1
|
Saroj P, P M, Narasimhulu K. Enhanced reducing sugar production by blending hydrolytic enzymes from Aspergillus fumigatus to improve sugarcane bagasse hydrolysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:48085-48102. [PMID: 39017871 DOI: 10.1007/s11356-024-34246-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 07/02/2024] [Indexed: 07/18/2024]
Abstract
Biomass pretreatment for the production of second-generation (2G) ethanol and biochemical products is a challenging process. The present study investigated the synergistic efficiency of purified carboxymethyl cellulase (CMCase), β-glucosidase, and xylanase from Aspergillus fumigatus JCM 10253 in the hydrolysis of alkaline-pretreated sugarcane bagasse (SCB). The saccharification of pretreated SCB was optimised using a combination of CMCase and β-glucosidase (C + β; 1:1) and addition of xylanase (C + β + xyl; 1:1:1). Independent and dependent variables influencing enzymatic hydrolysis were investigated using response surface methodology (RSM). Hydrolysis using purified CMCase and β-glucosidase achieved yields of 18.72 mg/mL glucose and 6.98 mg/mL xylose. Incorporation of xylanase in saccharification increased the titres of glucose (22.83 mg/mL) and xylose (9.54 mg/mL). Furthermore, characterisation of SCB biomass by scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy respectively confirmed efficient structural disintegration and revealed the degree of crystallinity and spectral characteristics. Therefore, depolymerisation of lignin to produce high-value chemicals is essential for sustainable and competitive biorefinery development.
Collapse
Affiliation(s)
- Paramjeet Saroj
- Department of Biotechnology, National Institute of Technology Warangal, Hanamkonda, 506004, Telangana, India.
| | - Manasa P
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem, 534101, India
| | - Korrapati Narasimhulu
- Department of Biotechnology, National Institute of Technology Warangal, Hanamkonda, 506004, Telangana, India
| |
Collapse
|
2
|
Moya EB, Syhler B, Dragone G, Mussatto SI. Tailoring a cellulolytic enzyme cocktail for efficient hydrolysis of mildly pretreated lignocellulosic biomass. Enzyme Microb Technol 2024; 175:110403. [PMID: 38341912 DOI: 10.1016/j.enzmictec.2024.110403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/26/2023] [Accepted: 01/22/2024] [Indexed: 02/13/2024]
Abstract
Commercially available cellulase cocktails frequently demonstrate high efficiency in hydrolyzing easily digestible pretreated biomass, which often lacks hemicellulose and/or lignin fractions. However, the challenge arises with enzymatic hydrolysis of mildly pretreated lignocellulosic biomasses, which contain cellulose, hemicellulose and lignin in high proportions. This study aimed to address this question by evaluating the supplementation of a commercial cellulolytic cocktail with accessory hemicellulases and two additives (H2O2 and Tween® 80). Statistical optimization methods were employed to enhance the release of glucose and xylose from mildly pretreated sugarcane bagasse. The optimized supplement composition resulted in the production of 304 and 124 mg g-1 DM of glucose and xylose, respectively, significantly increasing glucose release by 84% and xylose release by 94% compared to using only the cellulolytic cocktail. This enhancement might be attributed to a coordinated hemicellulases action degrading hemicellulose, creating more space for cellulase activity, potentially boosted by the presence of H2O2 and Tween® 80. However, the addition of different concentrations of H2O2 in combination with hemicellulase and Tween® 80 did not result a significant difference on sugar release, which could be attributed to the limited range of concentrations studied (5 to 65 µM). The results obtained in this study using the mix of three supplements were also compared to the addition of only hemicellulase and only Tween® 80 to the cellulolytic cocktail. A significant increase in glucose release of 39% and 41%, respectively, was observed when using the optimized combination. For xylose, the increase was 38% and 41%, respectively. This study underscores the substantial potential in optimizing enzyme cocktails for the hydrolysis of mildly pretreated lignocellulosic biomass by using enzymes and additive combinations tailored to the specific biomass composition.
Collapse
Affiliation(s)
- Eva Balaguer Moya
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800 Kongens, Lyngby, Denmark
| | - Berta Syhler
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800 Kongens, Lyngby, Denmark
| | - Giuliano Dragone
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800 Kongens, Lyngby, Denmark
| | - Solange I Mussatto
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800 Kongens, Lyngby, Denmark.
| |
Collapse
|
3
|
Yuansah SC, Laga A, Pirman. Production Strategy of Functional Oligosaccharides from Lignocellulosic Biomass Using Enzymatic Process: A Review. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03063-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
4
|
Sánchez-Muñoz S, Balbino TR, de Oliveira F, Rocha TM, Barbosa FG, Vélez-Mercado MI, Marcelino PRF, Antunes FAF, Moraes EJC, dos Santos JC, da Silva SS. Surfactants, Biosurfactants, and Non-Catalytic Proteins as Key Molecules to Enhance Enzymatic Hydrolysis of Lignocellulosic Biomass. Molecules 2022; 27:8180. [PMID: 36500273 PMCID: PMC9739445 DOI: 10.3390/molecules27238180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Lignocellulosic biomass (LCB) has remained a latent alternative resource to be the main substitute for oil and its derivatives in a biorefinery concept. However, its complex structure and the underdeveloped technologies for its large-scale processing keep it in a state of constant study trying to establish a consolidated process. In intensive processes, enzymes have been shown to be important molecules for the fractionation and conversion of LCB into biofuels and high-value-added molecules. However, operational challenges must be overcome before enzyme technology can be the main resource for obtaining second-generation sugars. The use of additives is shown to be a suitable strategy to improve the saccharification process. This review describes the mechanisms, roles, and effects of using additives, such as surfactants, biosurfactants, and non-catalytic proteins, separately and integrated into the enzymatic hydrolysis process of lignocellulosic biomass. In doing so, it provides a technical background in which operational biomass processing hurdles such as solids and enzymatic loadings, pretreatment burdens, and the unproductive adsorption phenomenon can be addressed.
Collapse
Affiliation(s)
- Salvador Sánchez-Muñoz
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12.602.810., Brazil
| | - Thércia R. Balbino
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12.602.810., Brazil
| | - Fernanda de Oliveira
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12.602.810., Brazil
| | - Thiago M. Rocha
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12.602.810., Brazil
| | - Fernanda G. Barbosa
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12.602.810., Brazil
| | - Martha I. Vélez-Mercado
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12.602.810., Brazil
| | - Paulo R. F. Marcelino
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12.602.810., Brazil
| | - Felipe A. F. Antunes
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12.602.810., Brazil
| | - Elisangela J. C. Moraes
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12.602.810., Brazil
| | - Julio C. dos Santos
- Biopolymers, Bioreactors, and Process Simulation Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12.602.810., Brazil
| | - Silvio S. da Silva
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12.602.810., Brazil
| |
Collapse
|
5
|
Sánchez-Muñoz S, Balbino TR, Terán-Hilares R, Mier-Alba E, Barbosa FG, Balagurusamy N, Santos JC, da Silva SS. Non-ionic surfactant formulation sequentially enhances the enzymatic hydrolysis of cellulignin from sugarcane bagasse and the production of Monascus ruber biopigments. BIORESOURCE TECHNOLOGY 2022; 362:127781. [PMID: 35973567 DOI: 10.1016/j.biortech.2022.127781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
The effect of a non-ionic surfactant optimized formulation (SOF) obtained from an experimental design was evaluated for different influencing variables in the processing of sugarcane bagasse cellulignin to produce biopigments. The major findings in the saccharification stage using the SOF point that: at same enzyme loading, the highest glucan hydrolysis yield was 63 % (2-fold higher compared to control); the enzyme loading of 2.5 FPU/g resulted in similar yield compared to 10 FPU/g (control); 15 % (m/v) of total solids loading maintained the yield in fed-batch configuration; the hydrolysis yield is maintained at high shear force stress (800 rpm of stirring rate) and temperatures (50-70 °C). Besides, under separate and semi-simultaneous hydrolysis and fermentation, the maximum biopigments production were of 10 AU510nm/mL and 17.84 AU510nm/mL, respectively. The SOF used in this study was found to be a promising additive either in a single or sequential steps to produce biopigments in biorefineries.
Collapse
Affiliation(s)
- S Sánchez-Muñoz
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810 Lorena, SP, Brazil
| | - T R Balbino
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810 Lorena, SP, Brazil
| | - R Terán-Hilares
- Laboratory of Bioprocess and Membrane Technology, Department of Pharmaceutical, Biochemical and Biotechnological Sciences, Catholic University of Santa María (UCSM), Yanahuara, Arequipa, Perú
| | - E Mier-Alba
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810 Lorena, SP, Brazil
| | - F G Barbosa
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810 Lorena, SP, Brazil
| | - N Balagurusamy
- Bioremediation Laboratory, Faculty of Biological Sciences, Autonomous University of Coahuila (UA de C), Torreón Campus, 27000 Torreón, Coah., México
| | - J C Santos
- Biopolymers, Bioreactors, and Process Simulation Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810 Lorena, SP, Brazil
| | - S S da Silva
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810 Lorena, SP, Brazil.
| |
Collapse
|
6
|
Zúñiga-Arias D, Charpentier-Alfaro C, Méndez-Arias J, Rodríguez-Mora K. Changes in the structure and composition of pineapple leaf fiber after alkali and ionic surfactant pretreatments and their impact on enzymatic hydrolysis. Prep Biochem Biotechnol 2022; 52:969-978. [PMID: 35034574 DOI: 10.1080/10826068.2021.2021233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The current study investigated the effects of two different pretreatments (NaOH and alkaline surfactant assisted) on the chemical, morphological and enzymatic saccharification of pineapple leaf fiber (PALF). Results showed that both pretreatments significantly reduced lignin content of the biomass, achieving a 69.6 and a 76.3% reduction for NaOH and surfactant pretreated materials, respectively. SEM, CLSM and FTIR-ATR techniques were used to evaluate morphological changes in the fibers after pretreatments. Images obtained revealed cellulose exposure and lignin redistribution in the pretreated fibers. Surfactant pretreated material provided the best results after enzymatic hydrolysis compared to NaOH and untreated PALF. A final enzymatic hydrolysis yield of 81.8% was obtained after a 24 h process using surfactant pretreated fibers, in comparison to 75.9 and 45.1% yields for NaOH pretreated material and raw fibers, respectively. Nowadays, the use of agricultural residues for high added value products is of great importance for sustainable development. This work specifically studied an effective and green approach for lignin removal and enzymatic hydrolysis from pineapple leaf fiber that is an abundant waste in Costa Rica and an interesting feedstock for biorefinery processes design.
Collapse
Affiliation(s)
- Débora Zúñiga-Arias
- Es cuela de Ingeniería Química, Universidad de Costa Rica, San José, Costa Rica
| | - Camila Charpentier-Alfaro
- Es cuela de Ingeniería Química, Universidad de Costa Rica, San José, Costa Rica.,Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, Costa Rica
| | - Johanna Méndez-Arias
- Escuela de Ingeniería Industrial, Universidad de Costa Rica, San José, Costa Rica.,Instituto de Investigaciones en Ingeniería, Universidad de Costa Rica, San José, Costa Rica
| | - Karina Rodríguez-Mora
- Instituto de Investigaciones en Ingeniería, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
7
|
Yang M, Guo X, Liu G, Nan Y, Zhang J, Noyazzesh H, Kuittinen S, Vepsäläinen J, Pappinen A. Effect of solvent mixture pretreatment on sugar release from short-rotation coppice Salix schwerinii for biobutanol production. BIORESOURCE TECHNOLOGY 2022; 344:126262. [PMID: 34728360 DOI: 10.1016/j.biortech.2021.126262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
This study investigated the effects of pretreatment using an acetone-butanol-ethanol (ABE) mixture with and without H2SO4 (H+) as a catalyst on sugar recovery from Salix schwerinii biomass. The sugar recovery was susceptible to both the temperature and the catalyst. Moreover, the relatively higher concentration of ABE (H+ABE4) at 200 °C yielded glucose recovery of 85.5% from the pretreated solid, higher than the recovery under other conditions. This result was mainly attributed to the compositional changes in the biomass, as the xylan and lignin were removed in large quantities by ABE pretreatment at 200 °C. Correspondingly, xylose recovery of 53.8% and glucose recovery of 12.1% were obtained from the liquid in which more sugar degradation products were formed. Ultimately, a fermentation broth containing a low concentration of ABE was successfully employed for pretreatment and showed great potential in producing fermentable sugars from S. schwerinii for biobutanol production.
Collapse
Affiliation(s)
- Ming Yang
- Engineering Research Center of Hebei for Agricultural Waste Resource Utilization, College of Life Sciences, Hebei Agricultural University, Baoding 071001, Hebei, China; Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding 071001, Hebei, China.
| | - Xiaojun Guo
- Engineering Research Center of Hebei for Agricultural Waste Resource Utilization, College of Life Sciences, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Guozhen Liu
- Engineering Research Center of Hebei for Agricultural Waste Resource Utilization, College of Life Sciences, Hebei Agricultural University, Baoding 071001, Hebei, China; Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Yufei Nan
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Junhua Zhang
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hossain Noyazzesh
- School of Forest Sciences, University of Eastern Finland, P.O. Box 111, FI80101 Joensuu, Finland
| | - Suvi Kuittinen
- School of Forest Sciences, University of Eastern Finland, P.O. Box 111, FI80101 Joensuu, Finland
| | - Jouko Vepsäläinen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI70211 Kuopio, Finland
| | - Ari Pappinen
- School of Forest Sciences, University of Eastern Finland, P.O. Box 111, FI80101 Joensuu, Finland
| |
Collapse
|
8
|
Advanced Bioethanol Production: From Novel Raw Materials to Integrated Biorefineries. Processes (Basel) 2021. [DOI: 10.3390/pr9020206] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The production of so-called advanced bioethanol offers several advantages compared to traditional bioethanol production processes in terms of sustainability criteria. This includes, for instance, the use of nonfood crops or residual biomass as raw material and a higher potential for reducing greenhouse gas emissions. The present review focuses on the recent progress related to the production of advanced bioethanol, (i) highlighting current results from using novel biomass sources such as the organic fraction of municipal solid waste and certain industrial residues (e.g., residues from the paper, food, and beverage industries); (ii) describing new developments in pretreatment technologies for the fractionation and conversion of lignocellulosic biomass, such as the bioextrusion process or the use of novel ionic liquids; (iii) listing the use of new enzyme catalysts and microbial strains during saccharification and fermentation processes. Furthermore, the most promising biorefinery approaches that will contribute to the cost-competitiveness of advanced bioethanol production processes are also discussed, focusing on innovative technologies and applications that can contribute to achieve a more sustainable and effective utilization of all biomass fractions. Special attention is given to integrated strategies such as lignocellulose-based biorefineries for the simultaneous production of bioethanol and other high added value bioproducts.
Collapse
|
9
|
High temperature simultaneous saccharification and fermentation of corn stover for efficient butanol production by a thermotolerant Clostridium acetobutylicum. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.09.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Gao Y, Zhang M, Zhou X, Guo X, Lei C, Li W, Lu D. Effects of Carbon Ion Beam Irradiation on Butanol Tolerance and Production of Clostridium acetobutylicum. Front Microbiol 2020; 11:602774. [PMID: 33391222 PMCID: PMC7775398 DOI: 10.3389/fmicb.2020.602774] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/30/2020] [Indexed: 01/25/2023] Open
Abstract
Clostridium acetobutylicum (C. acetobutylicum) has considerable potential for use in bioenergy development. Owing to the repeated use of traditional mutagenesis methods, the strains have developed a certain tolerance. The rheology of the bioprocess and the downstream processing of the product heavily depend on the ability of C. acetobutylicum mutants to produce butanol. Carbon ion beam irradiation has advantages over traditional mutation methods for fermentative production because of its dose conformity and superb biological effectiveness. However, its effects on the specific productivity of the strains have not been clearly understood. In this study, we screened five mutants through carbon ion beam irradiation; mutant Y217 achieved a butanol-production level of 13.67 g/L, exceeding that of wild-type strain ATCC 824 (i.e., 9.77 g/L). In addition, we found that the mutant maintained normal cell membrane integrity under the stimulation of 15 g/L butanol, whereas the intracellular macromolecules of wild-type strain ATCC 824 leaked significantly. Subsequently, we used the response surface methodology (RSM) to determine if the mutant cell membrane integrity improved the butanol tolerance. We verified that with the addition of butanol, the mutant could be fermented to produce 8.35 g/L butanol, and the final butanol concentration in the fermentation broth could reach 16.15 g/L. In this study, we proved that under butanol stress, mutant Y217 features excellent butanol production and tolerance and cell membrane integrity and permeability; no prior studies have attempted to do so. This will serve as an interesting and important illustration of the complexity of genetic control of the irradiation mutation of C. acetobutylicum strains. It may also prove to be useful in the bioengineering of strains of the mutant for use in the predevelopment stage.
Collapse
Affiliation(s)
- Yue Gao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Miaomiao Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China.,Gansu Key Laboratory of Microbial Resources Exploitation and Application, Lanzhou, China
| | - Xiang Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaopeng Guo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Cairong Lei
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wenjian Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China.,Gansu Key Laboratory of Microbial Resources Exploitation and Application, Lanzhou, China
| | - Dong Lu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China.,Gansu Key Laboratory of Microbial Resources Exploitation and Application, Lanzhou, China
| |
Collapse
|
11
|
Mohapatra S, Ranjan Mishra R, Nayak B, Chandra Behera B, Das Mohapatra PK. Development of co-culture yeast fermentation for efficient production of biobutanol from rice straw: A useful insight in valorization of agro industrial residues. BIORESOURCE TECHNOLOGY 2020; 318:124070. [PMID: 32942093 DOI: 10.1016/j.biortech.2020.124070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 06/11/2023]
Abstract
Escalating environmental concerns and petroleum demands leads into the present study. In this investigation delignification of rice straw was optimized by NaOH and H2SO4 pretreatment using L16 Taguchi orthogonal array. NaOH pretreatment revealed higher delignification as compared to H2SO4 and; further subjected to separate enzymatic hydrolysis and co-fermentation (SHCF) using RSM as the SHCF demonstrated a maximum glucose and xylose yield of 575 and 205 mg/g. Further, butanol concentration of 4.32 g/L was achieved from 20 g/L of sugar loadings by co-culture of Saccharomyces cerevisiae and Pichia sp. at 72 h of incubation time which was 79.25% higher as compared to monocultures of Pichia sp. Scale-up experiments with higher sugar loadings (90 g/L) demonstrated a butanol concentration of 13.3 g/L. The release of amino acids in co-culture and monoculture systems demonstrated that the addition of S. cerevisiae promoted the butanol synthesis pathway which led to higher butanol concentration.
Collapse
Affiliation(s)
- Sonali Mohapatra
- Department of Biotechnology, College of Engg. & Technology, Kalinga Nagar, Ghatikia, Bhubaneswar, Odisha 751003, India
| | - Rashmi Ranjan Mishra
- Department of Biotechnology, MITS School of Biotechnology, KIIT Road, Infocity, Patia, Bhubaneswar, Odisha 751024, India
| | - Bikash Nayak
- Department of Biotechnology, MITS School of Biotechnology, KIIT Road, Infocity, Patia, Bhubaneswar, Odisha 751024, India
| | | | | |
Collapse
|
12
|
Abdulsattar MO, Abdulsattar JO, Greenway GM, Welham KJ, Zein SH. Optimization of pH as a strategy to improve enzymatic saccharification of wheat straw for enhancing bioethanol production. J Anal Sci Technol 2020. [DOI: 10.1186/s40543-020-00217-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractIn this work, wheat straw (WS) was used as a lignocellulosic substrate to investigate the influence of pH on enzymatic saccharification. The optimum enzymatic hydrolysis occurred at pH range 5.8–6.0, instead of 4.8–5.0 as has been widely reported in research. Two enzymes cocktails, Celluclast® 1.5 L with Novozymes 188, Cellic® CTec2 and endo-1,4-β-xylanase, were used for the pH investigation over a pH range of 3.0–7.0. The highest concentration of total reduced sugar was found at pH 6.0 for all the different enzymes used in this study. The total reduced sugar produced from the enzymatic saccharification at pH 6.0 was found to be 7.0, 7.4, and 10.8 (g L−1) for Celluclast® 1.5 L with Novozymes 188, endo-1,4-β-xylanase and Cellic® CTec2, respectively. By increasing the pH from 4.8 to 6.0, the total reduced sugar yield increased by 25% for Celluclast® 1.5 L with Novozymes 188 and endo-1 4-β-xylanase and 21% for Cellic® CTec2. The results from this study indicate that WS hydrolysis can be improved significantly by elevating the pH at which the reaction occurs to the range of 5.8 to 6.0.
Collapse
|
13
|
Jung S, Kim H, Tsang YF, Lin KYA, Park YK, Kwon EE. A new biorefinery platform for producing (C 2-5) bioalcohols through the biological/chemical hybridization process. BIORESOURCE TECHNOLOGY 2020; 311:123568. [PMID: 32467028 DOI: 10.1016/j.biortech.2020.123568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 05/05/2023]
Abstract
This review presents an emerging biorefinery platform for C2-5 bioalcohol production through chemical synthesis using the organic waste materials. Bioalcohols are the most commercialized carbon-neutral transportation fuels, compatible with existing an internal combustion (IC) engine. However, current bioalcohol fermentation processes have made from sugar-rich edible crops. Also, carbon loss from the fermentation process is substantial. To minimize carbon loss, volatile fatty acids (VFAs) can be utilized as a raw material for bioalcohol production. Thus, a two-step chemical upgrading of VFAs into C2-5 alcohols is summarized in comparison with current challenges of biological fermentation processes for bioalcohol production. This review also provides the prospect of the hybrid biological/chemical process, presenting the technical advantages of the system. Finally, economic viability of hybridized process for bioalcohol production is compared with the current biological process.
Collapse
Affiliation(s)
- Sungyup Jung
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Hana Kim
- School of Humanities and Social Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories 999077, Hong Kong
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture & Research Center of Sustainable Energy and Nanotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea.
| |
Collapse
|
14
|
Li J, Xu Y, Peng T, Zhong M, Hu Z. Enhanced Fermentable Sugar Production from Enteromorpha Polysaccharides by the Crude Enzymes of Vibrio sp. H11. J Mol Microbiol Biotechnol 2020; 29:66-73. [PMID: 32146468 DOI: 10.1159/000505371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/08/2019] [Indexed: 11/19/2022] Open
Abstract
In recent years, large-scale outbreaks of the green alga Enteromorpha prolifera in China's offshore waters have posed a serious threat. This study aimed to improve Enteromorpha polysaccharide (EP) enzymatic sugar production using the hydrolase system of Vibrio sp. H11, an EP-utilizing microbial strain. Strain H11 was found to contain 711 carbohydrate-related genes, and 259 genes belong to glycoside hydrolases that have the potential to hydrolyze EP. To maximize the capability of strain H11 to hydrolyze EP, both the culture medium and the composition were optimized. Response surface methodology analysis showed that maximal enzymatic production from strain H11 was 8.43 U/mL after 26-h incubation. When 50 g/L of EP were treated with crude H11 enzyme, the concentration of fermentation sugars increased by 36.12%. Under these conditions, the hydrolysates were capable of generating 3,217 mL/L of biogas and 6.74 g/L of biosolvents, with increases of 28.17 and 7.29%, respectively, compared to controls. The combined application of the H11 enzymatic system and anaerobic fermentation has the potential to improve the comprehensive application of EP.
Collapse
Affiliation(s)
- Jin Li
- Department of Biology, Shantou University, Shantou, China
| | - Yan Xu
- Department of Biology, Shantou University, Shantou, China
| | - Tao Peng
- Department of Biology, Shantou University, Shantou, China
| | - Mingqi Zhong
- Department of Biology, Shantou University, Shantou, China
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou, China,
| |
Collapse
|
15
|
Ebrahimian F, Karimi K. Efficient biohydrogen and advanced biofuel coproduction from municipal solid waste through a clean process. BIORESOURCE TECHNOLOGY 2020; 300:122656. [PMID: 31893536 DOI: 10.1016/j.biortech.2019.122656] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
The cleanest form of energy, i.e., biohydrogen, and advanced biofuel, i.e., biobutanol, were produced from the organic fraction of municipal solid waste (OFMSW). Ethanol as a byproduct of this process was used for the pretreatment of this substrate, and this pretreatment was improved by other process byproducts, i.e., acetic acid and butyric acid. The pretreatment was conducted with 85% ethanol and 0-1% (w/w) acetic/butyric acid at 120 and 160 °C for 30 min. The pretreatment catalyzed by 1% (w/w) acetic acid at 120 °C resulted in a hydrolysate with 49.8 g/L total fermentable sugars, which was fermented to the highest overall yield of acetone, butanol, and ethanol (ABE) and hydrogen. Through this process, 114.1 g butanol, 43.8 g acetone, 15.1 g ethanol, 97.5 L hydrogen were obtained from each kg of OFMSW, producing 270 g ABE and 151 L H2 from each kg of substrate, corresponding to 6000 kJ energy production.
Collapse
Affiliation(s)
- Farinaz Ebrahimian
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Keikhosro Karimi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Industrial Biotechnology Group, Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| |
Collapse
|
16
|
Sukwong P, Sunwoo IY, Jeong DY, Kim SR, Jeong GT, Kim SK. Improvement of bioethanol production by Saccharomyces cerevisiae through the deletion of GLK1, MIG1 and MIG2 and overexpression of PGM2 using the red seaweed Gracilaria verrucosa. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.10.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Bajaj P, Mahajan R. Cellulase and xylanase synergism in industrial biotechnology. Appl Microbiol Biotechnol 2019; 103:8711-8724. [DOI: 10.1007/s00253-019-10146-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 11/29/2022]
|
18
|
Jiang Y, Lv Y, Wu R, Sui Y, Chen C, Xin F, Zhou J, Dong W, Jiang M. Current status and perspectives on biobutanol production using lignocellulosic feedstocks. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.100245] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Birgen C, Dürre P, Preisig HA, Wentzel A. Butanol production from lignocellulosic biomass: revisiting fermentation performance indicators with exploratory data analysis. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:167. [PMID: 31297155 PMCID: PMC6598312 DOI: 10.1186/s13068-019-1508-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/19/2019] [Indexed: 05/09/2023]
Abstract
After just more than 100 years of history of industrial acetone-butanol-ethanol (ABE) fermentation, patented by Weizmann in the UK in 1915, butanol is again today considered a promising biofuel alternative based on several advantages compared to the more established biofuels ethanol and methanol. Large-scale fermentative production of butanol, however, still suffers from high substrate cost and low product titers and selectivity. There have been great advances the last decades to tackle these problems. However, understanding the fermentation process variables and their interconnectedness with a holistic view of the current scientific state-of-the-art is lacking to a great extent. To illustrate the benefits of such a comprehensive approach, we have developed a dataset by collecting data from 175 fermentations of lignocellulosic biomass and mixed sugars to produce butanol that reported during the past three decades of scientific literature and performed an exploratory data analysis to map current trends and bottlenecks. This review presents the results of this exploratory data analysis as well as main features of fermentative butanol production from lignocellulosic biomass with a focus on performance indicators as a useful tool to guide further research and development in the field towards more profitable butanol manufacturing for biofuel applications in the future.
Collapse
Affiliation(s)
- Cansu Birgen
- Department of Chemical Engineering, NTNU, 7491 Trondheim, Norway
| | - Peter Dürre
- Institute of Microbiology and Biotechnology, Ulm University, 89069 Ulm, Germany
| | - Heinz A. Preisig
- Department of Chemical Engineering, NTNU, 7491 Trondheim, Norway
| | | |
Collapse
|
20
|
Amiri H, Karimi K. Pretreatment and hydrolysis of lignocellulosic wastes for butanol production: Challenges and perspectives. BIORESOURCE TECHNOLOGY 2018; 270:702-721. [PMID: 30195696 DOI: 10.1016/j.biortech.2018.08.117] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 06/08/2023]
Abstract
Butanol is acknowledged as a drop-in biofuel that can be used in the existing transportation infrastructure, addressing the needs for sustainable liquid fuel. However, before becoming a thoughtful alternative for fossil fuel, butanol should be produced efficiently from a widely-available, renewable, and cost-effective source. In this regard, lignocellulosic materials, the main component of organic wastes from agriculture, forestry, municipalities, and even industries seems to be the most promising source. The butanol-producing bacteria, i.e., Clostridia sp., can uptake a wide range of hexoses, pentoses, and oligomers obtained from hydrolysis of cellulose and hemicellulose content of lignocelluloses. The present work is dedicated to reviewing different processes containing pretreatment and hydrolysis of hemicellulose and cellulose developed for preparing fermentable hydrolysates for biobutanol production.
Collapse
Affiliation(s)
- Hamid Amiri
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 81746-73441, Iran; Environmental Research Institute, University of Isfahan, Isfahan 81746-73441, Iran.
| | - Keikhosro Karimi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Industrial Biotechnology Group, Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
21
|
Farmanbordar S, Amiri H, Karimi K. Simultaneous organosolv pretreatment and detoxification of municipal solid waste for efficient biobutanol production. BIORESOURCE TECHNOLOGY 2018; 270:236-244. [PMID: 30219575 DOI: 10.1016/j.biortech.2018.09.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/01/2018] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
Municipal solid waste (MSW) was used as a source for biobutanol production via acetone, butanol, and ethanol (ABE) fermentation. Organosolv pretreatment was used for simultaneous extraction of inhibitors, particularly tannins, and pretreatment of lignocellulosic fraction prior to hydrolysis. The hydrolysates of the pretreated MSW contained appreciable amounts of sugars and soluble starch together with a tolerable amount of inhibitors for Clostridium acetobutylicum. The hydrolysate obtained from MSW pretreated with 85% ethanol at 120 °C for 30 min fermented to the highest ABE concentration of 13.06 g/L with the yield of 0.33 g/g carbon source. Through this process, 102.4 mg butanol, 40.16 mg acetone, and 13.14 mg ethanol were produced from each g of organic fraction of MSW (OFMSW). The pretreatment at mild conditions with higher ethanol concentration accompanied with the lowest glucose yield (0.145 g/g) and the highest starch recovery resulted in the uppermost ABE yield of 0.16 g/g OFMSW.
Collapse
Affiliation(s)
- Sara Farmanbordar
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Hamid Amiri
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 81746-73441, Iran; Environmental Research Institute, University of Isfahan, Isfahan 81746-73441, Iran
| | - Keikhosro Karimi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Industrial Biotechnology Group, Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| |
Collapse
|
22
|
Wang C, Su X, Sun W, Zhou S, Zheng J, Zhang M, Sun M, Xue J, Liu X, Xing J, Chen S. Efficient production of succinic acid from herbal extraction residue hydrolysate. BIORESOURCE TECHNOLOGY 2018; 265:443-449. [PMID: 29935453 DOI: 10.1016/j.biortech.2018.06.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
In this study, six different herbal-extraction residues were evaluated for succinic acid production in terms of chemical composition before and after dilute acid pretreatment (DAP) and sugar release performance. Chemical composition showed that pretreated residues of Glycyrrhiza uralensis Fisch (GUR) and Morus alba L. (MAR) had the highest cellulose content, 50% and 52%, respectively. Higher concentrations of free sugars (71.6 g/L total sugar) and higher hydrolysis yield (92%) were both obtained under 40 FPU/g DM at 10% solid loading for GUR. Using scanning electron microscopy (SEM), GUR was found to show a less compact structure due to process of extraction. Specifically, the fibers in pretreated GUR were coarse and disordered compared with that of GUR indicated by SEM. Finally, 65 g/L succinic acid was produced with a higher yield of 0.89 g/g total sugar or 0.49 g/g GUR. Our results illustrate the potential of GUR for succinic acid production.
Collapse
Affiliation(s)
- Caixia Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, PR China
| | - Xinyao Su
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, PR China; School of Life Science, Huai Bei Normal University, Huaibei 23500, PR China
| | - Wei Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, PR China
| | - Sijing Zhou
- Beijing Radiation Center, Beijing 100015, PR China
| | - Junyu Zheng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, PR China
| | - Mengting Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, PR China; School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
| | - Mengchu Sun
- School of Life Science, Huai Bei Normal University, Huaibei 23500, PR China
| | - Jianping Xue
- School of Life Science, Huai Bei Normal University, Huaibei 23500, PR China
| | - Xia Liu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jianmin Xing
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, PR China.
| |
Collapse
|
23
|
Zhou W, Liu J, Fan S, Xiao Z, Qiu B, Wang Y, Li J, Liu Y. Biofilm immobilization of Clostridium acetobutylicum on particulate carriers for acetone-butanol-ethanol (ABE) production. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.biteb.2018.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
24
|
Zhang H, Fan M, Li X, Zhang A, Xie J. Enhancing enzymatic hydrolysis of sugarcane bagasse by ferric chloride catalyzed organosolv pretreatment and Tween 80. BIORESOURCE TECHNOLOGY 2018; 258:295-301. [PMID: 29555585 DOI: 10.1016/j.biortech.2018.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 05/15/2023]
Abstract
In this work, a FeCl3-catalyzed organosolv pretreatment was employed at 160 °C to remove hemicellulose and lignin in sugarcane bagasse leaving the cellulose-enriched residue for enzymatic hydrolysis to sugars. The solubilized hemicellulose fractions consisted more monomer xylose than oligomer xylose. The FeCl3-catalyzed organosolv pretreatment significantly improved the enzymatic hydrolysis, nearly 100% of cellulose components were converted to glucose after pretreatment with 0.05 M FeCl3. Structural analysis was employed to reveal how pretreatment affected the enzymatic hydrolysis. With the addition of Tween 80, the same level of glucose was obtained with 50% reduction of enzyme dosage after 24 h. Furthermore, the influence of Tween 80 on different pretreatment systems was investigated, indicating that the improvement was increased as the lignin content increased, decreased with high enzyme loading and extending hydrolysis time. This work suggested that the addition of Tween 80 could improve the enzymatic hydrolysis, reduce the hydrolysis time and enzyme dosage.
Collapse
Affiliation(s)
- Hongdan Zhang
- College of Forestry and Landscape Architecture, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, and Application, Guangzhou 510640, PR China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530003, PR China.
| | - Meishan Fan
- College of Forestry and Landscape Architecture, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, PR China
| | - Xin Li
- College of Forestry and Landscape Architecture, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, PR China
| | - Aiping Zhang
- College of Forestry and Landscape Architecture, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, PR China
| | - Jun Xie
- College of Forestry and Landscape Architecture, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
25
|
Yang M, Xu M, Nan Y, Kuittinen S, Kamrul Hassan M, Vepsäläinen J, Xin D, Zhang J, Pappinen A. Influence of size reduction treatments on sugar recovery from Norway spruce for butanol production. BIORESOURCE TECHNOLOGY 2018; 257:113-120. [PMID: 29494838 DOI: 10.1016/j.biortech.2018.02.072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 06/08/2023]
Abstract
This study investigated whether the effectiveness of pretreatment is limited by a size reduction of Norway spruce wood in biobutanol production. The spruce was milled, chipped, and mashed for hydrogen peroxide-acetic acid (HPAC) and dilute acid (DA) pretreatment. Sugar recoveries from chipped and mashed spruce after enzymatic hydrolysis were higher than from milled spruce, and the recoveries were not correlated with the spruce fiber length. HPAC pretreatment resulted in almost 100% glucose and 88% total reducing sugars recoveries from chipped spruce, which were apparently higher than DA pretreatment, demonstrating greater effectiveness of HPAC pretreatment on sugar production. The butanol and ABE yield from chipped spruce were 126.5 and 201.2 g/kg pretreated spruce, respectively. The yields decreased with decreasing particle size due to biomass loss in the pretreatment. The results suggested that Norway spruce chipped to a 20 mm length is applicable to the production of platform sugars for butanol fermentation.
Collapse
Affiliation(s)
- Ming Yang
- College of Forestry, Northwest A&F University, 3 Taicheng Road, 712100 Yangling, China; School of Forest Sciences, University of Eastern Finland, P.O. Box 111, FI80101 Joensuu, Finland
| | - Minyuan Xu
- School of Forest Sciences, University of Eastern Finland, P.O. Box 111, FI80101 Joensuu, Finland
| | - Yufei Nan
- College of Forestry, Northwest A&F University, 3 Taicheng Road, 712100 Yangling, China
| | - Suvi Kuittinen
- School of Forest Sciences, University of Eastern Finland, P.O. Box 111, FI80101 Joensuu, Finland
| | - Md Kamrul Hassan
- School of Forest Sciences, University of Eastern Finland, P.O. Box 111, FI80101 Joensuu, Finland
| | - Jouko Vepsäläinen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI70211 Kuopio, Finland
| | - Donglin Xin
- College of Forestry, Northwest A&F University, 3 Taicheng Road, 712100 Yangling, China
| | - Junhua Zhang
- College of Forestry, Northwest A&F University, 3 Taicheng Road, 712100 Yangling, China.
| | - Ari Pappinen
- School of Forest Sciences, University of Eastern Finland, P.O. Box 111, FI80101 Joensuu, Finland
| |
Collapse
|
26
|
Wang Y, Ho SH, Yen HW, Nagarajan D, Ren NQ, Li S, Hu Z, Lee DJ, Kondo A, Chang JS. Current advances on fermentative biobutanol production using third generation feedstock. Biotechnol Adv 2017; 35:1049-1059. [DOI: 10.1016/j.biotechadv.2017.06.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/08/2017] [Accepted: 06/01/2017] [Indexed: 12/23/2022]
|
27
|
Cai D, Chen C, Zhang C, Wang Y, Wen H, Qin P. Fed-batch fermentation with intermittent gas stripping using immobilized Clostridium acetobutylicum for biobutanol production from corn stover bagasse hydrolysate. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.05.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Carrillo-Nieves D, Ruiz HA, Aguilar CN, Ilyina A, Parra-Saldivar R, Torres JA, Martínez Hernández JL. Process alternatives for bioethanol production from mango stem bark residues. BIORESOURCE TECHNOLOGY 2017; 239:430-436. [PMID: 28538199 DOI: 10.1016/j.biortech.2017.04.131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/28/2017] [Accepted: 04/30/2017] [Indexed: 06/07/2023]
Abstract
Three alternatives for bioethanol production from pretreated mango stem bark after maceration (MSBAM) were evaluated as a biorefinery component for the mango agroindustry. These included separate hydrolysis and fermentation (SHF), simultaneous saccharification and fermentation (SSF), and pre-saccharification followed by simultaneous saccharification and fermentation (PSSF). The effects on ethanol concentration, yield and productivity of pretreated MSBAM solids loading, Tween 20 addition, and temperature were used for process comparisons. The highest yields for the SHF, SSF, and PSSF process alternatives were 58.8, 81.6, and 84.5%, respectively. Since saccharification and fermentation are carried out in the same vessel in the SSF alternative, and no significant SSF and PSSF differences in ethanol concentration were observed, SSF is recommended as the best process configuration.
Collapse
Affiliation(s)
- Danay Carrillo-Nieves
- Nanobioscience and Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Coah., Mexico; Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Monterrey, Mexico
| | - Héctor A Ruiz
- Nanobioscience and Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Coah., Mexico; Cluster of Bioalcohols, Mexican Centre for Innovation in Bioenergy (Cemie-Bio), Mexico
| | - Cristóbal N Aguilar
- Nanobioscience and Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Coah., Mexico
| | - Anna Ilyina
- Nanobioscience and Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Coah., Mexico
| | - Roberto Parra-Saldivar
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Monterrey, Mexico
| | - J Antonio Torres
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Monterrey, Mexico.
| | - José L Martínez Hernández
- Nanobioscience and Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Coah., Mexico.
| |
Collapse
|
29
|
Li X, Zheng Y. Lignin-enzyme interaction: Mechanism, mitigation approach, modeling, and research prospects. Biotechnol Adv 2017; 35:466-489. [DOI: 10.1016/j.biotechadv.2017.03.010] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/19/2017] [Accepted: 03/23/2017] [Indexed: 01/23/2023]
|
30
|
He CR, Kuo YY, Li SY. Lignocellulosic butanol production from Napier grass using semi-simultaneous saccharification fermentation. BIORESOURCE TECHNOLOGY 2017; 231:101-108. [PMID: 28208065 DOI: 10.1016/j.biortech.2017.01.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/19/2017] [Accepted: 01/20/2017] [Indexed: 05/16/2023]
Abstract
Napier grass is a potential feedstock for biofuel production because of its strong adaptability and wide availability. Compositional analysis has been done on Napier grass which was collected from a local area of Taiwan. By comparing acid- and alkali-pretreatment, it was found that the alkali-pretreatment process is favorable for Napier grass. An overall glucose yield of 0.82g/g-glucosetotal can be obtained with the combination of alkali-pretreatment (2.5wt% NaOH, 8wt% sample loading, 121°C, and a reaction time of 40min) and enzymatic hydrolysis (40FPU/g-substrate). Semi-simultaneous saccharification fermentation (sSSF) was carried out, where enzymatic hydrolysis and ABE fermentation were operated in the same batch. It was found that after 24-h hydrolysis, followed by 96-h fermentation, the butanol and acetone concentrations reached 9.45 and 4.85g/L, respectively. The butanol yield reached 0.22g/g-sugarglucose+xylose. Finally, the efficiency of butanol production from Napier grass was calculated at 31%.
Collapse
Affiliation(s)
- Chi-Ruei He
- Department of Chemical Engineering, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Yuan Kuo
- Department of Chemical Engineering, National Chung Hsing University, Taichung, Taiwan
| | - Si-Yu Li
- Department of Chemical Engineering, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
31
|
Li H, Xiong L, Chen X, Wang C, Qi G, Huang C, Luo M, Chen X. Enhanced enzymatic hydrolysis and acetone-butanol-ethanol fermentation of sugarcane bagasse by combined diluted acid with oxidate ammonolysis pretreatment. BIORESOURCE TECHNOLOGY 2017; 228:257-263. [PMID: 28081523 DOI: 10.1016/j.biortech.2016.12.119] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/30/2016] [Accepted: 12/31/2016] [Indexed: 05/24/2023]
Abstract
This study aims to propose a biorefinery pretreatment technology for the bioconversion of sugarcane bagasse (SB) into biofuels and N-fertilizers. Performance of diluted acid (DA), aqueous ammonia (AA), oxidate ammonolysis (OA) and the combined DA with AA or OA were compared in SB pretreatment by enzymatic hydrolysis, structural characterization and acetone-butanol-ethanol (ABE) fermentation. Results indicated that DA-OA pretreatment improves the digestibility of SB by sufficiently hydrolyzing hemicellulose into fermentable monosaccharides and oxidating lignin into soluble N-fertilizer with high nitrogen content (11.25%) and low C/N ratio (3.39). The enzymatic hydrolysates from DA-OA pretreated SB mainly composed of glucose was more suitable for the production of ABE solvents than the enzymatic hydrolysates from OA pretreated SB containing high ratio of xylose. The fermentation of enzymatic hydrolysates from DA-OA pretreated SB produced 12.12g/L ABE in 120h. These results suggested that SB could be utilized efficient, economic, and environmental by DA-OA pretreatment.
Collapse
Affiliation(s)
- Hailong Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, People's Republic of China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, People's Republic of China; R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi 211700, People's Republic of China
| | - Lian Xiong
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, People's Republic of China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, People's Republic of China; R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi 211700, People's Republic of China
| | - Xuefang Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, People's Republic of China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, People's Republic of China; R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi 211700, People's Republic of China
| | - Can Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, People's Republic of China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, People's Republic of China; R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi 211700, People's Republic of China
| | - Gaoxiang Qi
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Chao Huang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, People's Republic of China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, People's Republic of China; R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi 211700, People's Republic of China
| | - Mutan Luo
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xinde Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, People's Republic of China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, People's Republic of China; R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi 211700, People's Republic of China.
| |
Collapse
|
32
|
Cai D, Li P, Chen C, Wang Y, Hu S, Cui C, Qin P, Tan T. Effect of chemical pretreatments on corn stalk bagasse as immobilizing carrier of Clostridium acetobutylicum in the performance of a fermentation-pervaporation coupled system. BIORESOURCE TECHNOLOGY 2016; 220:68-75. [PMID: 27566514 DOI: 10.1016/j.biortech.2016.08.049] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 06/06/2023]
Abstract
In this study, different pretreatment methods were evaluated for modified the corn stalk bagasse and further used the pretreated bagasse as immobilized carrier in acetone-butanol-ethanol fermentation process. Structural changes of the bagasses pretreated by different methods were analyzed by Fourier transform infrared, crystallinity index and scanning pictures by electron microscope. And the performances of batch fermentation using the corn stalk based carriers were evaluated. Results indicated that the highest ABE concentration of 23.86g/L was achieved using NaOH pretreated carrier in batch fermentation. Immobilized fermentation-pervaporation integration process was further carried out. The integration process showed long-term stability with 225-394g/L of ABE solvents on the permeate side of pervaporation membrane. This novel integration process was found to be an efficient method for biobutanol production.
Collapse
Affiliation(s)
- Di Cai
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Ping Li
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Changjing Chen
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yong Wang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Song Hu
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Caixia Cui
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Peiyong Qin
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Tianwei Tan
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
33
|
Gao Z, Ma Y, Wang Q, Zhang M, Wang J, Liu Y. Effect of crude glycerol impurities on lipid preparation by Rhodosporidium toruloides yeast 32489. BIORESOURCE TECHNOLOGY 2016; 218:373-9. [PMID: 27387413 DOI: 10.1016/j.biortech.2016.06.088] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 05/08/2023]
Abstract
Crude glycerol (byproduct of biodiesel preparation) was utilised as the carbon source to produce lipid using oleaginous yeast Rhodosporidium toruloides 32489. Under the same conditions, lipid production with crude glycerol was higher than those produced with glucose and pure glycerol. The effects of 4 main impurities in crude glycerol (methyl oleate, sodium oleate, NaCl and methanol) on lipid production were investigated. Compared with utilising pure glycerol, addition of methyl oleate, sodium oleate, and NaCl impurities increased lipid production by 47.0%, 68.0% and 64.0%, respectively, while methanol decreased lipid production by 17.7%. However, when methanol was mixed with other impurities, its inhibition effect was alleviated due to the promoting effect of other impurities. Hence, crude glycerol could be used as a renewable and low-cost carbon source to replace pure glucose or glycerol for lipid preparation.
Collapse
Affiliation(s)
- Zhen Gao
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yingqun Ma
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Qunhui Wang
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, China.
| | - Min Zhang
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Juan Wang
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yu Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| |
Collapse
|
34
|
Méndez Arias J, de Oliveira Moraes A, Modesto LFA, de Castro AM, Pereira Jr N. Addition of Surfactants and Non-Hydrolytic Proteins and Their Influence on Enzymatic Hydrolysis of Pretreated Sugarcane Bagasse. Appl Biochem Biotechnol 2016; 181:593-603. [DOI: 10.1007/s12010-016-2234-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 08/29/2016] [Indexed: 12/11/2022]
|
35
|
Cai D, Wang Y, Chen C, Qin P, Miao Q, Zhang C, Li P, Tan T. Acetone-butanol-ethanol from sweet sorghum juice by an immobilized fermentation-gas stripping integration process. BIORESOURCE TECHNOLOGY 2016; 211:704-710. [PMID: 27060246 DOI: 10.1016/j.biortech.2016.03.155] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 06/05/2023]
Abstract
In this study, sweet sorghum juice (SSJ) was used as the substrate in a simplified ABE fermentation-gas stripping integration process without nutrients supplementation. The sweet sorghum bagasse (SSB) after squeezing the fermentable juice was used as the immobilized carrier. The results indicated that the productivity of ABE fermentation process was improved by gas stripping integration. A total 24g/L of ABE solvents was obtained from 59.6g/L of initial sugar after 80h of fermentation with gas stripping. Then, long-term of fed-batch fermentation with continuous gas stripping was further performed. 112.9g/L of butanol, 44.1g/L of acetone, 9.5g/L of ethanol (total 166.5g/L of ABE) was produced in overall 312h of fermentation. At the same time, concentrated ABE product was obtained in the condensate of gas stripping.
Collapse
Affiliation(s)
- Di Cai
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yong Wang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Changjing Chen
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Peiyong Qin
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Qi Miao
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Changwei Zhang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Ping Li
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Tianwei Tan
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
36
|
Pang ZW, Lu W, Zhang H, Liang ZW, Liang JJ, Du LW, Duan CJ, Feng JX. Butanol production employing fed-batch fermentation by Clostridium acetobutylicum GX01 using alkali-pretreated sugarcane bagasse hydrolysed by enzymes from Thermoascus aurantiacus QS 7-2-4. BIORESOURCE TECHNOLOGY 2016; 212:82-91. [PMID: 27089425 DOI: 10.1016/j.biortech.2016.04.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/01/2016] [Accepted: 04/02/2016] [Indexed: 05/23/2023]
Abstract
Sugarcane bagasse (SB) is a potential feedstock for butanol production. However, biological production of butanol from SB is less economically viable. In this study, evaluation of eight pretreatments on SB showed that alkali pretreatment efficiently removed lignin from SB while retaining the intact native structure of the released microfibrils. In total, 99% of cellulose and 100% of hemicellulose in alkali-pretreated SB were hydrolysed by enzymes from Thermoascus aurantiacus. The hydrolysate was used to produce butanol in a fed-batch fermentation by Clostridium acetobutylicum. At 60h, 14.17 and 21.11gL(-1) of butanol and acetone-butanol-ethanol (ABE) were produced from 68.89gL(-1) of total sugars, respectively, yielding 0.22 and 0.33gg(-1) of sugars. The maximum yield of butanol and ABE reached 15.4g and 22.9g per 100g raw SB, respectively. This established process may have potential application for butanol production from SB.
Collapse
Affiliation(s)
- Zong-Wen Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, People's Republic of China
| | - Wei Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, People's Republic of China
| | - Hui Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, People's Republic of China
| | - Zheng-Wu Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, People's Republic of China
| | - Jing-Juan Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, People's Republic of China.
| | - Liang-Wei Du
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, People's Republic of China
| | - Cheng-Jie Duan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, People's Republic of China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, People's Republic of China
| |
Collapse
|
37
|
Shukor H, Abdeshahian P, Al-Shorgani NKN, Hamid AA, Rahman NA, Kalil MS. Saccharification of polysaccharide content of palm kernel cake using enzymatic catalysis for production of biobutanol in acetone-butanol-ethanol fermentation. BIORESOURCE TECHNOLOGY 2016; 202:206-213. [PMID: 26710346 DOI: 10.1016/j.biortech.2015.11.078] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/25/2015] [Accepted: 11/29/2015] [Indexed: 06/05/2023]
Abstract
In this work, hydrolysis of cellulose and hemicellulose content of palm kernel cake (PKC) by different types of hydrolytic enzymes was studied to evaluate monomeric sugars released for production of biobutanol by Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564) in acetone-butanol-ethanol (ABE) fermentation. Experimental results revealed that when PKC was hydrolyzed by mixed β-glucosidase, cellulase and mannanase, a total simple sugars of 87.81±4.78 g/L were produced, which resulted in 3.75±0.18 g/L butanol and 6.44±0.43 g/L ABE at 168 h fermentation. In order to increase saccharolytic efficiency of enzymatic treatment, PKC was pretreated by liquid hot water before performing enzymatic hydrolysis. Test results showed that total reducing sugars were enhanced to 97.81±1.29 g/L with elevated production of butanol and ABE up to 4.15±1.18 and 7.12±2.06 g/L, respectively which represented an A:B:E ratio of 7:11:1.
Collapse
Affiliation(s)
- Hafiza Shukor
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; School of Bioprocess Engineering, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi 3, 02600 Arau, Perlis, Malaysia
| | - Peyman Abdeshahian
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, UTM, Skudai, 81310 Johor, Malaysia
| | - Najeeb Kaid Nasser Al-Shorgani
- School of Biosciences and Biotechnology, Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Aidil Abdul Hamid
- School of Biosciences and Biotechnology, Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Norliza A Rahman
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Mohd Sahaid Kalil
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| |
Collapse
|
38
|
Ou H, Tan W, Niu CH, Feng R. Enhancement of the Stability of Biosorbents for Metal-Ion Adsorption. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b00518] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hongxiang Ou
- Department
of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan, Canada S7N 5A9
- School of Environment and Safety Engineering, Changzhou University, No. 1 Gehu Road, Changzhou, Jiangsu, China 213164
| | - Weihui Tan
- Department
of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan, Canada S7N 5A9
| | - Catherine Hui Niu
- Department
of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan, Canada S7N 5A9
| | - Renfei Feng
- Canadian Light Source, 44 Innovation
Boulevard, Saskatoon, Saskatchewan, Canada S7N 2V3
| |
Collapse
|