Jinan, 250100 China
| | - Lijie Zhang
- School of Environmental Science and Engineering, Shandong University, No. 27 Shanda Nan Road, Jinan, 250100 China
| | - Changliang Nie
- School of Environmental Science and Engineering, Shandong University, No. 27 Shanda Nan Road, Jinan, 250100 China
| | - Haiyan Pei
- School of Environmental Science and Engineering, Shandong University, No. 27 Shanda Nan Road, Jinan, 250100 China
- Shandong Provincial Engineering Centre on Environmental Science and Technology, No. 17923 Jingshi Road, Jinan, 250061 China
| |
Collapse
|
10
|
Yang H, He Q, Hu C. Feasibility of biodiesel production and CO 2 emission reduction by Monoraphidium dybowskii LB50 under semi-continuous culture with open raceway ponds in the desert area. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:82. [PMID: 29619078 PMCID: PMC5879568 DOI: 10.1186/s13068-018-1068-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 03/07/2018] [Indexed: 05/09/2023]
Abstract
BACKGROUND Compared with other general energy crops, microalgae are more compatible with desert conditions. In addition, microalgae cultivated in desert regions can be used to develop biodiesel. Therefore, screening oil-rich microalgae, and researching the algae growth, CO2 fixation and oil yield in desert areas not only effectively utilize the idle desertification lands and other resources, but also reduce CO2 emission. RESULTS Monoraphidium dybowskii LB50 can be efficiently cultured in the desert area using light resources, and lipid yield can be effectively improved using two-stage induction and semi-continuous culture modes in open raceway ponds (ORPs). Lipid content (LC) and lipid productivity (LP) were increased by 20% under two-stage industrial salt induction, whereas biomass productivity (BP) increased by 80% to enhance LP under semi-continuous mode in 5 m2 ORPs. After 3 years of operation, M. dybowskii LB50 was successfully and stably cultivated under semi-continuous mode for a month during five cycles of repeated culture in a 200 m2 ORP in the desert area. This culture mode reduced the supply of the original species. The BP and CO2 fixation rate were maintained at 18 and 33 g m-2 day-1, respectively. Moreover, LC decreased only during the fifth cycle of repeated culture. Evaporation occurred at 0.9-1.8 L m-2 day-1, which corresponded to 6.5-13% of evaporation loss rate. Semi-continuous and two-stage salt induction culture modes can reduce energy consumption and increase energy balance through the energy consumption analysis of life cycle. CONCLUSION This study demonstrates the feasibility of combining biodiesel production and CO2 fixation using microalgae grown as feedstock under culture modes with ORPs by using the resources in the desert area. The understanding of evaporation loss and the sustainability of semi-continuous culture render this approach practically viable. The novel strategy may be a promising alternative to existing technology for CO2 emission reduction and biofuel production.
Collapse
Affiliation(s)
- Haijian Yang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences (CAS), Wuhan, 430072 China
| | - Qiaoning He
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences (CAS), Wuhan, 430072 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Chunxiang Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences (CAS), Wuhan, 430072 China
| |
Collapse
|
11
|
Chokshi K, Pancha I, Ghosh A, Mishra S. Salinity induced oxidative stress alters the physiological responses and improves the biofuel potential of green microalgae Acutodesmus dimorphus. BIORESOURCE TECHNOLOGY 2017; 244:1376-1383. [PMID: 28501381 DOI: 10.1016/j.biortech.2017.05.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/27/2017] [Accepted: 05/01/2017] [Indexed: 05/13/2023]
Abstract
The main aim of the present study was to analyze salinity stress induced physiological and biochemical changes in a freshwater microalgae Acutodesmus dimorphus. During single-stage cultivation, the accumulations of lipids and carbohydrates increased with an increase in an initial salinity of the culture medium. The carbohydrate and lipid accumulations of 53.30±2.76% and 33.40±2.29%, respectively, were observed in 200mM NaCl added culture. During two-stage cultivation, salinity stress of 200mM was favorable for the growth up to 2days, as suggested by higher biomass, lower levels of oxidative stress biomarkers and no significant changes in the biochemical composition of the cells. Extending the stress to 3days significantly increased the lipid accumulation by 43% without affecting the biomass production. This study, thus, provides the strategy to improve the biofuel potential of A. dimorphus along with presenting the physiological adaptive mechanisms of a cell against salinity stress.
Collapse
Affiliation(s)
- Kaumeel Chokshi
- Division of Salt & Marine Chemicals, CSIR - Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India; Academy of Scientific & Innovative Research (AcSIR), CSIR - Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India.
| | - Imran Pancha
- Division of Salt & Marine Chemicals, CSIR - Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India.
| | - Arup Ghosh
- Academy of Scientific & Innovative Research (AcSIR), CSIR - Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India; Division of Plant Omics, CSIR - Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India.
| | - Sandhya Mishra
- Division of Salt & Marine Chemicals, CSIR - Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India; Academy of Scientific & Innovative Research (AcSIR), CSIR - Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India.
| |
Collapse
|
12
|
Li D, Zhao Y, Ding W, Zhao P, Xu JW, Li T, Ma H, Yu X. A strategy for promoting lipid production in green microalgae Monoraphidium sp. QLY-1 by combined melatonin and photoinduction. BIORESOURCE TECHNOLOGY 2017; 235:104-112. [PMID: 28365337 DOI: 10.1016/j.biortech.2017.03.114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/15/2017] [Accepted: 03/20/2017] [Indexed: 05/03/2023]
Abstract
Microalgae lipids are potential candidates for the production of renewable biodiesel. The combination of plant hormones and two-step cultivation regulates lipid production in microalgae. A strategy for promoting lipid accumulation in Monoraphidium sp. QLY-1 by combining exogenous melatonin (MT) and photoinduction was developed. The effects of melatonin on the lipid content, reactive oxygen species (ROS), and activities of three key fatty acid biosynthetic enzyme in Monoraphidium sp. QLY-1 were investigated. The lipid content increased by 1.32-fold under 1μM melatonin treatment. The maximum lipid content achieved was 49.6%. However, the protein and carbohydrate contents decreased rapidly from 57.21% to 47.96% and from 53.4% to 37.71%, respectively. Biochemical and physiological analyses suggested that the ROS and lipid biosynthesis-related enzyme activities correlated with increased lipid accumulation under photo-melatonin induction conditions.
Collapse
Affiliation(s)
- Dafei Li
- Faculty of Life Sciences and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yongteng Zhao
- Faculty of Life Sciences and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Wei Ding
- Faculty of Life Sciences and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Peng Zhao
- Faculty of Life Sciences and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jun-Wei Xu
- Faculty of Life Sciences and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Tao Li
- Faculty of Life Sciences and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Huixian Ma
- School of Foreign Languages, Kunming University, Kunming 650200, China
| | - Xuya Yu
- Faculty of Life Sciences and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
13
|
Shi K, Gao Z, Shi TQ, Song P, Ren LJ, Huang H, Ji XJ. Reactive Oxygen Species-Mediated Cellular Stress Response and Lipid Accumulation in Oleaginous Microorganisms: The State of the Art and Future Perspectives. Front Microbiol 2017; 8:793. [PMID: 28507542 PMCID: PMC5410592 DOI: 10.3389/fmicb.2017.00793] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 04/18/2017] [Indexed: 12/20/2022] Open
Abstract
Microbial oils, which are mainly extracted from yeasts, molds, and algae, have been of considerable interest as food additives and biofuel resources due to their high lipid content. While these oleaginous microorganisms generally produce only small amounts of lipids under optimal growth conditions, their lipid accumulation machinery can be induced by environmental stresses, such as nutrient limitation and an inhospitable physical environmental. As common second messengers of many stress factors, reactive oxygen species (ROS) may act as a regulator of cellular responses to extracellular environmental signaling. Furthermore, increasing evidence indicates that ROS may act as a mediator of lipid accumulation, which is associated with dramatic changes in the transcriptome, proteome, and metabolome. However, the specific mechanisms of ROS involvement in the crosstalk between extracellular stress signaling and intracellular lipid synthesis require further investigation. Here, we summarize current knowledge on stress-induced lipid biosynthesis and the putative role of ROS in the control of lipid accumulation in oleaginous microorganisms. Understanding such links may provide guidance for the development of stress-based strategies to enhance microbial lipid production.
Collapse
Affiliation(s)
- Kun Shi
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech UniversityNanjing, China
| | - Zhen Gao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech UniversityNanjing, China
| | - Tian-Qiong Shi
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech UniversityNanjing, China
| | - Ping Song
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech UniversityNanjing, China
| | - Lu-Jing Ren
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech UniversityNanjing, China.,Jiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing, China
| | - He Huang
- Jiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing, China.,School of Pharmaceutical Sciences, Nanjing Tech UniversityNanjing, China.,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech UniversityNanjing, China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech UniversityNanjing, China.,Jiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing, China
| |
Collapse
|
14
|
Řezanka T, Nedbalová L, Lukavský J, Střížek A, Sigler K. Pilot cultivation of the green alga Monoraphidium sp. producing a high content of polyunsaturated fatty acids in a low-temperature environment. ALGAL RES 2017. [DOI: 10.1016/j.algal.2016.12.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Che R, Huang L, Xu JW, Zhao P, Li T, Ma H, Yu X. Effect of fulvic acid induction on the physiology, metabolism, and lipid biosynthesis-related gene transcription of Monoraphidium sp. FXY-10. BIORESOURCE TECHNOLOGY 2017; 227:324-334. [PMID: 28042988 DOI: 10.1016/j.biortech.2016.12.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 12/02/2016] [Accepted: 12/03/2016] [Indexed: 05/03/2023]
Abstract
Fulvic acid (FA) triggers lipid accumulation in Monoraphidium sp. FXY-10, which can produce biofuels. Therefore, the metabolism shift and gene expression changes influenced by fulvic acid should be investigated. In this study, lipid and protein contents increased rapidly from 44.6% to 54.3% and from 31.4% to 39.7% under FA treatment, respectively. By contrast, carbohydrate content sharply declined from 49.5% to 32.5%. The correlation between lipid content and gene expression was also analyzed. Results revealed that accD, ME, and GPAT genes were significantly correlated with lipid accumulation. These genes could likely influence lipid accumulation and could be selected as modification candidates. These results demonstrated that FA significantly increased microalgal lipid accumulation by changing the intracellular reactive oxygen species, gene expression, and enzyme activities of acetyl-CoA carboxylase, malic enzyme, and phosphoenolpyruvate carboxylase.
Collapse
Affiliation(s)
- Raoqiong Che
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Li Huang
- Institute of Chemical Industry, Kunming Metallurgy College, Kunming, China
| | - Jun-Wei Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Peng Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Tao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Huixian Ma
- School of Foreign Languages, Kunming University, Kunming 650200, China
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China.
| |
Collapse
|
16
|
Zheng S, He M, Sui Y, Gebreluel T, Zou S, Kemuma ND, Wang C. Kelp waste extracts combined with acetate enhances the biofuel characteristics of Chlorella sorokiniana. BIORESOURCE TECHNOLOGY 2017; 225:142-150. [PMID: 27888731 DOI: 10.1016/j.biortech.2016.11.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/12/2016] [Accepted: 11/14/2016] [Indexed: 06/06/2023]
Abstract
To probe the effect of kelp waste extracts (KWE) combined with acetate on biochemical composition of Chlorella sorokiniana, the cultures were performed under independent/combined treatment of KWE and acetate. The results showed that high cell density and biomass were obtained by KWE combined with acetate treatments, whose biomass productivity increased by 79.69-102.57% and 20.04-35.32% compared with 3.0gL-1 acetate and KWE treatments respectively. The maximal neutral lipid per cell and lipid productivity were gained in KWE combined with 3.0gL-1 acetate treatment, which increased by 16.32% and 129.03% compared with 3.0gL-1 acetate, and 253.35% and 70.74% compared with KWE treatment. Meanwhile, C18:3n3 and C18:2n6c contents were reduced to 4.90% and 11.88%, whereas C16:0 and C18:1n9c were improved to 28.71% and 37.76%. Hence, supplementing appropriate acetate in KWE cultures is supposed to be a great potential method for large-scale cultivation of C. sorokiniana to generate biofuel.
Collapse
Affiliation(s)
- Shiyan Zheng
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Meilin He
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yangsui Sui
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Temesgen Gebreluel
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shanmei Zou
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Nyabuto Dorothy Kemuma
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Department of Natural Resources, Egerton University, Egerton 536, Kenya
| | - Changhai Wang
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
17
|
Dammak M, Haase SM, Miladi R, Ben Amor F, Barkallah M, Gosset D, Pichon C, Huchzermeyer B, Fendri I, Denis M, Abdelkafi S. Enhanced lipid and biomass production by a newly isolated and identified marine microalga. Lipids Health Dis 2016; 15:209. [PMID: 27919272 PMCID: PMC5139129 DOI: 10.1186/s12944-016-0375-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/11/2016] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The increasing demand for microalgae lipids as an alternative to fish has encouraged researchers to explore oleaginous microalgae for food uses. In this context, optimization of growth and lipid production by the marine oleaginous V2-strain-microalgae is of great interest as it contains large amounts of mono-unsaturated (MUFAs) and poly-unsaturated fatty acids (PUFAs). METHODS In this study, the isolated V2 strain was identified based on 23S rRNA gene. Growth and lipid production conditions were optimized by using the response surface methodology in order to maximize its cell growth and lipid content that was quantified by both flow cytometry and the gravimetric method. The intracellular lipid bodies were detected after staining with Nile red by epifluorescence microscopy. The fatty acid profile of optimal culture conditions was determined by gas chromatography coupled to a flame ionization detector. RESULTS The phenotypic and phylogenetic analyses showed that the strain V2 was affiliated to Tetraselmis genus. The marine microalga is known as an interesting oleaginous species according to its high lipid production and its fatty acid composition. The optimization process showed that maximum cell abundance was achieved under the following conditions: pH: 7, salinity: 30 and photosynthetic light intensity (PAR): 133 μmol photons.m-2.s-1. In addition, the highest lipid content (49 ± 2.1% dry weight) was obtained at pH: 7, salinity: 37.23 and photosynthetic light intensity (PAR): 188 μmol photons.m-2.s-1. The fatty acid profile revealed the presence of 39.2% and 16.1% of total fatty acids of mono-unsaturated fatty acids (MUFAs) and poly-unsaturated fatty acids (PUFAs), respectively. Omega 3 (ω3), omega 6 (ω6) and omega 9 (ω9) represented 5.28%, 8.12% and 32.8% of total fatty acids, respectively. CONCLUSIONS This study showed the successful optimization of salinity, light intensity and pH for highest growth, lipid production and a good fatty acid composition, making strain V2 highly suitable for food and nutraceutical applications.
Collapse
Affiliation(s)
- Mouna Dammak
- Biotechnologie des Algues, Biological Engineering Department, National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia
| | - Sandra Mareike Haase
- Institute of Horticultural Production Systems, Section Biosystems Engineering, Leibniz University Hannover, Herrenhauser Str. 2, 30419, Hannover, Germany
| | - Ramzi Miladi
- Biotechnologie des Algues, Biological Engineering Department, National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia
| | - Faten Ben Amor
- Biotechnologie des Algues, Biological Engineering Department, National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia
| | - Mohamed Barkallah
- Biotechnologie des Algues, Biological Engineering Department, National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia
| | - David Gosset
- Center for Molecular Biophysics (CBM), CNRS UPR4301, Orléans, France
| | - Chantal Pichon
- Center for Molecular Biophysics (CBM), CNRS UPR4301, Orléans, France
| | - Bernhard Huchzermeyer
- Institute of Botany, Leibniz Universitaet Hannover, Herrenhauser Str. 2, 30419, Hannover, Germany
| | - Imen Fendri
- Unit Research of Toxicology-Microbiology Environmental and Health UR11ES70, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Michel Denis
- Aix Marseille Université, Université de Toulon, CNRS/INSU, IRD, Institut Méditerranéen d'Océanologie (MIO), 163 avenue de Luminy, Case 901, 13288, Marseille Cedex 09, France
| | - Slim Abdelkafi
- Biotechnologie des Algues, Biological Engineering Department, National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia.
| |
Collapse
|
18
|
Strategies for Lipid Production Improvement in Microalgae as a Biodiesel Feedstock. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8792548. [PMID: 27725942 PMCID: PMC5048031 DOI: 10.1155/2016/8792548] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/20/2016] [Accepted: 07/25/2016] [Indexed: 01/04/2023]
Abstract
In response to the energy crisis, global warming, and climate changes, microalgae have received a great deal of attention as a biofuel feedstock. Due to a high lipid content in microalgal cells, microalgae present as a promising alternative source for the production of biodiesel. Environmental and culturing condition variations can alter lipid production as well as chemical compositions of microalgae. Therefore, application of the strategies to activate lipid accumulation opens the door for lipid overproduction in microalgae. Until now, many original studies regarding the approaches for enhanced microalgal lipid production have been reported in an effort to push forward the production of microalgal biodiesel. However, the current literature demonstrates fragmented information available regarding the strategies for lipid production improvement. From the systematic point of view, the review highlights the main approaches for microalgal lipid accumulation induction to expedite the application of microalgal biodiesel as an alternative to fossil diesel for sustainable environment. Of the several strategies discussed, the one that is most commonly applied is the design of nutrient (e.g., nitrogen, phosphorus, and sulfur) starvation or limitation. Other viable approaches such as light intensity, temperature, carbon dioxide, salinity stress, and metal influence can also achieve enhanced microalgal lipid production.
Collapse
|
19
|
Zhao Y, Li D, Ding K, Che R, Xu JW, Zhao P, Li T, Ma H, Yu X. Production of biomass and lipids by the oleaginous microalgae Monoraphidium sp. QLY-1 through heterotrophic cultivation and photo-chemical modulator induction. BIORESOURCE TECHNOLOGY 2016; 211:669-676. [PMID: 27058402 DOI: 10.1016/j.biortech.2016.03.160] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 06/05/2023]
Abstract
A two-step strategy comprising heterotrophic cultivation and photo-chemical modulator induction was developed to enhance biomass and lipid accumulation in the oleaginous Monoraphidium sp. QLY-1, which was isolated from Qilu Lake in Yunnan Plateau. The algae were first cultivated heterotrophically to achieve high biomass concentration (5.54gL(-1)) with a lipid content of 22.47%. The cultivated algae were diluted, transferred to light environment, and treated with different chemical elicitors. Results showed that the lipid content increased to 36.68% after 3-day of photoinduction. The lipid content was further enhanced by 1.21, 1.32, and 1.29 folds in algal cells treated with nitrogen deficiency, 20gL(-1) NaCl, and 5mM glycine betaine, respectively. The maximum lipid content (48.54%) and lipid productivity (121.27mgL(-1)d(-1)) were obtained in treatments with 20gL(-1) NaCl and 5mM GB, respectively. This study proposes a strategy to efficiently produce lipids by using microalgae.
Collapse
Affiliation(s)
- Yongteng Zhao
- Faculty of Life Sciences and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Dafei Li
- Faculty of Life Sciences and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Ke Ding
- Faculty of Life Sciences and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Raoqiong Che
- Faculty of Life Sciences and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jun-Wei Xu
- Faculty of Life Sciences and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Peng Zhao
- Faculty of Life Sciences and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Tao Li
- Faculty of Life Sciences and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Huixian Ma
- School of Foreign Languages, Kunming University, Kunming 650200, China
| | - Xuya Yu
- Faculty of Life Sciences and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
20
|
Yee W. Feasibility of various carbon sources and plant materials in enhancing the growth and biomass productivity of the freshwater microalgae Monoraphidium griffithii NS16. BIORESOURCE TECHNOLOGY 2015; 196:1-8. [PMID: 26210717 DOI: 10.1016/j.biortech.2015.07.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/10/2015] [Accepted: 07/11/2015] [Indexed: 05/20/2023]
Abstract
In order to assess the feasibility of various carbon sources and plant materials in increasing the growth rate and biomass productivity of Monoraphidium griffithii, ten carbon sources as well as six plant materials were tested in mixotrophic cultures with or without aeration. It was found that glucose, fructose, maltose, sodium acetate and mannitol were potential carbon sources for growth enhancement of M. griffithii. Supplementation of culture medium with these carbon sources resulted in approximately 1-4-fold increase in cell density compared to control in a small scale culture. In a larger scale mixotrophic culture with aeration, 0.05% mannitol and 0.1% fructose resulted in a decent 1-1.5-fold increase in final cell density, approximately 2-fold increase in growth rate and 0.5-1-fold increase in dry biomass weight. Findings from this study suggests that glucose, fructose, maltose and mannitol were potential organic carbon sources for mixotrophic culture of M. griffithii.
Collapse
Affiliation(s)
- Willy Yee
- Department of Applied Sciences, Faculty of Engineering, Science and Technology, Nilai University, No. 1, Persiaran Universiti, 71800 Nilai, Negeri Sembilan, Malaysia.
| |
Collapse
|
21
|
Heo J, Cho DH, Ramanan R, Oh HM, Kim HS. PhotoBiobox: A tablet sized, low-cost, high throughput photobioreactor for microalgal screening and culture optimization for growth, lipid content and CO2 sequestration. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.07.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
He Q, Yang H, Wu L, Hu C. Effect of light intensity on physiological changes, carbon allocation and neutral lipid accumulation in oleaginous microalgae. BIORESOURCE TECHNOLOGY 2015; 191:219-28. [PMID: 25997011 DOI: 10.1016/j.biortech.2015.05.021] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/05/2015] [Accepted: 05/08/2015] [Indexed: 05/06/2023]
Abstract
Chlorella sp. and Monoraphidium sp. were the potential microalgal species for lipid production. This study aimed to investigate different light intensities (40, 200, 400 μmol photon m(-2) s(-1)) on physiological changes, photosynthetic carbon partitioning and neutral lipid accumulation in both microalgae. Results suggested that under high light (HL, 400 μmol photon m(-2) s(-1)), chlorophyll degraded, protein and carbohydrate content decreased; more carbon allocated into lipid as well as most of intracellular space was occupied by lipid bodies. Moreover, with the lipid accumulation, Fv/Fm decreased and ROS scavenging enzyme increased. Membrane lipid reduced dramatic (29.73-37.97%) to format NL (71.66% of total lipid in Chlorella sp. L1 and 60.65% in Monoraphidium dybowskii Y2). The NL productivity under HL (51.36 and 49.71 mg L(-1) d(-1)) were more than 3 times of those under LL. Additionally, FAME profiles proved that the useful fatty acid components for biodiesel production were enhanced under HL.
Collapse
Affiliation(s)
- Qiaoning He
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haijian Yang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Wu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunxiang Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
23
|
Yang H, He Q, Hu C. Lipid accumulation by NaCl induction at different growth stages and concentrations in photoautotrophic two-step cultivation of Monoraphidium dybowskii LB50. BIORESOURCE TECHNOLOGY 2015; 187:221-227. [PMID: 25863198 DOI: 10.1016/j.biortech.2015.03.125] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 06/04/2023]
Abstract
NaCl induction in photoautotrophic two-step cultivation is very promising, but time node and concentration are critical to the entire production. In this study Monoraphidium dybowskii LB50 was subjected to different NaCl concentrations at different growth phases. Results showed that during the initial phase (IP), fixed carbon was used for sugar and lipid under 5gL(-1) NaCl induction, as well as for protein under 10gL(-1) NaCl induction. At late-exponential growth phase (LEGP), the highest lipid productivity was obtained at 20gL(-1) NaCl. At stationary phase (SP) the highest lipid productivity was also under 20gL(-1) NaCl but lower than that of LEGP. In summary, lipid content and quality were improved at all growth phases under NaCl induction. Therefore, cultivation scale can be sued to determine the time node and dosage of the inducer, thereby realizing the economic efficiency of the fundamental guarantee in photoautotrophic two-step cultivation.
Collapse
Affiliation(s)
- Haijian Yang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Qiaoning He
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Chunxiang Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
24
|
He Q, Yang H, Xu L, Xia L, Hu C. Sufficient utilization of natural fluctuating light intensity is an effective approach of promoting lipid productivity in oleaginous microalgal cultivation outdoors. BIORESOURCE TECHNOLOGY 2015; 180:79-87. [PMID: 25590422 DOI: 10.1016/j.biortech.2014.12.088] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/23/2014] [Accepted: 12/24/2014] [Indexed: 06/04/2023]
Abstract
The effects of fluctuating intensity of solar radiation on biomass and lipid in oleaginous microalgae are important. However, this topic has not been the subject of studies for a long time. In this study, four oleaginous microalgae from semi-arid areas were screened and cultivated outdoors under different fluctuating intensities. Results showed that the highest lipid productivities and neutral lipid (NL) contents occurred under high fluctuating intensity (HFI), in which 13-20% of the increased NL came from glycolipid transformation without phospholipid conversion. Chlorella sp. L1 and Monoraphidium dybowskii Y2 obtained from biological soil crusts in desert had the largest biomass (137.13, 106.61mgL(-1)d(-1)) and lipid yields (35.06, 32.45mgL(-1)d(-1)) under HFI. The highest areal lipid productivities of 9.06 and 8.95gm(-2)d(-1) and better biodiesel quality were observed under HFI. Accordingly, sufficiently adopting fluctuating light intensity outdoors to culture microalgae was an economic and effective approach.
Collapse
Affiliation(s)
- Qiaoning He
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haijian Yang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangliang Xu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Xia
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Chunxiang Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
25
|
Pancha I, Chokshi K, Maurya R, Trivedi K, Patidar SK, Ghosh A, Mishra S. Salinity induced oxidative stress enhanced biofuel production potential of microalgae Scenedesmus sp. CCNM 1077. BIORESOURCE TECHNOLOGY 2015; 189:341-348. [PMID: 25911594 DOI: 10.1016/j.biortech.2015.04.017] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 04/03/2015] [Accepted: 04/04/2015] [Indexed: 05/08/2023]
Abstract
Microalgal biomass is considered as potential feedstock for biofuel production. Enhancement of biomass, lipid and carbohydrate contents in microalgae is important for the commercialization of microalgal biofuels. In the present study, salinity stress induced physiological and biochemical changes in microalgae Scenedesmus sp. CCNM 1077 were studied. During single stage cultivation, 33.13% lipid and 35.91% carbohydrate content was found in 400 mM NaCl grown culture. During two stage cultivation, salinity stress of 400 mM for 3 days resulted in 24.77% lipid (containing 74.87% neutral lipid) along with higher biomass compared to single stage, making it an efficient strategy to enhance biofuel production potential of Scenedesmus sp. CCNM 1077. Apart from biochemical content, stress biomarkers like hydrogen peroxide, lipid peroxidation, ascorbate peroxidase, proline and mineral contents were also studied to understand the role of reactive oxygen species (ROS) mediated lipid accumulation in microalgae Scenedesmus sp. CCNM 1077.
Collapse
Affiliation(s)
- Imran Pancha
- Discipline of Salt & Marine Chemicals, CSIR - Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India; Academy of Scientific & Innovative Research (AcSIR), CSIR - Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
| | - Kaumeel Chokshi
- Discipline of Salt & Marine Chemicals, CSIR - Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India; Academy of Scientific & Innovative Research (AcSIR), CSIR - Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
| | - Rahulkumar Maurya
- Discipline of Salt & Marine Chemicals, CSIR - Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India; Academy of Scientific & Innovative Research (AcSIR), CSIR - Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
| | - Khanjan Trivedi
- Academy of Scientific & Innovative Research (AcSIR), CSIR - Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India; Discipline of Wasteland Research, CSIR- Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
| | - Shailesh Kumar Patidar
- Discipline of Salt & Marine Chemicals, CSIR - Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
| | - Arup Ghosh
- Academy of Scientific & Innovative Research (AcSIR), CSIR - Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India; Discipline of Wasteland Research, CSIR- Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
| | - Sandhya Mishra
- Discipline of Salt & Marine Chemicals, CSIR - Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India; Academy of Scientific & Innovative Research (AcSIR), CSIR - Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India.
| |
Collapse
|