1
|
Gong L, Passari AK, Yin C, Kumar Thakur V, Newbold J, Clark W, Jiang Y, Kumar S, Gupta VK. Sustainable utilization of fruit and vegetable waste bioresources for bioplastics production. Crit Rev Biotechnol 2024; 44:236-254. [PMID: 36642423 DOI: 10.1080/07388551.2022.2157241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/05/2022] [Accepted: 11/11/2022] [Indexed: 01/17/2023]
Abstract
Nowadays, rapidly increasing production, use and disposable of plastic products has become one of the utmost environmental issues. Our current circumstances in which the food supply chain is demonstrated as containing plastic particles and other plastic-based impurities, represents a significant health risk to humans, animals, and environmental alike. According to this point of view, biodegradable plastic material aims to produce a more sustainable and greener world with a lower ecological impact. Bioplastics are being investigated as an environmentally friendly candidate to address this problem and hence global bioplastic production has seen significant growth and expansion in recent years. This article focuses on a few critical issues that must be addressed for bioplastic production to become commercially viable. Although the reduction of fruit and vegetable waste biomass has an apparent value in terms of environmental benefits and sustainability, commercial success at industrial scale has remained flat. This is due to various factors, including biomass feedstocks, pretreatment technologies, enzymatic hydrolysis, and scale-up issues in the industry, all of which contribute to high capital and operating costs. This review paper summarizes the global overview of bioplastics derived from fruit and vegetable waste biomass. Furthermore, economic and technical challenges associated with industrialization and diverse applications of bioplastics in biomedical, agricultural, and food-packaging fields due to their excellent biocompatibility properties are reviewed.HighlightsReview of the diverse types and characteristics of sustainability of biobased plasticsImproved pretreatment technologies can develop to enhance greater yieldEnzyme hydrolysis process used for bioplastic extraction & hasten industrial scale-upFocus on technical challenges facing commercialized the bioplasticsDetailed discussion on the application for sustainability of biodegradable plastics.
Collapse
Affiliation(s)
- Liang Gong
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Ajit Kumar Passari
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Edinburgh, UK
| | - Chunxiao Yin
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Edinburgh, UK
- School of Engineering, University of Petroleum & Energy Studies (UPES), Uttarakhand, India
| | - John Newbold
- Dairy Research Centre, SRUC, Dumfries, United Kingdom
| | | | - Yueming Jiang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Shanmugam Kumar
- James Watt School of Engineering, University of Glasgow, Glasgow, UK
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Edinburgh, UK
- Centre for Safe and Improved Foods, Scotland's Rural College (SRUC), Edinburgh, UK
| |
Collapse
|
2
|
Kaur I, Kumar Gaur V, Rishi S, Anand V, Kumar Mishra S, Gaur R, Patel A, Srivastava S, Verma PC, Kumar Srivastava P. Deciphering the kinetics and pathway of lindane biodegradation by novel soil ascomycete fungi for its implication in bioremediation. BIORESOURCE TECHNOLOGY 2023; 387:129581. [PMID: 37517709 DOI: 10.1016/j.biortech.2023.129581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Lindane, an organochlorine pesticide, negatively affects living beings and the ecosystem. In this study, the potential of 9 Ascomycetes fungi, isolated from an hexachlorocyclohexane dumpsite soil, was tested for biodegradation of lindane. The strain Pleurostoma richardsiae (FN5) showed lindane biodegradation rate constant (K value) of 0.144 d-1 and a half-life of 4.8d. The formation of intermediate metabolites upon lindane degradation including γ-pentachlorocyclohexene, 2,4-dichlorophenol, phenol, benzene, 1,3- cyclohexadiene, and benzoic acid detected by GC-MS and the potential pathway adopted by the novel fungal strain FN5 for lindane biodegradation has been elucidated. The study of gene profiles with reference to linA and linB in strain FN5 confirmed the same protein family with the reported heterologs from other fungal strains in the NCBI database. This study for the first time provides a thorough understanding of lindane biodegradation by a novel soil-borne Ascomycota fungal strain for its possible application in field-scale bioremediation.
Collapse
Affiliation(s)
- Ispreet Kaur
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Lucknow, India; Department of Microbiology, Dr. Rammanohar Lohia Avadh University, Ayodhya, India
| | - Vivek Kumar Gaur
- School of Energy and Chemical Engineering, Ulsan National Institute for Science and Technology, Republic of Korea
| | - Saloni Rishi
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Lucknow, India
| | - Vandana Anand
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Lucknow, India
| | - Shashank Kumar Mishra
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Lucknow, India
| | - Rajeev Gaur
- Department of Microbiology, Dr. Rammanohar Lohia Avadh University, Ayodhya, India
| | - Anju Patel
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Lucknow, India
| | - Suchi Srivastava
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Lucknow, India
| | - Praveen C Verma
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Lucknow, India
| | - Pankaj Kumar Srivastava
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Lucknow, India.
| |
Collapse
|
3
|
Gottardo M, Bolzonella D, Adele Tuci G, Valentino F, Majone M, Pavan P, Battista F. Producing volatile fatty acids and polyhydroxyalkanoates from foods by-products and waste: A review. BIORESOURCE TECHNOLOGY 2022; 361:127716. [PMID: 35926558 DOI: 10.1016/j.biortech.2022.127716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 05/26/2023]
Abstract
Dairy products, extra virgin olive oil, red and white wines are excellent food products, appreciated all around the world. Their productions generate large amounts of by-products which urge for recycling and valorization. Moreover, another abundant waste stream produced in urban context is the Organic Fraction of Municipal Solid Wastes (OFMSW), whose global annual capita production is estimated at 85 kg. The recent environmental policies encourage their exploitation in a biorefinery loop to produce Volatile Fatty Acids (VFAs) and polyhydroxyalkanoates (PHAs). Typically, VFAs yields are high from cheese whey and OFMSW (0.55-0.90 gCOD_VFAs/gCOD), lower for Olive Mill and Winery Wastewaters. The VFAs conversion into PHAs can achieve values in the range 0.4-0.5 gPHA/gVSS for cheese whey and OFMSW, 0.6-0.7 gPHA/gVSS for winery wastewater, and 0.2-0.3 gPHA/gVSS for olive mill wastewaters. These conversion yields allowed to estimate a huge potential annual PHAs production of about 260 M tons.
Collapse
Affiliation(s)
- Marco Gottardo
- Department of Environmental Sciences, Informatics and Statistics, Cà Foscari University of Venice, Via Torino 155, 30170 Mestre-Venice, Italy
| | - David Bolzonella
- Department of Biotechnology, University of Verona, Via Strada Le Grazie 15, 37134 Verona, Italy
| | - Giulia Adele Tuci
- Department of Environmental Sciences, Informatics and Statistics, Cà Foscari University of Venice, Via Torino 155, 30170 Mestre-Venice, Italy
| | - Francesco Valentino
- Department of Environmental Sciences, Informatics and Statistics, Cà Foscari University of Venice, Via Torino 155, 30170 Mestre-Venice, Italy
| | - Mauro Majone
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Paolo Pavan
- Department of Environmental Sciences, Informatics and Statistics, Cà Foscari University of Venice, Via Torino 155, 30170 Mestre-Venice, Italy
| | - Federico Battista
- Department of Biotechnology, University of Verona, Via Strada Le Grazie 15, 37134 Verona, Italy.
| |
Collapse
|
4
|
Barcelos MCS, Ramos CL, Kuddus M, Rodriguez-Couto S, Srivastava N, Ramteke PW, Mishra PK, Molina G. Enzymatic potential for the valorization of agro-industrial by-products. Biotechnol Lett 2020; 42:1799-1827. [DOI: 10.1007/s10529-020-02957-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022]
|
5
|
Polychlorinated Biphenyl Profile in Polyhydroxy-alkanoates Synthetized from Urban Organic Wastes. Polymers (Basel) 2020; 12:polym12030659. [PMID: 32183353 PMCID: PMC7183061 DOI: 10.3390/polym12030659] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/12/2020] [Accepted: 03/12/2020] [Indexed: 11/17/2022] Open
Abstract
The microbial synthesis of polyhydroxyalkanoates (PHA) from organic wastes is a valuable process to valorize available renewable resources, such as food wastes and biological sludge. Bioplastics find many applications in various sectors, from medical field to food industry. However, persistent organic pollutants could be transferred from wastes to the final product. The present paper demonstrates that the use of municipal wastes in PHA production is safe for the environment and human health and provides a polychlorinated biphenyl (PCB) profile in both commercial and waste-based PHA samples. PCB analysis in several PHA samples showed very low concentrations of the target analytes. Commercial PHA samples showed a similar PCB level with respect to PHA samples from municipal waste/sludge and higher than PHA samples from fruit waste. For all analyzed PCBs, detected concentrations were consistently lower than the ones reported in regulatory framework or guidelines.
Collapse
|
6
|
Moretto G, Russo I, Bolzonella D, Pavan P, Majone M, Valentino F. An urban biorefinery for food waste and biological sludge conversion into polyhydroxyalkanoates and biogas. WATER RESEARCH 2020; 170:115371. [PMID: 31835138 DOI: 10.1016/j.watres.2019.115371] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/08/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
This study focuses on the application of the concept of circular economy, with the creation of added-value marketable products and energy from organic waste while minimizing environmental impacts. Within this purpose, an urban biorefinery technology chain has been developed at pilot scale in the territorial context of the Treviso municipality (northeast Italy) for the production of biopolymers (polyhydroxyalkanoates, PHAs) and biogas from waste of urban origin. The piloting system (100-380 L) comprised the following units: a) acidogenic fermentation of the organic fraction of municipal solid waste (OFMSW) and biological sludge; b) two solid/liquid separation steps consisting of a coaxial centrifuge and a tubular membrane (0.2 μm porosity); c) a Sequencing Batch Reactor (SBR) for aerobic PHA-storing biomass production; d) aerobic fed-batch PHA accumulation reactor and e) Anaerobic co-digestion (ACoD). The thermal pre-treatment (72 °C, 48 h) of the feedstock enhanced the solubilization of the organic matter, which was converted into volatile fatty acids (VFAs) in batch mode under mesophilic fermentation conditions (37 °C). The VFA content increased up to 30 ± 3 g COD/L (overall yield 0.65 ± 0.04 g CODVFA/g VS(0)), with high CODVFA/CODSOL (0.86 ± 0.05). The high CODVFA/CODSOL ratio enhanced the PHA-storing biomass selection in the SBR by limiting the growth of the non-storing microbial population. Under fully aerobic feast-famine regime, the selection reactor was continuously operated for 6 months at an average organic loading rate (OLR) of 4.4 ± 0.6 g COD/L d and hydraulic retention time (HRT) of 1 day (equal to SRT). The ACoD process (HRT 15 days, OLR 3.0-3.5 kg VS/m3 d) allowed to recover the residual solid-rich overflows generated by the two solid/liquid separation units with the production of biogas (SGP 0.44-0.51 m3/kg VS) and digestate. An overall yield of 7.6% wt PHA/VS(0) has been estimated from the mass balance. In addition, a preliminary insight into potential social acceptance and barriers regarding organic waste-derived products was obtained.
Collapse
Affiliation(s)
- Giulia Moretto
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30170, Venezia, Mestre, Italy
| | - Ivan Russo
- Department of Business Administration, University of Verona, Via Cantarane 24, Verona, 37129, Italy
| | - David Bolzonella
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Paolo Pavan
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30170, Venezia, Mestre, Italy
| | - Mauro Majone
- Department of Chemistry, "La Sapienza" University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Francesco Valentino
- Department of Chemistry, "La Sapienza" University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
7
|
Mannina G, Presti D, Montiel-Jarillo G, Carrera J, Suárez-Ojeda ME. Recovery of polyhydroxyalkanoates (PHAs) from wastewater: A review. BIORESOURCE TECHNOLOGY 2020; 297:122478. [PMID: 31810735 DOI: 10.1016/j.biortech.2019.122478] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are biopolyesters accumulated as carbon and energy storage materials under unbalanced growth conditions by various microorganisms. They are one of the most promising potential substitutes for conventional non-biodegradable plastics due to their similar physicochemical properties, but most important, its biodegradability. Production cost of PHAs is still a great barrier to extend its application at industrial scale. In order to reduce that cost, research is focusing on the use of several wastes as feedstock (such as agro-industrial and municipal organic waste and wastewater) in a platform based on mixed microbial cultures. This review provides a critical illustration of the state of the art of the most likely-to-be-scale-up PHA production processes using mixed microbial cultures platform and waste streams as feedstock, with a particular focus on both, upstream and downstream processes. Current pilot scale studies, future prospects, challenges and developments in the field are also highlighted.
Collapse
Affiliation(s)
- Giorgio Mannina
- Engineering Department, Palermo University, Viale delle Scienze, Ed.8, 90128 Palermo, Italy.
| | - Dario Presti
- Departament d'Enginyeria Química, Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellatera (Barcelona), Spain
| | - Gabriela Montiel-Jarillo
- Departament d'Enginyeria Química, Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellatera (Barcelona), Spain
| | - Julián Carrera
- Departament d'Enginyeria Química, Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellatera (Barcelona), Spain
| | - María Eugenia Suárez-Ojeda
- Departament d'Enginyeria Química, Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellatera (Barcelona), Spain
| |
Collapse
|
8
|
Tu W, Zhang D, Wang H, Lin Z. Polyhydroxyalkanoates (PHA) production from fermented thermal-hydrolyzed sludge by PHA-storing denitrifiers integrating PHA accumulation with nitrate removal. BIORESOURCE TECHNOLOGY 2019; 292:121895. [PMID: 31398550 DOI: 10.1016/j.biortech.2019.121895] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
Polyhydroxyalkanoates (PHA) production from fermented thermal-hydrolyzed sludge was conducted by mixed microbial cultures (MMCs) in the study. An MMC enriched in the species Brachymonas_denitrificans (60.18%) was selected under an aerobic feast/famine regime, which is capable of denitrification and accumulating PHA. To take advantage of the PHA-storing denitrifiers, an aerobic-feast/anoxic-famine regime was applied to integrate culture selection with denitrification. The results showed that cultures enriched under the regime exhibited a PHA storage capacity with PHA yield on VFA of 0.47 gCOD/gCOD and well denitrification performance achieving nitrate removal of 98%. Moreover, the aerobic-feast/anoxic-famine regime could originate a comparable maximum PHA content to the complete aerobic feast/famine regime (49.7 wt% versus. 47.1 wt%, respectively), yet reduce aeration energy input by 79% in the culture selection process. Finally, this study investigated the accumulation of nitrite and nitrous oxide during PHA based denitrification and the feasibility of integrating the process with wastewater treatment.
Collapse
Affiliation(s)
- Weiming Tu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Dandan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hui Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Ziyu Lin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Colombo B, Villegas Calvo M, Pepè Sciarria T, Scaglia B, Savio Kizito S, D'Imporzano G, Adani F. Biohydrogen and polyhydroxyalkanoates (PHA) as products of a two-steps bioprocess from deproteinized dairy wastes. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 95:22-31. [PMID: 31351607 DOI: 10.1016/j.wasman.2019.05.052] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/10/2019] [Accepted: 05/27/2019] [Indexed: 05/11/2023]
Abstract
In this study a two-steps bioprocess approach aimed at biohydrogen production via dark-fermentation, and polyhydroxyalkanoates-PHA production by mixed microbial cultures, was proposed to valorise two dairy-waste streams coming from cheese whey deproteinization (i.e. Ricotta cheese production and ultrafiltration). During the first step, the increase of OLR was tested, resulting in higher daily H2 volume (3.47 and 5.07 NL H2 d-1 for second cheese whey-SCW and concentrated cheese whey permeate-CCWP) and organic acids production (14.6 and 12.6 g L-1 d-1 for SCW and CCWP) for both the substrates, keeping good conversion of sugars into H2 (1.37 and 1.93 mol H2 mol-1 sugars for SCW and CCWP). During the second step, the organic acids were used for PHA production reaching high conversion yields for both the fermented streams (as average 0.74 ± 0.14 mg CODPHA mg-1 CODOA-in), with a maximum polymer content of 62 ± 4.5 and 55.1 ± 1.3% (g PHA g-1 VSS) for fermented SCW and fermented CCWP respectively. For the results reported, this study could be taken into consideration for larger scale application.
Collapse
Affiliation(s)
- Bianca Colombo
- Gruppo Ricicla - DiSAA - Università degli Studi di Milano, via Celoria 2, 20133 Milan, Italy
| | - Mariana Villegas Calvo
- Gruppo Ricicla - DiSAA - Università degli Studi di Milano, via Celoria 2, 20133 Milan, Italy
| | - Tommy Pepè Sciarria
- Gruppo Ricicla - DiSAA - Università degli Studi di Milano, via Celoria 2, 20133 Milan, Italy
| | - Barbara Scaglia
- Gruppo Ricicla - DiSAA - Università degli Studi di Milano, via Celoria 2, 20133 Milan, Italy
| | - Simon Savio Kizito
- Gruppo Ricicla - DiSAA - Università degli Studi di Milano, via Celoria 2, 20133 Milan, Italy
| | - Giuliana D'Imporzano
- Gruppo Ricicla - DiSAA - Università degli Studi di Milano, via Celoria 2, 20133 Milan, Italy
| | - Fabrizio Adani
- Gruppo Ricicla - DiSAA - Università degli Studi di Milano, via Celoria 2, 20133 Milan, Italy.
| |
Collapse
|
10
|
Luangthongkam P, Laycock B, Evans P, Lant P, Pratt S. Thermophilic production of poly(3-hydroxybutyrate-co-3-hydrovalerate) by a mixed methane-utilizing culture. N Biotechnol 2019; 53:49-56. [PMID: 31276815 DOI: 10.1016/j.nbt.2019.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/23/2019] [Accepted: 06/30/2019] [Indexed: 11/24/2022]
Abstract
The production of polyhydroxyalkanoates (PHAs) from methane is limited to mesophiles and thus suffers from high energy requirements for cooling. To address this issue, the use of thermophilic processes is gaining interest, as this strategy may deliver improved economic feasibility for PHA production. This study reports the first thermophilic PHA-producing culture grown on methane at 55 °C in fill-and-draw batch reactors. Harvested cells were incubated with various combinations of methane, propionic acid and valeric acid to assess their capacity for the synthesis of poly(3-hydroxybutyrate) (PHB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). Only PHB was produced when fed with methane alone. The addition of odd-carbon-number fatty acids resulted in higher PHA content with 3 HV fractions in the range of 15-99 mol%, depending on the types of fatty acids added. Acetic acid addition enhanced the synthesis of 3HB monomer, but not of 3 HV. On increasing the temperature to 58 °C, PHA productivity was not significantly affected.
Collapse
Affiliation(s)
- Pawarisa Luangthongkam
- School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072, Australia
| | - Bronwyn Laycock
- School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072, Australia
| | - Paul Evans
- The Australian Centre for Ecogenomics (ACE), The University of Queensland, St. Lucia, Brisbane, Queensland, 4072, Australia
| | - Paul Lant
- School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072, Australia
| | - Steven Pratt
- School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072, Australia.
| |
Collapse
|
11
|
Tsang YF, Kumar V, Samadar P, Yang Y, Lee J, Ok YS, Song H, Kim KH, Kwon EE, Jeon YJ. Production of bioplastic through food waste valorization. ENVIRONMENT INTERNATIONAL 2019; 127:625-644. [PMID: 30991219 DOI: 10.1016/j.envint.2019.03.076] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/10/2019] [Accepted: 03/30/2019] [Indexed: 06/09/2023]
Abstract
The tremendous amount of food waste from diverse sources is an environmental burden if disposed of inappropriately. Thus, implementation of a biorefinery platform for food waste is an ideal option to pursue (e.g., production of value-added products while reducing the volume of waste). The adoption of such a process is expected to reduce the production cost of biodegradable plastics (e.g., compared to conventional routes of production using overpriced pure substrates (e.g., glucose)). This review focuses on current technologies for the production of polyhydroxyalkanoates (PHA) from food waste. Technical details were also described to offer clear insights into diverse pretreatments for preparation of raw materials for the actual production of bioplastic (from food wastes). In this respect, particular attention was paid to fermentation technologies based on pure and mixed cultures. A clear description on the chemical modification of starch, cellulose, chitin, and caprolactone is also provided with a number of case studies (covering PHA-based products) along with a discussion on the prospects of food waste valorization approaches and their economic/technical viability.
Collapse
Affiliation(s)
- Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, Hong Kong
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab 140306, India
| | - Pallabi Samadar
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Yi Yang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, Hong Kong
| | - Jechan Lee
- Department of Environmental and Safety Engineering, Ajou University, Suwon 16499, Republic of Korea
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Hocheol Song
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Ki-Hyun Kim
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea.
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea.
| | - Young Jae Jeon
- Department of Microbiology, Pukyong National University, Pusan 48513, Republic of Korea
| |
Collapse
|
12
|
Moretto G, Valentino F, Pavan P, Majone M, Bolzonella D. Optimization of urban waste fermentation for volatile fatty acids production. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 92:21-29. [PMID: 31160023 DOI: 10.1016/j.wasman.2019.05.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/25/2019] [Accepted: 05/05/2019] [Indexed: 06/09/2023]
Abstract
The problem of waste disposal has recently focused on practices for waste recycling and bio-resources valorization. Organic waste produced in urban context together with biological sludge produced in wastewater treatment plants (WWTPs) can be used as renewable feedstock for the production of building blocks of different products, from biopolymers to methyl esters. This paper deals with the optimization of the fermentation process in order to transform urban organic waste (a mixture of pre-treated food waste and biological sludge) into added-value volatile fatty acid (VFA) rich stream, useful for biological processes within a biorefinery technology chain. Different temperatures, pH, hydraulic retention times (HRTs) and organic loading rates (OLRs) were tested both in batch and continuous trials. Batch tests showed the best working conditions at 37 °C and pH 9, using the bio-waste feedstock thermally pre-treated (76 h at 72 °C). These conditions were applied in continuous process, where higher HRT (6.0 d) and lower OLR [7.7 kg VS/(m3 d)] gave the best performances in terms of process yield and maximum VFA level achieved: 0.77 CODVFA/VS(0) and 39 g CODVFA/L. An optimized fermentation process is crucial in a biorefinery perspective since it has to give a final stream of constant composition or tailored products suitable for further applications.
Collapse
Affiliation(s)
- Giulia Moretto
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Dorsoduro 3246, 30123 Venice, Italy
| | - Francesco Valentino
- Department of Chemistry, La Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Paolo Pavan
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Dorsoduro 3246, 30123 Venice, Italy
| | - Mauro Majone
- Department of Chemistry, La Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - David Bolzonella
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
13
|
Amaro TMMM, Rosa D, Comi G, Iacumin L. Prospects for the Use of Whey for Polyhydroxyalkanoate (PHA) Production. Front Microbiol 2019; 10:992. [PMID: 31143164 PMCID: PMC6520646 DOI: 10.3389/fmicb.2019.00992] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/18/2019] [Indexed: 11/13/2022] Open
Abstract
Plastic production and accumulation have devastating environmental effects, and consequently, the world is in need of environmentally friendly plastic substitutes. In this context, polyhydroxyalkanoates (PHAs) appear to be true alternatives to common plastics because they are biodegradable and biocompatible and can be biologically produced. Despite having comparable characteristics to common plastics, extensive PHA use is still hampered by its high production cost. PHAs are bacterial produced, and one of the major costs associated with their production derives from the carbon source used for bacterial fermentation. Thus, several industrial waste streams have been studied as candidate carbon sources for bacterial PHA production, including whey, an environmental contaminant by-product from the dairy industry. The use of whey for PHA production could transform PHA production into a less costly and more environmentally friendly process. However, the efficient use of whey as a carbon source for PHA production is still hindered by numerous issues, including whey pre-treatments and PHA producing strain choice. In this review, current knowledge on using whey for PHA production were summarized and new ways to overcome the challenges associated with this production process were proposed.
Collapse
Affiliation(s)
| | | | | | - Lucilla Iacumin
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, Italy
| |
Collapse
|
14
|
Involvement of polyhydroxyalkanoates in stress resistance of microbial cells: Biotechnological consequences and applications. Biotechnol Adv 2018; 36:856-870. [DOI: 10.1016/j.biotechadv.2017.12.006] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/24/2017] [Accepted: 12/12/2017] [Indexed: 01/30/2023]
|
15
|
Rodriguez-Perez S, Serrano A, Pantión AA, Alonso-Fariñas B. Challenges of scaling-up PHA production from waste streams. A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 205:215-230. [PMID: 28987985 DOI: 10.1016/j.jenvman.2017.09.083] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/26/2017] [Accepted: 09/30/2017] [Indexed: 05/26/2023]
Abstract
The search for new materials that replace fossil fuel-based plastics has been focused on biopolymers with similar physicochemical properties to fossil fuel-based plastics, such as Polyhydroxyalkanoates (PHA). The present paper reviews the challenges of scaling-up PHA production from waste streams during the period from 2014 to 2016, focusing on the feasibility of the alternatives and the most promising alternatives to its scaling-up. The reviewed research studies mainly focus on reducing costs or obtaining more valuable polymers. In the future, the integration of PHA production into processes such as wastewater treatment plants, hydrogen production or biodiesel factories could enhance its implementation at industrial scale.
Collapse
Affiliation(s)
- Santiago Rodriguez-Perez
- Molecular Biology and Biochemical Engineering Department, Universidad Pablo de Olavide, Ed. 22 Ctra. deUtrera, km. 1, Seville, Spain
| | - Antonio Serrano
- Instituto de Grasa, Spanish National Research Council (CSIC), Campus Universitario Pablo de Olavide, Ed. 46, Ctra. deUtrera, km. 1, Seville, Spain
| | - Alba A Pantión
- The University of Seville, Higher Technical School of Engineering, Department of Chemical and Environmental Engineering, Camino de losDescubrimientos, s/n, Seville, Spain
| | - Bernabé Alonso-Fariñas
- The University of Seville, Higher Technical School of Engineering, Department of Chemical and Environmental Engineering, Camino de losDescubrimientos, s/n, Seville, Spain.
| |
Collapse
|
16
|
Nielsen C, Rahman A, Rehman AU, Walsh MK, Miller CD. Food waste conversion to microbial polyhydroxyalkanoates. Microb Biotechnol 2017; 10:1338-1352. [PMID: 28736901 PMCID: PMC5658610 DOI: 10.1111/1751-7915.12776] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 06/17/2017] [Indexed: 12/16/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) are biopolymers with desirable material properties similar to petrochemically derived plastics. PHAs are naturally produced by a wide range of microorganisms as a carbon storage mechanism and can accumulate to significantly high levels. PHAs are an environmentally friendly alternative to their petroleum counterparts because they can be easily degraded, potentially reducing the burden on municipal waste systems. Nevertheless, widespread use of PHAs is not currently realistic due to a variety of factors. One of the major constraints of large-scale PHA production is the cost of carbon substrate for PHA-producing microbes. The cost of production could potentially be reduced with the use of waste carbon from food-related processes. Food wastage is a global issue and therefore harbours immense potential to create valuable bioproducts. This article's main focus is to examine the state of the art of converting food-derived waste into carbon substrates for microbial metabolism and subsequent conversion into PHAs.
Collapse
Affiliation(s)
- Chad Nielsen
- Department of Biological EngineeringUtah State University4105 Old Main HillLoganUT84322‐4105USA
| | - Asif Rahman
- Bioengineering BranchSpace BioSciences DivisionNASA Ames Research CenterMoffett FieldCA94035‐1000USA
- COSMIAC Research CenterUniversity of New MexicoAlbuquerqueNM87106USA
| | - Asad Ur Rehman
- Department of Biological EngineeringUtah State University4105 Old Main HillLoganUT84322‐4105USA
- Institute of Industrial BiotechnologyGovernment College UniversityKatchery RoadLahorePakistan
| | - Marie K. Walsh
- Department of Nutrition, Dietetics, and Food SciencesUtah State University8700 Old Main HillLoganUT84322‐8700USA
| | - Charles D. Miller
- Department of Biological EngineeringUtah State University4105 Old Main HillLoganUT84322‐4105USA
| |
Collapse
|
17
|
Colombo B, Favini F, Scaglia B, Sciarria TP, D’Imporzano G, Pognani M, Alekseeva A, Eisele G, Cosentino C, Adani F. Enhanced polyhydroxyalkanoate (PHA) production from the organic fraction of municipal solid waste by using mixed microbial culture. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:201. [PMID: 28852422 PMCID: PMC5567430 DOI: 10.1186/s13068-017-0888-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/12/2017] [Indexed: 05/22/2023]
Abstract
BACKGROUND In Europe, almost 87.6 million tonnes of food waste are produced. Despite the high biological value of food waste, traditional management solutions do not consider it as a precious resource. Many studies have reported the use of food waste for the production of high added value molecules. Polyhydroxyalkanoates (PHAs) represent a class of interesting bio-polyesters accumulated by different bacterial cells, and has been proposed for production from the organic fraction of municipal solid waste (OFMSW). Nevertheless, until now, no attention has been paid to the entire biological process leading to the transformation of food waste to organic acids (OA) and then to PHA, getting high PHA yield per food waste unit. In particular, the acid-generating process needs to be optimized, maximizing OA production from OFMSW. To do so, a pilot-scale Anaerobic Percolation Biocell Reactor (100 L in volume) was used to produce an OA-rich percolate from OFMSW which was used subsequently to produce PHA. RESULTS The optimized acidogenic process resulted in an OA production of 151 g kg-1 from fresh OFMSW. The subsequent optimization of PHA production from OA gave a PHA production, on average, of 223 ± 28 g kg-1 total OA fed. Total mass balance indicated, for the best case studied, a PHA production per OFMSW weight unit of 33.22 ± 4.2 g kg-1 from fresh OFMSW, corresponding to 114.4 ± 14.5 g kg-1 of total solids from OFMSW. PHA composition revealed a hydroxybutyrate/hydroxyvalerate (%) ratio of 53/47 and Mw of 8∙105 kDa with a low polydispersity index, i.e. 1.4. CONCLUSIONS This work showed how by optimizing acidic fermentation it could be possible to get a large amount of OA from OFMSW to be then transformed into PHA. This step is important as it greatly affects the total final PHA yield. Data obtained in this work can be useful as the starting point for considering the economic feasibility of PHA production from OFMSW by using mixed culture.
Collapse
Affiliation(s)
- Bianca Colombo
- Gruppo Ricicla labs-DiSAA-Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Francesca Favini
- Gruppo Ricicla labs-DiSAA-Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Barbara Scaglia
- Gruppo Ricicla labs-DiSAA-Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Tommy Pepè Sciarria
- Gruppo Ricicla labs-DiSAA-Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Giuliana D’Imporzano
- Gruppo Ricicla labs-DiSAA-Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Michele Pognani
- Gruppo Ricicla labs-DiSAA-Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Anna Alekseeva
- Centro Alta Tecnologia Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni Srl, Via Colombo 81, 20133 Milan, Italy
| | - Giorgio Eisele
- Centro Alta Tecnologia Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni Srl, Via Colombo 81, 20133 Milan, Italy
| | - Cesare Cosentino
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, Via Colombo 81, 20133 Milan, Italy
| | - Fabrizio Adani
- Gruppo Ricicla labs-DiSAA-Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| |
Collapse
|
18
|
Colombo B, Pepè Sciarria T, Reis M, Scaglia B, Adani F. Polyhydroxyalkanoates (PHAs) production from fermented cheese whey by using a mixed microbial culture. BIORESOURCE TECHNOLOGY 2016; 218:692-9. [PMID: 27420156 DOI: 10.1016/j.biortech.2016.07.024] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 05/06/2023]
Abstract
Two fermented cheese wheys (FCW), FCW1 composed of lactic, acetic and butyric acids in the proportion of 58/16/26 (% CODOrganic Acid (OA)) and FCW2 composed of acetic, propionic, butyric, lactic and valeric acids in the proportion of 58/19/13/6/4 (% CODOA) were used to produce polyhydroxyalkanoates (PHAs) by using a pre-selected mixed microbial culture (MMC). PHA accumulation gave for fermented FCW1 a PHA yield (Ytot) of 0.24±0.02mgCODPHAmgCODSolubleSubstrate(SS)(-1) and a total PHA production, referred to the substrate used, of 60gPHAkgcheesewheyTotalSolids(TS)(-1). For fermented FCW2 results were: PHA yield (Ytot) of 0.42±0.03mgCODPHAmgCODSS(-1) and PHA from a substrate of 70gPHAkgcheesewheyTS(-1). Qualitatively, PHAs from FCW1 was made up exclusively of 3-hydroxybutyrate (HB), while those obtained from FCW2 were composed of 40% of 3-hydroxyvalerate (HV) and 60% of HB.
Collapse
Affiliation(s)
- Bianca Colombo
- Gruppo Ricicla labs - DiSAA - Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Tommy Pepè Sciarria
- Gruppo Ricicla labs - DiSAA - Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Maria Reis
- REQUIMTE/CQFB, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Barbara Scaglia
- Gruppo Ricicla labs - DiSAA - Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Fabrizio Adani
- Gruppo Ricicla labs - DiSAA - Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy.
| |
Collapse
|
19
|
Tiwari B, Manickam N, Kumari S, Tiwari A. Biodegradation and dissolution of polyaromatic hydrocarbons by Stenotrophomonas sp. BIORESOURCE TECHNOLOGY 2016; 216:1102-1105. [PMID: 27342606 DOI: 10.1016/j.biortech.2016.06.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 06/06/2023]
Abstract
The aim of this work was to study the biodegradation capabilities of a locally isolated bacterium, Stenotrophomonas sp. strain IITR87 to degrade the polycyclic aromatic hydrocarbons and also check the preferential biodegradation of polycyclic aromatic hydrocarbons (PAHs). From preferential substrate degradation studies, it was found that Stenotrophomonas sp. strain IITR87 first utilized phenanthrene (three membered ring), followed by pyrene (four membered ring), then benzo[α]pyrene (five membered ring). Dissolution study of PAHs with surfactants, rhamnolipid and tritonX-100 showed that the dissolution of PAHs increased in the presence of surfactants.
Collapse
Affiliation(s)
- Bhagyashree Tiwari
- Department of Molecular and Cellular Engineering, Jacob School of Biotechnology and Bioengineering, Sam Higginbottom Institute of Agriculture, Technology and Sciences, Allahabad 211 007, India; Environmental Biotechnology Section, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India.
| | - N Manickam
- Environmental Biotechnology Section, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India
| | - Smita Kumari
- Environmental Biotechnology Section, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India
| | - Akhilesh Tiwari
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, India
| |
Collapse
|
20
|
Liu CC, Zhang LL, An J, Chen B, Yang H. Recent strategies for efficient production of polyhydroxyalkanoates by micro-organisms. Lett Appl Microbiol 2015; 62:9-15. [PMID: 26482840 DOI: 10.1111/lam.12511] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/29/2015] [Accepted: 10/12/2015] [Indexed: 12/15/2022]
Affiliation(s)
- C.-C. Liu
- Translational Medicine Center; Hong-Hui Hospital; Xi'an Jiaotong University College of Medicine; Xi'an China
| | - L.-L. Zhang
- Translational Medicine Center; Hong-Hui Hospital; Xi'an Jiaotong University College of Medicine; Xi'an China
| | - J. An
- Translational Medicine Center; Hong-Hui Hospital; Xi'an Jiaotong University College of Medicine; Xi'an China
| | - B. Chen
- Translational Medicine Center; Hong-Hui Hospital; Xi'an Jiaotong University College of Medicine; Xi'an China
| | - H. Yang
- Translational Medicine Center; Hong-Hui Hospital; Xi'an Jiaotong University College of Medicine; Xi'an China
| |
Collapse
|