1
|
Xie ZT, Mi BQ, Lu YJ, Chen MT, Ye ZW. Research progress on carotenoid production by Rhodosporidium toruloides. Appl Microbiol Biotechnol 2024; 108:7. [PMID: 38170311 DOI: 10.1007/s00253-023-12943-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024]
Abstract
Carotenoids are natural lipophilic pigments, which have been proven to provide significant health benefits to humans, relying on their capacity to efficiently scavenge singlet oxygen and peroxyl radicals as antioxidants. Strains belonging to the genus Rhodosporidium represent a heterogeneous group known for a number of phenotypic traits including accumulation of carotenoids and lipids and tolerance to heavy metals and oxidative stress. As a representative of these yeasts, Rhodosporidium toruloides naturally produces carotenoids with high antioxidant activity and grows on a wide variety of carbon sources. As a result, R. toruloides is a promising host for the efficient production of more value-added lipophilic compound carotenoids, e.g., torulene and torularhodin. This review provides a comprehensive summary of the research progress on carotenoid biosynthesis in R. toruloides, focusing on the understanding of biosynthetic pathways and the regulation of key enzymes and genes involved in the process. Moreover, the relationship between the accumulation of carotenoids and lipid biosynthesis, as well as the stress from diverse abiotic factors, has also been discussed for the first time. Finally, several feasible strategies have been proposed to promote carotenoid production by R. toruloides. It is possible that R. toruloides may become a critical strain in the production of carotenoids or high-value terpenoids by genetic technologies and optimal fermentation processes. KEY POINTS: • Biosynthetic pathway and its regulation of carotenoids in Rhodosporidium toruloides were concluded • Stimulation of abiotic factors for carotenoid biosynthesis in R. toruloides was summarized • Feasible strategies for increasing carotenoid production by R. toruloides were proposed.
Collapse
Affiliation(s)
- Zhuo-Ting Xie
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510642, China
| | - Bing-Qian Mi
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yong-Jun Lu
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Mou-Tong Chen
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| | - Zhi-Wei Ye
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Jarungkeerativimol P, Tareen AK, Sultan IN, Khan MW, Parakulsuksatid P. Effect of phosphorus and sodium acetate on lipid accumulation from Ankistrodesmus sp. IFRPD 1061 in an open pond. Heliyon 2023; 9:e19778. [PMID: 37809504 PMCID: PMC10559119 DOI: 10.1016/j.heliyon.2023.e19778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
Ankistrodesmus sp, has been comprehensively studied for their potential in the production of biodiesel due to their biomass productivity and high lipid content. This study examined the biomass productivity, and concentration, lipid productivity, and concentration, and lipid contents of Ankistrodesmus sp. IFRPD 1061 under several phosphorus concentrations. The optimum conditions were attained at 0.12 g/L KH2PO4. The highest lipid content reached to 35.950 ± 4.253% (w/w) in 22 days cultivation. An open pond cultivation system was used with the addition of 10 mM sodium acetate on every fourth day (0, 4, 8 and 12) of cultivation and KH2PO4 on twelfth day of cultivation. The obtained biomass productivity and concentration, lipid productivity and concentration and lipid content were 0.709 ± 0.027 g/L, 48.304 ± 1.894 mg/L/day, 0.214 ± 0.004 g/L 14.550 ± 0.215 mg/L/day and 30.154 ± 1.627% (w/w) in 14 days of cultivation, respectively. The results exhibited that addition of 10 mM sodium acetate and KH2PO4 may enhance lipid accumulation within algae cells in an open pond cultivation system.
Collapse
Affiliation(s)
- Paninee Jarungkeerativimol
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd, Ladyaow, Chatuchak, Bangkok, 10900, Thailand
| | - Afrasiab Khan Tareen
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd, Ladyaow, Chatuchak, Bangkok, 10900, Thailand
- Department of Biotechnology, Balochistan University of Information Technology Engineering and Management Sciences, Quetta, 87300, Balochistan, Pakistan
| | - Imrana Niaz Sultan
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd, Ladyaow, Chatuchak, Bangkok, 10900, Thailand
- Department of Biotechnology, Balochistan University of Information Technology Engineering and Management Sciences, Quetta, 87300, Balochistan, Pakistan
| | - Muhammad Waseem Khan
- Department of Biotechnology, Balochistan University of Information Technology Engineering and Management Sciences, Quetta, 87300, Balochistan, Pakistan
| | - Pramuk Parakulsuksatid
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd, Ladyaow, Chatuchak, Bangkok, 10900, Thailand
| |
Collapse
|
3
|
Zhao Y, Wang Z, Chen M, Huang X, Luo Z. Effects of nitrogen to phosphorus ratios on algal growth and arsenate metabolism by Microcystis aeruginosa with dissolved organic phosphorus and nitrate as nutrients. ALGAL RES 2023. [DOI: 10.1016/j.algal.2022.102922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Sahoo S, Dehury B, Narang PK, Raina V, Misra N, Suar M. Comprehensive sequence and structure analysis of algal lipid catabolic enzyme Triacylglycerol lipase: an in silico study to vitalize the development of optimum engineered strains with high lipid productivity. J Biomol Struct Dyn 2022; 40:11989-12007. [PMID: 34415234 DOI: 10.1080/07391102.2021.1967194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microalgae as an alternative renewable resource for biofuel production have captured much significance. Nonetheless, its economic viability is a field of major concern for researchers. Unraveling the lipid catabolic pathway and gaining insights into the sequence-structural features of its primary functioning enzyme, Triacylglycerol lipase, will impart valuable information to target microalgae for augmented lipid content. In the present study, a genome-wide comparative study on putative Triacylglycerol lipase (TAGL) enzyme from algal species belonging to varied phylogenetic lineages was performed. The comprehensive sequence analysis revealed that TAGL comprises of three distinct conserved domains, such as, Patatin, Class III Lipase, and Abhydro_lipase, and also confirmed the ubiquitous presence of GXSXG motif in the sequences analyzed. In the absence of a crystal structure of algal TAGL till date, we developed the first 3D model of patatin domain of TAGL from an oleaginous microalga, Phaedactylum tricornutum, employing homology modeling, docking and molecular dynamic simulations methods. The domain-substrate complex having the low-ranking docking score revealed the binding of palmitic acid to the TAGL patatin domain surface with strong hydrogen bond interactions. The simulation results implied that the substrate-complexed patatin domain and the free enzyme adopted a more stable conformation after 40 ns. This is the first ever attempt to provide in-silico insights into the structural and dynamical insights on catalytic mechanism of the TAGL patatin domain. Subsequently, these findings aided our understanding on their structural stability, folding mechanism and protein-substrate interactions, which could be further utilized to design site-specific mutagenic experiments for engineering microalgal strains.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Susrita Sahoo
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Budheswar Dehury
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Parminder Kaur Narang
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India.,SGTB Khalsa College, Delhi University, Delhi, India
| | - Vishakha Raina
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Namrata Misra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India.,KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India.,KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| |
Collapse
|
5
|
Chenthamara D, Sivaramakrishnan M, Ramakrishnan SG, Esakkimuthu S, Kothandan R, Subramaniam S. Improved laccase production from Pleurotus floridanus using deoiled microalgal biomass: statistical and hybrid swarm-based neural networks modeling approach. 3 Biotech 2022; 12:346. [PMID: 36386567 PMCID: PMC9649576 DOI: 10.1007/s13205-022-03404-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/05/2022] [Indexed: 11/11/2022] Open
Abstract
Fungal laccases are versatile biocatalyst and occupy a prominent place in various industrial applications due to its broad substrate specificity. The simplest method to enhance the laccase production is by usage of cheap substrates in the fermentation processes incorporating modeling approaches for optimization. Integrated biorefinery concept is receiving wide popularity by making use of various products from microalgal biomass. The research aimed to identify the potential of deoiled microalgal biomass (DMB), a waste product from algal biorefinery as a nutrient supplement to enhance laccase production in Pleurotus floridanus by submerged fermentation. The maximum production was obtained in the presence of DMB as an additional nutrient supplement and copper sulfate as an inducer. The predictive capabilities of the two methodologies Response Surface Methodology (RSM) and hybrid Particle swarm optimization (PSO)-based Artificial Neural Network (ANN) were compared and validated. The results showed that ANN coupled with PSO predicted with more accuracy with an R 2 value of 0.99 than the RSM model with an R 2 value of 0.97. The optimized condition as predicted by superior model hybrid PSO-based ANN was glucose (3.51%), DMB (0.545%), pH (4.9), temperature (24.68 ℃) and CuSO4 (1.35 mM). The experimental laccase activity was 80.45 ± 0.132 U/mL which was 1.3 fold higher than unoptimized condition. This study promotes the usage of DMB as a novel supplement for the improved production of Pleurotus floridanus laccase. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03404-y.
Collapse
Affiliation(s)
- Dhrisya Chenthamara
- Bioprocess and Biomaterials Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
| | | | - Sankar Ganesh Ramakrishnan
- Bioprocess and Biomaterials Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
| | | | - Ram Kothandan
- Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, India
| | - Sadhasivam Subramaniam
- Bioprocess and Biomaterials Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
- Department of Extension and Career Guidance, Bharathiar University, Coimbatore, India
| |
Collapse
|
6
|
Xie SR, Li Y, Chen HH, Liang MH, Jiang JG. A strategy to promote carotenoids production in Dunaliella bardawil by melatonin combined with photoinduction. Enzyme Microb Technol 2022; 161:110115. [PMID: 36030697 DOI: 10.1016/j.enzmictec.2022.110115] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 12/01/2022]
Abstract
Microalgae are considered to be a very promising class of raw material for carotenoid production. In this study, melatonin (MLT), a widely used plant growth regulator, was added to the autotrophic medium of Dunaliella bardawil to explore its effects on the growth and pigment accumulation of Dunaliella bardawil. The results showed that the induction of exogenous MLT alone was not beneficial to the growth and pigment accumulation of Dunaliella bardawil, and the higher the concentration, the more obvious the inhibitory effect on the algal cells. Therefore, a strategy to promote carotenoid accumulation in Dunaliella bardawil by combining exogenous MLT and light induction was carried out. Under 4500 LUX light intensity, the content of zeaxanthin was significantly increased under exogenous MLT induction. In the 200 μg/mL, 300 μg/mL, and 400 μg/mL MLT-treated groups, the zeaxanthin single-cell content in the 300 μg/mL-treated group was as high as 0.38 ng/mL (0.17 ng/mL in the control group), which was 1.24-fold higher compared to the control. Under 9500 LUX light intensity, all carotenoids showed an increasing trend in all experimental groups, except for zeaxanthin, which showed a decreasing trend. The effect of 300 μg/mL showed the most obvious in the 200 μg/mL,300 μg/mL, and 400 μg/mL MLT treatment groups, where the lutein, α-carotene and β-carotene contents were 1.24, 1.14 and 1.31 times higher than those of the control group, respectively. Overall, exogenous MLT at high light intensities had a significant effect on pigment accumulation in Dunaliella bardawil.
Collapse
Affiliation(s)
- Shan-Rong Xie
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yu Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hao-Hong Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ming-Hua Liang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Jian-Guo Jiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
7
|
A Review on Synchronous Microalgal Lipid Enhancement and Wastewater Treatment. ENERGIES 2021. [DOI: 10.3390/en14227687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Microalgae are unicellular photosynthetic eukaryotes that can treat wastewater and provide us with biofuel. Microalgae cultivation utilizing wastewater is a promising approach for synchronous wastewater treatment and biofuel production. However, previous studies suggest that high microalgae biomass production reduces lipid production and vice versa. For cost-effective biofuel production from microalgae, synchronous lipid and biomass enhancement utilizing wastewater is necessary. Therefore, this study brings forth a comprehensive review of synchronous microalgal lipid and biomass enhancement strategies for biofuel production and wastewater treatment. The review emphasizes the appropriate synergy of the microalgae species, culture media, and synchronous lipid and biomass enhancement conditions as a sustainable, efficient solution.
Collapse
|
8
|
Wu Q, Guo L, Li X, Wang Y. Effect of phosphorus concentration and light/dark condition on phosphorus uptake and distribution with microalgae. BIORESOURCE TECHNOLOGY 2021; 340:125745. [PMID: 34426241 DOI: 10.1016/j.biortech.2021.125745] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
In this study, the effects of P concentration and light/dark condition on the distribution of P in microalgae were tracked with Scenedesmus sp.393. Results showed that different culture conditions affected the accumulation capacity and transformation of P in intracellular polymeric substances (IPS), extracellular polymeric substances (EPS), and soluble microbial products (SMP). At low P concentration (0.70 mg P/L), inorganic phosphorus (IP) absorbed in EPS (19.40%) and organic phosphorus (OP) accumulated in IPS (70.98%) were mainly P forms in microalgae. High P concentration (>21.42 mg P/L) promoted the luxury uptake and accumulation of IP by IPS, and the conversion of IP to OP. However, the adsorption of IP by EPS was inhibited when exposed to high external P concentration. Continuous illumination promoted the microalgae growth, and dark condition stimulated the P accumulation in microalgae biomass. The results of this study could provide valuable information for P recovery with microalgae.
Collapse
Affiliation(s)
- Qirui Wu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Xunzhou Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yu Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
9
|
Rawat J, Gupta PK, Pandit S, Prasad R, Pande V. Current perspectives on integrated approaches to enhance lipid accumulation in microalgae. 3 Biotech 2021; 11:303. [PMID: 34194896 DOI: 10.1007/s13205-021-02851-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/19/2021] [Indexed: 11/30/2022] Open
Abstract
In recent years, research initiatives on renewable bioenergy or biofuels have been gaining momentum, not only due to fast depletion of finite reserves of fossil fuels but also because of the associated concerns for the environment and future energy security. In the last few decades, interest is growing concerning microalgae as the third-generation biofuel feedstock. The CO2 fixation ability and conversion of it into value-added compounds, devoid of challenging food and feed crops, make these photosynthetic microorganisms an optimistic producer of biofuel from an environmental point of view. Microalgal-derived fuels are currently being considered as clean, renewable, and promising sustainable biofuel. Therefore, most research targets to obtain strains with the highest lipid productivity and a high growth rate at the lowest cultivation costs. Different methods and strategies to attain higher biomass and lipid accumulation in microalgae have been extensively reported in the previous research, but there are fewer inclusive reports that summarize the conventional methods with the modern techniques for lipid enhancement and biodiesel production from microalgae. Therefore, the current review focuses on the latest techniques and advances in different cultivation conditions, the effect of different abiotic and heavy metal stress, and the role of nanoparticles (NPs) in the stimulation of lipid accumulation in microalgae. Techniques such as genetic engineering, where particular genes associated with lipid metabolism, are modified to boost lipid synthesis within the microalgae, the contribution of "Omics" in metabolic pathway studies. Further, the contribution of CRISPR/Cas9 system technique to the production of microalgae biofuel is also briefly described.
Collapse
Affiliation(s)
- Jyoti Rawat
- Department of Biotechnology, Sir J. C. Bose Technical Campus Bhimtal, Kumaun University, Nainital, Uttarakhand 263136 India
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201310 India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201310 India
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar 845801 India
| | - Veena Pande
- Department of Biotechnology, Sir J. C. Bose Technical Campus Bhimtal, Kumaun University, Nainital, Uttarakhand 263136 India
| |
Collapse
|
10
|
Hounslow E, Evans CA, Pandhal J, Sydney T, Couto N, Pham TK, Gilmour DJ, Wright PC. Quantitative proteomic comparison of salt stress in Chlamydomonas reinhardtii and the snow alga Chlamydomonas nivalis reveals mechanisms for salt-triggered fatty acid accumulation via reallocation of carbon resources. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:121. [PMID: 34022944 PMCID: PMC8141184 DOI: 10.1186/s13068-021-01970-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/13/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND Chlamydomonas reinhardtii is a model green alga strain for molecular studies; its fully sequenced genome has enabled omic-based analyses that have been applied to better understand its metabolic responses to stress. Here, we characterised physiological and proteomic changes between a low-starch C. reinhardtii strain and the snow alga Chlamydomonas nivalis, to reveal insights into their contrasting responses to salinity stress. RESULTS Each strain was grown in conditions tailored to their growth requirements to encourage maximal fatty acid (as a proxy measure of lipid) production, with internal controls to allow comparison points. In 0.2 M NaCl, C. nivalis accumulates carbohydrates up to 10.4% DCW at 80 h, and fatty acids up to 52.0% dry cell weight (DCW) over 12 days, however, C. reinhardtii does not show fatty acid accumulation over time, and shows limited carbohydrate accumulation up to 5.5% DCW. Analysis of the C. nivalis fatty acid profiles showed that salt stress improved the biofuel qualities over time. Photosynthesis and respiration rates are reduced in C. reinhardtii relative to C. nivalis in response to 0.2 M NaCl. De novo sequencing and homology matching was used in conjunction with iTRAQ-based quantitative analysis to identify and relatively quantify proteomic alterations in cells exposed to salt stress. There were abundance differences in proteins associated with stress, photosynthesis, carbohydrate and lipid metabolism proteins. In terms of lipid synthesis, salt stress induced an increase in dihydrolipoyl dehydrogenase in C. nivalis (1.1-fold change), whilst levels in C. reinhardtii remained unaffected; this enzyme is involved in acetyl CoA production and has been linked to TAG accumulation in microalgae. In salt-stressed C. nivalis there were decreases in the abundance of UDP-sulfoquinovose (- 1.77-fold change), which is involved in sulfoquinovosyl diacylglycerol metabolism, and in citrate synthase (- 2.7-fold change), also involved in the TCA cycle. Decreases in these enzymes have been shown to lead to increased TAG production as fatty acid biosynthesis is favoured. Data are available via ProteomeXchange with identifier PXD018148. CONCLUSIONS These differences in protein abundance have given greater understanding of the mechanism by which salt stress promotes fatty acid accumulation in the un-sequenced microalga C. nivalis as it switches to a non-growth state, whereas C. reinhardtii does not have this response.
Collapse
Affiliation(s)
- E Hounslow
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - C A Evans
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK.
| | - J Pandhal
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - T Sydney
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK
| | - N Couto
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - T K Pham
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - D James Gilmour
- Department of Molecular Biology and Biotechnology, Firth Court, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - P C Wright
- University of Southampton, University Road, Southampton, SO17 1BJ, UK
| |
Collapse
|
11
|
Double-high in palmitic and oleic acids accumulation in a non-model green microalga, Messastrum gracile SE-MC4 under nitrate-repletion and -starvation cultivations. Sci Rep 2021; 11:381. [PMID: 33431982 PMCID: PMC7801397 DOI: 10.1038/s41598-020-79711-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/10/2020] [Indexed: 01/29/2023] Open
Abstract
Bioprospecting for biodiesel potential in microalgae primarily involves a few model species of microalgae and rarely on non-model microalgae species. Therefore, the present study determined changes in physiology, oil accumulation, fatty acid composition and biodiesel properties of a non-model microalga Messastrum gracile SE-MC4 in response to 12 continuous days of nitrate-starve (NS) and nitrate-replete (NR) conditions respectively. Under NS, the highest oil content (57.9%) was achieved despite reductions in chlorophyll content, biomass productivity and lipid productivity. However, under both NS and NR, palmitic acid and oleic acid remained as dominant fatty acids thus suggesting high potential of M. gracile for biodiesel feedstock consideration. Biodiesel properties analysis returned high values of cetane number (CN 61.9-64.4) and degree of unsaturation (DU 45.3-57.4) in both treatments. The current findings show the possibility of a non-model microalga to inherit superior ability over model species in oil accumulation for biodiesel development.
Collapse
|
12
|
|
13
|
Kumar G, Shekh A, Jakhu S, Sharma Y, Kapoor R, Sharma TR. Bioengineering of Microalgae: Recent Advances, Perspectives, and Regulatory Challenges for Industrial Application. Front Bioeng Biotechnol 2020; 8:914. [PMID: 33014997 PMCID: PMC7494788 DOI: 10.3389/fbioe.2020.00914] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/15/2020] [Indexed: 01/14/2023] Open
Abstract
Microalgae, due to their complex metabolic capacity, are being continuously explored for nutraceuticals, pharmaceuticals, and other industrially important bioactives. However, suboptimal yield and productivity of the bioactive of interest in local and robust wild-type strains are of perennial concerns for their industrial applications. To overcome such limitations, strain improvement through genetic engineering could play a decisive role. Though the advanced tools for genetic engineering have emerged at a greater pace, they still remain underused for microalgae as compared to other microorganisms. Pertaining to this, we reviewed the progress made so far in the development of molecular tools and techniques, and their deployment for microalgae strain improvement through genetic engineering. The recent availability of genome sequences and other omics datasets form diverse microalgae species have remarkable potential to guide strategic momentum in microalgae strain improvement program. This review focuses on the recent and significant improvements in the omics resources, mutant libraries, and high throughput screening methodologies helpful to augment research in the model and non-model microalgae. Authors have also summarized the case studies on genetically engineered microalgae and highlight the opportunities and challenges that are emerging from the current progress in the application of genome-editing to facilitate microalgal strain improvement. Toward the end, the regulatory and biosafety issues in the use of genetically engineered microalgae in commercial applications are described.
Collapse
Affiliation(s)
- Gulshan Kumar
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Ajam Shekh
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, India
| | - Sunaina Jakhu
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Yogesh Sharma
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Ritu Kapoor
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Tilak Raj Sharma
- Division of Crop Science, Indian Council of Agricultural Research, New Delhi, India
| |
Collapse
|
14
|
Fu L, Yan G, Li Y, Li Q, Zhou D. Phosphorus supply via a fed-batch strategy improves lipid heterotrophic production of Chlorella regularis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:31677-31685. [PMID: 32500492 DOI: 10.1007/s11356-020-09495-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Intracellular phosphorus (P) accumulation can improve microalgal growth and lipid synthesis. However, large excess of P causes cell poisoning. This study utilized a P-fed-batch strategy to investigate its potential to improve the utilization of the excessive P, while avoiding toxic side effects. This strategy contributed to a more complete utilization of the intracellularly stored P, which enhanced the microalgae biomass by 10-15% by upregulating the brassinosteroid growth hormone gene at a P-fed-batch frequency of 2-8. Furthermore, the lipid content increased by 4-16% via upregulation of lipid synthesis-related genes. As a result, the P-fed-batch strategy significantly increased the lipid production by 13-19%. The content of saturated fatty acid increased by ~ 100%, implying improved combustibility and oxidative stability. This is the first study of this P-fed-batch strategy and provides a new concept for the complete utilization of excessive P.
Collapse
Affiliation(s)
- Liang Fu
- Engineering Lab for Water Pollution Control and Resources Recovery, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Ge Yan
- Engineering Lab for Water Pollution Control and Resources Recovery, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Yunbao Li
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Qingcheng Li
- Engineering Lab for Water Pollution Control and Resources Recovery, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery, School of Environment, Northeast Normal University, Changchun, 130117, China.
| |
Collapse
|
15
|
Dzurendova S, Zimmermann B, Tafintseva V, Kohler A, Ekeberg D, Shapaval V. The influence of phosphorus source and the nature of nitrogen substrate on the biomass production and lipid accumulation in oleaginous Mucoromycota fungi. Appl Microbiol Biotechnol 2020; 104:8065-8076. [PMID: 32789746 PMCID: PMC7447667 DOI: 10.1007/s00253-020-10821-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/28/2020] [Accepted: 08/05/2020] [Indexed: 12/26/2022]
Abstract
Abstract Oleaginous filamentous fungi grown under the nitrogen limitation, accumulate high amounts of lipids in the form of triacylglycerides (TAGs) with fatty acid profiles similar to plant and fish oils. In this study, we investigate the effect of six phosphorus source concentrations combined with two types of nitrogen substrate (yeast extract and ammonium sulphate), on the biomass formation, lipid production, and fatty acid profile for nine oleaginous Mucoromycota fungi. The analysis of fatty acid profiles was performed by gas chromatography with flame ionization detector (GC-FID) and the lipid yield was estimated gravimetrically. Yeast extract could be used as both nitrogen and phosphorus source, without additional inorganic phosphorus supplementation. The use of inorganic nitrogen source (ammonium sulphate) requires strain-specific optimization of phosphorus source amount to obtain optimal lipid production regarding quantity and fatty acid profiles. Lipid production was decreased in ammonium sulphate-based media when phosphorus source was limited in all strains except for Rhizopus stolonifer. High phosphorus source concentration inhibited the growth of Mortierella fungi. The biomass (22 g/L) and lipid (14 g/L) yield of Umbelopsis vinacea was the highest among all the tested strains. Key points • The strain specific P requirements of Mucoromycota depend on the nature of N source. • Yeast extract leads to consistent biomass and lipid yield and fatty acids profiles. • Umbelopsis vinacea showed the highest biomass (22 g/L) and lipid (14 g/L) yield. • High P source amounts inhibit the growth of Mortierella fungi. Electronic supplementary material The online version of this article (10.1007/s00253-020-10821-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Simona Dzurendova
- Faculty of Science and Technology, Norwegian University of Life Sciences, Droebakveien 31, 1430, Aas, Norway.
| | - Boris Zimmermann
- Faculty of Science and Technology, Norwegian University of Life Sciences, Droebakveien 31, 1430, Aas, Norway
| | - Valeria Tafintseva
- Faculty of Science and Technology, Norwegian University of Life Sciences, Droebakveien 31, 1430, Aas, Norway
| | - Achim Kohler
- Faculty of Science and Technology, Norwegian University of Life Sciences, Droebakveien 31, 1430, Aas, Norway
| | - Dag Ekeberg
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Christian Magnus Falsens vei 1, 1433, Aas, Norway
| | - Volha Shapaval
- Faculty of Science and Technology, Norwegian University of Life Sciences, Droebakveien 31, 1430, Aas, Norway
| |
Collapse
|
16
|
Bauer LM, Rodrigues E, Rech R. Potential of immobilized Chlorella minutissima for the production of biomass, proteins, carotenoids and fatty acids. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
17
|
Shahid A, Malik S, Zhu H, Xu J, Nawaz MZ, Nawaz S, Asraful Alam M, Mehmood MA. Cultivating microalgae in wastewater for biomass production, pollutant removal, and atmospheric carbon mitigation; a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135303. [PMID: 31818584 DOI: 10.1016/j.scitotenv.2019.135303] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/27/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Water shortage is one of the leading global problems along with the depletion of energy resources and environmental deterioration. Recent industrialization, global mobility, and increasing population have adversely affected the freshwater resources. The wastewater sources are categorized as domestic, agricultural and industrial effluents and their disposal into water bodies poses a harmful impact on human and animal health due to the presence of higher amounts of nitrogen, phosphorus, sulfur, heavy metals and other organic/inorganic pollutants. Several conventional treatment methods have been employed, but none of those can be termed as a universal method due to their high cost, less efficiency, and non-environment friendly nature. Alternatively, wastewater treatment using microalgae (phycoremediation) offers several advantages over chemical-based treatment methods. Microalgae cultivation using wastewater offers the highest atmospheric carbon fixation rate (1.83 kg CO2/kg of biomass) and fastest biomass productivity (40-50% higher than terrestrial crops) among all terrestrial bio-remediators with concomitant pollutant removal (80-100%). Moreover, the algal biomass may contain high-value metabolites including omega-3-fatty acids, pigments, amino acids, and high sugar content. Hence, after extraction of high-value compounds, residual biomass can be either directly converted to energy through thermochemical transformation or can be used to produce biofuels through biological fermentation or transesterification. This review highlights the recent advances in microalgal biotechnology to establish a biorefinery approach to treat wastewater. The articulation of wastewater treatment facilities with microalgal biorefinery, the use of microalgal consortia, the possible merits, and demerits of phycoremediation are also discussed. The impact of wastewater-derived nutrient stress and its exploitation to modify the algal metabolite content in view of future concerns of cost-benefit ratios of algal biorefineries is also highlighted.
Collapse
Affiliation(s)
- Ayesha Shahid
- Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Sana Malik
- Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Hui Zhu
- School of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, People's Republic of China
| | - Jianren Xu
- College of Bioscience and Engineering, North Minzu University, Yinchuan 750021, Ningxia, China
| | - Muhammad Zohaib Nawaz
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; Department of Computer Science, The University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Shahid Nawaz
- Department of Chemistry, The University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Md Asraful Alam
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Muhammad Aamer Mehmood
- School of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, People's Republic of China; Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| |
Collapse
|
18
|
Scenedesmus pecsensis cultivation in rice mill effluent using commercial scale nutrient sources. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2019.100379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Piligaev AV, Sorokina KN, Samoylova YV, Parmon VN. Production of Microalgal Biomass with High Lipid Content and Their Catalytic Processing Into Biodiesel: a Review. CATALYSIS IN INDUSTRY 2020. [DOI: 10.1134/s207005041904007x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Biomass and lipid induction strategies in microalgae for biofuel production and other applications. Microb Cell Fact 2019; 18:178. [PMID: 31638987 PMCID: PMC6805540 DOI: 10.1186/s12934-019-1228-4] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/04/2019] [Indexed: 11/20/2022] Open
Abstract
The use of fossil fuels has been strongly related to critical problems currently affecting society, such as: global warming, global greenhouse effects and pollution. These problems have affected the homeostasis of living organisms worldwide at an alarming rate. Due to this, it is imperative to look for alternatives to the use of fossil fuels and one of the relevant substitutes are biofuels. There are different types of biofuels (categories and generations) that have been previously explored, but recently, the use of microalgae has been strongly considered for the production of biofuels since they present a series of advantages over other biofuel production sources: (a) they don’t need arable land to grow and therefore do not compete with food crops (like biofuels produced from corn, sugar cane and other plants) and; (b) they exhibit rapid biomass production containing high oil contents, at least 15 to 20 times higher than land based oleaginous crops. Hence, these unicellular photosynthetic microorganisms have received great attention from researches to use them in the large-scale production of biofuels. However, one disadvantage of using microalgae is the high economic cost due to the low-yields of lipid content in the microalgae biomass. Thus, development of different methods to enhance microalgae biomass, as well as lipid content in the microalgae cells, would lead to the development of a sustainable low-cost process to produce biofuels. Within the last 10 years, many studies have reported different methods and strategies to induce lipid production to obtain higher lipid accumulation in the biomass of microalgae cells; however, there is not a comprehensive review in the literature that highlights, compares and discusses these strategies. Here, we review these strategies which include modulating light intensity in cultures, controlling and varying CO2 levels and temperature, inducing nutrient starvation in the culture, the implementation of stress by incorporating heavy metal or inducing a high salinity condition, and the use of metabolic and genetic engineering techniques coupled with nanotechnology.
Collapse
|
21
|
Grossmann L, Hinrichs J, Weiss J. Cultivation and downstream processing of microalgae and cyanobacteria to generate protein-based technofunctional food ingredients. Crit Rev Food Sci Nutr 2019; 60:2961-2989. [DOI: 10.1080/10408398.2019.1672137] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Lutz Grossmann
- Department of Food Physics and Meat Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Jörg Hinrichs
- Department of Soft Matter Science and Dairy Technology, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Jochen Weiss
- Department of Food Physics and Meat Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
22
|
Fu L, Li Q, Yan G, Zhou D, Crittenden JC. Hormesis effects of phosphorus on the viability of Chlorella regularis cells under nitrogen limitation. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:121. [PMID: 31110562 PMCID: PMC6513516 DOI: 10.1186/s13068-019-1458-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/02/2019] [Indexed: 06/01/2023]
Abstract
BACKGROUND Phosphorus (P) is an essential element of microalgae, which is either required for anabolism or for energy metabolism. When employing a nitrogen limitation strategy to trigger microalgal intracellular lipid accumulation, P supplementation was always simultaneously applied to compensate for the accompanied growth inhibition. RESULTS This study identified that P exerts hormesis effects on microalgae. Slight excess of P (≤ 45 mg L-1) under nitrogen limitation condition stimulated the cell growth of Chlorella regularis and achieved a 10.2% biomass production increase. This also improved mitochondrial activity by 25.0% compared to control (P = 5.4 mg L-1). The lipid productivity reached 354.38 mg (L d)-1, which increased by 39.3% compared to control. Such an improvement was caused by the intracellularly stored polyphosphate energy pool. However, large excess of P (250 mg L-1) inhibited the cell growth by 38.8% and mitochondrial activity decreased by 71.3%. C. regularis cells showed obvious poisoning status, such as enlarged size, plasmolysis, deformation of cell walls, and disorganization of organelles. This is probably because the over-accumulated P protonated the amide-N and disrupted membrane permeability. CONCLUSIONS These results provide new insight into the roles of P in microalgae lipid production: P does not always play a positive role under nitrogen limitation conditions.
Collapse
Affiliation(s)
- Liang Fu
- Engineering Lab for Water Pollution Control and Resources Recovery, School of Environment, Northeast Normal University, Changchun, 130117 People’s Republic of China
| | - Qingcheng Li
- Engineering Lab for Water Pollution Control and Resources Recovery, School of Environment, Northeast Normal University, Changchun, 130117 People’s Republic of China
| | - Ge Yan
- Engineering Lab for Water Pollution Control and Resources Recovery, School of Environment, Northeast Normal University, Changchun, 130117 People’s Republic of China
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery, School of Environment, Northeast Normal University, Changchun, 130117 People’s Republic of China
| | - John C. Crittenden
- Engineering Lab for Water Pollution Control and Resources Recovery, School of Environment, Northeast Normal University, Changchun, 130117 People’s Republic of China
- Brook Byers Institute for Sustainable Systems, and School of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| |
Collapse
|
23
|
Singh NK, Naira VR, Maiti SK. Production of biodiesel by autotrophic Chlorella pyrenoidosa in a sintered disc lab scale bubble column photobioreactor under natural sunlight. Prep Biochem Biotechnol 2019; 49:255-269. [DOI: 10.1080/10826068.2018.1536991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Navodit K. Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Venkateswara R. Naira
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Soumen K. Maiti
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
24
|
Bharte S, Desai K. The enhanced lipid productivity of Chlorella minutissima and Chlorella pyrenoidosa by carbon coupling nitrogen manipulation for biodiesel production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:3492-3500. [PMID: 30519914 DOI: 10.1007/s11356-018-3757-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
Biodiesel production from microalgae has been researched extensively and attempted to commercialize on a large scale, but there are major hurdles in the production process like harvesting and low lipid content, which should be studied to enhance the process and make it economical. Present study aimed to improve the lipid productivity of Chlorella minutissima and Chlorella pyrenoidosa by modifying the carbon and nitrogen content of the medium. Both organisms were grown in BG11 medium for the first 6 days and thereafter grown in a modified BG11 medium completely deprived of nitrogen for 2 to 10 days. Nitrogen deprivation increased the lipid productivity of Chlorella minutissima to 20% and that of Chlorella pyrenoidosa to 17.6% by day 6. This was further coupled with carbon addition in the form of citric acid (5 g/L), sodium acetate (5 g/L), sodium carbonate (5 g/L), and sodium potassium tartarate (5 g/L), which increased the total lipid productivity of Chlorella minutissima up to 24% and that of Chlorella pyrenoidosa up to 23%. The highest lipid productivity of up to 24% for Chlorella minutissima and up to 23% for Chlorella pyrenoidosa was observed with nitrogen deprivation coupled with sodium acetate. Acidic transesterification revealed the presence of fatty acid methyl esters, majority of which consisted of hexadecanoic acid methyl ester and octadecanoic acid methyl ester. Maximum of 3% fatty acid methyl esters for Chlorella minutissima and 4% for Chlorella pyrenoidosa were obtained under nitrogen deprivation and sodium acetate as a carbon source. Thus, nitrogen deprivation coupled with sodium acetate as an increased carbon source in BG11 medium helps to increase the lipid productivity of Chlorella minutissima and Chlorella pyrenoidosa, and produces long-chain fatty acid methyl esters of C17 and C19 along with C21, C25, and C29.
Collapse
Affiliation(s)
- Supriya Bharte
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed-to-be) University, Mumbai, Maharashtra, India
| | - Krutika Desai
- Department of Microbiology, SVKM's Mithibai College of Arts, Chauhan Institute of Science & Amrutben Jivanlal College of Commerce and Economics, Vile Parle West, Mumbai, Maharashtra, 400056, India.
| |
Collapse
|
25
|
Gao B, Huang L, Wang F, Chen A, Zhang C. Bilateral and simultaneous accumulation of lipid and biomass in the novel oleaginous green microalga Tetradesmus bernardii under mixotrophic growth. ALGAL RES 2019. [DOI: 10.1016/j.algal.2018.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Li Q, Fu L, Wang Y, Zhou D, Rittmann BE. Excessive phosphorus caused inhibition and cell damage during heterotrophic growth of Chlorella regularis. BIORESOURCE TECHNOLOGY 2018; 268:266-270. [PMID: 30081286 DOI: 10.1016/j.biortech.2018.07.148] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/28/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Abstract
A high phosphorus concentration is widely accepted as favorable for enhancing both microalgae growth and lipid accumulation; however, excessively high P could be counter-productive. In this study, we investigated the effects of increasing P levels (5.4, 25, 45, 150, and 250 mg-P L-1) on the heterotrophic cultivation of Chlorella regularis. Microalgae growth was inhibited and cells were severely damaged in response to highly excessive P levels (≥150 mg-P L-1). In particular, 250 mg-P L-1 resulted in a ∼40% decrease in cell density and a ∼70% loss of cell viability. Microalgae damage induced by excessive phosphorus included enlarged cell size, deformation of cell walls, and disorganization of organelles. These negative effects were associated with the over-accumulation of polyphosphates within cells, which may further cause binding of P to intracellular components. Although P is an essential nutrient, excessive P lowers cell growth and viability.
Collapse
Affiliation(s)
- Qingcheng Li
- Engineering Lab for Water Pollution Control and Resources Recovery, School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Liang Fu
- Engineering Lab for Water Pollution Control and Resources Recovery, School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Yue Wang
- Engineering Lab for Water Pollution Control and Resources Recovery, School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery, School of Environment, Northeast Normal University, Changchun 130117, PR China.
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5701, USA
| |
Collapse
|
27
|
Utilization of Organic Liquid Fertilizer in Microalgae Cultivation for Biodiesel Production. BIOTECHNOL BIOPROC E 2018. [DOI: 10.1007/s12257-018-0081-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Chai S, Shi J, Huang T, Guo Y, Wei J, Guo M, Li L, Dou S, Liu L, Liu G. Characterization of Chlorella sorokiniana growth properties in monosaccharide-supplemented batch culture. PLoS One 2018; 13:e0199873. [PMID: 29969497 PMCID: PMC6029798 DOI: 10.1371/journal.pone.0199873] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 06/15/2018] [Indexed: 11/18/2022] Open
Abstract
To reveal growth properties of Chlorella sorokiniana UTEX 1230, four monosaccharides (glucose, fructose, galactose and xylose) were individually supplemented into medium as carbon sources for the cultivation of C. sorokiniana UTEX 1230. Supplementation with glucose increased OD750, biomass and lipid yield but decreased protein abundance per unit dry weight of biomass under all concentrations examined, the maximum OD750, biomass and lipid yield increased 2.04, 6.78 and 12.43 times, respectively, compared with autotrophic controls. A low concentration of glucose (<4 g/L) simultaneously promoted the biosynthesis of chlorophylls and protein abundance per unit culture volume, but decreased the lipid content per unit dry weight of biomass and all supplemented glucose can be exhausted within 7 days. Higher glucose concentrations (≥4 g/L) decreased the biosynthesis of chlorophylls and protein abundance per unit culture volume, but increased the lipid content per unit dry weight of biomass. In glucose supplemented scenario, C. sorokiniana UTEX 1230 growth was light-independent. Supplementation with fructose promoted C. sorokiniana UTEX 1230 growth to a much lesser extent compared with glucose, whereas supplementation with galactose had no effect and supplementation with xylose even inhibited growth. Our findings represent basic experimental data on the effect of monosaccharides and can serve as the basis for a robust cultivation system to increase biomass and lipid yield.
Collapse
Affiliation(s)
- Shuaijie Chai
- Institute of Bioenergy, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Jianan Shi
- Institute of Bioenergy, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Teng Huang
- Institute of Bioenergy, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Yalu Guo
- Institute of Bioenergy, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Jian Wei
- Institute of Bioenergy, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Meicen Guo
- Institute of Bioenergy, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Liyun Li
- Institute of Bioenergy, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Shijuan Dou
- Institute of Bioenergy, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Lijuan Liu
- Institute of Bioenergy, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Guozhen Liu
- Institute of Bioenergy, Hebei Agricultural University, Baoding, Hebei Province, China
- * E-mail:
| |
Collapse
|
29
|
Wang L, Wang H, Chen X, Zhuang Y, Yu Z, Zhou T. Acclimation process of cultivating Chlorella vulgaris in toxic excess sludge extract and its response mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:858-869. [PMID: 29455136 DOI: 10.1016/j.scitotenv.2018.02.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/16/2017] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
Chlorella vulgaris was cultivated in the gradually increased proportion of toxic sludge extracts for acclimation, which was obtained from SBR treated synthetic wastewater containing mixed chlorophenols (2,4,6-trichlorophenol and 4-chlorophenol). The growth of C. vulgaris was obviously improved after acclimation with the cell number in the 100% sludge group was 22.75±0.85∗106cellmL-1, which was relatively more than the BG11 control group's (20.80±0.35∗106cellmL-1) and apparently over the 100% sludge group (10.78±0.45∗106cellmL-1). Compared with the sludge control sludge group, C. vulgaris in the acclimation group gained 24.1% and 18.2% more relative removal rate about TOC and ecotoxicity, respectively. Proteomics analysis showed that protein spots were more clear and centralized and the clarifications of the different protein spots narrowed from 8 to 5 after acclimation. Proteins related to oxidoreducase activity and energy metabolism were over expressed and C. vulgaris could select the metabolic pathways, especially enhanced pyruvate fermentation, TCA cycle, and glycolysis after acclimation, by over accumulating the corresponding vital enzymes. Conclusively, acclimation was a good method to improve the removal ability and growth of C. vulgaris and algae could acclimatize itself to grow upon the toxic sludge extracts by metabolic selection. We suppose acclimation process was a potential method for algae wastewater treatment and algae cultivation without or reduce dilution.
Collapse
Affiliation(s)
- Lu Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, PR China; National Engineering Laboratory for High-concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), East China University of Science and Technology, Shanghai 200237, PR China
| | - Hualin Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, PR China; National Engineering Laboratory for High-concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), East China University of Science and Technology, Shanghai 200237, PR China.
| | - Xiurong Chen
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, PR China; National Engineering Laboratory for High-concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), East China University of Science and Technology, Shanghai 200237, PR China
| | - Youjun Zhuang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, PR China; National Engineering Laboratory for High-concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), East China University of Science and Technology, Shanghai 200237, PR China
| | - Zeya Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, PR China; National Engineering Laboratory for High-concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), East China University of Science and Technology, Shanghai 200237, PR China
| | - TianJun Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, PR China; National Engineering Laboratory for High-concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), East China University of Science and Technology, Shanghai 200237, PR China
| |
Collapse
|
30
|
Systems-level analysis of metabolic mechanism following nitrogen limitation in benthic dinoflagellate Prorocentrum lima. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
31
|
Zhao Y, Li D, Xu JW, Zhao P, Li T, Ma H, Yu X. Melatonin enhances lipid production in Monoraphidium sp. QLY-1 under nitrogen deficiency conditions via a multi-level mechanism. BIORESOURCE TECHNOLOGY 2018. [PMID: 29536873 DOI: 10.1016/j.biortech.2018.03.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this study, melatonin (MT) promoted lipid accumulation in Monoraphidium sp. QLY-1 under nitrogen deficiency conditions. The lipid accumulation increased 1.22- and 1.36-fold compared with a nitrogen-starved medium and a normal BG-11 medium, respectively. The maximum lipid content was 51.38%. The reactive oxygen species (ROS) level in the presence of melatonin was lower than that in the control group, likely because of the high antioxidant activities. The application of melatonin upregulated the gibberellin acid (GA) production and rbcL and accD expression levels but downregulated the abscisic acid (ABA) content and pepc expression levels. These findings demonstrated that exogenous melatonin could further improve the lipid production in Monoraphidium sp. QLY-1 by regulating antioxidant systems, signalling molecules, and lipid biosynthesis-related gene expression under nitrogen deficiency conditions.
Collapse
Affiliation(s)
- Yongteng Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Dafei Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jun-Wei Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Peng Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Tao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Huixian Ma
- School of Foreign Languages, Kunming University, Kunming 650200, China
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
32
|
Process optimization involving critical evaluation of oxygen transfer, oxygen uptake and nitrogen limitation for enhanced biomass and lipid production by oleaginous yeast for biofuel application. Bioprocess Biosyst Eng 2018; 41:1103-1113. [DOI: 10.1007/s00449-018-1939-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 04/11/2018] [Indexed: 12/18/2022]
|
33
|
Arora N, Pienkos PT, Pruthi V, Poluri KM, Guarnieri MT. Leveraging algal omics to reveal potential targets for augmenting TAG accumulation. Biotechnol Adv 2018; 36:1274-1292. [PMID: 29678388 DOI: 10.1016/j.biotechadv.2018.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 04/11/2018] [Accepted: 04/15/2018] [Indexed: 02/08/2023]
Abstract
Ongoing global efforts to commercialize microalgal biofuels have expedited the use of multi-omics techniques to gain insights into lipid biosynthetic pathways. Functional genomics analyses have recently been employed to complement existing sequence-level omics studies, shedding light on the dynamics of lipid synthesis and its interplay with other cellular metabolic pathways, thus revealing possible targets for metabolic engineering. Here, we review the current status of algal omics studies to reveal potential targets to augment TAG accumulation in various microalgae. This review specifically aims to examine and catalog systems level data related to stress-induced TAG accumulation in oleaginous microalgae and inform future metabolic engineering strategies to develop strains with enhanced bioproductivity, which could pave a path for sustainable green energy.
Collapse
Affiliation(s)
- Neha Arora
- Department of Biotechnology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Philip T Pienkos
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Vikas Pruthi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Michael T Guarnieri
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401, USA.
| |
Collapse
|
34
|
Wang L, Wang H, Chen X, Xu Y, Zhou T, Wang X, Lu Q, Ruan R. Using Chlorella vulgaris to treat toxic excess sludge extract, and identification of its response mechanism by proteomics approach. BIORESOURCE TECHNOLOGY 2018; 253:188-196. [PMID: 29353749 DOI: 10.1016/j.biortech.2018.01.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/05/2018] [Accepted: 01/06/2018] [Indexed: 06/07/2023]
Abstract
Chlorella vulgaris was cultivated in varying proportions of toxic sludge extracts obtained from a sequencing batch reactor for treating synthetic wastewater containing chlorophenols. C. vulgaris could reduce the ecotoxicity from sludge extracts, and a positive correlation was noted between ecotoxicity removal and total organic carbon removal. In terms of cell density, the optimal proportion of sludge extracts required for the cultivation of C. vulgaris was lower than 50%. The correlation between protein content in per 106 algae and inhibition extent of ecotoxicity of the 5 groups on the day of inoculation (0.9182, p < .05) indicated a positive relationship between algal protein secretion and ecotoxicity. According to the protein expression and differential protein expression analysis, we concluded that C. vulgaris produced proteins that involved in the stress response/redox system and energy metabolism/biosynthesis to respond to the toxic environment and some other proteins related to mixotrophic metabolism.
Collapse
Affiliation(s)
- Lu Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, PR China; National Engineering Laboratory for High-concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), East China University of Science and Technology, Shanghai 200237, PR China; Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55108, United States
| | - Hualin Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, PR China; National Engineering Laboratory for High-concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), East China University of Science and Technology, Shanghai 200237, PR China
| | - Xiurong Chen
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, PR China; National Engineering Laboratory for High-concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), East China University of Science and Technology, Shanghai 200237, PR China
| | - Yan Xu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, PR China; National Engineering Laboratory for High-concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), East China University of Science and Technology, Shanghai 200237, PR China
| | - Tianjun Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, PR China; National Engineering Laboratory for High-concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), East China University of Science and Technology, Shanghai 200237, PR China
| | - Xiaoxiao Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, PR China; National Engineering Laboratory for High-concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), East China University of Science and Technology, Shanghai 200237, PR China
| | - Qian Lu
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55108, United States
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55108, United States.
| |
Collapse
|
35
|
Chen J, Li J, Zhang X, Tyagi RD, Dong W. Ultra-sonication application in biodiesel production from heterotrophic oleaginous microorganisms. Crit Rev Biotechnol 2018; 38:902-917. [DOI: 10.1080/07388551.2017.1418733] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jiaxin Chen
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, P.R. China
- Eau, Terre et Environnement, INRS, Québec, Canada
| | - Ji Li
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, P.R. China
| | - Xiaolei Zhang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, P.R. China
| | | | - Wenyi Dong
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, P.R. China
| |
Collapse
|
36
|
Yang L, Chen J, Qin S, Zeng M, Jiang Y, Hu L, Xiao P, Hao W, Hu Z, Lei A, Wang J. Growth and lipid accumulation by different nutrients in the microalga Chlamydomonas reinhardtii. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:40. [PMID: 29456627 PMCID: PMC5809890 DOI: 10.1186/s13068-018-1041-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/04/2018] [Indexed: 05/09/2023]
Abstract
BACKGROUND Individual nutrient depletion is widely used to induce lipid accumulation in microalgae, which also causes cell growth inhibition and decreases the total biomass. Thus, improving the lipid accumulation without biomass loss in the nutrient deficiency cells becomes a potential cost-effective treatment for cheaper biofuels. METHODS In this study, the effects of different nutritional conditions on the growth and contents of lipids in Chlamydomonas reinhardtii were compared, and the metabolic profiles under different nutritional conditions were also investigated. RESULTS We showed that similar to other microalgae, nitrogen or phosphorus deficiency inhibited the growth of Chlamydomonas and combined nutrition deficiency reduced biomass by up to 31.7%, though lipid contents in cells (g/g dry weight [DW]) were significantly increased. The addition of sodium acetate countered this growth inhibition that resulted from nitrogen and phosphorus deficiency, with significantly increased biomass. Furthermore, the combination of 4 g/L sodium acetate supplementation with nitrogen and phosphorous deficiency increased total fatty acid yield (mg/L) by 93.0 and 150.1% compared to nutrient-depleted and normal culture conditions, respectively. Metabolite content was affected by the different nutritional conditions, especially metabolites that are involved in lipid metabolism, amino acid metabolism and metabolism of external substances. CONCLUSION Further research into these metabolites could shed light onto the relationship between cell growth inhibition and fatty acid accumulation in Chlamydomonas.
Collapse
Affiliation(s)
- Lei Yang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 Guangdong People’s Republic of China
| | - Jun Chen
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 Guangdong People’s Republic of China
| | - Shan Qin
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 Guangdong People’s Republic of China
| | - Min Zeng
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 Guangdong People’s Republic of China
| | - Yongguang Jiang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 Guangdong People’s Republic of China
| | - Lang Hu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 Guangdong People’s Republic of China
| | - Peng Xiao
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 Guangdong People’s Republic of China
| | - Wenlong Hao
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 Guangdong People’s Republic of China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 Guangdong People’s Republic of China
| | - Anping Lei
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 Guangdong People’s Republic of China
| | - Jiangxin Wang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 Guangdong People’s Republic of China
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 Guangdong People’s Republic of China
| |
Collapse
|
37
|
Huang W, Lin Y, He M, Gong Y, Huang J. Induced High-Yield Production of Zeaxanthin, Lutein, and β-Carotene by a Mutant of Chlorella zofingiensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:891-897. [PMID: 29319312 DOI: 10.1021/acs.jafc.7b05400] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Natural resources of zeaxanthin are extremely limited. A Chlorella zofingiensis mutant (CZ-bkt1), which could accumulate high amounts of zeaxanthin, was generated and characterized. CZ-bkt1 was achieved by treating the algal cells with a chemical mutagen followed by a color-based colony-screening approach. CZ-bkt1 was found to consist of a dysfunctional carotenoid ketolase, leading to the accumulation of zeaxanthin rather than to its downstream ketocarotenoid astaxanthin. Light irradiation, glucose, NaCl, and nitrogen deficiency all induced CZ-bkt1 to accumulate zeaxanthin. CZ-bkt1 accumulated zeaxanthin up to 7.00 ± 0.82 mg/g when induced by high-light irradiation and nitrogen deficiency and up to 36.79 ± 2.23 mg/L by additional feeding with glucose. Furthermore, in addition to zeaxanthin, CZ-bkt1 also accumulated high amounts of β-carotene (7.18 ± 0.72 mg/g or 34.64 ± 1.39 mg/L) and lutein (13.81 ± 1.23 mg/g or 33.97 ± 2.61 mg/L). CZ-bkt1 is the sole species up to date with the ability to accumulate high amounts of the three carotenoids that are essential for human health.
Collapse
Affiliation(s)
- Weiping Huang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, China
| | - Yan Lin
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, China
| | - Mingxia He
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, China
| | - Yuhao Gong
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, China
| | - Junchao Huang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, China
| |
Collapse
|
38
|
Abd Elfata R, Wagih Abou G. Influence of Various Concentrations of Phosphorus on the Antibacterial, Antioxidant and Bioactive Components of Green Microalgae Scenedesmus obliquus. INT J PHARMACOL 2017. [DOI: 10.3923/ijp.2018.99.107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
Choo MY, Oi LE, Show PL, Chang JS, Ling TC, Ng EP, Phang SM, Juan JC. Recent progress in catalytic conversion of microalgae oil to green hydrocarbon: A review. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.06.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
40
|
Pandit PR, Fulekar MH, Karuna MSL. Effect of salinity stress on growth, lipid productivity, fatty acid composition, and biodiesel properties in Acutodesmus obliquus and Chlorella vulgaris. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:13437-13451. [PMID: 28386901 DOI: 10.1007/s11356-017-8875-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 03/20/2017] [Indexed: 05/08/2023]
Abstract
Two microalgae strains including Chlorella vulgaris and Acutodesmus obliquus were grown on BG11 medium with salinity stress ranging from 0.06 to 0.4 M NaCl. Highest lipid content in C. vulgaris and A. obliquus was 49 and 43% in BG11 amended with 0.4 M NaCl. The microalgal strains C. vulgaris and A. obliquus grow better at 0.06 M NaCl concentration than control condition. At 0.06 M NaCl, improved dry biomass content in C. vulgaris and A. obliquus was 0.92 and 0.68 gL-1, respectively. Stress biomarkers like reactive oxygen species, antioxidant enzyme catalase, and ascorbate peroxidase were also lowest at 0.06 M NaCl concentration revealing that both the microalgal strains are well acclimatized at 0.06 M NaCl concentration. The fatty acid composition of the investigated microalgal strains was also improved by increased NaCl concentration. At 0.4 M NaCl, palmitic acid (37%), oleic acid (15.5%), and linoleic acid (20%) were the dominant fatty acids in C. vulgaris while palmitic acid (54%) and stearic acid (26.6%) were major fatty acids found in A. obliquus. Fatty acid profiling of C. vulgaris and A. obliquus significantly varied with salinity concentration. Therefore, the study showed that salt stress is an effective stress that could increase not only the lipid content but also improved the fatty acid composition which could make C. vulgaris and A. obliquus potential strains for biodiesel production.
Collapse
Affiliation(s)
- Priti Raj Pandit
- School of Environment and Sustainable Development, Central university of Gujarat, Gandhinagar, Gujarat, India
| | - Madhusudan H Fulekar
- School of Environment and Sustainable Development, Central university of Gujarat, Gandhinagar, Gujarat, India.
| | | |
Collapse
|
41
|
Guo X, Fan C, Chen Y, Wang J, Yin W, Wang RRC, Hu Z. Identification and characterization of an efficient acyl-CoA: diacylglycerol acyltransferase 1 (DGAT1) gene from the microalga Chlorella ellipsoidea. BMC PLANT BIOLOGY 2017; 17:48. [PMID: 28222675 PMCID: PMC5319178 DOI: 10.1186/s12870-017-0995-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 02/02/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND Oil in the form of triacylglycerols (TAGs) is quantitatively the most important storage form of energy for eukaryotic cells. Diacylglycerol acyltransferase (DGAT) is considered the rate-limiting enzyme for TAG accumulation. Chlorella, a unicellular eukaryotic green alga, has attracted much attention as a potential feedstock for renewable energy production. However, the function of DGAT1 in Chlorella has not been reported. RESULTS A full-length cDNA encoding a putative diacylglycerol acyltransferase 1 (DGAT1, EC 2.3.1.20) was obtained from Chlorella ellipsoidea. The 2,142 bp open reading frame of this cDNA, designated CeDGAT1, encodes a protein of 713 amino acids showing no more than 40% identity with DGAT1s of higher plants. Transcript analysis showed that the expression level of CeDGAT1 markedly increased under nitrogen starvation, which led to significant triacylglycerol (TAG) accumulation. CeDGAT1 activity was confirmed in the yeast quadruple mutant strain H1246 by restoring its ability to produce TAG. Upon expression of CeDGAT1, the total fatty acid content in wild-type yeast (INVSc1) increased by 142%, significantly higher than that transformed with DGAT1s from higher plants, including even the oil crop soybean. The over-expression of CeDGAT1 under the NOS promoter in wild-type Arabidopsis thaliana and Brassica napus var. Westar significantly increased the oil content by 8-37% and 12-18% and the average 1,000-seed weight by 9-15% and 6-29%, respectively, but did not alter the fatty acid composition of the seed oil. The net increase in the 1,000-seed total lipid content was up to 25-50% in both transgenic Arabidopsis and B. napus. CONCLUSIONS We identified a gene encoding DGAT1 in C. ellipsoidea and confirmed that it plays an important role in TAG accumulation. This is the first functional analysis of DGAT1 in Chlorella. This information is important for understanding lipid synthesis and accumulation in Chlorella and for genetic engineering to enhance oil production in microalgae and oil plants.
Collapse
Affiliation(s)
- Xuejie Guo
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Chengming Fan
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yuhong Chen
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Jingqiao Wang
- Institute of Economical Crops, Yunnan Agricultural Academy, Kunming, 65023 China
| | - Weibo Yin
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Richard R. C. Wang
- United States Department of Agriculture, Agricultural Research Service, Forage and Range Research Laboratory, Utah State University, Logan, UT 84322-6300 USA
| | - Zanmin Hu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Present address: Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Chaoyang District, Beijing, 100101 China
| |
Collapse
|
42
|
Calixto CD, da Silva Santana JK, de Lira EB, Sassi PGP, Rosenhaim R, da Costa Sassi CF, da Conceição MM, Sassi R. Biochemical compositions and fatty acid profiles in four species of microalgae cultivated on household sewage and agro-industrial residues. BIORESOURCE TECHNOLOGY 2016; 221:438-446. [PMID: 27668876 DOI: 10.1016/j.biortech.2016.09.066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 06/06/2023]
Abstract
The potential of four regional microalgae species was evaluated in relation to their cell growth and biomass production when cultured in the following alternative media: bio-composts of fruit/horticultural wastes (HB), sugarcane waste and vinasse (VB) chicken excrements (BCE), raw chicken manure (RCM), and municipal domestic sewage (MDS). The cultures were maintained under controlled conditions and their growth responses, productivities, biochemical compositions, and the ester profiles of their biomasses were compared to the results obtained in the synthetic media. The MDS and HB media demonstrated promising results for cultivation, especially of Chlorella sp., Chlamydomonas sp., and Lagerheimia longiseta, which demonstrated productivities superior to those seen when grown on the control media. The highest lipid levels were obtained with the HB medium. The data obtained demonstrated the viability of cultivating microalgae and producing biomass in alternative media prepared from MDS and HB effluents to produce biodiesel.
Collapse
Affiliation(s)
- Clediana Dantas Calixto
- Laboratório de Ambientes Recifais e Biotecnologia com Microalgas - LARBIM, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, Campus I, João Pessoa, Paraíba CEP 58051-900, Brazil
| | - Jordana Kaline da Silva Santana
- Laboratório de Ambientes Recifais e Biotecnologia com Microalgas - LARBIM, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, Campus I, João Pessoa, Paraíba CEP 58051-900, Brazil
| | - Evandro Bernardo de Lira
- Laboratório de Ambientes Recifais e Biotecnologia com Microalgas - LARBIM, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, Campus I, João Pessoa, Paraíba CEP 58051-900, Brazil
| | - Patrícia Giulianna Petraglia Sassi
- Laboratório de Ambientes Recifais e Biotecnologia com Microalgas - LARBIM, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, Campus I, João Pessoa, Paraíba CEP 58051-900, Brazil
| | - Raul Rosenhaim
- Laboratório de Combustíveis e Materiais - LACOM, Universidade Federal da Paraíba, Campus I, João Pessoa, Paraíba CEP 58059-900, Brazil
| | - Cristiane Francisca da Costa Sassi
- Laboratório de Ambientes Recifais e Biotecnologia com Microalgas - LARBIM, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, Campus I, João Pessoa, Paraíba CEP 58051-900, Brazil
| | - Marta Maria da Conceição
- Centro de Tecnologia e Desenvolvimento Regional - CTDR, Universidade Federal da Paraíba, Av. dos Escoteiros, sn. Mangabeira VII, João Pessoa, PB CEP 58055-000, Brazil.
| | - Roberto Sassi
- Laboratório de Ambientes Recifais e Biotecnologia com Microalgas - LARBIM, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, Campus I, João Pessoa, Paraíba CEP 58051-900, Brazil
| |
Collapse
|
43
|
Strategies for Lipid Production Improvement in Microalgae as a Biodiesel Feedstock. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8792548. [PMID: 27725942 PMCID: PMC5048031 DOI: 10.1155/2016/8792548] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/20/2016] [Accepted: 07/25/2016] [Indexed: 01/04/2023]
Abstract
In response to the energy crisis, global warming, and climate changes, microalgae have received a great deal of attention as a biofuel feedstock. Due to a high lipid content in microalgal cells, microalgae present as a promising alternative source for the production of biodiesel. Environmental and culturing condition variations can alter lipid production as well as chemical compositions of microalgae. Therefore, application of the strategies to activate lipid accumulation opens the door for lipid overproduction in microalgae. Until now, many original studies regarding the approaches for enhanced microalgal lipid production have been reported in an effort to push forward the production of microalgal biodiesel. However, the current literature demonstrates fragmented information available regarding the strategies for lipid production improvement. From the systematic point of view, the review highlights the main approaches for microalgal lipid accumulation induction to expedite the application of microalgal biodiesel as an alternative to fossil diesel for sustainable environment. Of the several strategies discussed, the one that is most commonly applied is the design of nutrient (e.g., nitrogen, phosphorus, and sulfur) starvation or limitation. Other viable approaches such as light intensity, temperature, carbon dioxide, salinity stress, and metal influence can also achieve enhanced microalgal lipid production.
Collapse
|
44
|
Collotta M, Champagne P, Mabee W, Tomasoni G, Alberti M, Busi L, Leite GB. Environmental Assessment of Co-location Alternatives for a Microalgae Cultivation Plant: A Case Study in the City of Kingston (Canada). ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.egypro.2016.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
45
|
Michelon W, Da Silva MLB, Mezzari MP, Pirolli M, Prandini JM, Soares HM. Effects of Nitrogen and Phosphorus on Biochemical Composition of Microalgae Polyculture Harvested from Phycoremediation of Piggery Wastewater Digestate. Appl Biochem Biotechnol 2015; 178:1407-19. [DOI: 10.1007/s12010-015-1955-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/08/2015] [Indexed: 10/22/2022]
|
46
|
Advances in proteomics for production strain analysis. Curr Opin Biotechnol 2015; 35:111-7. [DOI: 10.1016/j.copbio.2015.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/28/2015] [Accepted: 05/12/2015] [Indexed: 11/22/2022]
|
47
|
Zhu S, Wang Y, Xu J, Shang C, Wang Z, Xu J, Yuan Z. Luxury uptake of phosphorus changes the accumulation of starch and lipid in Chlorella sp. under nitrogen depletion. BIORESOURCE TECHNOLOGY 2015; 198:165-71. [PMID: 26386419 DOI: 10.1016/j.biortech.2015.08.142] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/24/2015] [Accepted: 08/27/2015] [Indexed: 05/15/2023]
Abstract
The aim of this research was to study the effect of phosphorus supply on starch and lipid production under nitrogen starvation using Chlorella sp. as a model. High phosphate level had marginal effect on cell density but increased biomass growth. Massive phosphorus was assimilated quickly and mainly stored in the form of polyphosphate. The algal cells ceased phosphorus uptake when intracellular phosphorus reached a certain level. 5mM phosphate in the culture rendered a 16.7% decrease of starch synthesis and a 22.4% increase of lipid synthesis relative to low phosphate (0.17 mM). It is plausible that phosphate can regulate carbon partitioning between starch and lipid synthesis pathway by influencing ADP-glucose pyrophosphorylase activity. Moreover, high phosphate concentration enhanced the abundance of oleic acid, improving oil quality for biodiesel production. It is a promising cultivation strategy by integration of phosphorus removal from wastewater with biodiesel production for this alga.
Collapse
Affiliation(s)
- Shunni Zhu
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yajie Wang
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jin Xu
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Changhua Shang
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Zhongming Wang
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jingliang Xu
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Zhenhong Yuan
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
48
|
Pancha I, Chokshi K, Ghosh T, Paliwal C, Maurya R, Mishra S. Bicarbonate supplementation enhanced biofuel production potential as well as nutritional stress mitigation in the microalgae Scenedesmus sp. CCNM 1077. BIORESOURCE TECHNOLOGY 2015; 193:315-323. [PMID: 26142998 DOI: 10.1016/j.biortech.2015.06.107] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 06/18/2015] [Accepted: 06/19/2015] [Indexed: 06/04/2023]
Abstract
The aim of the present study was to find out the optimum sodium bicarbonate concentration to produce higher biomass with higher lipid and carbohydrate contents in microalgae Scenedesmus sp. CCNM 1077. The role of bicarbonate supplementation under different nutritional starvation conditions was also evaluated. The results clearly indicate that 0.6 g/L sodium bicarbonate was optimum concentration resulting in 20.91% total lipid and 25.56% carbohydrate along with 23% increase in biomass production compared to normal growth condition. Addition of sodium bicarbonate increased the activity of nutrient assimilatory enzymes, biomass, lipid and carbohydrate contents under different nutritional starvation conditions. Nitrogen starvation with bicarbonate supplementation resulted in 54.03% carbohydrate and 34.44% total lipid content in microalgae Scenedesmus sp. CCNM 1077. These findings show application of bicarbonate grown microalgae Scenedesmus sp. CCNM 1077 as a promising feedstock for biodiesel and bioethanol production.
Collapse
Affiliation(s)
- Imran Pancha
- Discipline of Salt & Marine Chemicals, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
| | - Kaumeel Chokshi
- Discipline of Salt & Marine Chemicals, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
| | - Tonmoy Ghosh
- Discipline of Salt & Marine Chemicals, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
| | - Chetan Paliwal
- Discipline of Salt & Marine Chemicals, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
| | - Rahulkumar Maurya
- Discipline of Salt & Marine Chemicals, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
| | - Sandhya Mishra
- Discipline of Salt & Marine Chemicals, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India.
| |
Collapse
|
49
|
Kuo CM, Chen TY, Lin TH, Kao CY, Lai JT, Chang JS, Lin CS. Cultivation of Chlorella sp. GD using piggery wastewater for biomass and lipid production. BIORESOURCE TECHNOLOGY 2015. [PMID: 26210147 DOI: 10.1016/j.biortech.2015.07.026] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The development of a culture system for Chlorella sp. GD to efficiently produce biomass and oil for biodiesel production was investigated. Chlorella sp. GD was cultivated with 0%, 25%, 50%, 75% and 100% piggery wastewater (diluted by medium) at 300 μmol m(-2) s(-1), a 2% CO2 aeration rate of 0.2 vvm and 26±1°C; after a 10-day culture in batch cultures, the maximum specific growth rate and biomass productivity of the microalga obtained in 100% piggery wastewater were 0.839 d(-1) and 0.681 g L(-1) d(-1), respectively. The highest lipid content and lipid productivity were 29.3% and 0.155 g L(-1) d(-1) at 25% wastewater, respectively. In semi-continuous cultures, the biomass and lipid productivities with 25-75% wastewater ratios were greater than 0.852 and 0.128 g L(-1) d(-1), respectively. These results show that Chlorella sp. GD grows efficiently in piggery wastewater, and that a stable growth performance was achieved for long-term microalgal cultivation in a semi-continuous culture.
Collapse
Affiliation(s)
- Chiu-Mei Kuo
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Tsai-Yu Chen
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Tsung-Hsien Lin
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Chien-Ya Kao
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan; Aquatic Technology Laboratories, Agricultural Technology Research Institute, Hsinchu, Taiwan
| | - Jinn-Tsyy Lai
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Sheng Lin
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
50
|
Combined enzymatic and mechanical cell disruption and lipid extraction of green alga Neochloris oleoabundans. Int J Mol Sci 2015; 16:7707-22. [PMID: 25853267 PMCID: PMC4425044 DOI: 10.3390/ijms16047707] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 03/17/2015] [Accepted: 03/27/2015] [Indexed: 11/28/2022] Open
Abstract
Microalgal biodiesel is one of the most promising renewable fuels. The wet technique for lipids extraction has advantages over the dry method, such as energy-saving and shorter procedure. The cell disruption is a key factor in wet oil extraction to facilitate the intracellular oil release. Ultrasonication, high-pressure homogenization, enzymatic hydrolysis and the combination of enzymatic hydrolysis with high-pressure homogenization and ultrasonication were employed in this study to disrupt the cells of the microalga Neochloris oleoabundans. The cell disruption degree was investigated. The cell morphology before and after disruption was assessed with scanning and transmission electron microscopy. The energy requirements and the operation cost for wet cell disruption were also estimated. The highest disruption degree, up to 95.41%, assessed by accounting method was achieved by the combination of enzymatic hydrolysis and high-pressure homogenization. A lipid recovery of 92.6% was also obtained by the combined process. The combined process was found to be more efficient and economical compared with the individual process.
Collapse
|