1
|
Warren-Walker D, Ravella SR, Gallagher J, Winters A, Charlton A, Bryant DN. Optimising parameters for pilot scale steam explosion and continuous pressurised disc refining of Miscanthus and sugarcane bagasse for xylose and xylo-oligosaccharide release. BIORESOURCE TECHNOLOGY 2024; 405:130932. [PMID: 38838831 DOI: 10.1016/j.biortech.2024.130932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
The first comparative pre-treatment study of Miscanthus (Mxg) and sugarcane bagasse (SCB) using steam explosion (SE) and pressurised disc refining (PDR) pretreatment to optimise xylose and xylo-oligosaccharide release is described. The current investigation aimed to 1) Develop optimised batch-wise steam explosion parameters for Mxg and SCB, 2) Scale from static batch steam explosion to dynamic continuous pressurised disc refining, 3) Identify, understand, and circumvent scale-up production hurdles. Optimised SE parameters released 82% (Mxg) and 100% (SCB) of the available xylan. Scaling to PDR, Miscanthus yielded 85% xylan, highlighting how robust scouting assessments for boundary process parameters can result in successful technical transfer. In contrast, SCB technical transfer was not straightforward, with significant differences observed between the two processes, 100% (SE) and 58% (PDR). This report underlines the importance of feedstock-specific pretreatment strategies to underpin process development, scale-up, and optimisation of carbohydrate release from biomass.
Collapse
Affiliation(s)
- David Warren-Walker
- Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3EB, UK.
| | - Sreenivas Rao Ravella
- Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3EB, UK
| | - Joe Gallagher
- Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3EB, UK
| | - Ana Winters
- Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3EB, UK
| | - Adam Charlton
- The BioComposites Centre, Bangor University, Bangor LL57 2UW, UK
| | - David N Bryant
- Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3EB, UK
| |
Collapse
|
2
|
Nawaz A, Qadoos K, Haq IU, Feng Y, Mukhtar H, Huang R, Jiang K. Effect of pretreatment strategies on halophyte Atriplex crassifolia to improve saccharification using thermostable cellulases. Front Bioeng Biotechnol 2023; 11:1135424. [PMID: 36896009 PMCID: PMC9989029 DOI: 10.3389/fbioe.2023.1135424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/07/2023] [Indexed: 02/23/2023] Open
Abstract
Bioethanol is believed to be an influential revolutionary gift of biotechnology, owing to its elevating global demand and massive production. Pakistan is home to a rich diversity of halophytic flora, convertible into bounteous volumes of bioethanol. On the other hand, the accessibility to the cellulosic part of biomass is a major bottleneck in the successful application of biorefinery processes. The most common pre-treatment procedures existent include physicochemical and chemical approaches, which are not environmentally benign. To overcome these problems, biological pre-treatment has gained importance but the drawback is the low yield of the extracted monosaccharides. The current research was aimed at exploring the best pre-treatment method for the bioconversion of halophyte Atriplex crassifolia into saccharides using three thermostable cellulases. Atriplex crassifolia was subjected to acid, alkali and microwave pre-treatments, followed by compositional analysis of the pre-treated substrates. Maximum delignification i.e. 56.6% was observed in the substrate pre-treated using 3% HCl. Enzymatic saccharification using thermostable cellulases also validated the results where the highest saccharification yield i.e. 39.5% was observed for the sample pre-treated using same. Maximum enzymatic hydrolysis of 52.7% was obtained for 0.40 g of the pre-treated halophyte Atriplex crassifolia where Endo-1,4- β -glucanase (300U), Exo-1,4- β -glucanase (400U) and β -1,4-glucosidase (1000U) were simultaneously added and incubated for 6 h at 75°C. The reducing sugar slurry obtained after optimization of saccharification was utilized as glucose in submerged fermentation for bioethanol production. The fermentation medium was inoculated with Saccharomyces cerevisiae, incubated at 30°C and 180 rpm for 96 h. Ethanol production was estimated using potassium dichromate method. Maximum production of bioethanol i.e. 16.33% was noted at 72 h. It can be concluded from the study that Atriplex crassifolia owing to its high cellulosic content after pre-treatment using dilute acid method, yields substantial amount of reducing sugars and high saccharification rates when subjected to enzymatic hydrolysis using thermostable cellulases, under optimized reaction conditions. Hence, the halophyte Atriplex crassifolia is a beneficial substrate that can be utilized to extract fermentable saccharides for bioethanol production.
Collapse
Affiliation(s)
- Ali Nawaz
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Khadija Qadoos
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Ikram Ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Yiwei Feng
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, China
| | - Hamid Mukhtar
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Rong Huang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Kankan Jiang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
3
|
Zheng B, Yu S, Chen Z, Huo YX. A consolidated review of commercial-scale high-value products from lignocellulosic biomass. Front Microbiol 2022; 13:933882. [PMID: 36081794 PMCID: PMC9445815 DOI: 10.3389/fmicb.2022.933882] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
For decades, lignocellulosic biomass has been introduced to the public as the most important raw material for the environmentally and economically sustainable production of high-valued bioproducts by microorganisms. However, due to the strong recalcitrant structure, the lignocellulosic materials have major limitations to obtain fermentable sugars for transformation into value-added products, e.g., bioethanol, biobutanol, biohydrogen, etc. In this review, we analyzed the recent trends in bioenergy production from pretreated lignocellulose, with special attention to the new strategies for overcoming pretreatment barriers. In addition, persistent challenges in developing for low-cost advanced processing technologies are also pointed out, illustrating new approaches to addressing the global energy crisis and climate change caused by the use of fossil fuels. The insights given in this study will enable a better understanding of current processes and facilitate further development on lignocellulosic bioenergy production.
Collapse
Affiliation(s)
- Bo Zheng
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Shengzhu Yu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhenya Chen
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
4
|
Simultaneous Determination of Eight Phenolic Acids in Rapeseed by Accelerated Solvent Extraction-Solid Phase Extraction Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02310-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Comprehensive Review on Potential Contamination in Fuel Ethanol Production with Proposed Specific Guideline Criteria. ENERGIES 2022. [DOI: 10.3390/en15092986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ethanol is a promising biofuel that can replace fossil fuel, mitigate greenhouse gas (GHG) emissions, and represent a renewable building block for biochemical production. Ethanol can be produced from various feedstocks. First-generation ethanol is mainly produced from sugar- and starch-containing feedstocks. For second-generation ethanol, lignocellulosic biomass is used as a feedstock. Typically, ethanol production contains four major steps, including the conversion of feedstock, fermentation, ethanol recovery, and ethanol storage. Each feedstock requires different procedures for its conversion to fermentable sugar. Lignocellulosic biomass requires extra pretreatment compared to sugar and starch feedstocks to disrupt the structure and improve enzymatic hydrolysis efficiency. Many pretreatment methods are available such as physical, chemical, physicochemical, and biological methods. However, the greatest concern regarding the pretreatment process is inhibitor formation, which might retard enzymatic hydrolysis and fermentation. The main inhibitors are furan derivatives, aromatic compounds, and organic acids. Actions to minimize the effects of inhibitors, detoxification, changing fermentation strategies, and metabolic engineering can subsequently be conducted. In addition to the inhibitors from pretreatment, chemicals used during the pretreatment and fermentation of byproducts may remain in the final product if they are not removed by ethanol distillation and dehydration. Maintaining the quality of ethanol during storage is another concerning issue. Initial impurities of ethanol being stored and its nature, including hygroscopic, high oxygen and carbon dioxide solubility, influence chemical reactions during the storage period and change ethanol’s characteristics (e.g., water content, ethanol content, acidity, pH, and electrical conductivity). During ethanol storage periods, nitrogen blanketing and corrosion inhibitors can be applied to reduce the quality degradation rate, the selection of which depends on several factors, such as cost and storage duration. This review article sheds light on the techniques of control used in ethanol fuel production, and also includes specific guidelines to control ethanol quality during production and the storage period in order to preserve ethanol production from first-generation to second-generation feedstock. Finally, the understanding of impurity/inhibitor formation and controlled strategies is crucial. These need to be considered when driving higher ethanol blending mandates in the short term, utilizing ethanol as a renewable building block for chemicals, or adopting ethanol as a hydrogen carrier for the long-term future, as has been recommended.
Collapse
|
6
|
Yoon LW, Rafi IS, Ngoh GC. Feasibility of eliminating washing step in bioethanol production using deep eutectic solvent pretreated lignocellulosic substrate. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.01.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
Increasing the Biogas Potential of Rapeseed Straw Using Pulsed Electric Field Pre-Treatment. ENERGIES 2021. [DOI: 10.3390/en14248307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Due to the high availability of lignocellulosic biomass, which can be obtained from terrestrial plants, agricultural waste biomass, and the agro-food, paper or wood industries, its use for energy production by methane fermentation is economically and environmentally justified. However, due to their complex structures, lignocellulosic substrates have a low conversion factor to biogas. Therefore, scientists are still working on the development of new methods of the pre-treatment of lignocellulosic materials that will increase the biogas productivity from lignocellulosic biomass. The presented research focuses on the use of a pulsed electric field (PEF) to disintegrate rapeseed straw prior to the methane fermentation process. Scanning electron microscopy observation showed that, in the disintegrated sample, the extent of damage to the plant tissue was more severe than in the control sample. In the sample disintegrated for 7 min, the chemical oxygen demand increased from 4146 ± 75 mg/L to 4920 ± 60 mg/L. The best result was achieved with a 5-min PEF pre-treatment. The methane production reached 290.8 ± 12.1 NmL CH4/g VS, and the biogas production was 478.0 ± 27.5 NmL/g VS; it was 14% and 15% higher, respectively, compared to the control sample.
Collapse
|
8
|
Sarker TR, Pattnaik F, Nanda S, Dalai AK, Meda V, Naik S. Hydrothermal pretreatment technologies for lignocellulosic biomass: A review of steam explosion and subcritical water hydrolysis. CHEMOSPHERE 2021; 284:131372. [PMID: 34323806 DOI: 10.1016/j.chemosphere.2021.131372] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/26/2021] [Accepted: 06/26/2021] [Indexed: 05/10/2023]
Abstract
The pretreatment of lignocellulosic biomass enhances the conversion efficiency to produce biofuels and value-added chemicals, which have the potential to replace fossil fuels. Compared to physicochemical and other pretreatment techniques, the hydrothermal methods are considered eco-friendly and cost-effective. This paper reviews the strengths, weaknesses, opportunities and threats of steam explosion and subcritical water hydrolysis as the two promising hydrothermal technologies for the pretreatment of lignocellulosic biomass. Although the principle of the steam explosion in depolymerizing the lignin and exposing the cellulose fibers for bioconversion to liquid fuels is well known, its underlying mechanism for solid biofuel production is less identified. Therefore, this review provides an insight into different operating conditions of steam explosion and subcritical water hydrolysis for a wide variety of feedstocks. The mechanisms of subcritical water hydrolysis including dehydration, decarboxylation and carbonization of waste biomass are comprehensively described. Finally, the role of microwave heating in the hydrothermal pretreatment of biomass is elucidated.
Collapse
Affiliation(s)
- Tumpa R Sarker
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Falguni Pattnaik
- Center for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
| | - Sonil Nanda
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ajay K Dalai
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Venkatesh Meda
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Satyanarayan Naik
- Center for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
9
|
Effect of Pretreated Colza Straw on the Growth and Extracellular Ligninolytic Enzymes Production by Lentinula edodes and Ganoderma lucidum. FERMENTATION 2021. [DOI: 10.3390/fermentation7030157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Lentinula edodes 3565 and Ganoderma lucidum 9621 were compared for their ability to produce lignocellulolytic enzymes in submerged (SM) and surface liquid (SL) fermentation of hydrolysed colza straw lignin waste that remained after the production of furfural and bioethanol (CS lignin). Application of cultivated mushrooms to dispose of pretreated colza straw agricultural waste is an approach to decrease the quantity of residual lignin while simultaneously obtaining active substances, e.g., the ligninolytic enzyme complex from mycelium. The effect of adding CS lignin to culture media on the yield of L. edodes and G. lucidum mycelium and extracellular laccase activity was studied. It was revealed that the mycelial growth of G. lucidum on solid media was significantly improved by adding CS lignin. Laccase activity during SL cultivation of L. edodes on medium with CS lignin gradually increased over the experiment starting on day 21 and peaked at 520 U/mL on day 28. G. lucidum expressed the maximum laccase activity, 540 U/mL, during the first 14 days of mycelium SM cultivation. Extracellular laccase activity was enhanced about 35- to 40-fold at cultivation of L. edodes and about 10- to 15-fold in the case of G. lucidum by supplementing liquid culture media with CS lignin.
Collapse
|
10
|
Ambaye TG, Vaccari M, Bonilla-Petriciolet A, Prasad S, van Hullebusch ED, Rtimi S. Emerging technologies for biofuel production: A critical review on recent progress, challenges and perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 290:112627. [PMID: 33991767 DOI: 10.1016/j.jenvman.2021.112627] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/10/2021] [Accepted: 04/11/2021] [Indexed: 05/08/2023]
Abstract
Due to increasing anthropogenic activities, especially industry and transport, the fossil fuel demand and consumption have increased proportionally, causing serious environmental issues. This attracted researchers and scientists to develop new alternative energy sources. Therefore, this review covers the biofuel production potential and challenges related to various feedstocks and advances in process technologies. It has been concluded that the biofuels such as biodiesel, ethanol, bio-oil, syngas, Fischer-Tropsch H2, and methane produced from crop plant residues, micro- and macroalgae and other biomass wastes using thermo-bio-chemical processes are an eco-friendly route for an energy source. Biofuels production and their uses in industries and transportation considerably minimize fossil fuel dependence. Literature analysis showed that biofuels generated from energy crops and microalgae could be the most efficient and attractive process. Recent progress in the field of biofuels using genetic engineering has larger perspectives in commercial-scale production. However, its large-scale production is still challenging; hence, to resolve this problem, it is essential to convert biomass in biofuels by developing novel technology to increase biofuel production to fulfil the current and future energy demand.
Collapse
Affiliation(s)
- Teklit Gebregiorgis Ambaye
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy; Mekelle University, Department of Chemistry, Mekelle, Ethiopia.
| | - Mentore Vaccari
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy
| | | | - Shiv Prasad
- Centre for Environment Science &Climate Resilient Agriculture (CESCRA) Indian Agricultural Research Institute New Delhi, 110012, India
| | | | - Sami Rtimi
- Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
11
|
Zabihi S, Sharafi A, Motamedi H, Esmaeilzadeh F, Doherty WOS. Environmentally friendly acetic acid/steam explosion/supercritical carbon dioxide system for the pre-treatment of wheat straw. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:37867-37881. [PMID: 33723770 DOI: 10.1007/s11356-021-13410-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
It is well established that pretreatment of lignocellulosic biomass is required to achieve an effective enzymatic saccharification process. At the present time, most of the touted pre-treatment technologies would cause environmental pollution and unsustainable water use for the pretreated material prior to enzymatic saccharification. To address these shortcomings, the pretreatment technology which combines the supercritical CO2, SC-CO2 (a green solvent), acetic acid, and steam explosion was used to assess the pretreatment of wheat straw for enzymatic saccharification. The effects of solvent concentration, impregnation temperature and time, pre-treatment time, and temperature, as well as SC-CO2 pressure, contact time, and temperature, were evaluated. The results identified that at the optimum SC-CO2 pressure of 18 MPa, the highest amount of reducing sugars (RS) was produced from the cellulosic pulp using Acetic acid/Steam/SC-CO2 at 200 °C for 30 min, a value 20% more than the pulp produced with the Water/Steam/SC-CO2. The effectiveness of the pretreatment process was attributed not only to delignification and defibrillation but also to the exposure of the cellulose structure evidenced from the proportion of the β-glycosidic linkages as shown by FTIR. Passing SC-CO2 after the pretreatment reduces the amounts of fermentation inhibitors and eliminates the use of wash water.
Collapse
Affiliation(s)
- Samyar Zabihi
- Department of Process Engineering, Research and Development Department, Shazand-Arak Oil Refinery Company, Arak, Iran
| | - Amir Sharafi
- Department of Process Engineering, Research and Development Department, Shazand-Arak Oil Refinery Company, Arak, Iran
| | - Hossein Motamedi
- Department of Biology Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Feridun Esmaeilzadeh
- Department of Chemical and Petroleum Engineering, School of Chemical and Petroleum Engineering, Enhanced Oil and Gas Recovery Institute, Advanced Research Group for Gas Condensate Recovery, University, Shiraz, Shiraz, 7134851154, Iran.
| | - William O S Doherty
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
12
|
Potential for reduced water consumption in biorefining of lignocellulosic biomass to bioethanol and biogas. J Biosci Bioeng 2021; 131:461-468. [PMID: 33526306 DOI: 10.1016/j.jbiosc.2020.12.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/02/2020] [Accepted: 12/27/2020] [Indexed: 12/29/2022]
Abstract
Increasing ethanol demand and public concerns about environmental protection promote the production of lignocellulosic bioethanol. Compared to that of starch- and sugar-based bioethanol production, the production of lignocellulosic bioethanol is water-intensive. A large amount of water is consumed during pretreatment, detoxification, saccharification, and fermentation. Water is a limited resource, and very high water consumption limits the industrial production of lignocellulosic bioethanol and decreases its environmental feasibility. In this review, we focused on the potential for reducing water consumption during the production of lignocellulosic bioethanol by performing pretreatment and fermentation at high solid loading, omitting water washing after pretreatment, and recycling wastewater by integrating bioethanol production and anaerobic digestion. In addition, the feasibility of these approaches and their research progress were discussed. This comprehensive review is expected to draw attention to water competition between bioethanol production and human use.
Collapse
|
13
|
Sugars Production from Municipal Forestry and Greening Wastes Pretreated by an Integrated Steam Explosion-Based Process. ENERGIES 2020. [DOI: 10.3390/en13174432] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Increasing awareness of resource sustainability and waste management has led to the search for solutions while promoting circular economy principles. Among all kinds of lignocellulosic biomass available, one with growing interest is municipal forestry and greening waste (MFGW). MFGW makes up an important part of waste streams of municipal solid waste and is a potential feedstock for biological conversion in a lignocellulosic biorefinery. This work studied the fermentable sugars production from MFGW after steam explosion (SE) pretreatment combined with other pretreatments such as dilute acid, organosolv, and metal salts. A range of pretreatment conditions was evaluated according to different parameters: sugars recovery, degradation product generation, and enzymatic hydrolysis yield. At selected pretreatment conditions (diluted acid plus SE, 195 °C, 10 min, and 60 mg H2SO4/g MFGW), 77% of potential sugars content in MFGW was obtained. The effect of solids loading and enzyme dose on glucose release and glucose yield on enzymatic hydrolysis were also determined. Up to 70% of the main sugars in the MFGW were recovered for the coupled pretreatment and enzymatic hydrolysis (45 FPU/g glucan enzyme loading and 20% dry matter solid consistency), resulting in 80 g/L glucose that could be further utilized for ethanol production.
Collapse
|
14
|
Du C, Li Y, Zong H, Yuan T, Yuan W, Jiang Y. Production of bioethanol and xylitol from non-detoxified corn cob via a two-stage fermentation strategy. BIORESOURCE TECHNOLOGY 2020; 310:123427. [PMID: 32353769 DOI: 10.1016/j.biortech.2020.123427] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
A novel two-stage fermentation strategy was applied to produce xylitol and ethanol from the whole acid-pretreated corn cob slurry. The acid-pretreated corn cob was used without filtration and detoxification by the two-stage fermentation with the robust Kluyveromyces marxianus CICC 1727-5. In the first stage, xylose in the slurry after dilute acid pretreatment of lignocellulosic biomass was used to produce xylitol under micro-aeration conditions. In the second stage, simultaneous saccharification fermentation was carried out, and the ethanol was produced from glucose releasing from the solid. Important parameters, such as aeration rate, cellulase loading during xylose utilization and SSF fermentation were studied for best performance. The two-stage fermentation strategy removed the inhibition of glucose on xylose, and little xylose was left in the fermentation broth. Under the optimized condition, the maximum ethanol and xylitol concentration were 52 g/L and 24.2 g/L corresponding to the yield of 0.41 g/g and 0.82 g/g, respectively.
Collapse
Affiliation(s)
- Cong Du
- School of Bioengineering, Dalian University of Technology, Dalia, Liaoning 116024, PR China
| | - Yimin Li
- School of Bioengineering, Dalian University of Technology, Dalia, Liaoning 116024, PR China
| | - Han Zong
- School of Bioengineering, Dalian University of Technology, Dalia, Liaoning 116024, PR China
| | - Tangguo Yuan
- School of Bioengineering, Dalian University of Technology, Dalia, Liaoning 116024, PR China
| | - Wenjie Yuan
- School of Bioengineering, Dalian University of Technology, Dalia, Liaoning 116024, PR China.
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
15
|
Tan L, Zhong J, Jin YL, Sun ZY, Tang YQ, Kida K. Production of bioethanol from unwashed-pretreated rapeseed straw at high solid loading. BIORESOURCE TECHNOLOGY 2020; 303:122949. [PMID: 32058907 DOI: 10.1016/j.biortech.2020.122949] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
Reduction in water consumption and increase in ethanol concentration are two main challenges for bioethanol production from lignocellulosic materials. To address the two challenges, the aim of this work was to study the production of bioethanol from unwashed-pretreated rapeseed straw (RS) at high solid loading. RS pretreated with 1% (w w-1) H2SO4 at 160 °C for 10 min resulted in excellent digestibility and fermentability of pretreated RS. The unwashed-pretreated RS was subjected to presaccharification and fed-batch simultaneous saccharification and fermentation (P-FB-SSF) at a final solid loading of 22% (w w-1). Ethanol concentration and ethanol yield of 53.1 g L-1 (equivalent to 4.1% (w w-1) based on fermentation slurry) and 72.4% were obtained, respectively. In total, 92.1 g water g-1 ethanol was consumed, a much smaller amount than that observed with washing after pretreatment or fermentation performed at lower solid loading.
Collapse
Affiliation(s)
- Li Tan
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jia Zhong
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yan-Ling Jin
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Zhao-Yong Sun
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| | - Yue-Qing Tang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Kenji Kida
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| |
Collapse
|
16
|
Yu G, Guo T, Huang Q. Preparation of rapeseed oil with superhigh canolol content and superior quality characteristics by steam explosion pretreatment technology. Food Sci Nutr 2020; 8:2271-2278. [PMID: 32405384 PMCID: PMC7215231 DOI: 10.1002/fsn3.1502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/02/2019] [Accepted: 12/09/2019] [Indexed: 01/15/2023] Open
Abstract
In this study, rapeseed was pretreated by steam explosion pretreatment technology and subsequently pressed to prepare rapeseed oil. GC, UPLC, and HPLC techniques were employed to analyze the quality characteristics of the rapeseed oil, including the canolol content and other quality characteristics. Additionally, the effect of steam explosion pretreatment technology on the canolol content of rapeseed oil was studied and the formation mechanism of canolol elucidated. The results revealed that when the steam explosion pressure reached 1.0 MPa, the canolol content of the tested oil increased from 41.21 to 2,168.69 mg/kg (52.63-fold increase) and that sinapic acid played a significant role in the conversion of canolol. Thus, the sinapine was converted into the intermediate (sinapic acid) by hydrolysis, which in turn was transformed into canolol through decarboxylation. The instantaneous high-energy environment generated by steam explosion pretreatment could intensify the hydrolysis and decarboxylation reactions of sinapine and sinapinic acid, thereby significantly increasing the canolol content of the oil. To prove the superiority of steam explosion pretreatment, we compared it with other pretreatment technologies, including traditional high-temperature roasting and popular microwave pretreatment. The results revealed that rapeseed oil prepared by steam explosion pretreatment displayed the best quality characteristics. This study can be a reference for the preparation process of rapeseed oil with superhigh canolol content and superior quality characteristics using steam explosion pretreatment.
Collapse
Affiliation(s)
- Gaiwen Yu
- Oil Crops Research InstituteChinese Academy of Agricultural SciencesWuhanChina
- Hubei Key Laboratory of Lipid Chemistry and NutritionWuhanChina
- Oil Crops and Lipids Process Technology National & Local Joint Engineering LaboratoryWuhanChina
| | - Tingting Guo
- Oil Crops Research InstituteChinese Academy of Agricultural SciencesWuhanChina
- Hubei Key Laboratory of Lipid Chemistry and NutritionWuhanChina
- Oil Crops and Lipids Process Technology National & Local Joint Engineering LaboratoryWuhanChina
| | - Qingde Huang
- Oil Crops Research InstituteChinese Academy of Agricultural SciencesWuhanChina
- Hubei Key Laboratory of Lipid Chemistry and NutritionWuhanChina
- Oil Crops and Lipids Process Technology National & Local Joint Engineering LaboratoryWuhanChina
| |
Collapse
|
17
|
Rahmati S, Doherty W, Dubal D, Atanda L, Moghaddam L, Sonar P, Hessel V, Ostrikov K(K. Pretreatment and fermentation of lignocellulosic biomass: reaction mechanisms and process engineering. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00241k] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
At a time of rapid depletion of oil resources, global food shortages and solid waste problems, it is imperative to encourage research into the use of appropriate pre-treatment techniques using regenerative raw materials such as lignocellulosic biomass.
Collapse
Affiliation(s)
- Shahrooz Rahmati
- School of Chemistry and Physics
- Queensland University of Technology (QUT)
- Brisbane 4000
- Australia
- Centre for Agriculture and the Bioeconomy
| | - William Doherty
- Centre for Agriculture and the Bioeconomy
- Institute for Future Environments
- Queensland University of Technology (QUT)
- Brisbane 4000
- Australia
| | - Deepak Dubal
- School of Chemistry and Physics
- Queensland University of Technology (QUT)
- Brisbane 4000
- Australia
- Centre for Materials Science
| | - Luqman Atanda
- Centre for Agriculture and the Bioeconomy
- Institute for Future Environments
- Queensland University of Technology (QUT)
- Brisbane 4000
- Australia
| | - Lalehvash Moghaddam
- Centre for Agriculture and the Bioeconomy
- Institute for Future Environments
- Queensland University of Technology (QUT)
- Brisbane 4000
- Australia
| | - Prashant Sonar
- School of Chemistry and Physics
- Queensland University of Technology (QUT)
- Brisbane 4000
- Australia
- Centre for Agriculture and the Bioeconomy
| | - Volker Hessel
- School of Chemical Engineering and Advanced Materials
- The University of Adelaide
- Adelaide
- Australia
- School of Engineering
| | - Kostya (Ken) Ostrikov
- School of Chemistry and Physics
- Queensland University of Technology (QUT)
- Brisbane 4000
- Australia
- Centre for Agriculture and the Bioeconomy
| |
Collapse
|
18
|
Lei Q, Zeng W, Zhou J, Du G. Efficient separation of α-ketoglutarate from Yarrowia lipolytica WSH-Z06 culture broth by converting pyruvate to l-tyrosine. BIORESOURCE TECHNOLOGY 2019; 292:121897. [PMID: 31398548 DOI: 10.1016/j.biortech.2019.121897] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
Co-production of α-ketoglutaric acid (KGA) and pyruvic acid (PYR) by Yarrowia lipolytica WSH-Z06 could significantly increase the final titer and yield of keto acids. However, efficient separation of KGA and PYR in an economic manner is a big challenge owing to their similar properties. In the present study, a separation process was established to convert PYR in the fermentation broth to l-tyrosine (TYR). Owing to its low solubility, TYR was easily precipitated out and could be easily removed from the reaction system. The whole-cell catalysis reaction solution was subjected to acid treatment, centrifugation, cation exchange column separation, rotary evaporation, Buchner funnel filtration, and dry separation method to obtain KGA and TYR powders. The purity/recovery rates of KGA and TYR were 98.16%/78.68% and 98.19%/73.46%, respectively. The use of biological pathways to separate KGA from the culture broth could make the separation process easier and further decrease the operation cost.
Collapse
Affiliation(s)
- Qingzi Lei
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
19
|
Contreras MDM, Lama-Muñoz A, Manuel Gutiérrez-Pérez J, Espínola F, Moya M, Castro E. Protein extraction from agri-food residues for integration in biorefinery: Potential techniques and current status. BIORESOURCE TECHNOLOGY 2019; 280:459-477. [PMID: 30777702 DOI: 10.1016/j.biortech.2019.02.040] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 06/09/2023]
Abstract
The biorefinery concept is attracting scientific and policy attention as a promising option for enhancing the benefits of agri-food biomass along with a reduction of the environmental impact. Obtaining bioproducts based on proteins from agri-food residues could help to diversify the revenue stream in a biorefinery. In fact, the extracted proteins can be applied as such or in the form of hydrolyzates due to their nutritional, bioactive and techno-functional properties. In this context, the present review summarizes, exemplifies and discusses conventional extraction methods and current trends to extract proteins from residues of the harvesting, post-harvesting and/or processing of important crops worldwide. Moreover, those extraction methods just integrated in a biorefinery scheme are also described. In conclusion, a plethora of methods exits but only some of them have been applied in biorefinery designs, mostly at laboratory scale. Their economic and technical feasibility at large scale requires further study.
Collapse
Affiliation(s)
- María Del Mar Contreras
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Antonio Lama-Muñoz
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - José Manuel Gutiérrez-Pérez
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain; Center for Advanced Studies in Energy and Environment, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Francisco Espínola
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain; Center for Advanced Studies in Energy and Environment, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Manuel Moya
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain; Center for Advanced Studies in Energy and Environment, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Eulogio Castro
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain; Center for Advanced Studies in Energy and Environment, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain.
| |
Collapse
|
20
|
|
21
|
Kirupa Sankar M, Ravikumar R, Naresh Kumar M, Sivakumar U. Development of co-immobilized tri-enzyme biocatalytic system for one-pot pretreatment of four different perennial lignocellulosic biomass and evaluation of their bioethanol production potential. BIORESOURCE TECHNOLOGY 2018; 269:227-236. [PMID: 30179756 DOI: 10.1016/j.biortech.2018.08.091] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/18/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
Today, many researchers are focusing on research for alternative promising energy sources and sustainable technology for bioethanol production to meet the increasing global energy demand. Here, we develop a novel one-pot pretreatment technology by co-immobilizing laccase, cellulase and β-glucosidase to act as a tri-enzyme biocatalyst for evaluating the bioethanol production potential of four sustainable lignocellulosic biomasses viz., Typha angustifolia, Arundo donax, Saccharum arundinaceum, and Ipomoea carnea. The co-immobilized enzyme system was more stable at different temperatures and at longer storage, compared to free enzyme. During enzymatic saccharification, Saccharum arundinaceum showed higher total reducing sugar of 205 ± 3.73 mg/g when compared to other biomass. The highest percentage of bioethanol yield of 63.43 ± 9.35% was obtained with Ipomoea carnea. The effects of co-immobilized tri-enzyme biocatalyst on the biomasses were evaluated. The results revealed that the co-immobilized tri-enzyme biocatalyst could act as effective one-pot pretreatment for the production of bioethanol from lignocellulosic biomass.
Collapse
Affiliation(s)
- Muthuvelu Kirupa Sankar
- Bioenergy Research Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Erode, Tamilnadu, India
| | - Rajarathinam Ravikumar
- Bioenergy Research Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Erode, Tamilnadu, India.
| | - Manickam Naresh Kumar
- Bioenergy Research Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Erode, Tamilnadu, India
| | - Uthandi Sivakumar
- Department of Agricultural Microbiology, Tamilnadu Agricultural University, Coimbatore, Tamilnadu, India
| |
Collapse
|
22
|
Romero I, López-Linares JC, Moya M, Castro E. Optimization of sugar recovery from rapeseed straw pretreated with FeCl 3. BIORESOURCE TECHNOLOGY 2018; 268:204-211. [PMID: 30077881 DOI: 10.1016/j.biortech.2018.07.112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/22/2018] [Accepted: 07/23/2018] [Indexed: 06/08/2023]
Abstract
In this work, rapeseed straw was pretreated with FeCl3 to achieve high sugar recoveries. Temperature (120-160 °C), and FeCl3 concentration (0.1-0.3 M) were selected as factors and modified according to a central composite experimental design. The pretreatment conditions were expressed using the combined severity, which ranged from -0.12 to 2.29. Considering a double criterion that maximizes simultaneously the recovery of hemicellulosic sugars in the liquid fraction from pretreatment and the enzymatic hydrolysis yield, the optimal conditions were found to be 138 °C and 0.25 M salt concentration. The FeCl3 pretreatment of rapeseed straw under these optimized conditions resulted in 75% hemicellulosic sugar recovery and 53% enzymatic hydrolysis yield. Thereby, 100 g dry rapeseed straw yielded 37.8 g sugars, equivalent to 70% maximum potential sugar in rapeseed straw.
Collapse
Affiliation(s)
- Inmaculada Romero
- Dept. of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Spain; Center for Advanced Studies in Energy and Environment, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain.
| | - Juan C López-Linares
- Dept. of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Spain
| | - Manuel Moya
- Dept. of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Spain; Center for Advanced Studies in Energy and Environment, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Eulogio Castro
- Dept. of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Spain; Center for Advanced Studies in Energy and Environment, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| |
Collapse
|
23
|
Semhaoui I, Maugard T, Zarguili I, Rezzoug SA, Zhao JMQ, Toyir J, Nawdali M, Maache-Rezzoug Z. Eco-friendly process combining acid-catalyst and thermomechanical pretreatment for improving enzymatic hydrolysis of hemp hurds. BIORESOURCE TECHNOLOGY 2018; 257:192-200. [PMID: 29501952 DOI: 10.1016/j.biortech.2018.02.107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/18/2018] [Accepted: 02/22/2018] [Indexed: 05/17/2023]
Abstract
The aim of this study was to investigate a pretreatment by combined H2SO4 acid-catalyst and thermomechanical process to improve hemicelluloses solubilization of hemp hurds and subsequently enzymatic hydrolysis extent of potentially fermentable sugars. It was found that the sugars released were gradually increased with treatment severity. Soluble sugars generated before enzymatic hydrolysis (R1) increased up to 2.23 g/L indicating that autohydrolysis reaction occurred during pretreatment. Consequently, the solubilization of hemicelluloses was correlated with combined severity factor (CS). As a result, increase of overall reducing sugars (ORS) from 23.4% (untreated) to 81.4% was observed at optimized conditions of steaming temperature of 165 °C for 30 min and acid loading of 62.9 g/kg DM (dry material) corresponding to CS = 1.2, with limited production of identified by-products: 0.035 g/L and 0.46 g/L (per 100 g DM) for furfural and HMF, respectively. Structural and physicochemical modifications of biomass were observed by FTIR, ABET and SEM.
Collapse
Affiliation(s)
- Imane Semhaoui
- Laboratoire des Sciences de l'Ingénieur pour l'Environnement, LaSIE, UMR CNRS 7356, Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle, France; Laboratoire de Chimie de la Matière Condensée, Research Team: Procédés pour l'Energie et l'Environnement, Faculté Polydisciplinaire de Taza, Université Sidi Mohamed Ben Abdellah, Morocco
| | - Thierry Maugard
- Equipe Approches Moléculaires Environnement-Santé, UMR CNRS 7266, LIENSs, Université de La Rochelle, France
| | - Ikbal Zarguili
- Laboratoire de Chimie de la Matière Condensée, Research Team: Procédés pour l'Energie et l'Environnement, Faculté Polydisciplinaire de Taza, Université Sidi Mohamed Ben Abdellah, Morocco
| | - Sid-Ahmed Rezzoug
- Laboratoire des Sciences de l'Ingénieur pour l'Environnement, LaSIE, UMR CNRS 7356, Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle, France.
| | - Jean-Michel Qiuyu Zhao
- Equipe Approches Moléculaires Environnement-Santé, UMR CNRS 7266, LIENSs, Université de La Rochelle, France
| | - Jamil Toyir
- Laboratoire de Chimie de la Matière Condensée, Research Team: Procédés pour l'Energie et l'Environnement, Faculté Polydisciplinaire de Taza, Université Sidi Mohamed Ben Abdellah, Morocco
| | - Mostafa Nawdali
- Laboratoire de Chimie de la Matière Condensée, Research Team: Procédés pour l'Energie et l'Environnement, Faculté Polydisciplinaire de Taza, Université Sidi Mohamed Ben Abdellah, Morocco
| | - Zoulikha Maache-Rezzoug
- Laboratoire des Sciences de l'Ingénieur pour l'Environnement, LaSIE, UMR CNRS 7356, Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle, France
| |
Collapse
|
24
|
Fractionation of lignocellulosic biopolymers from sugarcane bagasse using formic acid-catalyzed organosolv process. 3 Biotech 2018; 8:221. [PMID: 29682440 DOI: 10.1007/s13205-018-1244-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 04/07/2018] [Indexed: 12/19/2022] Open
Abstract
A one-step formic acid-catalyzed organosolv process using a low-boiling point acid-solvent system was studied for fractionation of sugarcane bagasse. Compared to H2SO4, the use of formic acid as a promoter resulted in higher efficiency and selectivity on removals of hemicellulose and lignin with increased enzymatic digestibility of the cellulose-enriched solid fraction. The optimal condition from central composite design analysis was determined as 40 min residence time at 159 °C using water/ethanol/ethyl acetate/formic acid in the respective ratios of 43:20:16:21%v/v. Under this condition, a 94.6% recovery of cellulose was obtained in the solid with 80.2% cellulose content while 91.4 and 80.4% of hemicellulose and lignin were removed to the aqueous-alcohol-acid and ethyl acetate phases, respectively. Enzymatic hydrolysis of the solid yielded 84.5% glucose recovery compared to available glucan in the raw material. Physicochemical analysis revealed intact cellulose fibers with decreased crystallinity while the hemicellulose was partially recovered as mono- and oligomeric sugars. High-purity organosolv lignin with < 1% sugar cross-contamination was obtained with no major structural modification according to Fourier-transform infrared spectroscopy. The work represents an alternative process for efficient fractionation of lignocellulosic biomass in biorefineries.
Collapse
|
25
|
Zhao S, Li G, Zheng N, Wang J, Yu Z. Steam explosion enhances digestibility and fermentation of corn stover by facilitating ruminal microbial colonization. BIORESOURCE TECHNOLOGY 2018; 253:244-251. [PMID: 29353752 DOI: 10.1016/j.biortech.2018.01.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 06/07/2023]
Abstract
The purpose of this study was to evaluate steam explosion as a pretreatment to enhance degradation of corn stover by ruminal microbiome. The steam explosion conditions were first optimized, and then the efficacy of steam explosion was evaluated both in vitro and in vivo. Steam explosion altered the physical and chemical structure of corn stover as revealed by scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR) spectroscopy, respectively, and increased its cellulose content while decreasing hemicellulose content. Steam-exploded corn stover also increased release of reducing sugars, rate of fermentation, and production of volatile fatty acids (VFAs) in vitro. The steam explosion treatment increased microbial colonization and in situ degradation of cellulose and hemicellulose of corn stover in the rumen of dairy cows. Steam explosion may be a useful pretreatment of corn stover to improve its nutritional value as forage for cattle, or as feedstock for biofuel production.
Collapse
Affiliation(s)
- Shengguo Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guodong Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Zhongtang Yu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
26
|
Pretreatment of wheat straw leads to structural changes and improved enzymatic hydrolysis. Sci Rep 2018; 8:1321. [PMID: 29358729 PMCID: PMC5778052 DOI: 10.1038/s41598-018-19517-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 01/03/2018] [Indexed: 12/02/2022] Open
Abstract
Wheat straw (WS) is a potential biomass for production of monomeric sugars. However, the enzymatic hydrolysis ratio of cellulose in WS is relatively low due to the presence of lignin and hemicellulose. To enhance the enzymatic conversion of WS, we tested the impact of three different pretreatments, e.g. sulfuric acid (H2SO4), sodium hydroxide (NaOH), and hot water pretreatments to the enzymatic digestions. Among the three pretreatments, the highest cellulose conversion rate was obtained with the 4% NaOH pretreatment at 121 °C (87.2%). In addition, NaOH pretreatment was mainly effective in removing lignin, whereas the H2SO4 pretreatment efficiently removed hemicellulose. To investigate results of pretreated process for enhancement of enzyme-hydolysis to the WS, we used scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy to analyze structural changes of raw and treated materials. The structural analysis indicated that after H2SO4 and NaOH pretreatments, most of the amorphous cellulose and partial crystalline cellulose were hydrolyzed during enzymatic hydrolysis. The findings of the present study indicate that WS could be ideal materials for production of monomeric sugars with proper pretreatments and effective enzymatic base hydrolysis.
Collapse
|
27
|
López-Linares JC, Romero I, Cara C, Castro E, Mussatto SI. Xylitol production by Debaryomyces hansenii and Candida guilliermondii from rapeseed straw hemicellulosic hydrolysate. BIORESOURCE TECHNOLOGY 2018; 247:736-743. [PMID: 30060408 DOI: 10.1016/j.biortech.2017.09.139] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 06/08/2023]
Abstract
This study evaluated the possibility of using rapeseed straw hemicellulosic hydrolysate as a fermentation medium for xylitol production. Two yeast strains, namely Debaryomyces hansenii and Candida guilliermondii, were used for this bioconversion process and their performance to convert xylose into xylitol was compared. Additionally, different strategies were evaluated for the hydrolysate detoxification before its use as a fermentation medium. Assays in semi-defined media were also performed to verify the influence of hexose sugars on xylose metabolism by the yeasts. C. guilliermondii exhibited higher tolerance to toxic compounds than D. hansenii. Not only the toxic compounds present in the hydrolysate affected the yeast's performance, but glucose also had a negative impact on their performance. It was not necessary to completely eliminate the toxic compounds to obtain an efficient conversion of xylose into xylitol, mainly by C. guilliermondii (YP/S=0.55g/g and 0.45g/g for C. guilliermondii and D. hansenii, respectively).
Collapse
Affiliation(s)
- Juan Carlos López-Linares
- Center for Advanced Studies in Energy and Environment (CEAEMA), University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Inmaculada Romero
- Center for Advanced Studies in Energy and Environment (CEAEMA), University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Cristobal Cara
- Center for Advanced Studies in Energy and Environment (CEAEMA), University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Eulogio Castro
- Center for Advanced Studies in Energy and Environment (CEAEMA), University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Solange I Mussatto
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
28
|
Zeng W, Zhang H, Xu S, Fang F, Zhou J. Biosynthesis of keto acids by fed-batch culture of Yarrowia lipolytica WSH-Z06. BIORESOURCE TECHNOLOGY 2017; 243:1037-1043. [PMID: 28764105 DOI: 10.1016/j.biortech.2017.07.063] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 06/07/2023]
Abstract
Both α-ketoglutarate (α-KG) and pyruvate (PYR) are important organic acids with promising applications in the food, pharmaceutical and chemical industries. During the production of α-KG by different microorganisms, PYR is always present as a by-product. Strategies have been applied to eliminate PYR accumulation since it can bring difficulties to the downstream separation process. However, modern separation technologies have already conquered this problem. Therefore, this study was aimed at simultaneously enhancing α-KG and PYR production by Yarrowia lipolytica WSH-Z06. Using a fed-batch strategy, in which the initial glycerol concentration was 50g·L-1, the residual glycerol concentration was maintained 20-30g·L-1 by constant feeding at a rate of 1.25g·L-1·h-1. The titers of α-KG and PYR were increased by 9.6% and 176.8%, and reached 67.4g·L-1 and 39.1g·L-1, respectively. The final yield of keto acids was 0.71g·g-1 glycerol, which is 42.0% higher than that of the optimal batch fermentation.
Collapse
Affiliation(s)
- Weizhu Zeng
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Hailin Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Sha Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Fang Fang
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
29
|
Evaluation of gastrointestinal bacterial population for the production of holocellulose enzymes for biomass deconstruction. PLoS One 2017; 12:e0186355. [PMID: 29023528 PMCID: PMC5638507 DOI: 10.1371/journal.pone.0186355] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/01/2017] [Indexed: 12/04/2022] Open
Abstract
The gastrointestinal (GI) habitat of ruminant and non-ruminant animals sustains a vast ensemble of microbes that are capable of utilizing lignocellulosic plant biomass. In this study, an indigenous swine (Zovawk) and a domesticated goat (Black Bengal) were investigated to isolate bacteria having plant biomass degrading enzymes. After screening and enzymatic quantification of eighty-one obtained bacterial isolates, Serratia rubidaea strain DBT4 and Aneurinibacillus aneurinilyticus strain DBT87 were revealed as the most potent strains, showing both cellulase and xylanase production. A biomass utilization study showed that submerged fermentation (SmF) of D2 (alkaline pretreated pulpy biomass) using strain DBT4 resulted in the most efficient biomass deconstruction with maximum xylanase (11.98 U/mL) and FPase (0.5 U/mL) activities (55°C, pH 8). The present study demonstrated that bacterial strains residing in the gastrointestinal region of non-ruminant swine are a promising source for lignocellulose degrading microorganisms that could be used for biomass conversion.
Collapse
|
30
|
Llano T, Quijorna N, Andrés A, Coz A. Sugar, acid and furfural quantification in a sulphite pulp mill: Feedstock, product and hydrolysate analysis by HPLC/RID. ACTA ACUST UNITED AC 2017; 15:75-83. [PMID: 28725574 PMCID: PMC5503906 DOI: 10.1016/j.btre.2017.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 06/10/2017] [Accepted: 06/26/2017] [Indexed: 11/20/2022]
Abstract
Characterisation of the spent sulphite liquor, a sugar-rich residue was done. Four chromatographic methods for sugars and derivatives analysis were developed. Cross-linked Pb+2 columns were suitable for fast and reliable sugars separation. Cross-linked H+ columns were adequate for acids and furfurals separation. Methods developed were successfully assayed on woody materials and hydrolysates.
Waste from pulp and paper mills consist of sugar-rich fractions comprising hemicellulose derivatives and cellulose by-products. A complete characterisation of the waste streams is necessary to study the possibilities of an existing mill. In this work, four chromatographic methods have been developed to obtain the most suitable chromatographic method conditions for measuring woody feedstocks, lignocellulosic hydrolysates and cellulose pulp in sulphite pulping processes. The analysis of major and minor monosaccharides, aliphatic carboxylic acids and furfurals has been optimised. An important drawback of the spent liquors generated after sulphite pulping is their acidic nature, high viscosity and adhesive properties that interfere in the column lifetime. This work recommends both a CHO-782Pb column for the sugar analysis and an SH-1011 resin-based cross-linked gel column to separate low-molecular-weight chain acids, alcohols and furfurals. Such columns resulted in a good separation with long lifetime, wide pH operating range and low fouling issues.
Collapse
|
31
|
Zhang X, Yuan Q, Cheng G. Deconstruction of corncob by steam explosion pretreatment: Correlations between sugar conversion and recalcitrant structures. Carbohydr Polym 2017; 156:351-356. [DOI: 10.1016/j.carbpol.2016.09.044] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/11/2016] [Accepted: 09/14/2016] [Indexed: 11/27/2022]
|
32
|
Optimizing Phosphoric Acid plus Hydrogen Peroxide (PHP) Pretreatment on Wheat Straw by Response Surface Method for Enzymatic Saccharification. Appl Biochem Biotechnol 2016; 181:1123-1139. [DOI: 10.1007/s12010-016-2273-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/30/2016] [Indexed: 10/20/2022]
|
33
|
da Silva ARG, Torres Ortega CE, Rong BG. Techno-economic analysis of different pretreatment processes for lignocellulosic-based bioethanol production. BIORESOURCE TECHNOLOGY 2016; 218:561-70. [PMID: 27403858 DOI: 10.1016/j.biortech.2016.07.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/29/2016] [Accepted: 07/02/2016] [Indexed: 05/14/2023]
Abstract
In this work, a method based on process synthesis, simulation and evaluation has been used to setup and study the industrial scale lignocellulosic bioethanol productions processes. Scenarios for pretreatment processes of diluted acid, liquid hot water and ammonia fiber explosion were studied. Pretreatment reactor temperature, catalyst loading and water content as well as solids loading in the hydrolysis reactor were evaluated regarding its effects on the process energy consumption and bioethanol concentration. The best scenarios for maximizing ethanol concentration and minimizing total annual costs (TAC) were selected and their minimum ethanol selling price was calculated. Ethanol concentration in the range of 2-8% (wt.) was investigated after the pretreatment. The best scenarios maximizing the ethanol concentration and minimizing TAC obtained a reduction of 19.6% and 30.2% respectively in the final ethanol selling price with respect to the initial base case.
Collapse
Affiliation(s)
- André Rodrigues Gurgel da Silva
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Carlo Edgar Torres Ortega
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Ben-Guang Rong
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| |
Collapse
|
34
|
Dayana Priyadharshini S, Bakthavatsalam AK. Optimization of phenol degradation by the microalga Chlorella pyrenoidosa using Plackett-Burman Design and Response Surface Methodology. BIORESOURCE TECHNOLOGY 2016; 207:150-156. [PMID: 26878360 DOI: 10.1016/j.biortech.2016.01.138] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 01/25/2016] [Accepted: 01/31/2016] [Indexed: 06/05/2023]
Abstract
Statistical optimization designs were used to optimize the phenol degradation using Chlorella pyrenoidosa. The important factor influencing phenol degradation was identified by two-level Plackett-Burman Design (PBD) with five factors. PBD determined the following three factors as significant for phenol degradation viz. algal concentration, phenol concentration and reaction time. CCD and RSM were applied to optimize the significant factors identified from PBD. The results obtained from CCD indicated that the interaction between the concentration of algae and phenol, phenol concentration and reaction time and algal concentration and reaction time affect the phenol degradation (response) significantly. The predicted results showed that maximum phenol degradation of 97% could be achieved with algal concentration of 4g/L, phenol concentration of 0.8g/L and reaction time of 4days. The predicted values were in agreement with experimental values with coefficient of determination (R(2)) of 0.9973. The model was validated by subsequent experimentations at the optimized conditions.
Collapse
|
35
|
Pei Y, Li Y, Zhang Y, Yu C, Fu T, Zou J, Tu Y, Peng L, Chen P. G-lignin and hemicellulosic monosaccharides distinctively affect biomass digestibility in rapeseed. BIORESOURCE TECHNOLOGY 2016; 203:325-33. [PMID: 26748046 DOI: 10.1016/j.biortech.2015.12.072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 05/05/2023]
Abstract
In this study, total 19 straw samples from four Brassica species were determined with a diverse cell wall composition and varied biomass enzymatic digestibility under sulfuric acid or lime pretreatment. Correlation analysis was then performed to detect effects of cell wall compositions and wall polymer features (cellulose crystallinity, hemicellulosic monosaccharides and lignin monomers) on rapeseeds biomass digestibility. As a result, coniferyl alcohol (G-lignin) showed a strongly negative effect on biomass saccharification, whereas hemicellulosic monosaccharides (fucose, galactose, arabinose and rhamnose) were positive factors on lignocellulose digestions. Notably, chemical analyses of four typical pairs of samples indicated that hemicellulosic monosaccharides and G-lignin may coordinately influence biomass digestibility in rapeseeds. In addition, Brassica napus with lower lignin content exhibited more efficiency on both biomass enzymatic saccharification and ethanol production, compared with Brassica junjea. Hence, this study has at first time provided a genetic strategy on cell wall modification towards bioenergy rapeseed breeding.
Collapse
Affiliation(s)
- Yanjie Pei
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuyang Li
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Youbing Zhang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Changbing Yu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology & Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuanyuan Tu
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangcai Peng
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Chen
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
36
|
Yu X, Gouyo T, Grimi N, Bals O, Vorobiev E. Pulsed electric field pretreatment of rapeseed green biomass (stems) to enhance pressing and extractives recovery. BIORESOURCE TECHNOLOGY 2016; 199:194-201. [PMID: 26341008 DOI: 10.1016/j.biortech.2015.08.073] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 08/14/2015] [Accepted: 08/17/2015] [Indexed: 06/05/2023]
Abstract
The objective of this study was to investigate the effects of pulsed electric field (PEF) pretreatment on the valorization of extractives (proteins and polyphenols) from rapeseed green biomass (stems) by pressing. The effect of pressure, electric field strength and pulse number on the juice expression yield, total polyphenols and total proteins content in the expressed juices were studied. Experiments conducted under optimal conditions (E = 8 kV/cm, tPEF = 2 ms, P = 10 bar) permitted to increase the juice expressed yield from 34% to 81%. Significant increases in total polyphenols content (0.48 vs. 0.10 g GAE/100g DM), in total proteins content (0.14 vs. 0.07 g BSA/100g DM) and in consolidation coefficient (9.0 × 10(-8) vs. 2.2 × 10(-8)m(2)/s) were also observed after PEF pretreatment. The recovered press cake was well dehydrated with an increase of dry matter content from 8.8% to 53.0%.
Collapse
Affiliation(s)
- X Yu
- Sorbonne Universités, Université de Technologie de Compiègne, Laboratoire Transformations Intégrées de la Matière Renouvelable (UTC/ESCOM, EA 4297 TIMR), Centre de Recherche de Royallieu, CS 60319, 60203 Compiègne Cedex, France
| | - T Gouyo
- Sorbonne Universités, Université de Technologie de Compiègne, Laboratoire Transformations Intégrées de la Matière Renouvelable (UTC/ESCOM, EA 4297 TIMR), Centre de Recherche de Royallieu, CS 60319, 60203 Compiègne Cedex, France
| | - N Grimi
- Sorbonne Universités, Université de Technologie de Compiègne, Laboratoire Transformations Intégrées de la Matière Renouvelable (UTC/ESCOM, EA 4297 TIMR), Centre de Recherche de Royallieu, CS 60319, 60203 Compiègne Cedex, France.
| | - O Bals
- Sorbonne Universités, Université de Technologie de Compiègne, Laboratoire Transformations Intégrées de la Matière Renouvelable (UTC/ESCOM, EA 4297 TIMR), Centre de Recherche de Royallieu, CS 60319, 60203 Compiègne Cedex, France
| | - E Vorobiev
- Sorbonne Universités, Université de Technologie de Compiègne, Laboratoire Transformations Intégrées de la Matière Renouvelable (UTC/ESCOM, EA 4297 TIMR), Centre de Recherche de Royallieu, CS 60319, 60203 Compiègne Cedex, France
| |
Collapse
|
37
|
Tan IS, Lee KT. Comparison of different process strategies for bioethanol production from Eucheuma cottonii: An economic study. BIORESOURCE TECHNOLOGY 2016; 199:336-346. [PMID: 26283313 DOI: 10.1016/j.biortech.2015.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/01/2015] [Accepted: 08/04/2015] [Indexed: 06/04/2023]
Abstract
The aim of this work was to evaluate the efficacy of red macroalgae Eucheuma cottonii (EC) as feedstock for third-generation bioethanol production. Dowex (TM) Dr-G8 was explored as a potential solid catalyst to hydrolyzed carbohydrates from EC or macroalgae extract (ME) and pretreatment of macroalgae cellulosic residue (MCR), to fermentable sugars prior to fermentation process. The highest total sugars were produced at 98.7 g/L when 16% of the ME was treated under the optimum conditions of solid acid hydrolysis (8% (w/v) Dowex (TM) Dr-G8, 120°C, 1h) and 2% pretreated MCR (P-MCR) treated by enzymatic hydrolysis (pH 4.8, 50°C, 30 h). A two-stream process resulted in 11.6g/L of bioethanol from the fermentation of ME hydrolysates and 11.7 g/L from prehydrolysis and simultaneous saccharification and fermentation of P-MCR. The fixed price of bioethanol obtained from the EC is competitive with that obtained from other feedstocks.
Collapse
Affiliation(s)
- Inn Shi Tan
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, Seri Ampangan, 14300 Nibong Tebal, Pulau Pinang, Malaysia.
| | - Keat Teong Lee
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, Seri Ampangan, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| |
Collapse
|
38
|
Cotana F, Buratti C, Barbanera M, Lascaro E. Optimization of the steam explosion and enzymatic hydrolysis for sugars production from oak woods. BIORESOURCE TECHNOLOGY 2015; 198:470-7. [PMID: 26421610 DOI: 10.1016/j.biortech.2015.09.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/07/2015] [Accepted: 09/08/2015] [Indexed: 05/15/2023]
Abstract
Fermentable sugars production from three kind of steam-exploded oak wood was optimized by Response Surface Methodology (RSM), using the severity factor (R0), the pretreated total solids (TS%) and the enzyme loading (EL%) as variables of a central composite design. A total of 17 experiments for each biomass were carried out. The optimal conditions established with RSM were: severity, 4.46 for holm, 4.03 for turkey oak and 3.92 for downey oak; total solids, 5.4% for holm, 5.0% for turkey oak and 12.7% for downey oak; and enzyme concentration, 9.6% for holm, 15.0% for turkey oak and 15.0% for downey oak. Under these conditions, the model predicted an overall sugar yield of 67.1% for holm, 79.9% for turkey oak and 68.4% for downey oak. The results of the confirmation experiments under optimal conditions agreed well with model predictions. Oak wood species may be a good feedstock for the production of reducing sugars.
Collapse
Affiliation(s)
- F Cotana
- Biomass Research Centre, Department of Engineering, Via G. Duranti 67, 06125 Perugia, Italy
| | - C Buratti
- Biomass Research Centre, Department of Engineering, Via G. Duranti 67, 06125 Perugia, Italy.
| | - M Barbanera
- Biomass Research Centre, Department of Engineering, Via G. Duranti 67, 06125 Perugia, Italy
| | - E Lascaro
- Biomass Research Centre, Department of Engineering, Via G. Duranti 67, 06125 Perugia, Italy
| |
Collapse
|