1
|
Tan Z, Chen W, Wei X, Qiu Z, Zhuang W, Zhang B, Xie J, Lin Y, Ren Y, Preis S, Wei C, Zhu S. Virus-bacterium interaction involved in element cycles in biological treatment of coking wastewater. BIORESOURCE TECHNOLOGY 2025; 416:131839. [PMID: 39557096 DOI: 10.1016/j.biortech.2024.131839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/28/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Although prokaryotic microbes in coking wastewater (CWW) treatment have been comprehensively studied, the ecological functions of viruses remain unclear. A full-scale CWW biological treatment AOHO combination was studied for the virus-bacterium interactions involved in element cycles by metaviromics, metagenomics and physicochemical characteristics. Results showed the unique viromic profile with Cirlivirales and Petitvirales as the dominant viruses infecting functional bacteria hosts. The auxiliary metabolic genes (AMGs) focused on element cycles, including metabolisms of carbon (fadA), nitrogen (glnA), sulfur (mddA and cysK) and phosphorus (phoH). Other AMGs were involved in toxic tolerance of hosts, improving their cell membrane and wall robustness, antioxidant, DNA repair and cobalamin biosynthesis. Vice versa, the bloomed host provided fitness advantages for viruses. Dissolved oxygen was found to be the key factor shaping the distributions of viral community and AMGs. Summarizing, the study exposed the mutual virus-bacterium interaction in the AOHO combination providing stable treatment efficiency.
Collapse
Affiliation(s)
- Zhijie Tan
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Wenli Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xinyi Wei
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zhaoji Qiu
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Weixiong Zhuang
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Baoshan Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Junting Xie
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yuexia Lin
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Sergei Preis
- Department of Materials and Environmental Technology, Tallinn University of Technology, Tallinn 19086, Estonia
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China.
| | - Shuang Zhu
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
2
|
Zhou Q, Jia L, Li Y, Wu W, Wang J. Significantly Enhanced Nitrate and Phosphorus Removal by Pyrite/Sawdust Composite-Driven Mixotrophic Denitrification with Boosted Electron Transfer: Comprehensive Evaluation of Water-Gas-Biofilm Phases during a Long-Term Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10149-10161. [PMID: 38808456 DOI: 10.1021/acs.est.4c03677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Further reducing total nitrogen (TN) and total phosphorus (TP) in the secondary effluent needs to be realized effectively and in an eco-friendly manner. Herein, four pyrite/sawdust composite-based biofilters were established to treat simulated secondary effluent for 304 days. The results demonstrated that effluent TN and TP concentrations from biofilters under the optimal hydraulic retention time (HRT) of 3.5 h were stable at <2.0 and 0.1 mg/L, respectively, and no significant differences were observed between inoculated sludge sources. The pyrite/sawdust composite-based biofilters had low N2O, CH4, and CO2 emissions, and the effluent's DOM was mainly composed of five fluorescence components. Moreover, mixotrophic denitrifiers (Thiothrix) and sulfate-reducing bacteria (Desulfosporosinus) contributing to microbial nitrogen and sulfur cycles were enriched in the biofilm. Co-occurrence network analysis deciphered that Chlorobaculum and Desulfobacterales were key genera, which formed an obvious sulfur cycle process that strengthened the denitrification capacity. The higher abundances of genes encoding extracellular electron transport (EET) chains/mediators revealed that pyrite not only functioned as an electron conduit to stimulate direct interspecies electron transfer by flagella but also facilitated EET-associated enzymes for denitrification. This study comprehensively evaluates the water-gas-biofilm phases of pyrite/sawdust composite-based biofilters during a long-term study, providing an in-depth understanding of boosted electron transfer in pyrite-based mixotrophic denitrification systems.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, China
| | - Lixia Jia
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yuanwei Li
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Weizhong Wu
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Derwis D, Al-Hazmi HE, Majtacz J, Ciesielski S, Mąkinia J. Enhancing nitrogen removal in the partial denitrification/anammox processes for SO 4- - Rich wastewater treatment: Insights into autotrophic and mixotrophic strategies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120908. [PMID: 38631168 DOI: 10.1016/j.jenvman.2024.120908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/28/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Abstract
The investigation of partial denitrification/anammox (PD/anammox) processes was conducted under autotrophic (N-S cycle) and mixotrophic (N-S-C cycle) conditions over 180 days. Key findings revealed the remarkable capability of SO42--dependent systems to produce NO2- effectively, supporting anaerobic NH4+ oxidation. Additionally, SO42- served as an additional electron acceptor in sulfate reduction ammonium oxidation (SRAO). Increasing influent SO42- concentrations notably improved ammonia utilization rates (AUR) and NH4+ and total nitrogen (TN) utilization efficiencies, peaking at 57% for SBR1 and nearly 100% for SBR2. Stoichiometric analysis showed a 7.5-fold increase in AUR (SRAO and anammox) in SBR1 following SO42- supplementation. However, the analysis for SBR2 indicated a shift towards SRAO and mixotrophic denitrification, with anammox disappearing entirely by the end of the study. Comparative assessments between SBR1 and SBR2 emphasized the impact of organic compounds (CH3COONa) on transformations within the N-S-C cycle. SBR1 performance primarily involved anammox, SRAO and other SO42- utilization pathways, with minimal S-dependent autotrophic denitrification (SDAD) involvement. In contrast, SBR2 performance encompassed SRAO, mixotrophic denitrification, and other pathways for SO42- production. The SRAO process involved two dominant genera, such as Candidatus Brocadia and PHOS-HE36.
Collapse
Affiliation(s)
- Dominika Derwis
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233, Gdańsk, Poland.
| | - Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233, Gdańsk, Poland.
| | - Joanna Majtacz
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233, Gdańsk, Poland.
| | - Sławomir Ciesielski
- Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Słoneczna 45G, Olsztyn, 10-719, Poland.
| | - Jacek Mąkinia
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233, Gdańsk, Poland.
| |
Collapse
|
4
|
Zhao X, Xie Y, Sun B, Liu Y, Zhu S, Li W, Zhao M, Liu D. Unraveling microbial characteristics of simultaneous nitrification, denitrification and phosphorus removal in a membrane-aerated biofilm reactor. ENVIRONMENTAL RESEARCH 2023; 239:117402. [PMID: 37838199 DOI: 10.1016/j.envres.2023.117402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
This study describes the simultaneous removal of carbon, ammonium, and phosphate from domestic wastewater by a membrane-aerated biofilm reactor (MABR) which was operated for 360 days. During the operation, the maximum removal efficiencies of chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) reached 93.1%, 83.98%, and 96.41%, respectively. Statistical analysis showed that the MABR could potentially treat wastewater with a high ammonium concentration and a relatively low C/N ratio. Dissolved oxygen and multiple pollutants, including ammonium, carbon, phosphate, and sulfate, shaped the structure of the microbial community in the MABR. High throughput sequencing uncovered the crucial microbiome in ammonium transformation in MABR. Phylogenetic analysis of the ammonia monooxygenase (amoA) genes revealed an important role for comammox Nitrospira in the nitrification process. Diverse novel phosphate-accumulating organisms (Thauera, Bacillus, and Pseudomonas) and sulfur-oxidizing bacteria (Thiobacillus, Thiothrix and Sulfurimonas) were potentially involved in denitrification in MABR. The results from this study suggested that MABR could be a feasible system for the simultaneous removal of nitrogen, carbon, phosphorus, and sulfur from sewage water.
Collapse
Affiliation(s)
- Xin Zhao
- Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture from Ministry of Agriculture and Rural Affairs of China, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Institute of Agri-biological Environment Engineering, Zhejiang University, Hangzhou, 310058, China; National & Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yinglong Xie
- Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture from Ministry of Agriculture and Rural Affairs of China, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Institute of Agri-biological Environment Engineering, Zhejiang University, Hangzhou, 310058, China; College of Environment, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Bo Sun
- National & Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Ying Liu
- Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture from Ministry of Agriculture and Rural Affairs of China, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Institute of Agri-biological Environment Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Songming Zhu
- Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture from Ministry of Agriculture and Rural Affairs of China, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Institute of Agri-biological Environment Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Wei Li
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Min Zhao
- National & Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| | - Dezhao Liu
- Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture from Ministry of Agriculture and Rural Affairs of China, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Institute of Agri-biological Environment Engineering, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Wang B, Hu H, Huang S, Yuan H, Wang Y, Zhao T, Gong Z, Xu X. Simultaneous nitrate and sulfate biotransformation driven by different substrates: comparison of carbon sources and metabolic pathways at different C/N ratios. RSC Adv 2023; 13:19265-19275. [PMID: 37377876 PMCID: PMC10291280 DOI: 10.1039/d3ra02749j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023] Open
Abstract
Nitrate (NO3-) and sulfate (SO42-) often coexist in organic wastewater. The effects of different substrates on NO3- and SO42- biotransformation pathways at various C/N ratios were investigated in this study. This study used an activated sludge process for simultaneous desulfurization and denitrification in an integrated sequencing batch bioreactor. The results revealed that the most complete removals of NO3- and SO42- were achieved at a C/N ratio of 5 in integrated simultaneous desulfurization and denitrification (ISDD). Reactor Rb (sodium succinate) displayed a higher SO42- removal efficiency (93.79%) with lower chemical oxygen demand (COD) consumption (85.72%) than reactor Ra (sodium acetate) on account of almost 100% removal of NO3- in both Ra and Rb. Ra produced more S2- (5.96 mg L-1) and H2S (25 mg L-1) than Rb, which regulated the biotransformation of NO3- from denitrification to dissimilatory nitrate reduction to ammonium (DNRA), whereas almost no H2S accumulated in Rb which can avoid secondary pollution. Sodium acetate-supported systems were found to favor the growth of DNRA bacteria (Desulfovibrio); although denitrifying bacteria (DNB) and sulfate-reducing bacteria (SRB) were found to co-exist in both systems, Rb has a greater keystone taxa diversity. Furthermore, the potential carbon metabolic pathways of the two carbon sources have been predicted. Both succinate and acetate could be generated in reactor Rb through the citrate cycle and the acetyl-CoA pathway. The high prevalence of four-carbon metabolism in Ra suggests that the carbon metabolism of sodium acetate is significantly improved at a C/N ratio of 5. This study has clarified the biotransformation mechanisms of NO3- and SO42- in the presence of different substrates and the potential carbon metabolism pathway, which is expected to provide new ideas for the simultaneous removal of NO3- and SO42- from different media.
Collapse
Affiliation(s)
| | - Heping Hu
- China Water Resources Pearl River Planning Surveying & Designing Co. Ltd China
| | | | | | | | | | - Zerui Gong
- South China University of Technology China
| | - Xinyue Xu
- South China University of Technology China
| |
Collapse
|
6
|
Derwis D, Majtacz J, Kowal P, Al-Hazmi HE, Zhai J, Ciesielski S, Piechota G, Mąkinia J. Integration of the sulfate reduction and anammox processes for enhancing sustainable nitrogen removal in granular sludge reactors. BIORESOURCE TECHNOLOGY 2023:129264. [PMID: 37271463 DOI: 10.1016/j.biortech.2023.129264] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
The Anammox and Sulfate Reduction Ammonium Oxidation processes were compared in two granular sequencing batch reactors operated for 160 days under anammox conditions. It was hypothesized that increasing the concentration of SO42- may positively influence the rate of N removal under anaerobic conditions and it was tested whether SO42- reduction and anammox occur independently or are related to each other. The cooperation of N-S cycles by increasing the concentration of influent SO42- to 952 mg S/L in the second reactor, a higher ammonium utilization rate and sulfate utilization rate was achieved compared to the first reactor, i.e., 2.1-fold and 15-fold, respectively. Nitrosomonas played the dominant role in the N metabolism, while Thauera - in the S metabolism. This study highlights the benefits of linking the N-S cycles as an effective approach for the treatment of NH4+ and SO42- - rich wastewater, including lower substrate removal cost and reduced energy consumption.
Collapse
Affiliation(s)
- Dominika Derwis
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, 11/12 Narutowicza Street, Gdańsk 80-233, Poland
| | - Joanna Majtacz
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, 11/12 Narutowicza Street, Gdańsk 80-233, Poland
| | - Przemysław Kowal
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, 11/12 Narutowicza Street, Gdańsk 80-233, Poland
| | - Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, 11/12 Narutowicza Street, Gdańsk 80-233, Poland
| | - Jun Zhai
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Sławomir Ciesielski
- Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Słoneczna 45G, Olsztyn 10-719, Poland
| | - Grzegorz Piechota
- GPCHEM. Laboratory of Biogas Research and Analysis, ul. Legionów 40a/3, Toruń 87-100, Poland.
| | - Jacek Mąkinia
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, 11/12 Narutowicza Street, Gdańsk 80-233, Poland
| |
Collapse
|
7
|
Zhang Q, Xu X, Zhang R, Shao B, Fan K, Zhao L, Ji X, Ren N, Lee DJ, Chen C. The mixed/mixotrophic nitrogen removal for the effective and sustainable treatment of wastewater: From treatment process to microbial mechanism. WATER RESEARCH 2022; 226:119269. [PMID: 36279615 DOI: 10.1016/j.watres.2022.119269] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/25/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Biological nitrogen removal (BNR) is one of the most important environmental concerns in the field of wastewater treatment. The conventional BNR process based on heterotrophic nitrogen removal (HeNR) is suffering from several limitations, including external carbon source dependence, excessive sludge production, and greenhouse gas emissions. Through the mediation of autotrophic nitrogen removal (AuNR), mixed/mixotrophic nitrogen removal (MixNR) offers a viable solution to the optimization of the BNR process. Here, the recent advance and characteristics of MixNR process guided by sulfur-driven autotrophic denitrification (SDAD) and anammox are summarized in this review. Additionally, we discuss the functional microorganisms in different MixNR systems, shedding light on metabolic mechanisms and microbial interactions. The significance of MixNR for carbon reduction in the BNR process has also been noted. The knowledge gaps and the future research directions that may facilitate the practical application of the MixNR process are highlighted. Overall, the prospect of the MixNR process is attractive, and this review will provide guidance for the future implementation of MixNR process as well as deciphering the microbially metabolic mechanisms.
Collapse
Affiliation(s)
- Quan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Room 1433, Harbin, Heilongjiang 150090, China
| | - Xijun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Room 1433, Harbin, Heilongjiang 150090, China
| | - Ruochen Zhang
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Bo Shao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Room 1433, Harbin, Heilongjiang 150090, China
| | - Kaili Fan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Room 1433, Harbin, Heilongjiang 150090, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Room 1433, Harbin, Heilongjiang 150090, China
| | - Xiaoming Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Room 1433, Harbin, Heilongjiang 150090, China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-li, 32003, Taiwan
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Room 1433, Harbin, Heilongjiang 150090, China.
| |
Collapse
|
8
|
Zhang RC, Chen C, Xu XJ, Lee DJ, Ren NQ. The interaction between Pseudomonas C27 and Thiobacillus denitrificans in the integrated autotrophic and heterotrophic denitrification process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152360. [PMID: 34919932 DOI: 10.1016/j.scitotenv.2021.152360] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Compared to autotrophic and heterotrophic denitrification process, the integrated autotrophic and heterotrophic denitrification (IAHD) shows wider foreground of applications in the actual wastewaters with organic carbon, nitrogen and sulfur co-existing. The efficient co-removal of sulfur, nitrogen, and carbon in the IAHD system is guaranteed by the interaction between heterotrophic and autotrophic denitrificans. In order to further explore the interaction between functional bacteria, Pseudomonas C27 and Thiobacillus denitrifcans were selected as typical heterotrophic and autotrophic bacteria, and their characteristics metabolic responses to different sulfide concentrations were studied. Pseudomonas C27 had higher metabolic activity than T. denitrificans in the IAHD medium with sulfide concentration of 3.12-15.62 mmol/L. Moreover, the fastest sulfide removal rate (0.35 mmol/L·h) was achieved with a single inoculation of Pseudomonas C27. Meanwhile, in mixed inoculant conditions, the interaction between Pseudomonas C27 and T. denitrificans (P:T = 3:1, P:T = 1:1 and P:T = 1:3) yielded the highest sulfide removal efficiency (more than 85%) when sulfide concentration was 6.25-12.5 mmol/L. Additionally, the sulfide removal rate increased with the inoculation proportion of Pseudomonas C27. Thus, this apparent interaction provided a theoretical basis for further understanding and guidance on the efficient operation of IAHD system.
Collapse
Affiliation(s)
- Ruo-Chen Zhang
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| | - Xi-Jun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| |
Collapse
|
9
|
Gupta S, Plugge CM, Klok JBM, Muyzer G. Comparative analysis of microbial communities from different full-scale haloalkaline biodesulfurization systems. Appl Microbiol Biotechnol 2022; 106:1759-1776. [PMID: 35147744 PMCID: PMC8882115 DOI: 10.1007/s00253-022-11771-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/17/2021] [Accepted: 01/06/2022] [Indexed: 11/28/2022]
Abstract
Abstract In biodesulfurization (BD) at haloalkaline and dO2-limited conditions, sulfide-oxidizing bacteria (SOB) effectively convert sulfide into elemental sulfur that can be used in agriculture as a fertilizer and fungicide. Here we show which bacteria are present in this biotechnological process. 16S rRNA gene amplicon sequencing of biomass from ten reactors sampled in 2018 indicated the presence of 444 bacterial Amplicon Sequence Variants (ASVs). A core microbiome represented by 30 ASVs was found in all ten reactors, with Thioalkalivibrio sulfidiphilus as the most dominant species. The majority of these ASVs are phylogenetically related to bacteria previously identified in haloalkaline BD processes and in natural haloalkaline ecosystems. The source and composition of the feed gas had a great impact on the microbial community composition followed by alkalinity, sulfate, and thiosulfate concentrations. The halophilic SOB of the genus Guyparkeria (formerly known as Halothiobacillus) and heterotrophic SOB of the genus Halomonas were identified as potential indicator organisms of sulfate and thiosulfate accumulation in the BD process. Key points • Biodesulfurization (BD) reactors share a core microbiome • The source and composition of the feed gas affects the microbial composition in the BD reactors • Guyparkeria and Halomonas indicate high concentrations of sulfate and thiosulfate in the BD process Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-11771-y.
Collapse
Affiliation(s)
- Suyash Gupta
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, The Netherlands.,Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Caroline M Plugge
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, The Netherlands.,Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Johannes B M Klok
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, The Netherlands.,Paqell B.V, Utrecht, The Netherlands
| | - Gerard Muyzer
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Cai J, Sun Y, Qaisar M, Wang K, Chen B. Revealing the effect of multiple nitrogen sources on sulfide oxidation by progressively changing nitrate to nitrite. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Validation of effective role of substrate concentrations on elemental sulfur generation in simultaneous sulfide and nitrate removal process. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118698] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
12
|
Huang C, Liu Q, Wang H, Gao L, Hou YN, Nan J, Ren N, Li ZL. Influence of microbial spatial distribution and activity in an EGSB reactor under high- and low-loading denitrification desulfurization. ENVIRONMENTAL RESEARCH 2021; 195:110311. [PMID: 33130169 DOI: 10.1016/j.envres.2020.110311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/19/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
To characterize the impact of reactor configuration and influent loading on elemental sulphur (S0) recovery during denitrification desulfurization, a laboratory-scale expanded granular sludge bed (EGSB) reactor was established under two influent acetate/nitrate/sulphide loadings; the water flow velocity, microbial community, and functional genes at different heights were investigated. There was no S0 generated when acetate/nitrate/sulphide loadings were set to 0.95/0.60/1.05 kg/m3.d (low-loading). Furthermore, there were no typical denitrifying sulphide oxidizing bacteria under this condition, and Syntrophobacter, Anaerolineaceae genera were predominant in the reactor. As the influent loading was doubled (high-loading), S0 recovery increased to 87%; the bacterial distribution was relatively homogeneous with sulphide oxidation genera (Thauera) being predominant. Neither nirK nor sqr genes were detected in the low-loading sample at a height of 50 cm. The sqr/sox ratios of low-loading stage were 2.50 (10 cm), 0.94 (30 cm), and 0 (50 cm), and the ratios of the high-loading stage were 1.38 (10 cm), 1.33 (30 cm), and 1.08 (50 cm). A hydrodynamics analysis indicated that the water flow velocity was homogenous throughout the reactor. Appropriate reactor configuration and operation parameters play an important role in the efficient regulation of S0 recovery during denitrification desulfurization.
Collapse
Affiliation(s)
- Cong Huang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Qian Liu
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Hong Wang
- College of Chemical Engineering, Qinghai University, Xining, 810016, China
| | - Lei Gao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ya-Nan Hou
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Zhi-Ling Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
13
|
Huang C, Liu Q, Li ZL, Ma XD, Hou YN, Ren NQ, Wang AJ. Relationship between functional bacteria in a denitrification desulfurization system under autotrophic, heterotrophic, and mixotrophic conditions. WATER RESEARCH 2021; 188:116526. [PMID: 33125994 DOI: 10.1016/j.watres.2020.116526] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/08/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
The denitrification desulfurization system can be used to remediate wastewater containing carbon, nitrogen, and sulfur. However, the relationship between autotrophic and heterotrophic bacteria remains poorly understood. To better understand the roles and relations of core bacteria, an expanded granular sludge bed (EGSB) reactor was continuously operated under autotrophic (stage I), heterotrophic (stage II) and mixotrophic (stages III-VII) conditions with a 490-day period. Stage IV represented the excellent S0 recovery rate (69.5%). The different trophic conditions caused the obvious succession of dominant bacterial genera. Autotrophic environment (stage I) enriched mostly Thiobacillus, and heterotrophic environment (stage II) was dominated with Azoarcus and Pseudomonas. Thauera, Arcobacter and Azoarcus became the predominant genera under mixotrophic conditions (stage III-VII). Strains belonged to these core genera were further isolated, and all seven isolates were confirmed with denitrifying sulfur oxidation capacity. Heterotrophic strain HDD1 (genus of Thauera) possessed both the highest sulfide degradation and S0 recovery rates. Expression levels of cbbM and gltA genes were positively related with the autotrophic and heterotrophic conditions, respectively. NirK gene was highly expressed between log 3.7-log 4.3 during the entire run. Expression of both sqr and soxB genes were closely related with sulfur conversion. More than 57.5% of S0 recovery rate could be obtained as sqr gene expression was greater than log 3.2, and while, sulfate was the primary form as soxB gene expression higher than log 3.9. The correlation between core microbial genera was very low from network, indicating a complex and non-specific mutualistic network between bacterial functional groups under each nutrient condition, and a stable coexistence state was possibly formed through utilizing each the secondary or waste metabolites in the mixotrophic conditions. This relationship was beneficial to the stability of the microbial community structure in the denitrification desulfurization system.
Collapse
Affiliation(s)
- Cong Huang
- Tianjin Insitute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qian Liu
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Zhi-Ling Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Xiao-Dan Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ya-Nan Hou
- Tianjin Insitute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Nan-Qi Ren
- Tianjin Insitute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
14
|
Chen M, Jiao YY, Zhang YQ, Krumholz LR, Ren JX, Li ZH, Zhao LY, Song HT, Lu JD. Succession of sulfur bacteria during decomposition of cyanobacterial bloom biomass in the shallow Lake Nanhu: An ex situ mesocosm study. CHEMOSPHERE 2020; 256:127101. [PMID: 32450355 DOI: 10.1016/j.chemosphere.2020.127101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/26/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Previous studies of the dynamics of sulfate-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) have focused on deep stratified lakes. The objective of this study is to present an in-depth investigation of the structure and dynamics of sulfur bacteria (including SRB and SOB) in the water column of shallow freshwater lakes. A cyanobacterial bloom biomass (CBB)-amended mesocosm experiment was conducted in this study, in which water was taken from a shallow eutrophic lake with sulfate levels near 40 mg L-1. Illumina sequencing was used to investigate SRB and SOB species involved in CBB decomposition and the effects of the increases in sulfate input on the water column microbial community structure. The accumulation of dissolved sulfide (∑H2S) produced by SRB during CBB decomposition stimulated the growth of SOB, and ∑H2S was then oxidized back to sulfate by SOB in the water column. Chlorobaculum sequences (the main SOB species in the study) were significantly influenced by increases in sulfate input, with relative abundance increasing approximately four-fold in treatments amended with 40 mg L-1 sulfate (referred to as 40S) when compared to the treatment without additional sulfate addition (referred to as CU). Additionally, an increase in SOB number was observed from day 26-37, concurrent with the decrease in SRB number, indicating the succession of sulfur bacteria. These findings suggest that biological sulfur oxidation and succession of sulfur bacteria occur in the water column during CBB decomposition in shallow freshwater ecosystems, and the increases in sulfate input stimulate microbial sulfur oxidation.
Collapse
Affiliation(s)
- Mo Chen
- Faculty of Resources and Environmental Science, Hubei University, Wuhan, 430062, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yi-Ying Jiao
- Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, College of Resources and Environmental Engineering, Hubei University of Technology, Wuhan, China
| | - Ya-Qing Zhang
- Faculty of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Lee R Krumholz
- Department of Botany & Microbiology, University of Oklahoma, Norman, OK, USA
| | - Jun-Xian Ren
- Faculty of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Zhao-Hua Li
- Faculty of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Li-Ya Zhao
- Faculty of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Hui-Ting Song
- Faculty of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Jin-Deng Lu
- Faculty of Resources and Environmental Science, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
15
|
Liu Q, Huang C, Chen X, Wu Y, Lv S, Wang A. Succession of functional bacteria in a denitrification desulphurisation system under mixotrophic conditions. ENVIRONMENTAL RESEARCH 2020; 188:109708. [PMID: 32615353 DOI: 10.1016/j.envres.2020.109708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Large-scale use of ammonia, sulphate, and nitrate in industrial manufacturing has resulted in the generation of industrial wastewater pollutants. However, approaches to eliminate such contamination have not been extensively studied. Accordingly, in this study, we investigated the succession of bacteria under different influent loadings in a mixotrophic denitrification desulphurisation system. Four expanded granular sludge bed reactors were operated simultaneously. The sulphide loading of reactor I was 1.2 kg/m3‧day, the sulphide load of reactor II was 2.4 kg/m3‧day, and the sulphide load of reactor III was 3.6 kg/m3‧day. The molar ratio of carbon versus nitrogen in the influent under each condition was fixed at 1.26:1, and the molar ratio of sulphur versus nitrogen was fixed at 5:6; each reactor was operated for 90 days. Reactor IV was a verification reactor. The three conditions were repeated, and each condition was operated for 90 days. Middle- and late-stage samples under each condition were sequenced using a high-throughput sequencer. Azoarcus, Thauera, Arcobacter, and Pseudomonas were the core genera of the denitrification desulphurisation system under mixotrophic conditions. The genus Azoarcus was a cornerstone genus of mixotrophic conditions, as demonstrated using the random forest model and correlation network analysis.
Collapse
Affiliation(s)
- Qian Liu
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Cong Huang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xueqi Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yiping Wu
- Department of Earth and Environmental Science, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Sihao Lv
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China.
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
16
|
Fan F, Xu R, Wang D, Meng F. Application of activated sludge for odor control in wastewater treatment plants: Approaches, advances and outlooks. WATER RESEARCH 2020; 181:115915. [PMID: 32485441 DOI: 10.1016/j.watres.2020.115915] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/14/2020] [Accepted: 05/02/2020] [Indexed: 06/11/2023]
Abstract
Odors from wastewater treatment plants (WWTPs) have attracted extensive attention and stringent environmental standards are more widely adopted to reduce odor emissions. Biological odor treatment methods have broader applications than the physical and chemical counterparts as they are environment-friendly, cost-effective and generate low secondary wastes. The aqueous activated sludge (AS) processes are among the most promising approaches for the prevention or end-of-pipe removal of odor emissions and have the potential to simultaneously treat odor and wastewater. However, AS deodorization biotechnologies in WWTPs still need to be further systematically summarized and categorized while in-depth discussions on the characteristics and underlying mechanisms of AS deodorization process are still lacking. Recently, considerable studies have been reported to elucidate the microbial metabolisms in odor control and wastewater treatment. This paper reviews the fundamentals, characteristics, advances and field experiences of three AS biotechnologies for odor treatment in WWTPs, i.e., AS recycling, microaeration in AS digester and AS diffusion. The underlying deodorization mechanisms of typical odors have been revealed through the summary of recent advances on multi-element conversions, metabolic interactions of bacteria, microscopic characterization and identification of functional microorganisms. Future research aspects to advance the emerging deodorization AS process, such as deodorization mechanisms, simultaneous odor and water treatment, synergistic treatment with other air emissions, are discussed.
Collapse
Affiliation(s)
- Fuqiang Fan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, PR China
| | - Ronghua Xu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, PR China
| | - Depeng Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, PR China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, PR China.
| |
Collapse
|
17
|
Zhang RC, Chen C, Shao B, Wang W, Xu XJ, Zhou X, Xiang YN, Zhao L, Lee DJ, Ren NQ. Heterotrophic sulfide-oxidizing nitrate-reducing bacteria enables the high performance of integrated autotrophic-heterotrophic denitrification (IAHD) process under high sulfide loading. WATER RESEARCH 2020; 178:115848. [PMID: 32361288 DOI: 10.1016/j.watres.2020.115848] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/04/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Micro-aerobic enhancement technology has been developed as an effective tool to enhance simultaneous removal of sulfide, nitrate and organic carbon during the integrated autotrophic-heterotrophic denitrification (IAHD) process under high loading; however, its mechanism of enhancement for functional bacteria remains ambiguous. In this study, we discovered that heterotrophic sulfide-oxidizing nitrate-reducing bacteria (h-soNRB) are responsible for enhancing IAHD performance under micro-aerobic conditions with high sulfide loading. In a continuous IAHD bioreactor, aeration rate of 2.6 mL min-1·L-1 promoted 2 to 4 times higher removal efficiencies of sulfide, nitrate and acetate with an influent sulfide concentration of 18.75 mmol/L. Metagenomic analysis revealed that trace oxygen stimulated the abundance of genes responsible for sulfide oxidation (sqr, glpE, pdo, sox and cysK), which were upregulated by 15.2%-129.9%, and the genes encoding nitrate reductase were up-regulated by 67.4%. The increased acetate removal efficiency was attributed to upregulation of ack, pta and TCA cycle related genes. The h-NRB Pseudomonas, Azoarcus, Thauera and Halomonas were detected and regarded as h-soNRB in our bioreactor. According to Illumina MiSeq sequencing, these genera were absolutely dominant in the micro-aerobic microbial community at relative abundances ranging from 82.72% to 90.84%. The sulfide, nitrate and acetate removal rates of Pseudomonas C27, a typical h-soNRB, were at least 10 times higher under micro-aerobic conditions than under anaerobic conditions. Besides, the sulfur, nitrogen and carbon metabolic network was constructed based on the Pseudomonas C27 genome. The pdo and cysK genes found in this strain may be the most advantageous for autotrophic sulfide oxidizing nitrate reducing bacteria (a-soNRB), which are closely related to the high-efficiency sulfide, nitrate and acetate removal performance under high sulfide concentrations and a limited oxygen supply. In addition, after micro-aerobic cultivation, the anaerobic sulfide loading tolerance of the IAHD bioreactor increased from 18.75 to 37.5 mmol/L with sulfide, nitrate and acetate removal efficiencies increasing 1.5 to 3 times, which suggests that intermittent micro-aeration might be a more economical and efficient regime for high-sulfide IAHD regulation.
Collapse
Affiliation(s)
- Ruo-Chen Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China; School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China.
| | - Bo Shao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Xi-Jun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Xu Zhou
- Engineering Laboratory of Microalgal Bioenergy, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Yu-Nong Xiang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, 106, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 106, Taiwan
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| |
Collapse
|
18
|
Shi J, Zhang B, Wang Y, Fu J. Effects of hydropower dam construction on sulfur distribution and sulfate-reducing prokaryotes assemblage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135819. [PMID: 31972948 DOI: 10.1016/j.scitotenv.2019.135819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
River damming is significant for hydropower production, but also alters the ecological conditions, and especially affects the microbial community. Sulfate-reducing prokaryotes (SRPs) make vital contributions to biogeochemical sulfur cycle, but the information on the effects of dam construction on the SRPs assemblage are unclear. Here, a comprehensive survey was conducted by collecting water and sediment samples along horizontal and vertical profiles from six sites at the Xiaowan Reservoir on the Lancang River, China. We used 16S rRNA gene amplicon sequencing and qPCR assay with dsrB gene to study the composition and activity of SRPs. The results indicated that river damming accumulated nutrients in the middle layer of the reservoir, and the impoundment provided an anaerobic and high nutrient available environment, which is beneficial for the survival of SRPs. The abundance and diversity of SRPs in water and sediments at the bottom of the reservoir were higher than those in the other sites. The network analyses revealed a synergistic effect between SRPs and other dominant bacteria in water column, which was more complex than in sediments. Moreover, a relatively higher sulfate reduction activity was found in the middle and lower layers of the water profile according to dsrB gene analysis.
Collapse
Affiliation(s)
- Jiaxin Shi
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Baogang Zhang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Ya'nan Wang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Jie Fu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
19
|
Chen F, Li ZL, Lv M, Huang C, Liang B, Yuan Y, Lin XQ, Gao XY, Wang AJ. Recirculation ratio regulates denitrifying sulfide removal and elemental sulfur recovery by altering sludge characteristics and microbial community composition in an EGSB reactor. ENVIRONMENTAL RESEARCH 2020; 181:108905. [PMID: 31767354 DOI: 10.1016/j.envres.2019.108905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/07/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
Expanded granular sludge blanket (EGSB) is regarded as a promising reactor to carry out denitrifying sulfide removal (DSR) and elemental sulfur (S0) recovery. Although the recirculation ratio is an essential parameter for EGSB reactors, how it impacts the DSR process remains poorly understood. Here, three lab-scale DSR-EGSB reactors were established with the different recirculation ratios (3:1, 6:1 and 9:1) to evaluate the corresponding variations in pollutant removal, S0 recovery, anaerobic granular sludge (AGS) characteristics and microbial community composition. It was found that an intermediate recirculation ratio (6:1) could facilitate long-term reactor stability. Adequate recirculation ratio could enhance S0 recovery, but an excessive recirculation ratio (9:1) was likely to cause AGS fragmentation and biomass loss. The S0 desorbed more from sludge at higher recirculation ratios, probably due to the enhanced hydraulic disturbance caused by the increased recirculation ratios. At the low recirculation ratio (3:1), S0 accumulation as inorganic suspended solids in AGS led to a decrease in VSS/TSS ratio and mass transfer efficiency. Although typical denitrifying and sulfide-oxidizing bacteria (e.g., Azoarcus, Thauera and Arcobacter) were predominant in all conditions, facultative and heterotrophic functional bacteria (e.g., Azoarcus and Thauera) were more adaptable to higher recirculation ratios than autotrophs (e.g., Arcobacter, Thiobacillus and Vulcanibacillus), which was conducive to the formation of bacterial aggregates to response to the increased recirculation ratio. The study revealed recirculation ratio regulation significantly impacted the DSR-EGSB reactor performance by altering AGS characteristics and microbial community composition, which provides a novel strategy to improve DSR performance and S0 recovery.
Collapse
Affiliation(s)
- Fan Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhi-Ling Li
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Miao Lv
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Cong Huang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Bin Liang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ye Yuan
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Xiao-Qiu Lin
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xiang-Yu Gao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
20
|
Zhao Y, Huang C, Ma X, Chen F, Liang B, Wang A. Bioaugmentation with the sulfur oxidizing Thauera sp. HDD1 for shortening the startup time in the denitrifying sulfide removal process. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.100192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Villemur R, Payette G, Geoffroy V, Mauffrey F, Martineau C. Dynamics of a methanol-fed marine denitrifying biofilm: 2-impact of environmental changes on the microbial community. PeerJ 2019; 7:e7467. [PMID: 31423359 PMCID: PMC6697039 DOI: 10.7717/peerj.7467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/12/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The biofilm of a methanol-fed, marine denitrification system is composed of a multi-species microbial community, among which Hyphomicrobium nitrativorans and Methylophaga nitratireducenticrescens are the principal bacteria involved in the denitrifying activities. To assess its resilience to environmental changes, the biofilm was cultivated in artificial seawater (ASW) under anoxic conditions and exposed to a range of specific environmental conditions. We previously reported the impact of these changes on the denitrifying activities and the co-occurrence of H. nitrativorans strain NL23 and M. nitratireducenticrescens in the biofilm cultures. Here, we report the impact of these changes on the dynamics of the overall microbial community of the denitrifying biofilm. METHODS The original biofilm (OB) taken from the denitrification system was cultivated in ASW under anoxic conditions with a range of NaCl concentrations, and with four combinations of nitrate/methanol concentrations and temperatures. The OB was also cultivated in the commercial Instant Ocean seawater (IO). The bacterial diversity of the biofilm cultures and the OB was determined by 16S ribosomal RNA gene sequences. Culture approach was used to isolate other denitrifying bacteria from the biofilm cultures. The metatranscriptomes of selected biofilm cultures were derived, along with the transcriptomes of planktonic pure cultures of H. nitrativorans strain NL23 and M. nitratireducenticrescens strain GP59. RESULTS High proportions of M. nitratireducenticrescens occurred in the biofilm cultures. H. nitrativorans strain NL23 was found in high proportion in the OB, but was absent in the biofilm cultures cultivated in the ASW medium at 2.75% NaCl. It was found however in low proportions in the biofilm cultures cultivated in the ASW medium at 0-1% NaCl and in the IO biofilm cultures. Denitrifying bacterial isolates affiliated to Marinobacter spp. and Paracoccus spp. were isolated. Up regulation of the denitrification genes of strains GP59 and NL23 occurred in the biofilm cultures compared to the planktonic pure cultures. Denitrifying bacteria affiliated to the Stappia spp. were metabolically active in the biofilm cultures. CONCLUSIONS These results illustrate the dynamics of the microbial community in the denitrifying biofilm cultures in adapting to different environmental conditions. The NaCl concentration is an important factor affecting the microbial community in the biofilm cultures. Up regulation of the denitrification genes of M. nitratireducenticrescens strain GP59 and H. nitrativorans strain NL23 in the biofilm cultures suggests different mechanisms of regulation of the denitrification pathway in the biofilm. Other denitrifying heterotrophic bacteria are present in low proportions, suggesting that the biofilm has the potential to adapt to heterotrophic, non-methylotrophic environments.
Collapse
Affiliation(s)
- Richard Villemur
- INRS-Centre Armand-Frappier Santé et Biotechnologie, Laval, Québec, Canada
| | - Geneviève Payette
- INRS-Centre Armand-Frappier Santé et Biotechnologie, Laval, Québec, Canada
| | | | | | | |
Collapse
|
22
|
Simultaneous Biological and Chemical Removal of Sulfate and Fe(II)EDTA-NO in Anaerobic Conditions and Regulation of Sulfate Reduction Products. MINERALS 2019. [DOI: 10.3390/min9060330] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the simultaneous flue gas desulfurization and denitrification by biological combined with chelating absorption technology, SO2 and NO are converted into sulfate and Fe(II)EDTA-NO which need to be reduced in biological reactor. Increasing the removal loads of sulfate and Fe(II)EDTA-NO and converting sulfate to elemental sulfur will benefit the application of this process. A moving-bed biofilm reactor was adopted for sulfate and Fe(II)EDTA-NO biological reduction. The removal efficiencies of the sulfate and Fe(II)EDTA-NO were 96% and 92% with the influent loads of 2.88 kg SO42−·m−3·d−1 and 0.48 kg NO·m−3·d−1. The sulfide produced by sulfate reduction could be reduced by increasing the concentrations of Fe(II)EDTA-NO and Fe(III)EDTA. The main reduction products of sulfate and Fe(II)EDTA-NO were elemental sulfur and N2. It was found that the dominant strain of sulfate reducing bacteria in the system was Desulfomicrobium. Pseudomonas, Sulfurovum and Arcobacter were involved in the reduction of Fe(II)EDTA-NO.
Collapse
|
23
|
Huang C, Liu WZ, Li ZL, Zhang SM, Chen F, Yu HR, Shao SL, Nan J, Wang AJ. High recycling efficiency and elemental sulfur purity achieved in a biofilm formed membrane filtration reactor. WATER RESEARCH 2018; 130:1-12. [PMID: 29306789 DOI: 10.1016/j.watres.2017.10.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/04/2017] [Accepted: 10/20/2017] [Indexed: 06/07/2023]
Abstract
Elemental sulfur (S0) is always produced during bio-denitrification and desulfurization process, but the S0 yield and purification quality are too low. Till now, no feasible approach has been carried out to efficiently recover S0. In this study, we report the S0 generation and recovery by a newly designed, compact, biofilm formed membrane filtration reactor (BfMFR), where S0 was generated within a Thauera sp. strain HDD-formed biofilm on membrane surface, and then timely separated from the biofilm through membrane filtration. The high S0 generation efficiency (98% in average) was stably maintained under the operation conditions with the influent acetate, nitrate and sulfide concentration of 115, 120 and 100 mg/L, respectively, an initial inoculum volume of approximate 2.4 × 108 cells, and a membrane pore size of 0.45 μm. Under this condition, the sulfide loading approached 62.5 kg/m3·d, one of the highest compared with the previous reports, demonstrating an efficient sulfide removal and S0 generation capacity. Particular important, a solid analysis of the effluent revealed that the recovered S0 was adulterated with barely microorganisms, extracellular polymeric substances (EPSs), or inorganic chemicals, indicating a fairly high S0 recovery purity. Membrane biofilm analysis revealed that 80.7% of the generated S0 was accomplished within 45-80 μm of biofilm from the membrane surface and while, the complete membrane fouling due to bacteria and EPSs was generally observed after 14-16 days. The in situ generation and timely separation of S0 from the bacterial group by BfMFR, effectively avoids the sulfur circulation (S2- to S0, S0 to SO42-, SO42- to HS-) and guarantees the high S0 recovery efficiency and purity, is considered as a feasible approach for S0 recovery from sulfide- and nitrate-contaminated wastewater.
Collapse
Affiliation(s)
- Cong Huang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Wen-Zong Liu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Zhi-Ling Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Shu-Ming Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Fan Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Hua-Rong Yu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Sen-Lin Shao
- School of Civil Engineering, Wuhan University, Wuhan, Hubei, 430072, PR China
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| |
Collapse
|
24
|
Zwain HM, Aziz HA, Ng WJ, Dahlan I. Performance and microbial community analysis in a modified anaerobic inclining-baffled reactor treating recycled paper mill effluent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:13012-13024. [PMID: 28378314 DOI: 10.1007/s11356-017-8804-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/10/2017] [Indexed: 06/07/2023]
Abstract
Recycled paper mill effluent (RPME) contains high levels of organic and solid compounds, causing operational problems for anaerobic biological treatment. In this study, a unique modified anaerobic inclining-baffled reactor (MAI-BR) has been developed to treat RPME at various initial chemical oxygen demand (COD) concentrations (1000-4000 mg/L) and hydraulic retention times (HRTs) (3 and 1 day). The COD removal efficiency was decreased from 96 to 83% when the organic loading rate (OLR) was increased from 0.33 to 4 g/L day. Throughout the study, a maximum methane yield of 0.25 L CH4/g COD was obtained, while the pH fluctuated in the range of 5.8 to 7.8. The reactor performance was influenced by the development and distribution of the microbial communities. Based on the next-generation sequencing (NGS) analysis, the microbial community represented a variety of bacterial phyla with significant homology to Euryarchaeota (43.06%), Planctomycetes (24.68%), Proteobacteria (21.58%), Acidobacteria (4.12%), Chloroflexi (3.14%), Firmicutes (1.12%), Bacteroidetes (1.02%), and others (1.28%). The NGS analysis showed that the microbial community was dominated by Methanosaeta concilii and Candidatus Kuenenia stuttgartiensis. This can be supported by the presence of filamentous and spherical microbes of different sizes. Additionally, methanogenic and anaerobic ammonium oxidation (ANAMMOX) microorganisms coexisted in all compartments, and these contributed to the overall degradation of substances in the RPME. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Haider M Zwain
- College of Water Resources Engineering, Al-Qasim Green University, Babylon, Al Qasim Province, Iraq
| | - Hamidi Abdul Aziz
- School of Civil Engineering, Universiti Sains Malaysia, Engineering Campus, Seri Ampangan, 14300, Nibong Tebal, Penang, Malaysia
- Solid Waste Management Cluster, Universiti Sains Malaysia, Engineering Campus, Seri Ampangan, 14300, Nibong Tebal, Penang, Malaysia
| | - Wun Jern Ng
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Nanyang Environment and Water Research Institute, Nanyang Technological University, CleanTech 1, Singapore, 637141, Singapore
| | - Irvan Dahlan
- Solid Waste Management Cluster, Universiti Sains Malaysia, Engineering Campus, Seri Ampangan, 14300, Nibong Tebal, Penang, Malaysia.
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, Seri Ampangan, 14300 Nibong Tebal, Penang, Malaysia.
| |
Collapse
|
25
|
Huang C, Liu Q, Chen C, Chen F, Zhao YK, Gao LF, Liu WZ, Zhou JZ, Li ZL, Wang AJ. Elemental sulfur recovery and spatial distribution of functional bacteria and expressed genes under different carbon/nitrate/sulfide loadings in up-flow anaerobic sludge blanket reactors. JOURNAL OF HAZARDOUS MATERIALS 2017; 324:48-53. [PMID: 27045457 DOI: 10.1016/j.jhazmat.2016.03.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 03/02/2016] [Accepted: 03/08/2016] [Indexed: 06/05/2023]
Abstract
To characterize the impact of influent loading on elemental sulfur (S0) recovery during the denitrifying and sulfide oxidation process, three identical, lab-scale UASB reactors (30cm in length) were established in parallel under different influent acetate/nitrate/sulfide loadings, and the reactor performance and functional community structure were investigated. The highest S0 recovery was achieved at 77.9% when the acetate/nitrate/sulfide loading was set to 1.9/1.6/0.7kgd-1m-3. Under this condition, the genera Thauera, Sulfurimonas, and Azoarcus were predominant at 0-30, 0-10 and 20-30cm, respectively; meanwhile, the sqr gene was highly expressed at 0-30cm. However, as the influent loading was halved and doubled, S0 recovery was decreased to 27.9% and 45.1%, respectively. As the loading was halved, the bacterial distribution became heterogeneous, and certain autotrophic sulfide oxidation genera, such as Thiobacillus, dominated, especially at 20-30cm. As the loading doubled, the bacterial distribution was relatively homogeneous with Thauera and Azoarcus being predominant, and the nirK and sox genes were highly expressed. The study verified the importance of influent loading to regulate S0 recovery, which could be achieved as Thauera and Sulfurimonas dominated. An influent loading that was too low or too high gave rise to insufficient oxidation or over-oxidation of the sulfide and low S0 recovery performance.
Collapse
Affiliation(s)
- Cong Huang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qian Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Fan Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - You-Kang Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ling-Fang Gao
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wen-Zong Liu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ji-Zhong Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA; Earth Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94270, USA
| | - Zhi-Ling Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
26
|
Huang C, Li ZL, Chen F, Liu Q, Zhao YK, Gao LF, Chen C, Zhou JZ, Wang AJ. Efficient regulation of elemental sulfur recovery through optimizing working height of upflow anaerobic sludge blanket reactor during denitrifying sulfide removal process. BIORESOURCE TECHNOLOGY 2016; 200:1019-1023. [PMID: 26497112 DOI: 10.1016/j.biortech.2015.09.109] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 09/25/2015] [Accepted: 09/29/2015] [Indexed: 06/05/2023]
Abstract
In this study, two lab-scale UASB reactors were established to testify S(0) recovery efficiency, and one of which (M-UASB) was improved from the previous T-UASB by shortening reactor height once S(2-) over oxidation was observed. After the height was shortened from 60 to 30cm, S(0) recovery rate was improved from 7.4% to 78.8%, and while, complete removal of acetate, nitrate and S(2-) was simultaneously maintained. Meanwhile, bacterial community distribution was homogenous throughout the reactor, with denitrifying sulfide oxidization bacteria predominant, such as Thauera and Azoarcus spp., indicating the optimized condition for S(0) recovery. The effective control of working height/volume in reactors plays important roles for the efficient regulation of S(0) recovery during DSR process.
Collapse
Affiliation(s)
- Cong Huang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Zhi-Ling Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Fan Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Qian Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - You-Kang Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Ling-Fang Gao
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Ji-Zhong Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA; Earth Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94270, USA
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| |
Collapse
|
27
|
Huang C, Li ZL, Chen F, Liu Q, Zhao YK, Zhou JZ, Wang AJ. Microbial community structure and function in response to the shift of sulfide/nitrate loading ratio during the denitrifying sulfide removal process. BIORESOURCE TECHNOLOGY 2015; 197:227-234. [PMID: 26340031 DOI: 10.1016/j.biortech.2015.08.019] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/04/2015] [Accepted: 08/08/2015] [Indexed: 06/05/2023]
Abstract
Influence of acetate-C/NO3(-)-N/S(2-) ratio to the functional microbial community during the denitrifying sulfide removal process is poorly understood. Here, phylogenetic and functional bacterial community for elemental sulfur (S(0)) recovery and nitrate (NO3(-)) removal were investigated with the switched S(2-)/NO3(-) molar ratio ranged from 5/2 to 5/9. Optimized S(2-)/NO3(-) ratio was evaluated as 5/6, with the bacterial genera predominated with Thauera, Enterobacter, Thiobacillus and Stappia, and the sqr gene highly expressed. However, insufficient or high loading of acetate and NO3(-) resulted in the low S(0) recovery, and also significantly modified the bacterial community and genetic activity. With S(2-)/NO3(-) ratio of 5/2, autotrophic S(2-) oxidization genera were dominated and NO3(-) reduction activity was low, confirmed by the low expressed nirK gene. In contrast, S(2-)/NO3(-) ratio switched to 5/8 and 5/9 introduced diverse heterotrophic nitrate reduction and S(0) over oxidization genera in accompanied with the highly expressed nirK and sox genes.
Collapse
Affiliation(s)
- Cong Huang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Zhi-Ling Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Fan Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Qian Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - You-Kang Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Ji-Zhong Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA; Earth Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94270, USA
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| |
Collapse
|