1
|
Ao TJ, Liu CG, Sun ZY, Zhao XQ, Tang YQ, Bai FW. Anaerobic digestion integrated with microbial electrolysis cell to enhance biogas production and upgrading in situ. Biotechnol Adv 2024; 73:108372. [PMID: 38714276 DOI: 10.1016/j.biotechadv.2024.108372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024]
Abstract
Anaerobic digestion (AD) is an effective and applicable technology for treating organic wastes to recover bioenergy, but it is limited by various drawbacks, such as long start-up time for establishing a stable process, the toxicity of accumulated volatile fatty acids and ammonia nitrogen to methanogens resulting in extremely low biogas productivities, and a large amount of impurities in biogas for upgrading thereafter with high cost. Microbial electrolysis cell (MEC) is a device developed for electrosynthesis from organic wastes by electroactive microorganisms, but MEC alone is not practical for production at large scales. When AD is integrated with MEC, not only can biogas production be enhanced substantially, but also upgrading of the biogas product performed in situ. In this critical review, the state-of-the-art progress in developing AD-MEC systems is commented, and fundamentals underlying methanogenesis and bioelectrochemical reactions, technological innovations with electrode materials and configurations, designs and applications of AD-MEC systems, and strategies for their enhancement, such as driving the MEC device by electricity that is generated by burning the biogas to improve their energy efficiencies, are specifically addressed. Moreover, perspectives and challenges for the scale up of AD-MEC systems are highlighted for in-depth studies in the future to further improve their performance.
Collapse
Affiliation(s)
- Tian-Jie Ao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Zhao-Yong Sun
- College of Architecture & Environment, Sichuan University, Chengdu 610000, China
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Yue-Qin Tang
- College of Architecture & Environment, Sichuan University, Chengdu 610000, China
| | - Feng-Wu Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
Dong J, Chen Z, Han F, Hu D, Ge H, Jiang B, Yan J, Zhuang S, Wang Y, Cui S, Liang Z. Performance of a novel up-flow electrocatalytic hydrolysis acidification reactor (UEHAR) coupled with anoxic/oxic system for treating coking wastewater. WATER RESEARCH 2024; 257:121670. [PMID: 38723347 DOI: 10.1016/j.watres.2024.121670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/25/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024]
Abstract
In this study, the performance of a novel up-flow electrocatalytic hydrolytic acidification reactor (UEHAR) and anoxic/oxic (ANO2/O2) combined system (S2) was compared with that of a traditional anaerobic/anoxic/oxic (ANA/ANO1/O1) system (S1) for treating coking wastewater at different hydraulic retention time (HRT). The effluent non-compliance rates of chemical oxygen demand (COD) of S2 were 45 %, 35 %, 25 % and 55 % lower than S1 with HRT of 94, 76, 65 and 54 h. The removal efficiency of benzene, toluene, ethylbenzene and xylene (BTEX) in S2 was 10.6 ± 2.4 % higher than that in S1. The effluent concentration of volatile phenolic compounds (VPs) in S2 was lower than 0.3 mg/L. The dehydrogenase activity (DHA) and adenosine triphosphate (ATP) of O2 were enhanced by 67.2 ± 26.3 % and 40.6 ± 14.2 % compared with O1, respectively. Moreover, COD was used to reflect the mineralization index of organic matter, and the positive correlation between COD removal rate and microbial activity, VPs, and BTEX was determined. These results indicated that S2 had extraordinary microbial activity, stable pollutant removal ability, and transcendental effluent compliance rate.
Collapse
Affiliation(s)
- Jian Dong
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Zhaobo Chen
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China.
| | - Fei Han
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Dongxue Hu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Hui Ge
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Bei Jiang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Jitao Yan
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Shuya Zhuang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Yifan Wang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Shiming Cui
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Zhibo Liang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| |
Collapse
|
3
|
Fan X, He L, Shi S, Huang Y, He X, Zhou Y, Zhou J. The coupling system of magnetite-enhanced thermophilic hydrolysis-acidification and denitrification for refractory organics removal from anaerobic digestate food waste effluent (ADFE). BIORESOURCE TECHNOLOGY 2023; 371:128601. [PMID: 36632852 DOI: 10.1016/j.biortech.2023.128601] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
The aim of this study was to remove the refractory organics from high-temperature anaerobic digestate food waste effluent by the coupling system of hydrolysis-acidification and denitrification. Iron-based materials (magnetite, zero-valent iron, and iron-carbon) were used to enhance the performance of thermophilic hydrolysis-acidification. Compared with the control group, magnetite had the best strengthening effect, increasing volatile fatty acids concentration and fluorescence intensity of easily biodegradable organics in the effluent by 47.6 % and 108.4 %, respectively. The coupling system of magnetite-enhanced thermophilic hydrolysis-acidification and denitrification achieved a nitrate removal efficiency of 91.2 % (influent NO3--N was 150 mg L-1), and reduced the fluorescence intensity of refractory organics by 33.8 %, compared with influent. Microbiological analysis indicated that magnetite increased the relative abundance of thermophilic hydrolytic acidifying bacteria, and coupling system enriched some genera simultaneously removing nitrate and refractory organics. This study provided fresh information on refractory organics and nitrogen removal of thermophilic wastewater biologically.
Collapse
Affiliation(s)
- Xing Fan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Lei He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Shuohui Shi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Yangyang Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Xuejie He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Ying Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| |
Collapse
|
4
|
Zhang Y, Cao L, Fu H, Zhang M, Meng J, Althakafy JT, Abo-Dief HM, El-Bahy SM, Zhang Y, Wei H, Xu BB, Guo Z. Effect of sulfamethazine on anaerobic digestion of manure mediated by biochar. CHEMOSPHERE 2022; 306:135567. [PMID: 35792211 DOI: 10.1016/j.chemosphere.2022.135567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/13/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Antibiotic contamination from animal production and wastewater treatment process will release antibiotic resistant genes to the environment and potentially threaten human health. Meanwhile, the residual antibiotic in manure could have inactive impacts on anaerobic digestion (AD). This study explores the effect of sulfamethazine on manure AD mediated by biochar. The results show that biochar weakens the adverse effects of sulfamethazine on AD by adsorption sulfamethazine during the initial stage (0-3 days) of AD and promoting the growth of hydrolytic bacteria (especially Firmicutes and Bacteroidetes) and methanogens (especially Methanothrix and Methanosarcina). Besides, the presence of biochar improves the biogas production capacity of AD and promotes microbial diversity and community richness. Thus, the addition of biochar greatly reduces sulfamethazine and is testified to be a desirable strategy to mitigate the inhibition of sulfamethazine on AD.
Collapse
Affiliation(s)
- Yangkai Zhang
- College of Engineering, Shenyang Agricultural University, Shenyang, 110866, China
| | - Liu Cao
- Department of Animal Science, University of Tennessee, Knoxville, 37996, USA
| | - Haibin Fu
- Technology Center, Shenyang Customs, Shenyang, 110016, China
| | - Min Zhang
- College of Engineering, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Jun Meng
- National Biochar Institute of Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang, 110866, China.
| | - Jalal T Althakafy
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hala M Abo-Dief
- Department of Chemistry, College of Science, Taif University, P.O.Box 11099, Taif, 21944, Saudi Arabia
| | - Salah M El-Bahy
- Department of Chemistry, Turabah University College, Taif University, P.O.Box 11099, Taif, 21944, Saudi Arabia
| | - Yushun Zhang
- College of Engineering, Shenyang Agricultural University, Shenyang, 110866, China
| | - Huanhuan Wei
- College of Engineering, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ben Bin Xu
- Department of Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Zhanhu Guo
- Integrated Composites Lab (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
5
|
Fan X, Li J, He L, Wang Y, Zhou J, Zhou J, Liu C. Co-occurrence of autotrophic and heterotrophic denitrification in electrolysis assisted constructed wetland packing with coconut fiber as solid carbon source. CHEMOSPHERE 2022; 301:134762. [PMID: 35490751 DOI: 10.1016/j.chemosphere.2022.134762] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/06/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Aiming at the problems of lack of carbon sources for nitrogen removal and low phosphorus removal efficiency of constructed wetlands (CWs) in treating wastewater treatment plant (WWTP) effluent, an electrolysis assisted constructed wetland (E-CW) with coconut fiber as substrate and solid carbon sources was constructed. The synthetic secondary effluent was used as the influent of the E-CW with a wastewater treatment capacity of 140 L d-1. The total nitrogen (TN) and the total phosphorus (TP) removal efficiency of the E-CW with coconut fiber treating WWTP effluent were 69.4% and 93.3%, respectively, which were 54.3% and 88.2% higher than those of CW with coconut fiber and no electrolysis. The removal efficiency of TN was 39.9% higher than that of E-CW with gravel. The current intensity had significant effect on nitrogen removal efficiency and the release of carbon sources from coconut fiber. When current intensity increased from 0.25 A to 1.00 A, the TN removal efficiency and nitrate removal rate increased by 21.1% and 0.21 mg L-1 h-1, respectively, and the volatile fatty acids (VFAs) released from coconut fiber increased by 57.7 mg L-1. The 16S rRNA high-throughput sequencing results indicated that the main functional nitrogen-removing microbes were Hydrogenophaga, Thauera, Rhodanobacteraceae_norank, Xanthobacteraceae_norank, etc. Multiple paths including autotrophic denitrification with hydrogen and Fe2+ as electron donors and heterotrophic denitrification were achieved in the system. Meanwhile, the main functional lignocellulose degradation microbes were enriched in the system, including Cytophaga_xylanolytica_group, and Caldilineaceae. Because electrolysis created a favorable environment for them to release carbon sources from coconut fiber. This study provided a new perspective for advanced nutrients removal of WWTP effluent in CWs.
Collapse
Affiliation(s)
- Xing Fan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Jiao Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Lei He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Yingmu Wang
- College of Civil Engineering, Fuzhou University, Fuzhou, Fujian, 350116, PR China
| | - Jiong Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Caihong Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China.
| |
Collapse
|
6
|
Lv N, Cai G, Pan X, Li Y, Wang R, Li J, Li C, Zhu G. pH and hydraulic retention time regulation for anaerobic fermentation: Focus on volatile fatty acids production/distribution, microbial community succession and interactive correlation. BIORESOURCE TECHNOLOGY 2022; 347:126310. [PMID: 34767905 DOI: 10.1016/j.biortech.2021.126310] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
Enriching suitable fermentative products by optimizing operation conditions could effectively improve the efficiency of anaerobic digestion. In the present study, pH (5.0-6.0) and hydraulic retention time (HRT) (2 h-12 h) were regulated for volatile fatty acids (VFAs) production during glucose fermentation in acidogenic continuous stirred tank reactor (CSTR). Results showed that acetate and butyrate dominated during pH regulation. HRT reduction favored butyrate production and formate retainment. Maximum total VFAs production with highest acetate content was achieved at pH of 6.0 and HRT of 6 h. Microbial analysis revealed that Clostridium_sensu_stricto_1 was predominant butyrate producer during pH regulation, and Bacteroides was main contributor when HRT shorter than 6 h. In addition to acetyl-CoA pathway, acetate could also be produced via homoacetogenesis by Parabacteroides, UCG-004 and norank_f__Acidaminococcaceae. These results would give guidance for enhancing targeted VFAs products by optimizing operational parameters or bio-augmentation with specific bacteria.
Collapse
Affiliation(s)
- Nan Lv
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment and Nature Resources, Renmin University of China, Beijing 100872, China; Key Laboratory of Energy Resource Utilization from Agriculture Residue, Ministry of Agriculture and Rural Affairs, China
| | - Guanjing Cai
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiaofang Pan
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanlin Li
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruming Wang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junjie Li
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunxing Li
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Gefu Zhu
- School of Environment and Nature Resources, Renmin University of China, Beijing 100872, China; Key Laboratory of Energy Resource Utilization from Agriculture Residue, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
7
|
Hou L, Griswold N, Hu Z. Impact of decreasing hydraulic retention times on the specific affinity of methanogens and their community structures in an anaerobic membrane bioreactor process treating low strength wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:140373. [PMID: 32758975 DOI: 10.1016/j.scitotenv.2020.140373] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Maximum specific growth rate (μmax) and substrate saturation constant (Ks) are widely used in determining the growth of microorganisms. The ratio (μmax/Ks), also referred to as specific affinity, aA0, is a better parameter to assess the advantage in competition for substrates by bridging microbial growth and the kinetics of enzymatic substrate uptake, but is not well studied. This study investigated the effect of hydraulic retention time (HRT) on the aA0 of anaerobic sludge from an anaerobic membrane bioreactor (AnMBR), associated microbial communities and the overall wastewater treatment performance. The AnMBR was fed with acetate wastewater (~500 mg COD/L) and operated at fixed solids retention time (45 d) while HRT continued to decrease. There was no significant difference in Ks (ranging from 170 to 243 mg COD/L) at different HRTs. However, aA0 increased from (4.0 ± 0.2) × 10-4 to (4.9 ± 0.2) × 10-4 and to (6.5 ± 0.1) × 10-4 L/mg COD/d as HRT decreased from 24 h to 12 h and further to 6 h, respectively. This was accompanied by the increase in acetoclastic methanogens (mainly Methanosaeta) from 3.85 × 1010, 8.82 × 1010 to 1.05 × 1011 cells/L, respectively. The fraction of Methanosaeta in the anaerobic biomass increased from 33.67% to 61.08% as HRT decreased from 24 h to 6 h. Correspondingly, effluent quality was improved, as evidenced from the COD concentrations of 32 ± 6, 21 ± 4, and 13 ± 5 mg/L at the HRTs of 24 h, 12 h, and 6 h, respectively. The results confirm that microorganisms are able to adapt to growth conditions by adjusting their kinetic properties and suggest that short HRTs in the AnMBR favor the growth and accumulation of Methanosaeta with high specific affinity likely because they can compete for acetate at low concentrations by increasing substrate uptake rate and thus specific microbial growth rate.
Collapse
Affiliation(s)
- Liyuan Hou
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO, United States of America
| | - Nicholas Griswold
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO, United States of America
| | - Zhiqiang Hu
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO, United States of America.
| |
Collapse
|
8
|
Yang G, Wang J, Zhang H, Jia H, Zhang Y, Gao F. Applying bio-electric field of microbial fuel cell-upflow anaerobic sludge blanket reactor catalyzed blast furnace dusting ash for promoting anaerobic digestion. WATER RESEARCH 2019; 149:215-224. [PMID: 30447526 DOI: 10.1016/j.watres.2018.10.091] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/28/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
In this study, a novel manner of bio-electric field (BEF) which generated by upflow anaerobic sludge blanket (UASB)-microbial fuel cell (MFC) integrated system facilitated iron-carbon micro-electrolysis in blast furnace dusting ash (BFDA) was proposed for the reinforcement of anaerobic digestion in UASB. The responses of COD removal efficiency and biogas production with (0.1-0.4 V) BEF catalyzed 5 g BFDA(RMFC-5gBFDA-UASB) were much higher than the other tests, and maximum reached 86% and 240 ml/d respectively. Ultra-fast acidogenesis was achieved with 0.3 V BEF supplied to BFDA and the time shortened 94 h compared controlled (RUASB) with RMFC-5gBFDA-UASB. With the electrochemical and microbial community analysis, the redox ability and direct interspecies electron transfer accumulated with BEF catalyzed. The abundance of Firmicutes which could generate bio-hydrogen was highest in RMFC-5gBFDA-UASB (44.58%) compared to RUASB (31.36%) and R5gBFDA-UASB (40.04%). In addition, the structure and morphology variation of BFDA revealed that the synergistic effects of BEF stimulated iron-carbon micro-electrolysis for electron transferring and enhanced the activities of methanogens and acetogens with high relative abundance to biotransform organic compounds, as well as adsorption and precipitation of iron oxides (hematite and magnetite) promoting anaerobic digestion. The MFC-BFDA-UASB integrated system provides a promising and cost-effective way to enhance anaerobic digestion and recycled functionalized waste effectively.
Collapse
Affiliation(s)
- Guang Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, China
| | - Jie Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, China; School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin, 300387, China.
| | - Hongwei Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, China.
| | - Hui Jia
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, China; School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin, 300387, China
| | - Yang Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, China
| | - Fei Gao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, China
| |
Collapse
|
9
|
Wang D, Han Y, Han H, Li K, Xu C, Zhuang H. New insights into enhanced anaerobic degradation of Fischer-Tropsch wastewater with the assistance of magnetite. BIORESOURCE TECHNOLOGY 2018; 257:147-156. [PMID: 29499496 DOI: 10.1016/j.biortech.2018.02.084] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/16/2018] [Accepted: 02/17/2018] [Indexed: 06/08/2023]
Abstract
In this study, magnetite (Fe3O4), as the typical conductive material, was supplemented in anaerobic sequential batch reactor (ASBR) with the attempt to enhance pollutants removal and methane production during Fischer-Tropsch wastewater treatment. The results showed that COD removal efficiency and cumulative methane production with the addition of optimum magnetite dosage (0.4 g) were as high as 84.3 ± 2.0% and 7.46 ± 0.24 L, which were higher than other test groups (0, 0.2 and 0.6 g). Furthermore, the combination of high-throughput 16S rRNA gene pyrosequencing and metagenomic analysis in this study further confirmed that the Geobacter and Methanosaeta species were specially enriched in bacterial and archaeal community at the optimum magnetite dosage, suggesting that magnetite-mediated direct interspecies electron transfer (DIET) between Geobacter and Methanosaeta species was likely a crucial reason to promote syntrophic metabolism of propionic acid and butyric acid, and further enhance final methanogenesis.
Collapse
Affiliation(s)
- Dexin Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yuxing Han
- School of Engineering, South China Agriculture University, Guangzhou 510642, China
| | - Hongjun Han
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Kun Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chunyan Xu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Haifeng Zhuang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| |
Collapse
|
10
|
Zhang Q, Wang C, Jiang L, Qi J, Wang J, He X. Impact of dissolved oxygen on the microbial community structure of an intermittent biological aerated filter (IBAF) and the removal efficiency of gasification wastewater. BIORESOURCE TECHNOLOGY 2018; 255:198-204. [PMID: 29414167 DOI: 10.1016/j.biortech.2018.01.115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/15/2018] [Accepted: 01/22/2018] [Indexed: 06/08/2023]
Abstract
A novel IBAF system (altered conventional biological aerated filter (BAF) for intermittent aeration) was used to treat BDD anodes electrochemical oxidation gasification wastewater effluent, after which 454 pyrosequencing was applied to investigate the bacterial community of IBAF and demonstrate the relationship between dissolved oxygen (DO) and the bacterial community. The results showed that the concentration of COD, NH4+-N and NO3--N reached 55.08, 7.64 and 7.76 mg/L, respectively, in IBAF effluent because of changes in the DO concentration at 30 days after system start-up. The bacterial community results revealed that the 40 cm sample had the highest bacterial diversity. The bacterial species were approximate in total samples at phylum and family level, but the relative abundance was significantly different because of change in DO concentration. In addition, sample distance analysis indicated that the similarity of different samples was related to the DO concentration at different heights.
Collapse
Affiliation(s)
- Qi Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China
| | - Chunrong Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China.
| | - Longxin Jiang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China
| | - Ji Qi
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China
| | - Jianbing Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China
| | - Xuwen He
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China
| |
Collapse
|
11
|
Luo L, Xu S, Jin Y, Han R, Liu H, Lü F. Evaluation of methanogenic microbial electrolysis cells under closed/open circuit operations. ENVIRONMENTAL TECHNOLOGY 2018; 39:739-748. [PMID: 28337937 DOI: 10.1080/09593330.2017.1310934] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 03/17/2017] [Indexed: 06/06/2023]
Abstract
The present study investigated the independent roles of biofilm and external power supply for volatile fatty acids degradation and methane production in the microbial electrolysis cell. Reactors were operated in fed-batch mode in the presence of graphite felt (GF) or titanium rod (Ti) as electrodes, in open circuit (OC, without applied voltage) or closed circuit (CC) conditions, i.e. R1 (Ti + CC), R2 (GF + CC) and R3 (GF + OC). The first-order kinetic analysis of acetate degradation indicated that the presence of GF biofilm and applied voltage in R2 improved the degradation rate of acetate by 23% as compared to R1, while it was only a 7% increment in R3 with GF biofilm. The degradation of butyrate was accelerated by 12% in the first 24 h, whereas there was no enhancement of the propionic acid digestion. Generally, methane yields from the three reactors followed the sequence: R2 > R1 > R3, indicating the positive effect of external power supply on methane generation. High-throughput sequencing revealed that Geobacter sp. could be enriched on conductive GF even without electric stimulation. The clustered Geobacter and Methanosarcina in R2 presented the potential to promote interspecies electron transfer and accelerate substrate utilization and methane production.
Collapse
Affiliation(s)
- Liwen Luo
- a Department of Environment & Low-Carbon Science, School of Environment and Architecture , University of Shanghai for Science and Technology , Shanghai , People's Republic of China
| | - Suyun Xu
- a Department of Environment & Low-Carbon Science, School of Environment and Architecture , University of Shanghai for Science and Technology , Shanghai , People's Republic of China
| | - Yueqing Jin
- b China-Singapore Suzhou Industrial Park Environmental Technology Co., Ltd , Suzhou , People's Republic of China
| | - Runqi Han
- a Department of Environment & Low-Carbon Science, School of Environment and Architecture , University of Shanghai for Science and Technology , Shanghai , People's Republic of China
| | - Hongbo Liu
- a Department of Environment & Low-Carbon Science, School of Environment and Architecture , University of Shanghai for Science and Technology , Shanghai , People's Republic of China
| | - Fan Lü
- c State Key Laboratory of Pollution Control and Resource Reuse , Tongji University , Shanghai , People's Republic of China
| |
Collapse
|
12
|
Jia S, Han Y, Zhuang H, Han H, Li K. Simultaneous removal of organic matter and salt ions from coal gasification wastewater RO concentrate and microorganisms succession in a MBR. BIORESOURCE TECHNOLOGY 2017; 241:517-524. [PMID: 28601769 DOI: 10.1016/j.biortech.2017.05.158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 05/18/2017] [Accepted: 05/25/2017] [Indexed: 06/07/2023]
Abstract
A lab-scale membrane bioreactor (MBR) with intermittent aeration was operated to treat the reverse osmosis concentrate derived from coal gasification wastewater. Results showed intermittent aeration represented slight effect on organic matter reduction but significant effect on nitrite and nitrate reduction, with 6h aeration and 6h non-aeration, removal efficiencies of organic matter, chloride, sulfate, nitrite and nitrate reached 48.35%, 40.91%, 34.28%, -36.05% and 64.34%, respectively. High-throughput sequencing showed a microorganisms succession from inoculated activated sludge (S1) to activated sludge in MBR (S2) with high salinity. Richness and diversity of microorganisms in S2 was lower than S1 and the community structure of S1 exhibited more even than S2. The most relative abundance of genus in S1 and S2 were unclassified_Desulfarculaceae (9.39%) and Roseibaca (62.1%), respectively. High salinity and intermittent aeration represented different influence on the denitrifying genus, and non-aeration phase provided feasible dissolved oxygen condition for denitrifying genera realizing denitrification.
Collapse
Affiliation(s)
- Shengyong Jia
- School of Water Conservancy & Environment, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yuxing Han
- School of Engineering, South China Agriculture University, Guangzhou 510642, China.
| | - Haifeng Zhuang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Hongjun Han
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Kun Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
13
|
Zhen G, Lu X, Kobayashi T, Su L, Kumar G, Bakonyi P, He Y, Sivagurunathan P, Nemestóthy N, Xu K, Zhao Y. Continuous micro-current stimulation to upgrade methanolic wastewater biodegradation and biomethane recovery in an upflow anaerobic sludge blanket (UASB) reactor. CHEMOSPHERE 2017; 180:229-238. [PMID: 28410503 DOI: 10.1016/j.chemosphere.2017.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/31/2017] [Accepted: 04/02/2017] [Indexed: 06/07/2023]
Abstract
The dispersion of granules in upflow anaerobic sludge blanket (UASB) reactor represents a critical technical issue in methanolic wastewater treatment. In this study, the potentials of coupling a microbial electrolysis cell (MEC) into an UASB reactor for improving methanolic wastewater biodegradation, long-term process stability and biomethane recovery were evaluated. The results indicated that coupling a MEC system was capable of improving the overall performance of UASB reactor for methanolic wastewater treatment. The combined system maintained the comparatively higher methane yield and COD removal efficiency over the single UASB process through the entire process, with the methane production at the steady-state conditions approaching 1504.7 ± 92.2 mL-CH4 L-1-reactor d-1, around 10.1% higher than the control UASB (i.e. 1366.4 ± 71.0 mL-CH4 L-1-reactor d-1). The further characterizations verified that the input of external power source could stimulate the metabolic activity of microbes and reinforced the EPS secretion. The produced EPS interacted with Fe2+/3+ liberated during anodic corrosion of iron electrode to create a gel-like three-dimensional [-Fe-EPS-]n matrix, which promoted cell-cell cohesion and maintained the structural integrity of granules. Further observations via SEM and FISH analysis demonstrated that the use of bioelectrochemical stimulation promoted the growth and proliferation of microorganisms, which diversified the degradation routes of methanol, convert the wasted CO2 into methane and accordingly increased the process stability and methane productivity.
Collapse
Affiliation(s)
- Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Dongchuan Rd. 500, Shanghai, 200241, PR China; Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan.
| | - Xueqin Lu
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, 980-8579, Japan.
| | - Takuro Kobayashi
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Lianghu Su
- Nanjing Institute of Environmental Sciences of the Ministry of Environmental Protection, 210042, Nanjing, PR China
| | - Gopalakrishnan Kumar
- Department of Environmental Engineering, Daegu University, Jillyang, Gyeongsan, Gyeongbuk, Republic of Korea
| | - Péter Bakonyi
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem ut 10, 8200, Veszprém, Hungary
| | - Yan He
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Dongchuan Rd. 500, Shanghai, 200241, PR China
| | - Periyasamy Sivagurunathan
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Nándor Nemestóthy
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem ut 10, 8200, Veszprém, Hungary
| | - Kaiqin Xu
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan.
| | - Youcai Zhao
- The State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China
| |
Collapse
|
14
|
Koo T, Shin SG, Lee J, Han G, Kim W, Cho K, Hwang S. Identifying methanogen community structures and their correlations with performance parameters in four full-scale anaerobic sludge digesters. BIORESOURCE TECHNOLOGY 2017; 228:368-373. [PMID: 28087103 DOI: 10.1016/j.biortech.2016.12.118] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/29/2016] [Accepted: 12/31/2016] [Indexed: 06/06/2023]
Abstract
Four full-scale mesophilic anaerobic digesters treating waste sludge were monitored to characterize methanogen communities and their relationship with process parameters. The performance of the four digesters were dissimilar with the average chemical oxygen demand removal efficiencies between 24 and 45% and differing pH. Real-time quantitative PCR showed that archaeal 16S rRNA gene concentration ([ARC]) and, more pronouncedly, its ratio to bacterial counterpart ([ARC]/[BAC]) correlated positively with the performance parameters, including the lipid removal efficiency. Pyrosequencing identified 12 methanogen genera, of which Methanolinea, Methansaeta, and Methanospirillum collectively accounted for 79.2% of total archaeal reads. However, Methanoculleus, a numerically minor (1.9±2.6%) taxa, was the most promising biomarker for positive performance, while Methanoregula was abundant in samples with poor performance. These results could be useful for the control and management of anaerobic sludge digestion.
Collapse
Affiliation(s)
- Taewoan Koo
- School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, South Korea
| | - Seung Gu Shin
- School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, South Korea
| | - Joonyeob Lee
- School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, South Korea
| | - Gyuseong Han
- School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, South Korea
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea
| | - Kyungjin Cho
- Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Seoul, South Korea
| | - Seokhwan Hwang
- School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, South Korea.
| |
Collapse
|
15
|
Wang D, Ma W, Han H, Li K, Hao X. Enhanced treatment of Fischer–Tropsch (F-T) wastewater by novel anaerobic biofilm system with scrap zero valent iron (SZVI) assisted. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2016.09.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Zhuang H, Hong X, Han H, Shan S. Effect of pure oxygen fine bubbles on the organic matter removal and bacterial community evolution treating coal gasification wastewater by membrane bioreactor. BIORESOURCE TECHNOLOGY 2016; 221:262-269. [PMID: 27643734 DOI: 10.1016/j.biortech.2016.09.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 06/06/2023]
Abstract
A lab-scale study was investigated to evaluate the effect of pure oxygen fine bubbles on membrane bioreactor (O2-MBR) performance of treating coal gasification wastewater. Compared with conventional MBR using aeration source of air (CMBR), the removal efficiencies of COD and total phenols increased by 28% and 36%, and the organic compositions of treated effluent represented significant difference that was mainly attributed to the controlled the foam expansion and enhanced the enzymatic activities in O2-MBR. Moreover, membrane fouling mitigation was observed in O2-MBR, probably owing to the less EPS amount and larger PSD. It was notable that the pure oxygen with fine bubbles promoted marked evolution of bacterial community from CMBR to O2-MBR, particularly, the bacterial community richness and diversity in O2-MBR was lower than CMBR, and the genera Phycisphaera, Comamonas, Thauera and Ohtaekwangia composed the top four most relative abundance genera in O2-MBR, giving the total relative abundance of 26.7%.
Collapse
Affiliation(s)
- Haifeng Zhuang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Xiaoting Hong
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Hongjun Han
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shengdao Shan
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| |
Collapse
|
17
|
Zhang N, Stanislaus MS, Hu X, Zhao C, Zhu Q, Li D, Yang Y. Strategy of mitigating ammonium-rich waste inhibition on anaerobic digestion by using illuminated bio-zeolite fixed-bed process. BIORESOURCE TECHNOLOGY 2016; 222:59-65. [PMID: 27700989 DOI: 10.1016/j.biortech.2016.09.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/06/2016] [Accepted: 09/12/2016] [Indexed: 06/06/2023]
Abstract
Intermittent illumination combined with bio-zeolite fixed-bed process was utilized to improve the efficiency of anaerobic digestion with ammonium-rich substrate. The batch experiments were carried out at NH4+-N concentration of 2211mg/L under intermittent illumination and dark (as control) conditions, respectively. The illuminated bioreactor achieved higher methane production (287mL/g-DOC) and ATP value (0.38μmol/L) than that under dark condition. Then the bio-zeolite fixed-bed bioreactor (NH4+-N concentration: 3000mg/L) was used to study the additional efficiency on the illuminated ammonium-rich anaerobic digestion process. The result showed that the illuminated fixed-bed bioreactor presented the greatest methane concentration (70%), methane yield (283mL/g-DOC) and quantity of methanogens comparing with no-bed bioreactor. Furthermore, the illuminated fixed-bed bioreactor achieved better performance during 118-day semi-continuous fermentation. The combination of the intermittent illumination and bio-zeolite fixed-bed strategy contributed to the higher efficiency and stability of the ammonium-rich anaerobic digestion process.
Collapse
Affiliation(s)
- Nan Zhang
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Mishma Silvia Stanislaus
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Xiaohong Hu
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Chenyu Zhao
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Qi Zhu
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Dawei Li
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yingnan Yang
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
18
|
Li Y, Zhang Y, Liu Y, Zhao Z, Zhao Z, Liu S, Zhao H, Quan X. Enhancement of anaerobic methanogenesis at a short hydraulic retention time via bioelectrochemical enrichment of hydrogenotrophic methanogens. BIORESOURCE TECHNOLOGY 2016; 218:505-511. [PMID: 27394997 DOI: 10.1016/j.biortech.2016.06.112] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/24/2016] [Accepted: 06/28/2016] [Indexed: 06/06/2023]
Abstract
Anaerobic digestion (AD) is an important energy strategy for converting organic waste to CH4. A major factor limiting the practical applicability of AD is the relatively long hydraulic retention time (HRT) which declines the treatment efficiency of digesters. A coupling process of anaerobic digestion and 'electromethanogenesis' was proposed to enhance anaerobic digestion at a short HRT in this study. Microorganisms analysis indicated that the electric-biological reactor enriched hydrogenotrophic methanogens in both cathodic biofilm and suspended sludge, helping achieve the high organic removal (71.0% vs 42.3% [control reactor]) and CH4 production (248.5mL/h vs 51.3mL/h), while the additional electric input was only accounted for 25.6% of the energy income from the increased CH4 production. This study demonstrated that a bioelectrochemical enhanced anaerobic reactor could improve the CH4 production and organic removal at a short HRT, providing an economically feasible scheme to treat wastewater.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China.
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Zhiqiang Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Zisheng Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Sitong Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Huimin Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| |
Collapse
|
19
|
Yun J, Lee YY, Choi HJ, Cho KS. Process contribution evaluation for COD removal and energy production from molasses wastewater in a BioH 2-BioCH 4-MFC-integrated system. Bioprocess Biosyst Eng 2016; 40:55-62. [PMID: 27573932 DOI: 10.1007/s00449-016-1674-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 08/17/2016] [Indexed: 10/21/2022]
Abstract
In this study, a three-stage-integrated process using the hydrogenic process (BioH2), methanogenic process (BioCH4), and a microbial fuel cell (MFC) was operated using molasses wastewater. The contribution of individual processes to chemical oxygen demand (COD) removal and energy production was evaluated. The three-stage integration system was operated at molasses of 20 g-COD L-1, and each process achieved hydrogen production rate of 1.1 ± 0.24 L-H2 L-1 day-1, methane production rate of 311 ± 18.94 mL-CH4 L-1 day-1, and production rate per electrode surface area of 10.8 ± 1.4 g m-2 day-1. The three-stage integration system generated energy production of 32.32 kJ g-COD-1 and achieved COD removal of 98 %. The contribution of BioH2, BioCH4, and the MFC reactor was 20.8, 72.2, and, 7.0 % of the total COD removal, and 18.7, 81.2, and 0.16 % of the total energy production, respectively. The continuous stirred-tank reactor BioH2 at HRT of 1 day, up-flow anaerobic sludge blanket BioCH4 at HRT of 2 days, and MFC reactor at HRT of 3 days were decided in 1:2:3 ratios of working volume under hydraulic retention time consideration. This integration system can be applied to various configurations depending on target wastewater inputs, and it is expected to enhance energy recovery and reduce environmental impact of the final effluent.
Collapse
Affiliation(s)
- Jeonghee Yun
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 120-750, Republic of Korea
| | - Yun-Yeong Lee
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 120-750, Republic of Korea
| | - Hyung Joo Choi
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 120-750, Republic of Korea
| | - Kyung-Suk Cho
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 120-750, Republic of Korea.
| |
Collapse
|
20
|
Cai W, Han T, Guo Z, Varrone C, Wang A, Liu W. Methane production enhancement by an independent cathode in integrated anaerobic reactor with microbial electrolysis. BIORESOURCE TECHNOLOGY 2016; 208:13-18. [PMID: 26913643 DOI: 10.1016/j.biortech.2016.02.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 06/05/2023]
Abstract
Anaerobic digestion (AD) represents a potential way to achieve energy recovery from waste organics. In this study, a novel bioelectrochemically-assisted anaerobic reactor is assembled by two AD systems separated by anion exchange membrane, with the cathode placing in the inside cylinder (cathodic AD) and the anode on the outside cylinder (anodic AD). In cathodic AD, average methane production rate goes up to 0.070 mL CH4/mL reactor/day, which is 2.59 times higher than AD control reactor (0.027 m(3) CH4/m(3)/d). And COD removal is increased ∼15% over AD control. When changing to sludge fermentation liquid, methane production rate has been further increased to 0.247 mL CH4/mL reactor/day (increased by 51.53% comparing with AD control). Energy recovery efficiency presents profitable gains, and economic revenue from increased methane totally self-cover the cost of input electricity. The study indicates that cathodic AD could cost-effectively enhance methane production rate and degradation of glucose and fermentative liquid.
Collapse
Affiliation(s)
- Weiwei Cai
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, China
| | - Tingting Han
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, China
| | - Zechong Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, China
| | - Cristiano Varrone
- Technical University of Denmark, Department of Chemical and Biochemical Engineering, Lyngby, Denmark
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Wenzong Liu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
21
|
Liu W, He Z, Yang C, Zhou A, Guo Z, Liang B, Varrone C, Wang AJ. Microbial network for waste activated sludge cascade utilization in an integrated system of microbial electrolysis and anaerobic fermentation. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:83. [PMID: 27042212 PMCID: PMC4818858 DOI: 10.1186/s13068-016-0493-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/22/2016] [Indexed: 05/04/2023]
Abstract
BACKGROUND Bioelectrochemical systems have been considered a promising novel technology that shows an enhanced energy recovery, as well as generation of value-added products. A number of recent studies suggested that an enhancement of carbon conversion and biogas production can be achieved in an integrated system of microbial electrolysis cell (MEC) and anaerobic digestion (AD) for waste activated sludge (WAS). Microbial communities in integrated system would build a thorough energetic and metabolic interaction network regarding fermentation communities and electrode respiring communities. The characterization of integrated community structure and community shifts is not well understood, however, it starts to attract interest of scientists and engineers. RESULTS In the present work, energy recovery and WAS conversion are comprehensively affected by typical pretreated biosolid characteristics. We investigated the interaction of fermentation communities and electrode respiring communities in an integrated system of WAS fermentation and MEC for hydrogen recovery. A high energy recovery was achieved in the MECs feeding WAS fermentation liquid through alkaline pretreatment. Some anaerobes belonging to Firmicutes (Acetoanaerobium, Acetobacterium, and Fusibacter) showed synergistic relationship with exoelectrogens in the degradation of complex organic matter or recycling of MEC products (H2). High protein and polysaccharide but low fatty acid content led to the dominance of Proteiniclasticum and Parabacteroides, which showed a delayed contribution to the extracellular electron transport leading to a slow cascade utilization of WAS. CONCLUSIONS Efficient pretreatment could supply more short-chain fatty acids and higher conductivities in the fermentative liquid, which facilitated mass transfer in anodic biofilm. The overall performance of WAS cascade utilization was substantially related to the microbial community structures, which in turn depended on the initial pretreatment to enhance WAS fermentation. It is worth noting that species in AD and MEC communities are able to build complex networks of interaction, which have not been sufficiently studied so far. It is therefore important to understand how choosing operational parameters can influence reactor performances. The current study highlights the interaction of fermentative bacteria and exoelectrogens in the integrated system.
Collapse
Affiliation(s)
- Wenzong Liu
- />Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
| | - Zhangwei He
- />State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090 China
| | - Chunxue Yang
- />State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090 China
| | - Aijuan Zhou
- />College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024 China
| | - Zechong Guo
- />State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090 China
| | - Bin Liang
- />Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
| | - Cristiano Varrone
- />Department of Chemical and Biochemical Engineering, Center for BioProcess Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Ai-Jie Wang
- />Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
- />State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090 China
| |
Collapse
|
22
|
Liu W, He Z, Yang C, Zhou A, Guo Z, Liang B, Varrone C, Wang AJ. Microbial network for waste activated sludge cascade utilization in an integrated system of microbial electrolysis and anaerobic fermentation. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:83. [PMID: 27042212 DOI: 10.1080/17597269.2016.1221302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/22/2016] [Indexed: 05/24/2023]
Abstract
BACKGROUND Bioelectrochemical systems have been considered a promising novel technology that shows an enhanced energy recovery, as well as generation of value-added products. A number of recent studies suggested that an enhancement of carbon conversion and biogas production can be achieved in an integrated system of microbial electrolysis cell (MEC) and anaerobic digestion (AD) for waste activated sludge (WAS). Microbial communities in integrated system would build a thorough energetic and metabolic interaction network regarding fermentation communities and electrode respiring communities. The characterization of integrated community structure and community shifts is not well understood, however, it starts to attract interest of scientists and engineers. RESULTS In the present work, energy recovery and WAS conversion are comprehensively affected by typical pretreated biosolid characteristics. We investigated the interaction of fermentation communities and electrode respiring communities in an integrated system of WAS fermentation and MEC for hydrogen recovery. A high energy recovery was achieved in the MECs feeding WAS fermentation liquid through alkaline pretreatment. Some anaerobes belonging to Firmicutes (Acetoanaerobium, Acetobacterium, and Fusibacter) showed synergistic relationship with exoelectrogens in the degradation of complex organic matter or recycling of MEC products (H2). High protein and polysaccharide but low fatty acid content led to the dominance of Proteiniclasticum and Parabacteroides, which showed a delayed contribution to the extracellular electron transport leading to a slow cascade utilization of WAS. CONCLUSIONS Efficient pretreatment could supply more short-chain fatty acids and higher conductivities in the fermentative liquid, which facilitated mass transfer in anodic biofilm. The overall performance of WAS cascade utilization was substantially related to the microbial community structures, which in turn depended on the initial pretreatment to enhance WAS fermentation. It is worth noting that species in AD and MEC communities are able to build complex networks of interaction, which have not been sufficiently studied so far. It is therefore important to understand how choosing operational parameters can influence reactor performances. The current study highlights the interaction of fermentative bacteria and exoelectrogens in the integrated system.
Collapse
Affiliation(s)
- Wenzong Liu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
| | - Zhangwei He
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090 China
| | - Chunxue Yang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090 China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024 China
| | - Zechong Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090 China
| | - Bin Liang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
| | - Cristiano Varrone
- Department of Chemical and Biochemical Engineering, Center for BioProcess Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Ai-Jie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China ; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090 China
| |
Collapse
|
23
|
Jia S, Han H, Zhuang H, Hou B. The pollutants removal and bacterial community dynamics relationship within a full-scale British Gas/Lurgi coal gasification wastewater treatment using a novel system. BIORESOURCE TECHNOLOGY 2016; 200:103-110. [PMID: 26476170 DOI: 10.1016/j.biortech.2015.10.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/25/2015] [Accepted: 10/01/2015] [Indexed: 06/05/2023]
Abstract
The novel system of EBA (based on external circulation anaerobic (EC) process-biological enhanced (BE) process-anoxic/oxic (A/O) process) was applied to treat the British Gas/Lurgi coal gasification wastewater in Erdos, China. After a long time of commissioning, the EBA system represented a stable and highly efficient performance, particularly, the concentrations of COD, NH4(+)-N, total organic carbon, total nitrogen and volatile phenols in the final effluent reached 53, 0.3, 18, 106mg/L and not detected, respectively. Both the GC-MS and fluorescence excitation-emission matrix analyses revealed significant variations of organic compositions in the effluent of different process. The results of high-throughput sequencing represented the EBA system composed 34 main bacteria which were affiliated to 7 phyla. In addition, the canonical correspondence analysis indicated high coherence among community composition, wastewater characteristics and environmental variables, in which the pH, mixed liquid suspended solids and total phenols loading were the most three significant variables.
Collapse
Affiliation(s)
- Shengyong Jia
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hongjun Han
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Haifeng Zhuang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Baolin Hou
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
24
|
FitzGerald JA, Allen E, Wall DM, Jackson SA, Murphy JD, Dobson ADW. Methanosarcina Play an Important Role in Anaerobic Co-Digestion of the Seaweed Ulva lactuca: Taxonomy and Predicted Metabolism of Functional Microbial Communities. PLoS One 2015; 10:e0142603. [PMID: 26555136 PMCID: PMC4640829 DOI: 10.1371/journal.pone.0142603] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/24/2015] [Indexed: 01/22/2023] Open
Abstract
Macro-algae represent an ideal resource of third generation biofuels, but their use necessitates a refinement of commonly used anaerobic digestion processes. In a previous study, contrasting mixes of dairy slurry and the macro-alga Ulva lactuca were anaerobically digested in mesophilic continuously stirred tank reactors for 40 weeks. Higher proportions of U. lactuca in the feedstock led to inhibited digestion and rapid accumulation of volatile fatty acids, requiring a reduced organic loading rate. In this study, 16S pyrosequencing was employed to characterise the microbial communities of both the weakest (R1) and strongest (R6) performing reactors from the previous work as they developed over a 39 and 27-week period respectively. Comparing the reactor communities revealed clear differences in taxonomy, predicted metabolic orientation and mechanisms of inhibition, while constrained canonical analysis (CCA) showed ammonia and biogas yield to be the strongest factors differentiating the two reactor communities. Significant biomarker taxa and predicted metabolic activities were identified for viable and failing anaerobic digestion of U. lactuca. Acetoclastic methanogens were inhibited early in R1 operation, followed by a gradual decline of hydrogenotrophic methanogens. Near-total loss of methanogens led to an accumulation of acetic acid that reduced performance of R1, while a slow decline in biogas yield in R6 could be attributed to inhibition of acetogenic rather than methanogenic activity. The improved performance of R6 is likely to have been as a result of the large Methanosarcina population, which enabled rapid removal of acetic acid, providing favourable conditions for substrate degradation.
Collapse
Affiliation(s)
- Jamie A. FitzGerald
- Environmental Research Institute, University College Cork, Lee Road, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- Science Foundation Ireland, Marine Renewable Energy Ireland (MaREI) Centre, University College Cork, Cork, Ireland
| | - Eoin Allen
- Environmental Research Institute, University College Cork, Lee Road, Cork, Ireland
- School of Engineering, University College Cork, Cork, Ireland
- Science Foundation Ireland, Marine Renewable Energy Ireland (MaREI) Centre, University College Cork, Cork, Ireland
| | - David M. Wall
- Environmental Research Institute, University College Cork, Lee Road, Cork, Ireland
- School of Engineering, University College Cork, Cork, Ireland
- Science Foundation Ireland, Marine Renewable Energy Ireland (MaREI) Centre, University College Cork, Cork, Ireland
| | - Stephen A. Jackson
- Environmental Research Institute, University College Cork, Lee Road, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Jerry D. Murphy
- Environmental Research Institute, University College Cork, Lee Road, Cork, Ireland
- School of Engineering, University College Cork, Cork, Ireland
- Science Foundation Ireland, Marine Renewable Energy Ireland (MaREI) Centre, University College Cork, Cork, Ireland
| | - Alan D. W. Dobson
- Environmental Research Institute, University College Cork, Lee Road, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
25
|
Chen WT, Shen SM, Shu CM. Application of ethylene diamine tetra acetic acid degrading bacterium Burkholderia cepacia on biotreatment process. BIORESOURCE TECHNOLOGY 2015; 193:357-362. [PMID: 26143003 DOI: 10.1016/j.biortech.2015.06.099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/18/2015] [Accepted: 06/19/2015] [Indexed: 06/04/2023]
Abstract
Ethylene diamine tetra acetic acid (EDTA), the effluent of secondary biotreatment units, can be properly biodegraded by Burkholderia cepacia. Through batch degradation of EDTA, the raw wastewater of EDTA was controlled at 50 mg/L, and then nutrients was added in diluted wastewater to cultivate activated sludge, which the ratio of composition is depicted as "COD:N:P:Fe = 100:5:1:0.5". After 27 days, the removal efficiency of Fe-EDTA and COD was 100% and 92.0%, correspondingly. At the continuous process, the raw wastewater of EDTA was dictated at 166 mg/L before adding nutrients to cultivate activated sludge, in which the ratio of composition did also follow with batch process. After 22 days, the removal efficiency of Fe-EDTA and COD for experimental group was 71.46% and 62.58%, correspondingly. The results showed that the batch process was more suited for EDTA biodegradation.
Collapse
Affiliation(s)
- Wei-Ting Chen
- Department of Cosmetic Application & Management, St. Mary's Junior College of Medicine, Nursing and Management, Yilan 26644, Taiwan, ROC.
| | - Shu-Min Shen
- Department of Safety, Health, and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan, ROC
| | - Chi-Min Shu
- Department of Safety, Health, and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan, ROC
| |
Collapse
|
26
|
Baek G, Kim J, Shin SG, Lee C. Bioaugmentation of anaerobic sludge digestion with iron-reducing bacteria: process and microbial responses to variations in hydraulic retention time. Appl Microbiol Biotechnol 2015; 100:927-37. [DOI: 10.1007/s00253-015-7018-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 09/07/2015] [Accepted: 09/17/2015] [Indexed: 10/23/2022]
|
27
|
Jia S, Han H, Zhuang H, Hou B, Li K. Impact of high external circulation ratio on the performance of anaerobic reactor treating coal gasification wastewater under thermophilic condition. BIORESOURCE TECHNOLOGY 2015; 192:507-513. [PMID: 26081627 DOI: 10.1016/j.biortech.2015.05.106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 06/04/2023]
Abstract
A laboratory-scale external circulation anaerobic reactor (ECAR) was developed to treat actual coal gasification wastewater. The external circulation ratio (R) was selected as the main operating variable for analysis. From the results, with the hydraulic retention time of 50h, pH > 8.0 and R of 3, the COD, total phenols, volatile phenol and NH4(+)-N removal efficiencies were remarkably increased to 10 ± 2%, 22 ± 5%, 18 ± 1%, and -1 ± 2%, respectively. Besides, increasing R resulted in more transformation from bound extracellular polymeric substances (EPS) to free EPS in the liquid and the particle size distribution of anaerobic granular sludge accumulated in the middle size range of 1.0-2.5mm. Results showed the genus Saccharofermentans dominanted in the ECAR and the bacterial community shift was observed at different external circulation ratio, influencing the pollutants removal profoundly.
Collapse
Affiliation(s)
- Shengyong Jia
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hongjun Han
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Haifeng Zhuang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Baolin Hou
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Kun Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|